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Abstract:  

Present study reports the magnetocaloric effect (MCE) and piezoresponse of integrated 

ferroelectric-ferromagnetic heterostructures of PbZr0.52Ti0.48O3 (PZT) (5 nm)/ Bi-Sr-Ca-Cu2-OX 

(BSCCO) (5 nm)/ La0.67Sr0.33MnO3 (LSMO) (40 nm)/ MgO. Magnetic and pizoresponse 

behavior of the heterostructures are found to be governed by magneto-electric coupling and 

induced lattice strains. In addition, the MCE is studied using Maxwell equations from both Field 

Cooled (FC) and Zero Field Cooled (ZFC) magnetization data. Maximum MCE entropy change 

(|∆S|) of 42.6 mJkg-1K-1 (at 258 K) and 41.7 mJkg-1K-1 (at 269 K) are found corresponding to FC 

and ZFC data, respectively. The variation in maximum entropy change and corresponding 

temperatures for FC and ZFC data revealed that the application of a magnetic field can 

significantly contribute towards tuning of the MCE. Interestingly, these multilayered structures 

are found to sustain MCE over a broad temperature range, which makes them attractive for 

improved solid-state energy conversion devices. 

Keywords: Magnetocaloric effect; Magneto-electric coupling; Lattice strains; Multi-layered 

heterostructures. 
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1. Introduction  

Adiabatic tuning of magnetization leading to an isothermal entropy/heat change is popularly 

known as the magneto-caloric effect (MCE) [1]. The effect was primarily exploited for 

laboratory applications[2], until the “giant” (at least 2 times higher in existing similar magnetic 

materials) MCE was discovered using reversible distortions in symmetry[1, 3-8] or volume[9], 

aided by strongly coupled magnetic and structural transitions[10]. This approach attracted 

significant research interest in terms of exploring different classes of materials for tuning and 

achieving a giant MCE. Among these materials, gadolinium has proven to be a strong candidate 

for MCE refrigeration and is often considered as a reference material to benchmark a MCE[11]. 

However, a high cost has hindered the development of commercial devices based on gadolinium. 

In this context, semi-metallic perovskite lanthanum manganite (La0.7Sr0.3MnO3: LSMO)[12-14] 

based compositions have attracted renewed interest, primarily after the discovery of a colossal 

magnetoresistance in doped lanthanum manganite thin films[15, 16]. Thin films with a range of 

compositions and configurations have been extensively studied to provide an improved 

alternative for gadolinium[11, 17-25]. Efforts have been made to tune the MCE by employing 

different synthesis techniques[18, 20]. In addition, work has been done to enhance the MCE 

performance of LMSO by doping of the La and Mn sites[17, 19, 26].  

It has been reported that during cooling LSMO exhibits a paramagnetic (PM) to ferromagnetic 

(FM) transitions above room temperature (369 K)[17]. These transitions can be tuned using 

chromium (Cr) and titanium (Ti) substitution at temperatures of 326 K and 210 K, 

respectively[27]. The change in the thickness of LSMO layer can also act to tune of these 

transition temperatures[28]. Compositional and configurational tuning also leads to variation in 

magnetization dependant heat capacity which further affects its magnetocaloric cooling capacity; 
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as an example, the magnetization dependent change in heat capacity (∆CP (T, µ0H)=CP (T, µ0H) - 

CP (T, 0)) of Ti-substituted LSMO ranges for 6.2 to -4.2 Jkg-1K-1 while for Cr substituted 

compositions it lies in the range of 21 to -11 Jkg-1K-1[27]. This huge variation in heat capacity is 

a reason why Ti-substituted compositions exhibit a better MCE. LSMO thin films have been 

grown on a variety of substrates, and the epitaxial strain has been utilized to enhance the MCE 

performance of LSMO[25]. Intriguingly, attempts to improve MCE performance by growing 

La0.7Sr0.3MnO3/SrRuO3 (LSMO/SRO) superlattices have led to improved relative cooling 

capacity as a result of broadening of the range of maximum temperature change with a small 

deviation in MCE entropy[24, 29]. This highlighted the potential benefits of interlayer coupling 

and interface effects[24, 29]. Similar observations are also evident from the recent demonstration 

of pyroelectric control of magnetization for enhanced MCE performance in ferroelectric-

ferromagnetic multi-layered heterostructures[30]. This work unfurls the importance of 

ferroelectric-ferromagnetic coupling for realization of significant MCE efficiency. In this work, a 

70 nm CoFe2O4 layer was sandwiched between two 270 nm Zr-doped lead titanate (PZT) layers. 

