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SUBRIEMANNIAN METRICS

AND THE METRIZABILITY OF PARABOLIC GEOMETRIES

DAVID M.J. CALDERBANK, JAN SLOVÁK, AND VLADIMÍR SOUČEK

Abstract. We present the linearized metrizability problem in the context of parabolic ge-
ometries and subriemannian geometry, generalizing the metrizability problem in projective
geometry studied by R. Liouville in 1889. We give a general method for linearizability and
a classification of all cases with irreducible defining distribution where this method applies.
These tools lead to natural subriemannian metrics on generic distributions of interest in
geometric control theory.

1. Introduction

Many areas of geometric analysis and control theory deal with distributions on smooth
manifolds, i.e., smooth subbundles of the tangent bundle. Let H 6 TM be such a distri-
bution of rank n on a smooth m-dimensional manifold M . A smooth curve c : [a, b] → M
(a 6 b ∈ R) is called horizontal if it is tangent to H at every point, i.e., for every t ∈ [a, b],
the tangent vector ċ(t) to c at c(t) ∈ M belongs to H. It is well known that, at least
locally, any two points x, y ∈ M can be connected by a horizontal curve c if and only if H
is bracket-generating in the sense that any tangent vector can be obtained from iterated Lie
brackets of sections of H.

This paper is concerned with bracket-generating distributions arising in parabolic geome-
tries [6], which are Cartan–Tanaka geometries modelled on homogeneous spaces G/P where
G is a semisimple Lie group and P 6 G a parabolic subgroup. On a manifold M equipped
with such a parabolic geometry, each tangent space is modelled on the P -module g/p, and
the socle h of this P -module (the sum of its minimal nonzero P -submodules) induces a
bracket-generating distribution H on M . Simple and well-known examples include projec-
tive geometry and (Levi-nondegenerate) hypersurface CR geometry: in the former case, g/p
is irreducible and so H = TM , but in the latter case H is the corank one contact distribution
of the hypersurface CR structure.

A more prototypical example for this paper is when H 6 TM is generic of rank n and
corank 1

2
n(n − 1), i.e., m = 1

2
n(n + 1) = n + 1

2
n(n − 1), and [Γ(H),Γ(H)] = Γ(TM). In

this case the Lie bracket on sections of H induces an isomorphism ∧
2H ∼= TM/H and the

distribution is said to be free. Any such manifold is a parabolic geometry where G = SO(V )
with dimV = 2n+1 and P is the stabilizer of a maximal (n-dimensional) isotropic subspace
U of V [9]. Then g/p has socle h ∼= U∗ ⊗ (U⊥/U) with quotient isomorphic to ∧

2h, and
h 6 g/p induces the distribution H 6 TM on M .

While parabolic geometry is the main tool for the present work, our motivation is subrie-
mannian geometry, which concerns the following notion [18].

Definition 1.1. Consider an m-dimensional manifold M with a given smooth distribution
H 6 TM of constant rank n. A (pseudo-)Riemannian metric g on H is called a horizontal
or subriemannian metric on M .

Horizontal metrics are important in both geometric analysis and control theory. Among
the horizontal curves joining two points, it may be important to find those which are optimal
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in some sense, for example those of shortest length with respect to a horizontal metric.
Horizontal metrics also allow for the definition of a hypo-elliptic sublaplacian [16], allowing
methods of harmonic analysis to be applied. However, this raises the question: what is a
good choice of horizontal metric?

For the distribution H on a parabolic geometry, there is a natural compatibility condition
that can be imposed. Indeed, one of the key features of such a geometry is that it admits a
canonical class of connections, called Weyl connections, which form an affine space modelled
on the space of 1-forms.

Definition 1.2. A horizontal metric on the distribution H 6 TM induced from a parabolic
geometry M is compatible if it is covariantly constant in horizontal directions with respect
to some Weyl connection on M . We say M is (locally) metrizable if there exists (locally) a
compatible horizontal metric.

The metrizability problem has been studied for several classes of parabolic geometry
with H = TM , in particular, the case of real projective. These examples exhibit several
interesting features, which we seek to generalize to all parabolic geometries—in particular
to those with H 6= TM .

First, whereas the metrizability condition appears to be highly nonlinear, it linearizes
when viewed as a condition on the inverse metric on H∗ multiplied by a suitable power of
the horizontal volume form. Secondly, this linear equation is highly overdetermined, with
a finite dimensional solution space. Hence parabolic geometries admitting such horizontal
metrics are rather special. This has been used to extract detailed information about the
structure of the geometry [1, 3, 8, 10, 12, 17, 21].

If h is the socle of g/p, it is not generally the case that S2h is irreducible—indeed h itself
need not be irreducible. In order to generalize the studied examples, we introduce a condition
on P -submodules B 6 S2h containing nondegenerate elements, which we call the algebraic
linearization condition (ALC). Our first main result (Theorem 1) justifies this terminology
by showing that for parabolic geometries and P -submodules B 6 S2h satisfying the ALC,
there is a bijection between compatible horizontal metrics and nondegenerate solutions of
an overdetermined first order linear differential equation. (In fact, if h is not irreducible we
need a technical extra condition, which we call the strong ALC.)

Our second main result (Theorem 2) is a complete classification of all parabolic geome-
tries and all P -submodules B 6 S2h such that h is irreducible and B satisfies the ALC.
The classification exhibits two nicely counterbalancing features. On the one hand, among
parabolic geometries with irreducible socle, those admitting P -submodules B 6 S2h sat-
isfying the ALC are rare. On the other hand, the list of examples is quite long: we state
the classification using three tables containing 14 infinite families and 6 exceptional cases.
Many of these examples invite further study (see e.g. [19]).

The structure of the paper is as follows. In section 2 we briefly outline the main notions
and tools of parabolic geometry, referring to [6] for details, but concentrating on examples.
We also establish the local metrizability of the homogeneous model. In section 3, we describe
the linearization principle and prove Theorem 1. We give examples, and in particular show
how explicit formulae can be obtained not only for the homogeneous model, but also for so-
called normal solutions. Section 4 is devoted to the main classification result. We conclude
by giving examples (Theorem 3) where the socle is not irreducible.

2. Background and motivating examples

We work throughout with real smooth manifolds M , real Lie groups P and real Lie
algebras p (e.g., we view GL(n,C) as a real Lie group and gl(n,C) as a real Lie algebra).
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A (real or complex) P -module W is a finite dimensional (real or complex) vector space
carrying a representation ρW : P → GL(W ); W is then also a p-module, where p is the Lie
algebra of P , i.e., it carries a representation ρ̃W : p → gl(W ). We write ξ �w for ρ̃W (ξ)(w).
The nilpotent radical of p is the intersection n of the kernels of all simple p-modules. It
is an ideal in p and the quotient p0 := p/n is reductive. We let P0 := P/ exp n be the
corresponding quotient group with Lie algebra p0. Any P -module W has a filtration

(2.1) 0 =W (0) < W (1) < · · · < W (k) =W with n �W (j) 6W (j−1) ∀ j ∈ {1, . . . k},

by P -submodules, where n �W (j) is the span of all ξ �w with ξ ∈ n and w ∈ W (j). We let
gr(W ) :=

⊕

16j6kW
(j)/W (j−1), which is a P0-module.

2.1. Parabolic geometries and Weyl structures. Let P 6 G be a closed Lie subgroup
of a Lie group G, whose Lie algebra p 6 g has nilpotent radical n E p.

Definition 2.1. A Cartan geometry of type G/P on a smooth manifoldM is a principal P -
bundle G → M equipped with a P -equivariant 1-form θ : TG → g such that θp : TpG → g is
an isomorphism for all p ∈ G, and θ(Xξ) = ξ for all ξ ∈ p, where ξ 7→ Xξ is the infinitesimal
p action on G. The homogeneous model is the Cartan geometry G → G/P equipped with
the Maurer–Cartan form of G.

Any P -moduleW induces a bundle W := G×PW →M . A filtration (2.1) ofW induces a
bundle filtration 0 = W(0) <W(1) < · · · <W(k) = W with gr(W) :=

⊕

k∈NW
(k)/W(k+1) ∼=

G0 ×P0
gr(W ) where G0 := G/ exp n is a principal P0-bundle.

In particular, takingW = g/p, the projection of θ onto g/p induces a bundle isomorphism
TM → G ×P g/p. This P -module has an inductively defined filtration

0 = h(0) < h(1) < · · · < h(k) = g/p, where h(j) := {x ∈ g/p | ∀ ξ ∈ n, ξ �x ∈ h(j−1)}.

In particular h := h(1) induces a distribution H 6 TM on M . We return to this in §2.3.
We specialize to the case that G is a semisimple Lie group and P is a parabolic subgroup

of G, meaning that the nilpotent radical of p is its Killing perp p⊥ in g. Then Cartan
geometries of type G/P are called parabolic geometries and have several distinctive features
which we briefly explain and illustrate in the examples below (see [6] for further details).

First, the Killing form of g induces a duality between p⊥ and g/p, and hence on any
parabolic geometry of type G/P , we have a natural isomorphism G ×P p⊥ ∼= T ∗M dual to
the isomorphism TM ∼= G ×P g/p.

Secondly, the principal P0-bundle G0 has a distinguished family of principal connections
called Weyl connections. To see this, it is convenient to fix a parabolic subalgebra pop

opposite to p in the sense that g = p⊥ ⊕ pop. This identifies P0 with a subgroup of P , and
induces a decomposition of P0-modules

(2.2) g = m⊕ p0 ⊕ p⊥,

where m ∼= g/p is the nilpotent radical of pop. A Weyl structure is a P0-equivariant splitting
ι : G0 →֒ G of the projection G → G0 (i.e., a reduction of structure group of G to P0); the
corresponding Weyl connection is the p0-component of ι∗θ. Weyl structures (or connections)
form an affine space modelled on the space of 1-forms on M .

Summary. A manifold M with a parabolic geometry of type G/P comes equipped with:
a filtration of the tangent bundle TM , a G0 structure on gr(TM), and a distinguished class
of G0-connections (the Weyl connections).

There are general results [5, 6] stating that these data are often sufficient to determine
the parabolic geometry. Rather than explore this in generality, we turn to examples.
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2.2. Projective parabolic geometries. We begin with some examples in which p⊥ is
abelian, hence the filtration of g/p is trivial and (2.2) is a Z-grading of g as a Lie algebra, with
p0 in degree 0 and m, p⊥ in degree ±1 (also called a |1|-grading). There is thus a P0-structure
on TM and an algebraic bracket [[·, ·]] on TM ⊕ p0(M) ⊕ T ∗M where p0(M) 6 gl(TM) is
the bundle induced by p0. In this case a Weyl connection induces a P0-connection ∇ on
TM and any other Weyl connection is given (on vector fields Y, Z) by

(2.3) ∇̂ZY = ∇ZY + [[[[Z,Υ]], Y ]] = ∇ZY + [[Z,Υ]] �Y

for some 1-form Υ, and we write ∇̂ = ∇+Υ for short.

