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Abstract 

A film of the polymer of intrinsic microporosity PIM-7 is coated onto a glassy carbon electrode 

and the resulting effects on electron transfer reactions are studied for three different types of 

processes: (i) aqueous solution based, (ii) solid state surface immobilised, and (iii) electrocatalytic 

processes on electrodeposited palladium. The effects on reactivity for hydroquinone oxidation in 

aqueous phosphate buffer are shown to be linked to microporosity causing a slightly lower rate of 

mass transport without detrimental effects on electron transfer and reaction kinetics. Next, water-

insoluble microcrystalline anthraquinone is immobilised directly into the PIM-7 film and shown 

to give a chemically reversible reduction process, which is enhanced in the presence of PIM-7, 

when compared to the case of anthraquinone immobilised directly onto bare glassy carbon. 

Electrodeposition of a film of nano-palladium is demonstrated to give catalytically active 

electrodes for the reduction/oxidation of protons/hydrogen, the reduction of oxygen, and for the 

oxidation of formic acid and methanol. With the PIM-7 film applied onto palladium, a mechanical 

stabilisation effect occurs. In addition, both the hydrogen insertion and the hydrogen evolution 

reactions as well as formic acid oxidation are enhanced. Effects are discussed in terms of PIM-7 

beneficially affecting the interfacial reaction under triphasic conditions. The microporous polymer 

acts as an interfacial “gas management” layer.  

Graphical Abstract:  

Graphical Abstract Text: Triphasic electrochemical processes involving gas evolution are 

beneficially affected by the presence of microporous PIM-7 polymer coated over the electrode 

surface. 

Keywords: palladium; membrane; porosity; selectivity; voltammetry; fuel cell. 
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1. Introduction 

In electro-organic synthesis, modified electrodes offer experimental tools for immobilisation of 

catalysts,[1] induction of chirality,[2] or improved selectivity and enhanced catalytic reactivity.[3,4] 

In particular microporous films have been developed and coated onto electrodes to aid 

electrochemical processes based on zeolites,[5] ceramic hybrids,[6] metal-organic frameworks,[7] 

porous organic cages,[8] and a wide range of polymers.[9] Polymers of intrinsic microporosity 

(PIMs) represent a relatively new class of synthetic polymers[10] developed recently based on 

highly rigid polymeric structures to provide rigid 1-2 nm diameter nanopore channel systems with 

applications in gas separation,[11] gas storage,[12] and electrochemistry.[13] Relevant for applications 

in electro-organic synthesis are the use of PIMs, for example, to immobilise molecular catalysts[14] 

and to provide a protective film over nano-metal catalysts.[15,16] The polymer of intrinsic 

microporosity PIM-1 (see molecular structure in Figure 1) has recently been shown to bind gases 

such as molecular hydrogen or oxygen at the electrode surface under “triphasic” conditions (with 

coexisting solid, liquid, and gaseous phases), thereby affecting electrocatalytic reactions.[17] It is 

of interest to further explore effects of similar PIM coatings on catalytic surfaces. 

 

One considerable advantage of PIMs over other types of microporous materials is their high degree 

of processability. The polymeric structures of these materials are highly rigid and contorted and 

the chains are therefore unable to efficiently pack into dense solids (see Figure 1). This leads to 

low molecular interaction energies in the solid state, highly microporous structures, and good 

solubility in solvents such as chloroform and cyclopentanone (employed here). As a result, 

microporous films of PIMs are readily coated over the surface of electrodes or catalysts by solvent 

evaporation under ambient conditions. 

 

Various types of polymers of intrinsic microporosity have been developed over the recent years,[18] 

mostly in order to improve gas separation[19] and membrane selectivity.[20] In particular materials 

such as PIM-1 and PIM-7 (see Figure 1 [21]) have been highlighted for unusual gas separation 

properties that originate from highly contorted microporous molecular structures. The reported 

properties of PIM-7 include an average pore radius of 0.48 nm and an average pore volume of 0.47 
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nm3,[22] as well as an average molecular weight of Mw = 51 000 g mol-1 and a Brunauer-Emmett-

Teller (BET) surface area of typically 680 m2 g-1. The total pore volume was reported as 0.56 cm3 

g-1,[23] which suggests a porous channel system with 1021 pores per gram. Computational 

simulation tools have been employed to rationalise the mechanism and rate of gas permeation.[24] 

Materials such as PIM-7 have been shown to be compatible with roll-to-roll industrial 

production.[25] So far, there has been no assessment of reactivity of PIM-7 in electrochemical 

applications. 