Due to this the pyroelectric effect in PZT layers predominantly governed the magnetization of 

the system. It is to be noted that PZT layers exhibit good ferroelectricity down to 2.4 nm [28]. 

Therefore, it has attained huge research interests for ultra-thin film applications such as 

ferroelectric tunnel junctions [28, 31-33]. Moreover, it has been reported that a very thin (5-7 

nm) PZT capping layer on LSMO (30 nm thick) results in improved magnetic response[28, 34]. 

It is important to note that a superconducting spacer between ferroelectric and ferromagnetic 

may capitalize the quanta of magnetic flux and couple the local ferroelectric polarization with 

local magnetization at nanoscale[35]. As a result of these observations, we have investigated 

PZT/BSCCO/LSMO/MgO (PbZr0.52Ti0.48O3 (PZT) (5 nm)/ Bi-Sr-Ca-Cu2-OX (BSCCO) (5 nm)/ 
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La0.67Sr0.33MnO3 (LSMO) 40nm/ MgO) heterostructures as a ferroelectric-ferromagnetic 

configuration with a superconducting spacer to achieve an improved magnetic response. It is of 

interest to note that a thin layer of superconducting spacer BSCCO cannot exhibit 

superconductivity above 100 K, as also evident from the zero-field cooled magnetic data of the 

heterostructure but it is still likely to facilitate the ferroelectric-ferromagnetic coupling[36]. The 

MCE in the present case is governed by the cumulative effect of epitaxial lattice strains and 

magnetoelectric coupling.  

 

2. Experiments 

Targets of the superconducting Bi-Sr-Ca-Cu2-Ox (BSCCO) and ferroelectric Pb(Zr0.52Ti0.48)O3 

(PZT) were synthesized by the conventional solid-state reaction route. Stochiometric ratios of 

high-quality precursors (>99.9%, Sigma Aldrich) of Bi2O3, SrCO3, CaCO3, CuO and PbO, ZrO2, 

TiO2 were used to synthesize BSCCO and PZT targets, respectively. The powders were well 

mixed and ground in an isopropyl alcohol medium using a mortar-pestle for two hours to form a 

homogeneous mixture of the precursor. The fine ground powder was calcined at 850 ºC for 

BSCCO and 800 ºC for PZT, respectively. Afterward, the phase pure calcined powders were 

pelletized into 25.4 mm (one-inch) circular shaped targets and sintered for four hours at 860 ºC 

and 1200 ºC for the BSCCO and PZT, respectively. The superconductivity of BSCCO target was 

confirmed by the levitation and measurement of resistance with temperature. 

After forming the targets, multilayer nanostructures of BSCCO, PZT and LSMO thin films on a 

MgO (001) substrate were fabricated using a Pulsed Laser Deposition (PLD) technique. A multi-

target mounting PLD system was used to grow alternate layers without breaking the vacuum. 

Both target and substrate holders were rotated to maintain the homogeneity of the thin films. 



6	
	

Initially, the PLD chamber was evacuated to a sufficiently low pressure (~ 1.2×10-6 torr) to avoid 

any residual gas contamination during the growth process. Firstly, the LSMO layer was 

deposited on the MgO (001) substrate using an Excimer laser ( λ = 248 nm) with an energy 

density of 1.5-2 J/cm3 at 780 ºC with a repetition rate of 5 Hz and an oxygen partial pressure of 

100 mT. Subsequently, an ultra-thin layer (~ 5 nm) of BSCCO was grown on the LSMO/MgO 

substrate under similar conditions followed by the deposition of an ultra-thin PZT (~ 5 nm) layer 

under similar conditions for polar capping. The thickness of films was measured using Stylus 

Profilometer. The ferroelectric /ferromagnetic heterostructure was finally annealed at 700 °C for 

30 minutes to improve the interface and crystalline properties. Structural characterization was 

performed using X-ray diffraction technique (Bruker Advance) with CuKα radiation (1.54 Å).  

Analysis of the surface topography and piezoresponse force microscopy was carried out at room 

temperature with moderately stiff (k ∼ 1 N/m) Budget Sensors ElectriMulti 75-G cantilevers 

having a free resonance of ∼75 kHz, on a Multimode (Veeco) AFM equipped with a Nanonis 

controller. Cryogenic magnetic measurements were performed using the Quantum designed 

Physical Property Measurement System (PPMS) in the temperature range of 100 K to 330 K and 

applied magnetic field ranges from 0 to 2.0 Tesla. However, an appropriate magnetic response is 

observed only at very low applied magnetic fields (< 0.1 T). These measurements indicated that 

the deposited heterostructures demonstrate a large difference in magnetization with respect to the 

change in temperature (∂M/∂T) with low hysteresis losses, which makes these heterostructures of 

interest for energy efficient MCE investigations.  