Projective geometry in dimension m may be viewed as a parabolic geometry of type G/P
where G = PGL(m + 1,R) and P is the parabolic subgroup of block lower triangular
matrices with blocks of sizes m and 1. Here m = Rm, p0 = gl(m,R), and p⊥ = Rm∗, and
the homogeneous model G/P is m-dimensional real projective space RPm.

On a parabolic geometry of this type, the G0-structure carries no information as G0
∼=

GL(m,R), but two Weyl connections ∇ and ∇̂ = ∇+ Υ are related (on vector fields Y, Z)
by

(2.4) ∇̂ZY = ∇ZY + [[[[Z,Υ]], Y ]] = ∇ZY +Υ(Z)Y +Υ(Y )Z.

Using abstract indices we may write this as

∇̂aY
b = ∇aY

b +ΥaY
b +ΥcY

cδba.

Thus the connections ∇ and ∇̂ have the same torsion and the same geodesics (as un-
parametrized curves). Setting the torsion to zero, we have that the Weyl connections form
a projective class [∇].

(Almost) c-projective geometry is a complex analogue of projective geometry [3, 14, 15, 23]
with G = PGL(m+1,C) and P 6 G block lower triangular as in the projective case, so the
homogeneous model G/P is complex projective space CPm viewed as a real homogeneous
space. A parabolic geometry of this type on a 2m-manifoldM is given by an almost complex
structure J ∈ gl(TM) and a class [∇] of connections preserving J which differ by

∇̂aY
b = ∇aY

b +ΥaY
b −ΥcJ

c
aJ

b
dY

d +ΥcY
cδba −ΥcJ

c
dY

dJ b
a,

This can be obtained from the real projective formula by substituting (1, 0)-forms Υ− iJΥ
and (1, 0) vectors into (2.4).

(Almost) grassmannian geometries are generalizations of real projective geometry with G =
PGL(m+k,R) and P block lower triangular with blocks of size m and k. The homogeneous
model G/P is the grassmannian of k-planes in Rm+k. On a parabolic geometry of this type,
the G0-structure is given by an identification of the tangent space with the tensor product of
two auxiliary vector bundles E∗ and F of ranks k and m (with ∧

kE∗ ≃ ∧
mF ). In abstract

index notation, we write eA′ for a section of E and fA for a section of F , hence Y A′

A for a
vector field and ηBA′ for a one-form.

The Weyl connections are tensor products of connections on E∗ and F with fixed torsion,
and the freedom in their choice is (cf. [6, p. 514])

(2.5) ∇̂A
A′Y B′

B = ∇A
A′Y B′

B + δB
′

A′ΥA
C′Y C′

B + δABΥ
C
A′Y B′

C .

When m = 2ℓ and k = 2 there is an interesting related geometry obtained by replacing
PGL(2ℓ+ 2,R) by another real form of PGL(2ℓ+ 2,C), namely PGL(ℓ+1,H). The homo-
geneous model is then quaternionic projective space HPℓ, and a parabolic geometry of this
type is an (almost) quaternionic manifold [15].
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2.3. Parabolic geometries on filtered manifolds. We now turn to the examples of
greater interest to us, in which H is a proper subbundle of TM . In fact, in these examples,
the geometry is often entirely determined by the distribution H, as we now discuss.

Given a smooth manifold M of dimension m, equipped with a distribution H = H(1) 6

TM of rank n, the Lie bracket of sections of H (as vector fields) defines a bundle map
∧

2H → TM/H called the Levi form of H. If we assume the image of the Levi form has
constant rank, it defines a subbundle H(2) 6 TM with H(2)/H equal to the image. We thus
inductively define H(j) 6 H(j+1) 6 TM such that H(j+1)/H(j) is the image of the Lie bracket
H ⊗ H(j) → TM/H(j). If we further assume H is bracket-generating i.e., H(k) = TM for
some k ∈ N, then we obtain a filtration

0 = H(0) < H(1) < · · · < H(k) = TM

such that the Lie bracket of sections of H(i) and H(j) is a section of H(i+j). The associated
graded vector bundle gr(TM) is, at each x ∈M , a graded Lie algebra gx called the symbol
algebra of H at x. We finally assume that the Lie algebras gx are all isomorphic to the
same nilpotent radical m of a fixed parabolic subalgebra pop in a semisimple Lie algebra
g. In many cases p0 = p ∩ pop, where p and pop are opposite in g, is the full algebra of
automorphisms of m (as a graded Lie algebra), and, as discussed in [5, 6], this suffices to
equip M with a parabolic geometry of type G/P .

The decomposition (2.2) of g is no longer |1|-graded and this complicates the description
of Weyl connections considerably. However, if we work only with horizontal (or partial)
connections, i.e., restrict the Weyl connections to covariant derivatives in H directions only,
then the theory is as simple as in the |1|-graded case: the Lie bracket between m and p⊥ in
g induces a Lie bracket between h 6 m and p⊥/[p⊥, p⊥] ∼= h∗ with values in p0, and hence an

algebraic bracket [[·, ·]] : H⊗H∗ → p0(M). Any two Weyl connections ∇ and ∇̂ are related
by

∇̂Zv = ∇Zv + [[Z,Υ]] � v

where Υ is a section of H∗, Z is a section of H, and v is a section of G0 ×P0
V for any

G0-module V . We write ∇̂|H = ∇|H +Υ for short.

Free distributions are parabolic geometries with G = SO(n+1, n) and P block lower trian-
gular with blocks of sizes n, 1, n, where the inner product is defined on the standard basis
e0, e1 . . . e2n by 〈ei, en+1+i〉 = 〈en, en〉 = 〈en+1+i, ei〉 = 1 for 0 6 i 6 n − 1 and all other
inner products zero, see [9]. The homogeneous model G/P is the grassmannian of maximal
isotropic subspaces of R2n+1. Elements of the Lie algebra g = so(n+ 1, 1) have the form





−AT −ξT B
−γT 0 ξ
C γ A





where BT = −B and CT = −C. Here A ∈ gl(n,R) ∼= p0, ξ ∈ Rn ∼= h, γ ∈ Rn∗ ∼= h∗,
B ∈ ∧

2Rn ∼= ∧
2h and C ∈ ∧

2Rn∗ ∼= ∧
2h∗.

A parabolic geometry of this type on a manifold M of dimension 1
2
n(n + 1) may be de-

termined by a distribution H of rank n whose Levi form ∧
2H → TM/H is an isomorphism,

hence the term “free distribution”. The P0-structure is no additional data, and Weyl con-
nections may be determined as P0-connections ∇ such that for any sections Y, Z of H, the
projection of ∇ZY − ∇YZ onto TM/H ∼= ∧

2H is X ∧ Y . If ∇̂|H = ∇|H + Υ we then
compute that

(2.6) ∇̂ZY = ∇ZY +Υ(Y )Z.
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Free CR or quaternionic CR distributions are obtained by replacing so(n + 1, n) with g =
su(n + 1, n) or sp(n + 1, n), again with (complex or quaternionic) blocks of sizes n, 1, n,
and p being block lower triangular [20]. Elements of g now have the form





−A† −ξ† B
−γ† µ ξ
C γ A





where † denotes the (complex or quaternionic) hermitian conjugate, B† = −B, C† = −C
and µ = −µ. We may thus compute, using matrix commutators

[

[ξ − ξ†, γ − γ†], η − η†
]

=
(

ξγη + η(γξ − ξ†γ†)
)

−
(

ξγη + η(γξ − ξ†γ†)
)†
.

Note that the order here is important in the quaternionic case.
A parabolic geometry of this type has a complex or quaternionic rank n distribution H for

which the Levi form is complex or quaternionic skew hermitian, inducing an isomorphism
of TM/H with such forms on H. If ∇̂|H = ∇|H +Υ we then have, on sections Y, Z of H,

∇̂ZY = ∇ZY + Z Υ(Y ) + Y (Υ(Z)−Υ(Z)).

2.4. First BGG operators, local metrizability of the homogeneous model, and

normal solutions. Let G → M, θ be a Cartan geometry of type G/P . The extension
of G by the left action of P on G is a principal G-bundle G̃ = G ×P G with G-connection
θ̃ : G̃ → g, and (by construction) a reduction G ⊆ G̃ of structure group to P , and this provides
an alternative description of the Cartan geometry. It follows that for any G-module V , there
is a canonical induced linear connection on V = G×P V ∼= G̃ ×G V . These bundles are called
tractor bundles and their sections tractors.

In the parabolic case, the BGG machinery of [7, 2] provides a sequence of invariant linear
differential operators between bundles induced by P -modules associated to V . The first such
operator is defined on the bundle G ×P V/(p

⊥ �V ) ∼= V/(T ∗M �V) and is overdetermined.
When M = G/P is the homogeneous model, the kernel of this first BGG operator is in

bijection with the space of parallel sections of the tractor bundle V, and the solutions have
an explicit polynomial expression in normal coordinates. In more detail, fix an opposite
parabolic subalgebra pop to p 6 g, inducing a decomposition (2.2). Then expm 6 G
is a unipotent subgroup of G which determines a reduction G0

∼= P0 expm 6 G of the
homogeneous model G → G/P to the structure group P0 over the image M of expm in
G/P , hence a Weyl connection over M , the normal flat Weyl connection.

Now if V = G0 ×P0
V is induced by a P0-module V , the Weyl covariant derivative of

sections can be defined as the differentiation of P0-equivariant V -valued functions on G0

in the direction of the constant vector fields with respect to the Weyl connection, and the
subgroup expm is tangent to all such constant vector fields. Thus any constant coordinate
function f : expm → V , with f(x) = f0 for all x ∈ expm, defines a covariantly constant
section with values in V. In particular, choosing any nondegenerate symmetric 2-form g
in S2m∗, the metric defined by the constant g in the normal flat coordinates is covariantly
constant with respect to the normal flat Weyl connection. Thus the homogeneous model
G/P is locally metrizable. By [4], such explicit formulae also apply on general curved
geometries to the so called normal solutions, which are those induced by parallel sections of
the corresponding tractor bundle. We discuss this further in §3.5.

3. Metrizability and the linearization principle

3.1. First order operators. In [22], the second and third authors developed a theory of
invariant first order linear operators for parabolic geometries, generalizing work of Fegan [11]
in the conformal case (cf. [13, Appendix B]).
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We first fix some notation. The Killing form of g induces a nondegenerate invariant scalar
product on p0 = p/p⊥, such that the decomposition into the semisimple part pss0 = [p0, p0]
and the centre z(p0) is orthogonal. Thus any Cartan subalgebra of p0⊗C has an orthogonal
decomposition t = t′ ⊕ t0, where t′ is a Cartan subalgebra of pss0 ⊗ C and t0 = z(p0) ⊗ C.
Further, t∗ = t′∗ ⊕ t∗0 is the dual decomposition, hence is orthogonal with respect to the
induced scalar product on t∗. We write the corresponding decomposition of a weight λ ∈ t∗

as λ = λ′ + λ0. Let Σ0 be the set of simple roots α of g whose root space gα is in h∗ ⊗ C.
The remaining simple roots have root spaces in p0 ⊗ C, and hence belong to t′∗ (i.e., they
vanish on t0). Hence α0, for α ∈ Σ0, form a basis for t∗0 (dual to the basis of t0 formed by
the fundamental coweights which belong to t0).