 

Figure 1. Polymeric structures of PIM-1 and PIM-7 

 

Although primarily developed for applications in gas storage and separation, it has been shown 

that the intrinsic microporosity and excellent processability of PIMs also lead to new applications 

in water treatment[26] and in electrochemistry.[27] In this report the effects of PIM-7 on 

electrochemical processes are studied at modified electrodes immersed in aqueous media. 

Exploratory experiments are reported for three types of electrode reactions: (i) solution phase 

redox processes with permeation through the PIM-7 film, (ii) an immobilised solid-state redox 

system embedded into the microporous PIM-7 film, and (iii) electrocatalysis at nano-palladium 

electrodeposited onto a glassy carbon substrate and protected by a film of PIM-7. It is suggested 

that PIM-7 may be considered as an electrochemically inactive (under conditions employed here) 

microporous film that affects electrode processes by controlling interfacial access and mass 

transport. There are enhancing effects on electro-organic and on electrocatalytic processes at 
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palladium involving gaseous hydrogen probably due to PIM-7 affecting the conditions close to the 

double layer region (i.e. wetting of the catalyst surface in competition to gas bubble formation). It 

is suggested that a film of PIM-7 can be employed to modify and enhance reactivity for some types 

of electro-organic reactions.  

 

2. Experimental 

2.1. Chemical Reagents 

Hydroquinone (99%), anthraquinone (97%), palladium(II) chloride (≥ 99.9%), cyclopentanone (≥ 

99%), sodium dihydrogen orthophosphate, sodium hydroxide, isopropanol, methanol, 1-butanol 

(98%), and sulfuric acid (conc. 98%) were purchased from Sigma-Aldrich and used without further 

purification. PIM-7 was prepared and purified following a previously reported method.[28] 

Laboratory grade argon gas was obtained from BOC, UK. Solutions were prepared with deionised 

and filtered water with resistivity of 18.2 MΩ cm (at 22 +/- 2 oC). 

 

2.2. Instrumentation 

Electrochemical measurements were conducted using a potentiostat system (µAUTOLAB III, 

Metrohm, Herisau, Switzerland) with a K2SO4 saturated Hg/Hg2SO4 reference electrode (REF621, 

Radiometer Analytical, with a potential 0.414 V vs. SCE), a 3 mm diameter glassy carbon working 

electrode (BASi, UK), and a platinum wire counter electrode in a three-electrode custom glass cell. 

Morphologies of the nano-palladium and palladium with PIM-7 coating were obtained with a 

JEOL JSM-2010Plus (JEOL U.K. Ltd, Welwyn Garden City, U.K.) high-resolution transmission 

electron microscope (HR-TEM) using C300Ni100 carbon film 300 mesh nickel TEM grids (EM 

Resolutions, Sheffield U.K.). 

 

2.3. Procedures 

A glassy carbon electrode was coated with a 5 µL volume PIM-7 solution (1 mg PIM-7 mL-1 in 

cyclopentanone) in a drop-cast process followed by drying under ambient conditions. For the 
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oxidation of hydroquinone (2 mM hydroquinone in 0.1 M phosphate buffer, pH = 7), glassy carbon 

electrodes without PIM-7 and with PIM-7 were used as the working electrode. For the study of 

anthraquinone immobilised onto the electrode surface, a glassy carbon without PIM-7 and one 

coated with 5 µL PIM-7 (1 mg PIM-7 mL-1 in cyclopentanone) were initially soaked into 0.1 mM 

anthraquinone in acetonitrile solution for 20 minutes. The electrodes were then air-dried (to form 

microcrystalline anthraquinone) and used as working electrode immersed in 0.1 M phosphate 

buffer (pH = 7). 