 

3. Results and Discussion 
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3.1 Crystal structure, Surface Topography & Piezoresponse Force Microscopy 

(PFM) Study: 

Typical θ-2θ X-ray diffraction patterns of the PbZr0.52Ti0.48O3 (PZT) (5 nm)/ Bi-Sr-Ca-Cu2-OX 

(BSCCO) (5 nm)/ La0.67Sr0.33MnO3 (LSMO) 40nm/ MgO heterostructure was recorded in the 20o 

to 80o range of Braggs angle; see Figure 1. The hkl planes of the LSMO, PZT, and BSCCO were 

observed in the direction of the MgO (001) substrate which provides evidence of preferential 

orientation during growth. The growth direction of the heterostructure is along the c-axis and is 

perpendicular to the substrate plane. The bulk polycrystalline LSMO ceramic is a distorted 

perovskite with a pseudo-cubic lattice parameter a = c = 3.872 Å, whereas tetragonal bulk PZT 

shows a = 4.033 Å c = 3.141 Å  The hkl planes of the LSMO thin film are found at 22.9º, 46.74º, 

73.08º, a mismatch in substrate and film lattice parameters confirms the presence of an in-plane 

tensile strain and out of plane compressive strain. The literature suggests that the magnetization 

and isothermal entropy change can be significantly influenced by introducing such epitaxial 

strains[25] as a result of the growth process, which can be calculated using the relation; 

        (1) 

where  is the lattice constant of the bulk polycrystalline PZT and LSMO ceramic used as 

target for PLD technique and  is the lattice constant of the grown thin film obtained from 

XRD data. The lattice constants of PZT and LSMO thin films obtained from XRD data are c = 

3.889Å and c = 4.093Å, respectively. The LSMO thin film, when grown on the MgO (001) 

substrate and PZT on the smooth BSCCO/LSMO/MgO possess in-plane tensile strain of +0.42 

% and in-plane compressive strain of -1.16 %, respectively. This leads to the generation of an in-

plane tensile strain in the LSMO layer and a compressive strain in the BSCCO thin film; it is 
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well known that a lattice strain significantly alters the magnetic properties of thin films due to 

piezo- magnetostriction[37, 38]. 

Following structural characterization, the surface topography was investigated using atomic 

force microscopy (AFM), performed using a platinum coated (Pt/Si) cantilever tip. The 

nanoscale ferroelectric and piezoelectric nature of the PZT layer was investigated with the aid of 

piezoresponse force microscopy (PFM), as shown in Figure 2 (a-d). The heterostructures were 

found to have a homogeneous surface with a nanoscale granular structure on the upper surface. 

These may be due to the presence of the thin nanostructured layer of BSCCO beneath the PZT 

layer. It is also possible that granular structure on the top of heterostructure may arises due to 

non-uniform Stranski–Krastanov (SK) growth mechanism of PZT on BSCCO/LSMO/MgO 

heterostructure [39, 40]. Repeated PFM measurements at different locations revealed significant 

point-to-point variability of the local coercive voltage[41-43], Figure 2 (b) shows the 

polarization switching with electric poling of the upper surface using external 8 V DC bias where 

a polarization reversal signature under a DC bias was observed. However, a complete reversal of 

polarization was missing. The phase angle shows a square hysteresis with 180 degree phase 

reversal, with average coercive voltage of less than 3.5 V. An in-built electric field is present in 

the heterostructure due to strain present in the piezoelectric PZT layer or domain pinning. The 

minima of the amplitude loop indicate that the local coercive voltages are nearly +5 .0 V and -5.0 

V; see Figure 2 d. These coercive fields vary point-to-point, depending on the distribution of 

ferroelectric domain and its pinning by various defects and an interfacial dead layer. The 

properties of phase reversal, polarization switching, domain distribution, and domain pinning 

depend on the depolarization effect, which is common in ultra-thin films close to the critical 

thickness. 
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3.2 Magneto-Caloric Effect (MCE)  

Maxwell relations[44] suggests that the MCE entropy change (∆SM) for an applied magnetic field 

(H) can be estimated as, 

      (2) 

where μ0 is the permeability of the free space. The 
'HT

M
⎟
⎠
⎞⎜

⎝
⎛
∂
∂ can be obtained through a set of M 

(H) isotherms obtained from thermodynamic equilibrium. In addition, the corresponding MCE 

temperature change (∆T) can be determined by the following equation,  

       (3) 

where C is the specific heat capacity of the material and can be assumed constant in the absence 

of phase transitions. To investigate the MCE, the isothermal magnetization M(T) data of the 