Let Vλ be an irreducible complex p0-module with highest weight λ = λ′ + λ0 ∈ t∗, let
α = α′+α0 ∈ Σ0, and let µ = µ′+µ0 be the highest weight of a component Vµ in the tensor
product Vλ ⊗ Vα. The key observation from [22, Theorem 4.4] is that there is a first order
invariant operator between sections of the bundles induced by Vλ and Vµ if and only if the
scalar expression

cλ,µ,α = 1
2

(

(µ− λ, µ+ λ+ 2ρ′)− (α, α + 2ρ′)
)

vanishes, where ρ′ ∈ t′∗ is half the sum of the positive roots of p0. We split this expression
into contributions from t′∗ and t∗0 using the fact that µ0 = λ0 + α0. Thus

cλ,µ,α = cλ′,µ′,α′ + 1
2

(

(α0, 2λ
0 + α0)− (α0, α0)

)

= cλ′,µ′,α′ + (λ0, α0).
(3.1)

If we fix λ′, α and µ′, this decomposition provides one (real) linear equation on the cen-
tral weight λ0. This establishes the existence of many first order operators [22]. Here we
exploit (3.1) in a more specific way.

Proposition 3.1. Let λ′ ∈ t′∗ be the highest weight of a pss0 -module, and for each α ∈ Σ0,
let µ′

α ∈ t′∗ be the highest weight of an irreducible component of Vα′ ⊗ Vλ′. Then there is
a unique central weight λ0 ∈ t∗0 such that for all α ∈ Σ0, there is an invariant linear first
order operator between sections of the bundles induced by Vλ and Vµα

, where λ = λ′ + λ0

and µα = µ′
α + λ0 + α0.

A particular case of this result arises when µ′
α = λ′ + α′ so that µα = λ + α and Vµα

is
the Cartan product of Vλ and Vα. In this case, the unique λ0 is such that (λ, α) = 0 for all
α ∈ Σ0, so that λ is a dominant weight for g and the first order system is the first BGG
operator on the bundle induced by Vλ.

3.2. The algebraic linearization condition. Let (G → M, θ) be a parabolic geometry
of type (G,P ) and let h be the socle of the p-module g/p, whose central weights form a
basis of z(p0)

∗. As we have seen, G ×P h ⊆ G ×P g/p ∼= TM defines a (bracket generating)
“horizontal” distribution H ⊆ TM . Our aim is to construct compatible subriemannian (or
pseudo-riemannian) metrics, i.e., pseudo-riemannian metrics g on H for which there exists
a horizontal metric Weyl connection (a Weyl connection ∇ with ∇Zg = 0 for all horizontal
vector fields Z).

Let c : h∗ ⊗ S2h → h be the natural contraction. We then posit the following.

Definition 3.2. A nontrivial p0-submodule B 6 S2h satisfies the algebraic linearization
condition (ALC) if and only if B has nondegenerate elements, and there exist p0-submodules
hi 6 h and Bi 6 S2hi (i ∈ {1, . . . r}) with h =

⊕r
i=1 hi and B =

⊕r
i=1Bi such that for each

i ∈ {1, . . . r}, Bi is irreducible, and for any α ∈ Σ0 and any irreducible component W of
Bi ⊗ C, (Vα ⊗W ) ∩ (ker c⊗ C) is irreducible or zero.

Remark 3.3. Note that η ∈ B is nondegenerate if and only if the same is true for each
component ηi ∈ Bi. The restrictions bi : h

∗ ⊗ Bi → hi of c are then surjective, and so
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we may write h∗ ⊗ Bi = ker bi ⊕ ζi(hi) where ζi : hi → h∗ ⊗ Bi is a p0-invariant map with
bi ◦ ζi = idhi. Since Bi is irreducible, it must lie in a single weight space of t0, with weight
−α0−β0 where α, β ∈ Σ0; hence it is in the image of hα⊗hβ → S2h⊗C for the corresponding
weight spaces and so hi ⊗ C has at most two irreducible components.

3.3. The linearization principle. Suppose first for simplicity that B 6 S2h is absolutely
irreducible and satisfies the ALC (so h has at most two irreducible components) and let
π = idh∗⊗B − ζ ◦ b be the projection onto ker(b : h∗ ⊗ B → h). The linearization method
constructs a (pseudo-riemannian) metric on H, i.e., a nondegenerate section g of S2H∗ from
a weighted inverse metric, i.e., a section η of S2H ⊗ L for some line bundle L. For this
we suppose η is a section of B ⊗ L, where B = G ×P B and L is a line bundle induced by
a weight of z(p0). We write b, ζ, π also for the induced bundle homomorphisms (tensored
by the identity on L) and choose L so that there is an invariant first order linear operator
D from Γ(B ⊗ L) to Γ(ker b) with D = π ◦ ∇|H for any Weyl structure ∇. If dimB = 1,
then ker b = 0, so D is the zero operator, and we take L to be trivial. Otherwise L,D are
determined by Proposition 3.1. Due to the ALC, ker b is then a sum of Cartan products of
summands of h∗ and B, and the operator D is the first BGG operator.

Solutions η of the linear differential equation Dη = 0 are characterized by the fact that
for some (hence any) Weyl structure ∇, there is a section X∇ of H⊗ L such that

∇|Hη = ζ(X∇).

Now suppose ∇̂|H = ∇|H+Υ with Υ in H∗. Then for any Z ∈ ΓH, ∇̂Zη = ∇Zη+[[Z,Υ]] � η,
and [[·,Υ]] � η is in the image of ζ by the invariance of D. Hence by Schur’s lemma and §3.1
(i.e., [22]):

[[·,Υ]] � η = (ζ ◦ b)([[·,Υ]] � η) = (ζ ◦ b)
(

∑

α∈Σ0
ℓαΥα ⊗ η

)

for nonzero scalars ℓα, where Υ =
∑

α∈Σ0
Υα with Υα ∈ Vα ⊆ h∗ ⊗ C. If we define ♯η(Υ) =

∑

α∈Σ0
ℓαb(Υα ⊗ η), we deduce that

∇̂|Hη = ∇|Hη + ζ(♯η(Υ)).

Now if η is a nondegenerate solution of Dη = 0, with ∇|Hη = ζ(X∇) for some Weyl
connection ∇ and X∇ ∈ Γ(H⊗ L), we may take Υ = −♯−1

η (X∇) to obtain

∇̂|Hη = ζ(X∇) + ζ(♯η(Υ)) = 0.

Hence η is (inverse to) a horizontal compatible metric, up to the shift of the weight via the
line bundle L. Finally, the nondegenerate weighted metric η allows us to build a nonvanish-
ing section σ of the line bundle ∧

mH⊗ Lm/2, where m = dim h, with ∇̂|Hσ = 0. This line
bundle cannot be trivial because the central weight of B ⊗ L is not zero. If h is absolutely
irreducible, then ∧

mH ⊗ Lm/2 ∼= Lk for some nonzero k, and then ψ = (σ−1/kη)−1 is a

section of B∗ with ∇̂|Hψ = 0. Otherwise, we need to assume the central weights of ∧mH
and L are linearly dependent. The most natural way to achieve this is to suppose that the
simple roots α, β with h ⊗ C = hα ⊕ hβ are related by an automorphism of the Dynkin
diagram of g.

Definition 3.4. A p0-submodule B 6 S2h satisfies the strong algebraic linearization condi-
tion (strong ALC) if and only if B satisfies the ALC with respect to p0-submodules hi 6 h

such that whenever hi⊗C = hα⊕hβ for α, β ∈ Σ0, there is an automorphism of the Dynkin
diagram of g preserving Σ0 and interchanging α and β.

With this definition, the linearization method yields the following result.

Theorem 1. Let B 6 S2h satisfy the strong ALC with respect to B =
⊕r

i=1Bi and h =
⊕r

i=1 hi. Then for all i ∈ {1, . . . r} there are induced line bundles Li and invariant first
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order linear operators Di acting on sections of Bi ⊗Li such that there is a bijection between
nondegenerate solutions ηi : i ∈ {1, . . . r} of the equations Di(ηi) = 0, and nondegenerate
sections ψ of B∗ with ∇|Hψ = 0 for some Weyl connection ∇.

Proof. Define bi, ζi as in Remark 3.3 so that h∗⊗Bi = ker bi⊕ ζi(hi), let πi = idh∗⊗Bi
− ζi ◦ bi

be the projection onto ker bi, and let Σi
0 = {α ∈ Σ0 : Vα ⊆ h∗i ⊗ C}. We apply the same

ideas as in the absolutely irreducible case to each irreducible component Vλ′ of Bi ⊗ C. If
dimVλ′ > 2 then the ALC implies that (Vα⊗ Vλ′)∩ (ker bi ⊗C) is irreducible for all α ∈ Σ0,
hence Proposition 3.1 provides a unique λ0 so that there is an invariant first order operator
between sections of the bundles induced by Vλ and ker bi ⊗ C. If instead, dim Vλ′ = 1, then
Vα⊗Vλ′ is irreducible, and is contained in ker bi⊗C unless α ∈ Σi

0. We thus supplement (3.1)
by the equations (λ0, α0) = 0 when α ∈ Σi

0.
Since Bi is irreducible, Bi⊗C is either irreducible or has two irreducible components with

conjugate weights. Now the system of equations (3.1) and (λ0, α0) = 0 that we impose to
find λ0 are conjugation invariant. Hence in either case, we obtain a line bundle Li and an
invariant first order linear operator Di := πi ◦∇|H on Bi⊗Li, so that any section ηi satisfies
Di(ηi) = 0 if and only if

∇|Hηi = ζi(X
∇
i )

for a suitable sectionX∇
i ofHi⊗Li. Given such sections ηi, let η =

∑r
i=1 ηi. By construction,

the operator bi◦∇|H is not invariant on Bi⊗Li. Hence by Schur’s Lemma, there are nonzero
scalars ℓα such that

[[·,Υ]] � η = (ζ ◦ b)([[·,Υ]] � η) = (ζ ◦ b)
(

∑r
i=1

∑

α∈Σi
0

ℓαΥα ⊗ ηi

)

=
(

∑

α∈Σ0
ℓαΥα ⊗ η

)

,

where Υ =
∑

α∈Σ0
Υα as before. As before, we define ♯η(Υ) =

∑

α∈Σ0
ℓαb(Υα ⊗ η), so that

if ∇̂|H = ∇|H +Υ then

∇̂|Hη = ∇|Hη + ζ(♯η(Υ)).