 

Figure 2. Transmission electron microscopy (TEM) images for nano-palladium dislodged from 

the glassy carbon electrode (A) as grown and (B) with PIM-7 adhering to the palladium. (C) 

Electron diffraction data (for the central region in image B) showing the characteristic diffraction 

lines for palladium. (D) Photographic image of glassy carbon, palladium on glassy carbon, PIM-7 

coated palladium on glassy carbon and the PIM-7 solution in cyclopentanone. 
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For experiments on palladium electrocatalysis, a 1 mM palladium(II) chloride solution was 

prepared in aqueous 0.1 M HCl solution. Electrodeposition of palladium metal on the glassy 

carbon was performed in chronoamperometry mode at a deposition potential of –0.5 V vs. 

Hg/Hg2SO4 for a duration of 1000 s (with a charge of approx. 8 mC to give nominally 36 nmol Pd 

or a weight of 3.8 g, which translates into a film of approx. 45 nm thickness). Figure 2D shows 

a photograph of the palladium coating. Electrodes were washed by carefully soaking in deionised 

water and dried (the palladium coatings were fragile and easily damaged when more vigorously 

rinsed). If desired, the electrode was then coated with 5 µL solution of PIM-7 (1 mg PIM-7 mL-1 

in cyclopentanone; giving approx. 0.4 m thickness) by drop-casting. Measurements were 

performed either in aqueous 1 M H2SO4, 0.1 M formic acid, or in 0.1 M phosphate buffer (pH = 

12) solution. 

 

For the preparation of transmission electron microscopy (TEM) grids, a droplet of isopropanol was 

placed onto the surface of the electrodeposited palladium with/without PIM-7 coating. After gentle 

scratching with the micropipette tip to dislodge deposit, some of the solution was deposited onto 

a TEM grid. Figure 2A shows a typical aggregate layer of palladium particles with sizes ranging 

from 200 nm to much smaller. Figure 2B shows a nano-palladium film still attached to a PIM-7 

film. The palladium electron diffraction pattern (Figure 2C) is consistent with that reported 

previously for nano-palladium.[29] 

 

3. Results and Discussion 

3.1. PIM-7 Modified Glassy Carbon I.: Oxidation of Hydroquinone 

The effects of PIM-7 film coatings on electrode processes at a glassy carbon electrode surface are 

first investigated with the hydroquinone redox system in phosphate buffer at pH 7. Figure 3 shows 

cyclic voltammetry data contrasting the case of no PIM-7 coating (Figure 3A) with that of with 

PIM-7 coating (Figure 3C). The appearance of both reduction peak (at ca. –0.5 V vs. Hg/Hg2SO4) 

and the re-oxidation peak (at ca. –0.1 V vs. Hg/Hg2SO4) remains very similar without and with 
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PIM-7 applied to the electrode surface. Only the magnitude of the peak currents is diminished in 

the presence of the microporous PIM-7 film, presumably due to mass transport limitations in the 

nanopores of approximately 1-2 nm diameter. The shape of peaks appears broader (tending 

towards sigmoidal) in the presence of PIM-7 due to onset of thin film diffusion with a mobile but 

lower hydroquinone concentration in the polymer film.  

 

Figure 3. (A) Cyclic voltammograms for the oxidation of 2 mM hydroquinone in 0.1 M phosphate 

buffer (pH = 7) obtained at a glassy carbon electrode without PIM-7, (B) Plot of peak currents (for 

oxidation Ipa and for reduction Ipc) versus square root of scan rate. (C) as above with PIM-7 coating. 



9 
 

(D) Plot of peak current versus square root of scan rate. (E) Plot of anodic peak current versus 

concentration of hydroquinone obtained at the scan rate of 5 mVs-1. 