PZT/BSCCO/LSMO/MgO heterostructures were recorded in the Zero Field Cooled (ZFC) and 

Field Cooled (FC) modes using the standard protocol[10]. Both ZFC and FC, M(T) 

measurements were performed in the temperature range of 100 K to 330 K with the interval of 1 

K, where the applied magnetic field µoH was varied from 0 T to 0.1 T, as shown in figure 3 (a) 

and (b). It is to be noted that the magnetization hysteresis loops were obtained for -0.1 to 0.1 T, 

while the measurements are performed for 0 to 0.1 T. This is because the complete M-H curve 

forms a hysteretic system and thermodynamics cannot be applied to them[45]. Therefore, for 

adequate usage of Maxwell relations, the estimates can be performed either in the first or third 

quadrant of the M-H curve[45]. However, estimates from both the first or third quadrants will 

lead to the same results. Figure 3 shows that the magnetization slowly decreases near to the 

ferromagnetic (FM) phase transition; however, the magnetic moment falls to zero at the 
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ferromagnetic to paramagnetic (PM) transition. The maximum value of magnetization for the 

heterostructures is found significantly higher in comparison the maximum magnetization values 

reported for various LSMO based composition and heterostructures[17-25]. This is due to the 

cumulative effect of the presence of BSCCO and PZT. BSCCO help in facilitating 

electromagnetic coupling while PZT capping layer leads to a better magnetic response. LSMO 

thin films are known to demonstrate magnetostriction (an effect where a change in magnetization 

leads to a change in the shape of the material)[46, 47]. This indeed lead to a converse 

piezoelectric effect in the adjacent piezoelectric layer where the polarization of material is 

changed due to change in induced strain by magnetostriction of LSMO. These induced strains 

cause a change in polarization of PZT by displacement of the central atom (Zr/Ti). This 

displacement of the central atom induces an electric field which further leads to change in overall 

magnetization of the system. Another important observation is reduced Curie temperature (Tm) of 

the grown heterostructures in contrast to the LSMO thin films. Various studies suggest that the 

LSMO thin film exhibits phase transition at Tm~330 K; however in the present study the Tm is 

shifted to ~ 300 K due to magnetoelectric coupling and a compressive strain present in 

PZT/BSCCO capping layer[23]. In addition, a small difference in FC and ZFC data is observed 

(Figures 3 (c)-(f)). This could be due to the variation in strain that affects alignment of magnetic 

domains during FC and ZFC measurements. Another possible reason is the trigger mechanism of 

the converse piezoelectric effect in the PZT layer. It is obvious that during a FC measurement 

there will a significant change in in-plane magnetization of LSMO in contrast to ZFC 

measurement. Therefore, the impact of the out of plane induced electric field on PZT layer will 

be different, resulting in variation of additional lattice strains due to induced electric field by 

converse piezoelectric effect. These strains are difficult to be measured/predicted due to the 
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complexity of the coupling, and equation 1 does not account for them. But the confirmation of an 

excellent piezoelectric response of PZT at room temperature (in the vicinity of LSMO magnetic 

transition temperature in the present case (300 K)) in our films strongly supports this hypothesis. 

The in-plane tensile strain calculated using equation 1, in LSMO films with an upper layer of 

compressively strained PZT considerably affects the magnetic dipole alignment during FC and 

ZFC measurement and therefore the maximum change in the isothermal entropy; this 

significantly affects the cooling capacity of the heterostructures. Theoretical and experimental 

studies have proven that strain in thin films also affects the Curie temperature (Tm)[48], since Tm 

is ~ 300 K in the heterostructure and is at least 30 K lower than the bulk LSMO. The strain 

present in the various layers of the heterostructure and presence of BSCCO layer influences the 

magnetization which leads to significant entropy change even at low applied field (< 0.1 T) and 

over a broad temperature spectrum resulting in a MCE temperature change (ΔT).  

The variation in the temperature dependent isothermal magnetic entropy ( ) of the 

PZT/BSCCO/LSMO/MgO heterostructure is calculated from the in-plane magnetization M(H) in 

the vicinity of ferromagnetic phase transition temperature, namely 150 K to 330 K. The MCE 

entropy (∆S) and temperature change (∆T), estimated using equations 1 and 2 are highlighted in 

Figure 4, respectively (using ρ	= 8.3 gcm-3 and C = 330 JK-1kg-1 which are assumed constant 

with temperature as the heterostructures are investigated below 1 T)[30, 49]. Any magnetic 

material possesses a maximum change in its isothermal magnetic entropy near the magnetic 

phase transition where the degree of magnetization changes significantly. In the present case, the 

effect is governed by magneto-electric coupling and induced lattice strains. The 

PZT/BSCCO/LSMO/MgO heterostructures are found to have maximum entropy change (|∆S|) of 

42.6 mJkg-1K-1 at 258 K and 41.7 mJkg-1K-1 at 269 K, which correspond to FC and ZFC 
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magnetization measurements in an applied magnetic field (µ0∆H) range of 0.1 T, respectively. 