If η is a nondegenerate then ♯η is invertible, and so if D(η) = 0, i.e., Di(ηi) = 0 for all i,

then we may set Υ := −♯−1
η (X∇), where X∇ =

∑r
i=1X

∇
i to obtain ∇̂|Hη = 0.

Finally, taking volume forms of ηi on Hi for each i, we obtain nonvanishing sections σi
of ∧miHi ⊗ L

mi/2
i with ∇̂|Hσi = 0. The weights of the σi are linearly independent, and the

strong ALC ensures that the central weights of the Li are linear combinations of the central
weights of ∧mjHj , so for every i, we can solve the linear system ηi ⊗

⊗

j σ
aij
j ∈ Bi, and

hence, inverting each component, obtain the section ψ of B∗ as required. Since the system
is invertible, η can be obtained from ψ and its volume forms on each Hi. �

If only the ALC is assumed, then the proof yields, in place of horizontally parallel metrics
onH, horizontally parallel conformal structures on each Hi and horizontally parallel sections
of some line bundles.

3.4. Example: projective geometry. Let us illustrate the metrizability procedure by
showing how the well-known example of projective geometry [8, 10, 17, 21] fits into the
general method. Here g = sl(n+1,R) = h⊕gl(h)⊕h∗ and S2h is irreducible. Since h∗⊗S2h ∼=
h⊕(h∗⊗0S

2h), where the second summand is the trace-free part (the Cartan product), B =
S2h satisfies the ALC. The class of covariant derivatives defining the projective structure
depends on an arbitrary 1-form Υa and two of them are related by (2.4). Hence on a section
ϕ of B = S2TM , we have

[[Z,Υ]] �ϕ = 2Υ(Z)ϕ+ Z ⊗ ϕ(Υ, ·) + ϕ(Υ, ·)⊗ Z

for any vector field Z and 1-form Υ. If we twist by the line bundle L induced by the
P0-module L with highest weight −2ω1, then for η ∈ Γ(B ⊗ L) and ∇̂ = ∇+Υ, we have

∇̂Zη = ∇Zη + b(Υ⊗ η)⊙ Z
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where X⊙Z = X⊗Z+Z⊗X and b(Υ⊗η) = η(Υ, ·) is the natural contraction. In abstract
indices this contraction of Υcη

ab is Υaη
ab and hence

∇̂cη
ab = ∇cη

ab + δacΥdη
bd + δbcΥdη

ad.

We thus have an invariant first order operator acting on η (a first BGG operator) whose
solutions satisfy

∇Zη = 〈Z, ζ(X∇)〉 = 1
n+1

X∇ ⊙ Z.

for some section X∇ of TM ⊗L. (Here ζ(X) = 1
n+1

X ⊙ id, or in abstract indices, ζ(Xa) =
1

n+1

(

Xaδbc +X
bδac

)

so that b(ζ(X)) = X .) Evidently η is parallel for ∇̂ provided b(Υ⊗ η) =

− 1
n+1

X∇, which we can solve for Υ if η is nondegenerate. Direct computation shows that

det(η) is a section of L−2. So gab := det(η)ηab is a nondegenerate section of S2TM and its

inverse is parallel with respect to ∇̂. In terms of the general theory herein, if

[[·,Υ]] � η = ℓ (ζ ◦ b)(Υ⊗ η),

then

b(Υ⊗ η)⊙ Z = [[Z,Υ]] � η = ℓ 〈Z, (ζ ◦ b)(Υ⊗ η)〉 =
ℓ

n+ 1
b(Υ⊗ η)⊙ Z,

and so ℓ = n+ 1. Hence ♯η(Υ) = (n + 1)b(Υ⊗ η) and the solution is Υ = −♯−1
η (X∇).

3.5. The metric tractor bundle. As we have seen in §2.4, the homogeneous model G/P
is always locally metrizable, and solutions in the kernel of a given first BGG operator are
induced by parallel sections of a corresponding metric tractor bundle. In general, if M has
nontrivial curvature, not all solutions to a linearized metrizability problem will correspond
to such parallel sections: as discussed in §2.4, those that do are called normal solutions
and exhibit special features. In particular, as shown in [4], they are always of a simple
polynomial forms in normal coordinates, exactly as in the homogeneous model. Thus the
explicit formulae from the homogeneous case form an ansatz for solutions in general.

Let us discuss this in the case of free distributions from §2.3. Here g = so(n + 1, n) =
∧

2h⊕h⊕gl(h)⊕h∗⊕∧
2h∗, B = S2h is irreducible and satisfies the ALC, just as in the case

of projective geometry. In this case, however, there is no need to twist by a line bundle,
since by (2.6), we already have

∇̂Zη = ∇Zη + b(Υ⊗ η)⊙ Z

for any sections Z of H and η of S2h, where ∇̂|H = ∇|H + Υ and b is the natural contrac-
tion. The solution of the linearized metrizability problem then proceeds exactly as in the
projective case, so we now consider the form of the normal solutions.

The standard tractor bundle is the bundle associated to the defining representation V of
G = SO(n + 1, n). Explicitly, using the matrix description in §2.3, we may write elements
of V as column vectors

v =





λa

τ
ℓa





on which the action of the nilpotent radical m of pop is given by

x � v =





0 xa yab

0 0 −xa

0 0 0









λb

τ
ℓb



 =





xaτ + yabℓb
−xbℓb
0



 .



SUBRIEMANNIAN METRICS AND THE METRIZABILITY OF PARABOLIC GEOMETRIES 11

The metric tractor bundle in this example is associated to the symmetric tracefree square
S2
0V of V . Elements of the symmetric square S2V are given by

Φ =













νab

σb

κ |ψc
b

ξb
τbc













,

where νab and τbc are symmetric, and such and element is in S2
0V if κ = −ψc

c . Our convention
is such that Φ = v ⊙ ṽ has components

νab = λaλ̃b + λ̃aλb; σb = λbτ̃ + τ λ̃b; κ = τ τ̃ ; ψc
b = ℓbλ̃

c + λcℓ̃b;

ξb = ℓbτ̃ + τ ℓ̃b; τbc = ℓaℓ̃b + ℓ̃aℓb.

The action of the nilpotent radical on the symmetric square is given by

x �Φ :=





0 xa yab

0 0 −xa

0 0 0

















νab

σb

κ |ψc
b

ξb
τbc













=













x(aσb) − yc(aψ
b)
c

xcψb
c + ybcξc − xbκ
−xbξb | x

cξb
−xaτab

0













,

where x(aσb) = xa ⊗ σb + σb ⊗ xa. The iterated action is therefore given by

x �x �Φ =













xcx(aψ
b)
c + 2x(ayb)cξc − xaxbκ
2xcxbξc − ybcxaτac
xbxaτab | − xcxaτab

0
0













,

x �x �x �Φ =













4xaxbxcξc − 2x(ayb)cxdτdc
−2xbxaxcτac

0 | 0
0
0













, x �x �x �x �Φ =













−4xaxbxcxdτcd
0

0 | 0
0
0













with all further iterates zero. The normal solution is the projection onto S2H of exp(x) ·Φ,
which is given by

ηab(x, y) = νab + x(aσb) − yc(aψb)
c + 1

2
xcx(aψb)

c + x(ayb)cξc +
1
2
xaxbψc

c

+ 2
3
xaxbxcξc −

1
3
x(ayb)cxdτdc −

1
6
xaxbxcxdτcd.

4. Classification of metric parabolic geometries with irreducible h

We have seen that the linearizability problem of the existence of compatible subriemannian
metrics on parabolic geometries reduces to a purely algebraic question related to the number
of components in certain tensor products of the p0-modules h and its dual h∗. In fact, we
are only interested in the actions of the semisimple part of p0 = p/p⊥.

In this section, we classify all cases of the ALC where the defining distribution of the
parabolic geometry corresponding to h is irreducible. This is the case with all |1|-graded
geometries, but many |2|-graded and some more general geometries are involved too. In
order to keep the story short, while still providing a complete and simple picture, we use
the schematic description of the chosen type of parabolic subalgebra p of g by crosses on
the Dynkin diagram for g and we write weights of p-modules as linear combinations of
the fundamental weights for g, depicted as the nonzero coefficients over the nodes of the
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diagrams, ignoring those over the crossed nodes (see e.g. [6, §3.2] for these conventions).
This exactly provides the complete information on the representation of the semisimple part
of p0 in the case of complex algebras and we always add further information on specific real
forms of them. Actually for practical reasons (and in accordance with common practice),
we rather write the weights of the dual p0-modules over the Dynkin diagram. Moreover, the
displayed diagrams and weights always correspond to the complexified versions and thus we
have to keep in mind their meaning for particular real forms.

The classification is given in the following theorem. In the proof we also describe the
geometric properties of the metrics in any admissible component B, mostly in terms of
special structure related to the given parabolic geometry. The classification in Table 1 was
also obtained in [19].

Theorem 2. Let p be a parabolic subalgebra in a real simple Lie algebra g and let B be
a p-submodule of S2h, with h ∼= (p⊥/[p⊥, p⊥])∗ irreducible. Then B satisfies the ALC and
admits nondegenerate elements if and only if one of the following holds :

• g is complex and the complexification of (p, B) appears in Table 1;
• (g, p, B) appears as a real form in Table 2 or 3;
• (g, p, B) is (the underlying real Lie algebra of) the complexification of a triple ap-
pearing in Table 2.

Case Diagram ∆ℓ for p, B Real simple g Growth

Ah
ℓ

1
• • · · · × × • · · ·

1
• sl(ℓ+ 1,C) ℓ > 2 2ℓ

Bh
ℓ

1
• • · · · •>× ×< • • · · ·

1
• so(2ℓ+ 1,C) ℓ > 2 2k, 2k + k(k − 1)

Gh
2 ×<

1
•

1
•>× GC

2 4, 6, 10

Table 1. Complex geometries with hermitian B

Case Diagram ∆ℓ for p, B Real simple g Growth

A1,1
ℓ × • · · ·

2
• sl(ℓ+ 1,R) ℓ > 2 ℓ

A1,2
ℓ • × • · · · •

1
• •

sl(ℓ+ 1,R), sl(p+ 1,H)
ℓ = 2p+ 1, p > 2

4p

B1,k
ℓ

2
• • · · · •

k > 2
× • · · · •> •

so(p, q), k 6 p 6 q
p+ q = 2ℓ+ 1

d = k(2ℓ− 2k + 1),
n = d+ 1

2
k(k − 1)

B1,ℓ
ℓ

2
• • · · · •>× so(ℓ, ℓ+ 1) ℓ > 2 k, k + 1

2
k(k − 1)

C1,2
4 • × •<

1
•

sp(8,R)
sp(2, 2) sp(1, 3)

8, 11

C1,k
ℓ •

1
• · · · •

k = 2j > 4
× • · · · •< •

sp(2ℓ,R) sp(p, q)
ℓ = p+ q, k 6 p 6 q

d = k(2ℓ− 2k),
n = d+ 1

2
k(k + 1)

D1,k
ℓ

2
• • · · · •

k > 2
× • · · · •

�•

�
•

so(p, q) so∗(2ℓ)
2ℓ = p+ q
k 6 p 6 q

k = 2j
k 6 ℓ− 2

d = k(2ℓ− 2k),
n = d+ 1

2
k(k − 1)

E1,1
6 × • •

•

•

1
• E6(6), E6(−26) 16

G1,1
2 ×<

2
• G2(2) 2, 3, 5

Table 2. Real geometries with absolutely irreducible h

Outline of Proof. In the gradings of the complex algebras g corresponding to parabolic ge-
ometries, the number of irreducible components of h∗ is equal to the number of crosses in
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Case Diagram ∆ℓ for p, B Real simple g Growth

A2,1
3 ×

2
• × su(1, 3), su(2, 2) 4, 5

A2,k
ℓ

1
• · · · •

k > 2
× • · · · •

ℓ− k
× • · · ·

1
•

su(p, q), k 6 p 6 q
ℓ = p+ q − 1 > 4

d = 2k(ℓ− 2k + 1),
n = d+ k2

A2,h
ℓ

• × •

1
• · · · • × •

⊕

• × • · · ·

1
• • × •

su(p, q), 2 6 p 6 q
ℓ = p+ q − 1 > 6

4(ℓ− 3), 4(ℓ− 2)

A2,s
2k+1

•

1
• · · · • × • × • · · · • •

⊕

• • · · · • × • × • · · ·

1
• •

su(k, k + 2),
su(k + 1, k + 1)
ℓ = 2k + 1 > 7

4k, 4k + k2

A2,s
2k

2
• • · · · • × × • · · · • •

⊕
• • · · · • × × • · · · •

2
•

su(k, k + 1)
ℓ = 2k > 4

2k, 2k + k2

D2,s
ℓ

2
• • · · · •

�×

�
×

so(ℓ− 1, ℓ+ 1)
so∗(2ℓ), ℓ = 2j + 1

d = 2(ℓ− 1),
d+ 1

2
(ℓ− 1)(ℓ− 2)

D2,h
ℓ •

1
• · · · •

�×

�
×

so(ℓ− 1, ℓ+ 1)
so∗(2ℓ), ℓ = 2j + 1

d = 2(ℓ− 1),
d+ 1

2
(ℓ− 1)(ℓ− 2)

E2,h
6 × • •

• 1
• × E6(2) 16, 24

Table 3. Real geometries with h not absolutely irreducible

the Dynkin diagram describing the chosen parabolic subalgebra. However, in the real forms
of g, there might be complex or quaternionic components giving rise to two components in
the complexification. These two complex components have to be either conjugate (in the
complex case) or isomorphic (in the quaternionic case).

The latter observation reduces our quest to diagrams with two crosses placed in a symmet-
ric way. Indeed, more than two crosses cannot result in one component, while asymmetric
positions of the crosses inevitably yield two complex components which are neither con-
jugate nor isomorphic. Moreover, having two components in the complexified h, we may
ignore the symmetric products of the individual parts in S2h, because there cannot be any
nondegenerate metrics there.

We first dispense with the case that g is complex but B is not, so that B⊗C is irreducible
in g⊗C ∼= g⊕g and the diagram for (p, B) is invariant under the automorphism exchanging
the two components of the Dynkin diagram. Thus B⊗C = hα⊗ hβ where h⊗C = hα⊕ hβ .
Now the ALC is satisfied provided hα ⊗ h∗α (and hence also hβ ⊗ h∗β) has precisely two
irreducible components as a representation of a component of p0 ⊗ C. Only the (dual)
defining representations in type A have this property, and so g must have type A,B or G,
where the nodes crossed in g ⊗ C are end nodes corresponding to short simple roots. The
possibilities are listed in Table 1, covering the following three cases:

Case 1 (Ah
ℓ ). The c-projective geometries may be equipped with distinguished hermitian

metrics.

Case 2 (Bh
ℓ ). The almost complex version of a free distribution of rank k, may be equipped

with distinguished hermitian metrics.

Case 3 (Gh
2). The almost complex version of the (2, 3, 5)-distributions may be equipped

with distinguished hermitian metrics.

We analyse the remaining real cases with irreducible h by the Dynkin type of g in the
following sections. �
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4.1. Proof of Theorem 2 when g has type Aℓ. The case ℓ = 1 is trivial, so we assume
ℓ > 2, and first consider the case of a single crossed node. If the crossed node is one of the
ends of the Dynkin diagram, the only real g is the split form, h and S2h are irreducible, and
B = S2h satisfies the ALC: when ℓ = 2,

B ≃ ×

2
• h∗ ⊗B ≃ ×

3
• ⊕ ×

1
•

and when ℓ > 3,

B ≃ × • · · ·

2
• h∗ ⊗ B ≃ ×

1
• · · ·

2
• ⊕ × • · · ·

1
• .

These examples can be summarized in the following statement.

Case 4 (A1,1
ℓ ). Here g = sl(ℓ+1,R), ℓ > 2, h ∼= Rℓ and B = S2h. This is the most classical

case of projective structures on ℓ-dimensional manifolds M , and nondegenerate sections of
B are inverse to arbitrary pseudo-Riemannian metrics on M .

Suppose next that the cross is adjacent to one end of the diagram, with ℓ > 3. We then
have S2h = B ⊕B′, where

h ≃
1
• × • · · ·

1
• h∗ ≃

1
• ×

1
• · · · •

B ≃ • × • · · ·

1
• • (ℓ > 4) B′ ≃

2
• × • · · ·

2
•

and B is trivial for ℓ = 3 (when h ∼= h∗). The tensor product h∗ ⊗B′ decomposes into four
irreducible components, except for the real form su(2, 2) when ℓ = 3, in which case there
are only three components. In any case, B′ does not satisfy the ALC.

In order for B to have nondegenerate elements, ℓ must be odd, and for ℓ = 2p + 1 > 5,

h∗ ⊗B ≃
1
• ×

1
• • · · ·

1
• • ⊕

1
• × • · · ·

1
• ; thus the ALC holds for B.

Case 5 (A1,2
ℓ ). For each ℓ = 2p+ 1 > 5, there are two real forms. When g ≃ sl(2p+ 2,R),

the geometries are the almost grassmannian structures on manifolds M of dimension 4p,
modelled on the grassmannian of 2-planes in R2p. The tangent bundle TM is identified with
a tensor product E⊗F , where rank E = 2, rank F = 2p, and the nondegenerate metrics in B
are tensor products of area forms on E and symplectic forms on F . When g ≃ sl(p,H), the
geometries are almost quaternionic geometries, where TM is a quaternionic vector bundle,
and the nondegenerate metrics in B are the (real parts of) quaternionic hermitian forms.

When the cross is further from the ends of the diagram, we have S2h = B ⊕B′ with

B ≃ •

1
• · · · • × • · · ·

1
• • B′ ≃

2
• · · · • × • · · ·

2
• .

and there are too many components in both h∗ ⊗B and h∗ ⊗ B′ to satisfy the ALC.
We now turn to cases with two crossed nodes, related by the diagram automorphism of

Aℓ. First suppose the crossed nodes are the endpoints. In order to have nontrivial B we
must have ℓ > 3, in which case S2h = B ⊕ B′ ⊕ B′′ where

h ≃ ×

1
• · · · • × ⊕ × • · · ·

1
• × ≃ h∗

B ≃ ×

2
• × or ×

1
• • · · · •

1
• × B′ ≃ ×

2
• · · · • × ⊕ × • · · ·

2
• ×

and B′′ is trivial. Clearly h∗ ⊗B′ has too many irreducible components to satisfy the ALC,
no matter which real form we consider.

It remains to consider B, first in the case ℓ = 3, where the possible real forms (with h

irreducible) are su(2, 2) and su(1, 3). Then

h∗ ⊗B ≃
(

×

3
• × ⊕ ×

3
• ×

)

⊕
(

×

1
• × ⊕ ×

1
• ×

)

and the ALC is satisfied, since these are complexifications of two complex components for
the real form in question. However, for ℓ > 4, we find that the product h∗ ⊗ B leads to
complexifications with three complex components, so the ALC is not satisfied.
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Case 6 (A2,1
3 ). Here g is su(2, 2) or su(1, 3), and M has a CR structure, i.e., a contact

distribution H equipped with a complex structure. The Levi form induces the class of
trivial parallel hermitian metrics (the Weyl connections corresponding to the contact forms
leave parallel both the complex structure and the symplectic form, thus also the associated
metric, and the metrizability problem is trivial as in the conformal case). However, we now
see that there may also be interesting compatible subriemannian metrics on H 6 TM which
are hermitian and tracefree with respect to the Levi form.

Now suppose the crosses are not placed at the ends, say the left one at the k-th position,
2 6 k. Thus we consider the real forms su(p, q) with k 6 p 6 q. We have

h ≃
1
• · · · • × • · · ·

1
• × • · · · • ⊕ • · · · • ×

1
• · · · • × • · · ·

1
•

h∗ ≃ • · · ·

1
• ×

1
• · · · • × • · · · • ⊕ • · · · • × • · · ·

1
• ×

1
• · · · •

for ℓ > 2k and

h ≃
1
• · · · • × × • · · · • ⊕ • · · · • × × • · · ·

1
•

h∗ ≃ • · · ·

1
• × × • · · · • ⊕ • · · · • × ×

1
• · · · •

for ℓ = 2k. In particular, we have S2h ⊃ B where

B ≃
1
• · · · • × • · · · • × • · · ·

1
• ,

which admits nondegenerate metrics and satisfies the ALC, with

h∗ ⊗B ≃
( 1

• · · ·

1
• ×

1
• · · · • × • · · ·

1
• ⊕

1
• · · · • × • · · ·

1
• ×

1
• · · ·

1
•

)

⊕
(

• · · · • ×

1
• · · · • × • · · ·

1
• ⊕

1
• · · · • × • · · ·

1
• × • · · · •

)

or h∗ ⊗B ≃
( 1

• · · ·

1
• × × • · · ·

1
• ⊕

1
• · · · • × ×

1
• · · ·

1
•

)

⊕
(

• · · · • × × • · · ·

1
• ⊕

1
• · · · • × × • · · · •

)

.

Case 7 (A2,k
ℓ ). Here g ≃ su(p, q) with nodes k and ℓ + 1 − k crossed, where 2 6 k 6 p 6

q, p + q = ℓ + 1. In these geometries, H ∼= E ⊗ F , where E is a complex vector bundle of
rank k, and the rank (ℓ− 2k+ 1) complex vector bundle F comes with a hermitian form of
signature (p−k, q−k). The corank of H 6 TM is k2, and the metrics on H are the products
of hermitian metrics on E with the given ones on F . When ℓ = 2k (i.e., F has rank 1),
g = su(k, k+1) with the nodes k, k+1 are crossed. These are the free CR geometries with
complex structure on H studied in [20] (where it is also explained how complex structure
arises on H).