The variation in maximum entropy change and corresponding temperatures for FC and ZFC data 

reveals that applying a magnetic field can significantly contribute towards tuning of the MCE, 

see Figure 4 (a) and (b). The same trend could also be observed in the MCE temperature change 

curves, see Figure 4 (c) and (d). The |  versus temperature relation is similar a to Gaussian 

curve, with a maximum |  of 19.7 mK in FC and 20 mK in ZFC, which correspond to 

temperatures of K and K, respectively. Interestingly, the calculated MCE 

efficiency (∆S(H)/µ0∆H) in these heterostructures is found to be the higher than reported data for 

several LSMO based composition/configuration[11, 17-25]. ∆S(H)/µ0∆H could be considered as 

a criterion for comparing MCE efficiency in terms of per unit applied magnetic field. Here it is to 

be noted that some doped and strain engineered LSMO thin films grown under similar conditions 

shows higher MCE but only in a narrow temperature range[22, 25]. However, these multilayered 

structures are found to sustain this MCE over a broad temperature range (note the broad range of 

temperature corresponding to maximum entropy and temperature change in Figure 4). This 

profound the additional benefit of PZT/BSCCO layers and the possibility of utilizing them for 

better solid-state refrigeration devices.  

 

4. Conclusions 

In conclusion, present study elucidates the advantage of simultaneously exploiting 

magnetoelectric coupling and epitaxial strains effect for significant piezo- and magnetic 

response. In this context, multilayered heterostructures of PbZr0.52Ti0.48O3 (PZT) (5 nm)/ Bi-Sr-

Ca-Cu2-OX (BSCCO) (5 nm)/ La0.67Sr0.33MnO3 (LSMO) (40 nm)/ MgO have been engineered to 
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have a strong magnetoelectric coupling and a strong magnetic response at room temperature. The 

same has been confirmed using a Field Cooled (FC) and Zero Field Cooled (ZFC) measurements 

which reveals these heterostructures as a potential candidate for MCE investigation. The MCE is 

calculated using Maxwell relations. Maximum entropy changes (|∆S|) of 42.6 mJkg-1K-1 and 41.7 

mJkg-1K-1 are found for an applied magnetic field (µ0∆H) of 0.1 T corresponding to 258 K and 

269 K, respectively. Moreover, ∆S(H)/µ0∆H values, which are often considered as a criterion for 

comparison of MCE refrigeration, in these heterostructures are also found to be significantly 

higher in contrast to several LSMO based compositions. Importantly, this MCE is found to 

sustain over a broad temperature range and thus profound the competency of engineered 

heterostructures for improved solid-state energy conversion devices. We sum up this study with a 

hope that this approach will motivate the research community for engineering similar 

heterostructures for better MCE. 
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Figure Captions 

 

Figure 1: X-ray diffraction patterns of PZT/BSCCO/LSMO/MgO heterostructures, inset shows 

the slow scan XRD patterns between 40 to 50 degree Braggs angles to view the highly oriented 

heterostructure 
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Figure 2: (a) Large area surface topography of PZT/BSCCO/LSMO/MgO heterostructures, (b) 

ferroelectric domain switching under external 8 V DC bias, (c) phase change and (d) variation in 

amplitude under applied external electric field.   
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Figure 3: (a) Field Cooled (FC) and (b) Zero Field Cooled (ZFC) magnetization versus 

temperature plots (M-T) for PZT/BSCCO/LSMO/MgO heterostructures. (c)-(e) The variation in 

M-T plots for 0.01 T, 0.02 T, 0.05 T and 0.1 T respectively.   

 

Figure 4: The variation in entropy (∆S) as a function of temperature, calculated using Maxwell 

relations, for selected ranges of (a) Field Cooled (FC) and (b) Zero Field Cooled (ZFC) magnetic 

measurements. The corresponding temperature change (∆T) as a function of temperature, 

calculated using Maxwell relations, for selected ranges of applied (c) Field Cooled (FC) and (d) 

Zero Field Cooled (ZFC) magnetic measurements. 