The remaining components of S2h do not satisfy the ALC, except in special cases k = 2,
2k = ℓ and 2k + 1 = ℓ. In particular, when k = 2,

B′ ≃ • × •

1
• · · · • × • ⊕ • × • · · ·

1
• • × •

satisfies the ALC (and is nontrivial for ℓ > 6).

Case 8 (A2,h
ℓ ). Here g ≃ su(p, q) with nodes 2 and ℓ − 1 crossed, where 2 6 p 6 q and

ℓ = p + q − 1 > 6. In this geometry, H ∼= E ⊗ F , where E is a complex vector bundle of
rank 2, and F is a complex vector bundle of rank ℓ− 3. The corank of H 6 TM is 4. The
eligible metrics are the complex symmetric bilinear forms of the form of tensor product of
two exterior forms.

When 2k = ℓ, we obtain S2h = B ⊕B′ where

B′ =
2
• · · · • × × • · · · • ⊕

• · · · • × × • · · ·

2
•
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which admits nondegenerate metrics, and satisfies the ALC, with

h∗ ⊗ B′ ≃
( 2

• · · ·

1
• × × • · · · • ⊕ • · · · • × ×

1
• · · ·

2
•

)

⊕
( 2

• · · · • × ×

1
• · · · • ⊕ • · · ·

1
• × × • · · ·

2
•

)

⊕
( 1

• · · · • × × • · · · • ⊕ • · · · • × × • · · ·

1
•

)

.

Case 9 (A2,s
2k ). This case is again the free CR geometry, with g = su(k, k + 1), but the

eligible metrics are the complex bilinear metrics on H.

Similarly, when ℓ = 2k + 1 with the k-th and (k + 2)-nd nodes crossed,

B′ ≃ •

1
• · · · • × • × • · · · • ⊕ • · · · • × • × • · · ·

1
• •

satisfies the ALC.

Case 10 (A2,s
2k+1). Here ℓ = 2k + 1, g is su(k, k + 2), or su(k + 1, k + 1), with nodes k and

k + 2 crossed. In this geometry, H ∼= E ⊗ F , where E is a complex vector bundle of rank
k, and F is a complex vector bundle of rank 2. The codimension of H 6 TM is k2. The
eligible metrics are the complex symmetric bilinear forms of the form of tensor product of
two exterior forms.

We have now exhausted all possibilities, completing the proof in type A.

4.2. Proof of Theorem 2 when g has type Bℓ. In the type B case, there are no complex
or quaternionic modules to consider, so the irreducible cases have one cross only. The unique
grading of length one is odd dimensional conformal geometry. In dimension three we then
have

h∗ ≃ ×>
2
• ≃ h S2h ≃ ×>

4
• ⊕ ×> • .

The trivial representation in S2h corresponds to the trivial case of metrics in the conformal
class, which are excluded from our classification, and choosing B to be the other component
leads to three components in B ⊗ h∗, so the ALC fails. Similarly, for conformal geometries
of dimensions 2ℓ− 1 > 5 we obtain

h∗ ≃ ×

1
• · · · •> • ≃ h S2h ≃ ×

2
• · · · •> • ⊕ × • · · · •> • .

As before, the trivial summand is excluded, and the other component fails the ALC.
We turn now to Lie contact geometries, with the second node crossed. For B3,

h∗ ≃
1
• ×>

2
• ≃ h S2h = B ⊕ B′ ⊕B′′ ≃

2
• ×> • ⊕ • ×>

2
• ⊕

2
• ×>

4
• .

Here, B ⊗ h∗ =
3
• ×>

2
• ⊕

1
• ×>

2
• and satisfies the ALC. The other choices lead to too

many components. For Bℓ with ℓ > 4, we have instead

h∗ ≃
1
• ×

1
• · · · •> • ≃ h S2h = B ⊕ B′ ⊕B′′

B ≃
2
• × • · · · •> • B′ ≃

2
• ×

2
• · · · •> • B′′ ≃ • × •

1
• · · · •> • ,

except that when ℓ = 4, B′′ = • × •>
2
• . Now we check that B′ ⊗ h∗ has six components,

B′′ ⊗ h∗ has three components, but the ALC is again satisfied by B. Lie contact geometries
exist for g = so(p, q) with 2 6 p 6 q; h is the tensor product of defining representations R2

of sl(2,R) and Rp+q−4 of so(p− 2, q − 2), and B is the tensor product of a symmetric form
on R2 and the defining inner product of signature (p − 2, q − 2) on Rp+q−4. See [6, §4.2.5]
for more details on these geometries.
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Next we consider Bℓ with the cross on k-th position, 3 6 k 6 ℓ− 1; the outcome is quite
similar to the Lie contact case. For k 6= ℓ− 1, S2h = B ⊕ B′ ⊕ B′′, where

h∗ ≃ • · · ·

1
• ×

1
• · · · •> • h ≃

1
• · · · • ×

1
• · · · •> •

B ≃
2
• · · · • × • · · · •> •

B′ ≃
2
• · · · • ×

2
• · · · •> • B′′ ≃ •

1
• · · · • × •

1
• · · · •> •

h∗ ⊗ B ≃
2
• · · ·

1
• ×

1
• · · · •> • ⊕

1
• · · · • ×

1
• · · · •> • ,

so B satisfies the ALC, but B′ and B′′ do not. If k = ℓ− 1, S2h = B ⊕ B′ ⊕ B′′ with

h∗ ≃ • · · ·

1
• ×>

2
• h ≃

1
• · · · • ×>

2
•

B ≃
2
• · · · • ×> • B′ ≃

2
• · · · • ×>

4
• B′′ ≃ •

1
• · · · • ×>

2
•

and again, B satisfies the ALC, but B′ and B′′ do not. These |2|-graded geometries are
modelled on the flag variety of isotropic k-planes and exist for the real forms so(p, q) with
k 6 p 6 q. We have h ∼= Rk ⊗ Rp+q−k and B corresponds to the tensor product of a
symmetric form on Rk with the defining inner product on Rp+q−k.

Case 11 (B1,k
ℓ ). Here g ≃ so(p, q) with k 6 p 6 q and p + q = 2ℓ + 1, and the geometries

come equipped with the identification of the horizontal distribution H 6 TM with the
tensor product E⊗F , where E has rank k and F carries a metric of signature (p−k, q−k).
The corank of H 6 TM is 1

2
k(k−1). The metrics in B are the tensor products of symmetric

nondegenerate forms on E and the given metric on F .

Finally, we arrive at the cross at the very end. For Bℓ with ℓ > 2, we have

h∗ ≃ • · · ·

1
•>× h ≃

1
• · · · •>× B = S2h ≃

2
• · · · •>×

h∗ ⊗ B ≃
3
•>× ⊕

1
•>×(ℓ = 2) h∗ ⊗ B ≃

2
• · · ·

1
•>× ⊕

1
• · · · •>×(ℓ > 3),

and the ALC is satisfied.

Case 12 (B1,ℓ
ℓ ). Here g is the split form so(ℓ, ℓ + 1). The geometries are the well known

free distributions, cf. [9], with rank ℓ horizontal distribution H 6 TM of corank 1
2
ℓ(ℓ− 1).

The metrics in B are all nondegenerate metrics on H.

4.3. Proof of Theorem 2 when g has type Cℓ. As with type Bℓ, we only have to consider
cases with a single crossed node. We begin with the first node crossed, corresponding to the
well known contact projective structures, with

h∗ ≃ ×

1
• · · · •< • ≃ h ;

we have discussed the lowest dimension three already as the B2 case, which coincides with
the free distribution of rank two. For ℓ > 3, the picture changes since

S2h ≃ ×

2
• · · · •< • ≃ B

B ⊗ h∗ ≃ ×

3
• · · · •< • ⊕ ×

2
•

1
• · · · •< • ⊕ ×

1
• · · · •< •

and thus the ALC fails.
Moving on to the second node, we obtain another well known family of examples: the

quaternionic contact geometries (for g ∼= sp(p, ℓ− p), 1 6 p 6 ℓ/2) or their split analogues
(for g ∼= sp(2ℓ,R))—see [6, §4.3.3]. For ℓ = 3, we have

h∗ ≃
1
• ×<

1
• ≃ h S2h = B′ ⊕ B′′ with B′ ≃

2
• ×<

2
•
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and B′′ trivial, while for ℓ > 4, we have

h∗ ≃
1
• ×

1
• · · · •< • ≃ h S2h = B ⊕ B′ ⊕B′′

B ≃ • × •<
1
• or

0
• × •

1
• · · · •< • B′ ≃

2
• ×

2
• · · · •< •

and B′′ trivial. Since h∗ ⊗ B′ decomposes into four components, there are only nontrivial
possibilities for ℓ > 4. For ℓ = 4,

h∗ ⊗ B ≃
1
• ×

1
•<

1
• ⊕

1
• ×

1
•< •

and so the ALC holds for B, but for ℓ > 5, h∗ ⊗ B has three irreducible components, and
the ALC is not satisfied.

Case 13 (C1,2
4 ). Here the possible real Lie algebras are sp(8,R), sp(2, 2), or sp(1, 3), with the

second node crossed. In the first case, the geometries come equipped with the identification
of the horizontal distribution H 6 TM with the tensor product E ⊗ F , where E is rank
2 and the rank 4 vector bundle F comes with a symplectic form. The eligible metrics in
B are the tensor products of a area form on E and the given symplectic form on F . In
the quaternionic cases, H is quaternionic and the eligible metrics in B are quaternionic
hermitian forms.

Let us next suppose that the k-th node is crossed for 3 6 k 6 ℓ− 2. Then

h∗ ≃ • · · ·

1
• ×

1
• · · · •< • h ≃

1
• · · · • ×

1
• · · · •< •

S2h ≃ B ⊕B′ ⊕B′′ B ≃ •

1
• · · · • × • · · · •< •

B′ ≃
2
• · · · • ×

2
• · · · •< • B′′ ≃ •

1
• · · · • × •

1
• · · · •< •

h∗ ⊗ B ≃ •

1
• · · ·

1
• ×

1
• · · · •< • ⊕

1
• · · · • ×

1
• · · · •< •

and so B satisfies the ALC, but the other components do not. The relevant metrics are
again tensor products of an exterior form on the rank k auxiliary bundle E and the given
symplectic form on F (where the horizontal distribution is identified with E ⊗ F ). These
geometries are available for the split form sp(2ℓ,R) and, if k is even then also for the real
forms sp(p, q), k 6 p < q.

The case with the cross at the last but one node is very similar. Here

h∗ ≃ • · · · •

1
• ×<

1
• h ≃

1
• · · · • • ×<

1
• S2h = B ⊕B′

B ≃ •

1
• · · · • ×<

0
• B′ ≃

2
• · · · • • ×<

2
•

h∗ ⊗ B ≃ •

2
• ×<

1
• ⊕

1
• • ×<

1
• (ℓ = 4)

h∗ ⊗ B ≃ •

1
• · · ·

1
• ×<

1
• ⊕

1
• • ×<

1
• (ℓ > 5)

and so B satisfies the ALC (while B does not).

Case 14 (C1,k
ℓ ). With the k-th node crossed for 3 6 k 6 ℓ−1, the possible real Lie algebras

are sp(2n,R), and if k is even, then also sp(p, q), k 6 p 6 q. In the split case, the horizontal
distribution is a tensor product H ≃ E ⊗ F with E of rank k and F symplectic of rank
2ℓ− 2k, the eligible metrics are tensor products of antisymmetric forms on E and the given
symplectic form on F . In the quaternionic cases, H comes with a quaternionic structure,
and the eligible metrics are quaternionic hermitian forms.

Finally, we consider the cross at the last node of Cℓ with ℓ ≥ 3 (ℓ = 2 is equivalent to the
B2 case with the first node crossed). In this case

h∗ ≃ • · · ·

2
•<× h ≃

2
• · · · •<×

S2h = B ⊕B′ B ≃ •

2
• · · · •<× B′ ≃

4
• · · · •<×
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and both B and B′ have too many components in their tensor products with h∗ to satisfy
the ALC.

4.4. Proof of Theorem 2 when g has type Dℓ. We first consider the cases with one
cross on Dℓ, ℓ > 4, starting with the the first node, i.e., the even dimensional conformal
geometries, where S2h = B ⊕B′ with

h∗ ≃ ×

1
• · · · •

�•

�
•

≃ h B ≃ ×

2
• · · · •

�•

�
•

B′ ≃ × • · · · •
�•

�
•

.

As in the odd dimensional case (type Bℓ), B does not satisfy the ALC, and the trivial
summand B′ yields metrics in the conformal class, which we exclude.

We turn now to the Lie contact case, with the second node crossed. For ℓ = 4,

h∗ ≃
1
• ×

�• 1

�
• 1

≃ h S2h = B ⊕ B1 ⊕B2 ⊕ B3

B ≃
2
• ×

�• 2

�
• 2

B1 ≃
2
• ×

�•

�
•

B2 ≃ • ×
�• 2

�
•

B3 ≃ • ×
�•

�
• 2

B1 ⊗ h∗ ≃
3
• ×

�• 1

�
• 1

⊕
1
• ×

�• 1

�
• 1

.

While h∗⊗B has too many components, B1 satisfies the ALC, as do B2 and B3 by symmetry.
The metrics are tensor products of two area forms and a symmetric form on h ∼= R2⊗R2⊗R2.
The geometries exist for the real forms so(4, 4), so(3, 5) and the quaternionic so∗(8) ≃
so(2, 6). Similarly, for ℓ > 5, we have

h∗ ≃
1
• ×

1
• · · · •

�•

�
•

≃ h S2h = B ⊕B′ ⊕B′′

B ≃
2
• × • · · · •

�•

�
•

h∗ ⊗B ≃
3
• ×

1
• · · · •

�•

�
•

⊕
1
• ×

1
• · · · •

�•

�
•

B′ ≃
2
• ×

2
• · · · •

�•

�
•

B′′ ≃ • × •
�• 1

�
• 1

or • × •

1
• · · · •

�•

�
•

where B satisfies the ALC, but B′ and B′′ do not. In addition to the real forms so(p, q),
2 6 p 6 q, p + q = 2ℓ, which are analogous to the Lie contact geometries of type Bℓ, the
real form so∗(2ℓ) is also possible.

As with type Bℓ, the cases where the k-th node is crossed, with 3 6 k 6 ℓ− 2 behave in
a similar way. If k 6 ℓ− 3 then

h∗ ≃ • · · ·

1
• ×

1
• · · · •

�•

�
•

h ≃
1
• · · · • ×

1
• · · · •

�•

�
•

S2h = B ⊕B′ ⊕ B′′

B ≃
2
• · · · • × • · · · •

�•

�
•

B′ ≃
2
• · · · • ×

2
• · · · •

�•

�
•

B′′ ≃ •

1
• · · · • × •

�• 1

�
• 1

or •

1
• · · · • × •

1
• · · · •

�•

�
•

h∗ ⊗B ≃
2
• · · ·

1
• ×

1
• · · · •

�•

�
•

⊕
1
• · · · • ×

1
• · · · •

�•

�
•

so that B satisfies the ALC, while B′ and B′′ do not. The geometries exist for real forms
so(p, q), k 6 p 6 q, p + q = 2ℓ, and if k is even, then also for so∗(2ℓ). If k = ℓ − 2, the
computation differs slightly, but the outcome is similar:

h∗ ≃ • · · ·

1
• ×

�• 1

�
• 1

h ≃
1
• · · · • ×

�• 1

�
• 1

S2h = B ⊕B1 ⊕B2 ⊕ B3

B ≃
2
• · · · • ×

�•

�
•

h∗ ⊗ B ≃
2
• · · ·

1
• ×

�• 1

�
• 1

⊕
1
• · · · • ×

�• 1

�
• 1

B1 ≃
2
• · · · • ×

�• 2

�
• 2

B2 ≃ •

1
• · · · • ×

�• 2

�
• 0

B3 ≃
0
•

1
• · · · • ×

�• 0

�
• 2

where B satisfies the ALC, but the other cases do not. The geometries exist for the real
forms so(ℓ, ℓ), so(ℓ− 1, ℓ+ 1), and if ℓ is even then also so∗(2ℓ).
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Case 15 (D1,k
ℓ ). Here g ≃ so(p, q) with 2 6 k 6 p 6 q and p+ q = 2n, the geometries come

equipped with the identification of the horizontal distribution H 6 TM with the tensor
product E ⊗F , where E has rank k and F carries a metric of signature (p− k, q− k). The
corank of H 6 TM is 1

2
k(k − 1). The metrics in B are the tensor products of symmetric

nondegenerate forms on E and the given metric on F . When g ≃ so∗(2n) and k is even,
the geometries come with the identification of the horizontal distribution H with the tensor
product of a quaternionic rank k bundle E and a quaternionic rank n − 2k bundle F
equipped with a quaternionic skew-hermitian form. The metrics in B are quaternionic
hermitian forms.

The remaining case with one cross is the so called spinorial geometry with the cross on
one of the nodes in the fork. The case of D4 coincides with the 6-dimensional conformal
Riemannian geometry. For ℓ > 5, we have S2h = B ⊕ B′ with

h∗ ≃ • · · ·

1
•
�×

�
•

h ≃ •

1
• · · · •

�×

�
•

B ≃ •

2
• · · · •

�×

�
•

B′ ≃ • • •
�×

�
• 1

or • • •

1
• · · · •

�×

�
•

.

Now h∗ ⊗ B has three summands, as does h∗ ⊗ B′, except for ℓ = 5, when

h∗ ⊗ B′ ≃ • •

1
•
�×

�
• 1

⊕ •

1
• •

�×

�
• 1
.

Here, in the complex setting, h ∼= ∧
2C5, and B ∼= C5∗ ∼= ∧

4C5 6 S2
∧

2C5, where α ∈ B ∼=
C5∗ determines a metric gα on h∗ ∼= ∧

2C5∗ by gα(ξ, η) = α ∧ ξ ∧ η ∈ ∧
5C5∗ ∼= C. Such a

metric is never nondegenerate, so this case is excluded.
We next consider Dℓ cases with two crossed nodes. For h to be irreducible, the semisimple

part of the Levi factor p/p⊥ must be simple. Indeed, working in the complex setting, a direct
check reveals that breaking the Dynkin diagram by two crosses into more than one part
always leads to non-isomorphic representations for the two components of h. Furthermore,
the only way to obtain isomorphic components is to take the two spinorial nodes of the Dℓ

diagram. The only real forms compatible with this geometry are the split form so(ℓ, ℓ), the
quasi-split form so(ℓ + 1, ℓ − 1) and the quaternionic form so∗(2ℓ) with ℓ = 2p + 1 odd.
In the split case, h is not irreducible, so this does not fit into our classification. In the
quasi-split case, h ∼= Rℓ−1⊗RC is complex, while in the quaternionic case, h is quaternionic.
In S2h = B ⊕B′ ⊕ B′′, with

h∗ = • · · ·

1
•
�× −2

�
×

⊕ • · · ·

1
•
�×

�
× −2

h =
1
• · · · •

�× 1

�
× −1

⊕
1
• · · · •

�× −1

�
× 1

B ∼=
2
• · · · •

�×

�
×

B′ ∼= •

1
• · · · •

�×

�
×

B′′ ∼=
2
• · · · •

�× 2

�
× −2

⊕
2
• · · · •

�× −2

�
× 2

where we denote the nonzero weights over the crossed nodes for clarity. Observe that

h∗ ⊗ B ≃
(

2
• · · ·

1
•
�×

�
×

⊕
2
• · · ·

1
•
�×

�
×

)

⊕
(

1
• · · · •

�×

�
×

⊕
1
• · · · •

�×

�
×

)

h∗ ⊗ B′ ≃
(

•

1
• · · ·

1
•
�×

�
×

⊕ •

1
• · · ·

1
•
�×

�
×

)

⊕
(

1
• · · · •

�×

�
×

⊕
1
• · · · •

�×

�
×

)

so that both B and B′ satisfy the ALC, but B′′ does not (h∗ ⊗B′′ has eight components).

Case 16 (D2,s
ℓ ). When g = so(ℓ−1, ℓ+1), the horizontal distribution H 6 TM is a complex

vector bundle of complex rank ℓ − 1, and the metrics in B are complex bilinear. When
g = so∗(2ℓ), with ℓ = 2p + 1 odd, the horizontal distribution H 6 TM has a quaternionic
structure of quaternionic rank p and the metrics in B are quaternionic skew-hermitian.
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Case 17 (D2,h
ℓ ). This case involves the same geometries as in the previous case, with

ℓ = 2p+1 odd, except that when g = so(ℓ−1, ℓ+1), the metrics in B′ are hermitian, while
for g = so∗(2ℓ), the metrics in B are quaternionic hermitian.

4.5. Proof of Theorem 2 when g has exceptional type. The first case we consider is
the Lie algebra E6. Let us consider possibilities for parabolic subalgebras with one crossed
node. The first possibility is

h∗ ≃ ×

1
• •

•

• • h ≃ × • •

• 1
• •

S2h = B ⊕B′ B ≃ × • •

•

•

1
• B′ ≃ × • •

• 2
• •

The product h∗ ⊗B decomposes (as the product of a spinor and defining representation of
SO(10)) into the sum of two P -modules, hence the ALC is satisfied.

Case 18 (E1,1
6 ). This is the |1|-graded geometry for E6 for which the allowed real forms

are the split form E6(6), or E6(−26), and H = TM carries the structure of basic spinor
representation S+ of so(5, 5), or so(1, 9) respectively. The P -module B corresponding to
the eligible metrics is the defining representation of so(5, 5) or so(1, 9).

Consider next the adjoint variety, with the node on the short leg crossed. We have

h∗ ≃ h ≃ • •

1
•

×

• •

S2h = B ⊕B′ B ≃ • •

2
•

×

• • B′ ≃
1
• • •

×

•

1
•

and find that both h∗ ⊗ B and h∗ ⊗ B′ have four components.
In the remaining two cases with one crossed node, the semisimple part of p/p⊥ is not

simple, and it is easy to see that the ALC cannot be satisfied:

h∗ ≃
1
• ×

1
•

•

• • h ≃
1
• × •

•

1
• •

S2h ≃
2
• × •

•

2
• • ⊕

2
• × •

• 1
• • ⊕ • ×

1
•

•

•

1
•

h∗ ≃ •

1
• ×

• 1

1
• • h ≃

1
• • ×

• 1
•

1
•

S2h ≃
2
• • ×

• 2
•

2
• ⊕

2
• • ×

•

1
• • ⊕ •

1
• ×

•

•

2
• ⊕ •

1
• ×

• 2

1
• • .

The only case with two crosses for which h could be irreducible is

h∗ ≃ h ≃ ×

1
• •

•

• × ⊕ × • •

•

1
• × ,

and indeed, h is irreducible for the quasi-split real form E6(2). For this real form, the
nontrivial irreducible summands in S2h are

B ≃ × • •

• 1
• × B′ ≃ ×

1
• •

•

1
• × B′′ ≃ ×

2
• •

•

• × ⊕ × • •

•

2
• × .

The products h∗ ⊗B′ and h∗ ⊗ B′′ have too many components but

h∗ ⊗ B ≃ ×

1
• •

•

• × ⊕ × • •

•

1
• × ⊕ ×

1
• •

• 1
• × ⊕ × • •

• 1

1
• ×

and so the ALC is satisfied.

Case 19 (E2,h
6 ). This is a |2|-graded geometry for the quasi-split Lie algebra E6(2). The

horizontal distribution H carries the structure of the spinor representation S of so(3, 5),
while the eligible metrics are induced by the defining representation of so(3, 5).
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For E7 and its real forms, irreducibility of h implies that only one node may be crossed,
and a similar analysis to the E6 type shows that the cases with the best chance to satisfy
the ALC are those with cross over the first or last node, where

h∗ ≃ ×

1
• • •

•

• • h ≃ × • • •

•

•

1
•

S2h ≃ ×

1
• • •

•

• • ⊕ × • • •

•

•

2
•

or h∗ ≃ h ≃ • • • •

•

1
• ×

S2h ≃ • • • •

•

2
• × ⊕ •

1
• • •

•

• × .

It is easy to see that none of these cases satisfy the ALC.
Similarly, for E8, even the most promising candidates

h∗ ≃ h ≃ ×

1
• • • •

•

• •

S2h ≃ ×

2
• • • •

•

• • ⊕ × • • • •

•

•

1
•

and h∗ ≃ • • • • •

•

1
• × h ≃ • • • • •

• 1
• ×

S2h ≃ • • • • •

• 2
• × ⊕ • •

1
• • •

•

• ×

fail the ALC. Again there can be no cases with more than one cross.

For F4, the only non-split possibility is

h∗ ≃ h ≃ ×

1
•< • • S2h = B ⊕ B′ where B ≃ ×

2
•< • •

and B′ is trivial. However, B does not satisfy the ALC.
For the split form, all cases can have only one crossed node. When

h∗ ≃
1
• ×<

1
• • h ≃

1
• ×< •

1
•

S2h = B ⊕B′ B ≃ • ×<
1
• • B′ ≃

2
• ×< •

2
• ,

the elements of B are all degenerate, whereas h∗ ⊗ B′ does not satisfy the ALC.
In the remaining two possibilities for the crossed node,

h∗ ≃ •

2
•<×

1
• h ≃

2
• •<×

1
•

S2h ≃
4
• •<×

2
• ⊕ •

2
•<×

2
• ⊕

2
•

1
•<× •

and h∗ ≃ h ≃ • •<
1
• × S2h ≃ • •<

2
• × ⊕

2
• •< • × ,

the ALC fails in all cases.

Finally, for G2, only the split case is possible, with one crossed node.

h∗ ≃ h ≃
3
•<× S2h ≃

6
•<× ⊕

2
•<×

and h∗ ≃ h ≃ ×<
1
• S2h = B ≃ ×<

2
•

and only the last of these satisfies the ALC, with

h∗ ⊗ B ≃ ×<
3
• ⊕ ×<

1
• .

Case 20 (G1,1
2 ). The real Lie algebra is the split form of G2 and the geometry is given

by Cartan’s famous (2, 3, 5) distribution. Hence the horizontal distribution has rank 2 and
the P -module B corresponding to the eligible metrics is the second symmetric power of the
defining representations of sl(2,R).
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5. Examples of reducible cases

We now discuss a few cases of geometries with reducible H, where the linearized metriz-
ability procedure works. Actually, we have seen several such examples already, when dealing
with real forms with irreducible, but not absolutely irreducible h in Theorem 2. We list some
of those with irreducible B in the following result.

Theorem 3. The following real parabolic geometries with the Lie algebra g and choice of
B satisfy the ALC and the linearized metrizability procedure works.

(i) B ≃ ×

2
• × , g ≃ sl(4,R). These are Lagrangian contact structures in dimension

5, where a decomposition H = E ⊕ F of the contact subbundle into a direct sum of two
Lagrangian subbundles is given. The metrics in B are the split signature metrics with both
E and F isotropic.

(ii) B ≃
1
• · · · • × • · · · • × • · · ·

1
• , g ≃ sl(n + 1,R), n even, the first cross at the k-th

root (2k < n), crosses at symmetric places. These geometries come with H identified with
the sum of two vector bundles of the form (E ⊗ F ∗) ⊕ (F ⊗ G∗), where E and G are real
vector bundles of rank k, and F is a real vector bundle of rank n− 2k+ 1. The metrics are
the split signature ones, in the subbundle E ⊗G∗ 6 E ⊗ F ∗ ⊗ F ⊗G∗.

(iii) B ≃
2
•• • · · · •

�×

�
×

, the real Lie algebra is so(p, p), 2p = n. The horizontal distribution

H 6 TM is the sum of two rank p − 1 bundles E and F coming from the defining repre-
sentations of sl(p − 1,R) with different weights, and B stays for general split metrics on
E ⊕ F .

(iv) B ≃ × • •

• 1
• × , the real Lie algebra is the split form of type E. The geometry is

|2|-graded, and the horizontal subspace H 6 TM corresponds to the direct sum of two of the
three isomorphic defining representations of so(4, 4). The eligible metrics are the generic
tracefree split ones and the P -module B corresponds to the third defining representation R8,
up to the weight.

Proof. All cases were already treated for different real forms in the previous section, except
for the very last case. The computation presented there showed that the ALC is satisfied
but the subbundle H is not irreducible, but a sum of two subbundles. At the same time,
the strong ALC holds, thus the linearized metrizability procedure works as required. �

Our final result illustrates the possibility of finding examples with reducible B, including
one in which a trivial one-dimensional component occurs.

Theorem 4. The following real parabolic geometries with the Lie algebra g and choice of
B satisfy the ALC.

(i) B ≃
0
•

1
×<

0
•

−1
× ⊕

0
•

−5
×<

2
•

2
× , the real Lie algebra is the split form of type F (|6|-

graded). The horizontal distribution H 6 TM is built of two rank 2 bundles E and F
coming from the defining sl(2,R) representations of the different components in p0. The
first component H1 is a tensor product E⊗F with appropriate weight, while F stays for the
other component H2 with another weight. The eligible metrics are the sums of the metrics
in Λ2E ⊗ Λ2F 6 S2H1, and the metrics in S2H2.

(ii) B ≃ • × •

1
• · · · • × • ⊕ • × • · · ·

1
• • × • . In this case g ≃ sl(ℓ + 1), 5 6 ℓ,

with nodes 2 and ℓ− 1 crossed, and H ∼= E ⊗ F ∗ ⊕ F ⊗G, where E is a real vector bundle
of rank 2, and F is a real vector bundle of rank ℓ − 3. The corank of H 6 TM is 4. The
eligible metrics are sums of the symmetric bilinear forms on H1 and H2, both of the form
of tensor product of two exterior forms.

(iii) B ≃ •

1
• · · · • × • × • · · · • ⊕ • · · · • × • × • · · ·

1
• • . Similarly to the previous

case, g ≃ sl(2k), 4 6 k, with nodes crossed at symmetric positions, and H ∼= E⊗F ∗⊕F⊗G,
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where E and G are real vector bundles of rank k− 1, while F is a real vector bundle of rank
2. The corank of H 6 TM is (k − 1)2. The eligible metrics are sums of the symmetric
bilinear forms on H1 and H2, both of the form of tensor product of two exterior forms.

(iv) B ≃
2
• · · · • × × • · · · • ⊕ • · · · • × × • · · ·

2
• . Here g = sl(2k + 1), the horizontal

distribution is the sum of two vector bundles of the same rank k, corresponding to the defining
representations of the two semisimple components in p0. The metrics are sums of metrics
on these two parts of H.

Proof. (i) Since the strong ALC cannot hold in the case of split forms of the algebras, we
work with the complete weights. The form of h is seen from the Cartan matrix of type F ,
while the sum and difference of the second and last lines in the inverse Cartan matrix (which
corresponds to the crossed nodes in the Dynkin diagram) provide the coefficients (4 8 11 6)
and (2 4 5 2) expressing two generating weights in the centre of p0. With their help, we find

h∗ =
1
•

−2
×<

1
•

0
× ,⊕

0
•

0
×<

1
•

−2
× .

h =
1
•

−1
×<

1
•

−1
× ⊕

0
•

−2
×<

1
•

1
× .

The part of interest in S2h is

B1 ⊕ B2 =
0
•

1
×<

0
•

−1
× ⊕

0
•

−5
×<

2
•

2
× .

Now, B1 is trivial, while

B2 ⊗ h∗ ≃
1
• ×<

3
• × ⊕

1
• ×<

1
• × ⊕ • ×<

3
• × ⊕ • ×<

1
• × .

Hence the kernel of b does not exceed the allowed number of components and the ALC
holds. Finally,

Λ4h1 =
0
•

2
×<

0
•

−2
× Λ2h2 =

0
•

−2
×<

0
•

−3
×

so that the weight of L can be expressed in terms of them and thus the linearized metriz-
ability procedure can be completed.

(ii)–(iv) All the other cases have been already discussed as the complex versions of some
cases in the previous section. The only remaining bit of the proof is the check that the top
exterior forms on the individual components provide linearly independent weights and thus
may be used to rescale the metrics properly. This can be done exactly as in case (i). �

Remark 5.1. Actually, the arguments in the cases (iii) and (iv) above work also in any of
the situations where the crosses are either apart by one or next to each other, i.e., without
assuming they are placed symmetrically, except if the adjacent crosses appear right at the
ends of the diagram. In the latter case of the so called paths geometries, one of the top
degree forms on hi has trivial weight zero and thus the linearized metrizability procedure
fails at the stage when we change the weight of the solutions in order to get genuine metrics.
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