 

 

A plot of peak currents versus square root of scan rate is shown for both voltammograms obtained 

without PIM-7 (Figure 3B) and voltammograms obtained with PIM-7 coated over glassy carbon 

(Figure 3D). In the absence of PIM-7, peak currents scale reasonably well with the square root of 

scan rate, indicative of current peaks that are limited by planar diffusion to the electrode surface.[30] 

In contrast, in the presence of PIM-7 only the low scan rate data seem to scale and at scan rates 

higher than 100 mVs-1 the anodic current peaks seem lower. The shape of the peak changes to 

more sigmoidal, which could be a sign of the PIM-7 layer restricting mass transport in particular 

when going to higher scan rates. Both, the apparent concentration of hydroquinone and the 

apparent diffusion coefficient of hydroquinone are likely to be slightly lowered in the PIM-7 

environment, which fully explains the observed behaviour. The shape of voltammograms for 

hydroquinone oxidation is sensitive to the buffer environment and pH and both of these seem 

essentially the same in the aqueous solution and within the PIM-7 microporous structure. One 

would expect more significant effects of the polymer on electron transfer kinetics probably for 

thicker PIM-7 films and for higher hydroquinone concentrations, and therefore further study will 

be needed to explore these effects in more depth. 

 

3.2. PIM-7 Modified Glassy Carbon II.: Reduction of Anthraquinone 

Next, the immobilisation of a redox-active microcrystalline solid, anthraquinone, first onto bare 

glassy carbon and then into the PIM-7 film on glassy carbon is investigated as a case of solid state 

electrochemistry. Microcrystalline deposits of electrically insulating materials at electrode 

surfaces are known to show electrochemical activity linked to the redox processes at the triple 

phase boundary[31] and linked to solid state conversions.[32] Anthraquinone is highly water-

insoluble, but remains electrochemically redox active when in direct contact to the electrode 

surface. In previous studies, anthraquinone was shown to undergo a 2-electron 2-proton 

reduction[33] (see Figure 4), which is sensitive to pH and to ionic strength in solution.[34] 

Immobilisation of redox active but water-insoluble guest molecules into PIM films at electrode 
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surfaces has been previously reported also for the porphyrin metal complex FeTPP[35] and for 

TEMPO organocatalysts[36] for the oxidation of alcohols to aldehydes.  

 

In this study, PIM-7 is first deposited from cyclopentanone onto the glassy carbon surface. The 

electrode is then immersed into 0.1 mM anthraquinone in acetonitrile (PIM-7 is not soluble in 

acetonitrile) and after drying under ambient conditions some anthraquinone is immobilised onto 

the electrode surface. Figure 4A shows three consecutively recorded cyclic voltammograms for 

the reduction of anthraquinone immobilised at a bare glassy carbon electrode. A chemically 

reversible process is observed with Emid = ½ (Ep,ox + Ep,red) = –0.93 V vs. Hg/Hg2SO4.
[37] In the 

first couple of potential cycles the current diminishes, but then stabilises towards the 10th potential 

cycle.  
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Figure 4. Reaction scheme for the 2-electron 2-proton anthraquinone reduction. Cyclic 

voltammograms (first, second, and tenth cycles; scan rate 0.1 Vs-1) obtained (A) at a glassy carbon 

electrode and (B) a PIM-7 film modified glassy carbon electrode (both dipped into the 0.1 mM 

anthraquinone dissolved in acetonitrile for 20 min and ambiently dried) immersed in 0.1 M 

phosphate buffer pH 7. (C) Plots of anodic peak currents versus square root of scan rate. Schematic 

drawings (D) and (E) represent conditions at the electrode surface with/without PIM-7.  

 

 

There are two processes with very similar Emid, one with a peak-to-peak separation of close to 60 

mV and a second broader signal with peak-to-peak separation of close to 350 mV (the anodic peak 

feature at -0.75 V vs. Hg/Hg2SO4 is relatively small compared to the cathodic peak at -1.1 V vs. 

Hg/Hg2SO4 probably due to transport effects in the solid state or on the solid surface). The former 
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process could be associated with a surface layer of anthraquinone, whereas the latter may be 

tentatively assigned to a second layer deeper within the crystal surface. The same experiment 

performed in the presence of the PIM-7 film on the glassy carbon electrode gives a similar result, 

although currents are generally higher and the process with smaller peak-to-peak separation is 

enhanced. This is likely to be linked to the presence of many more and smaller anthraquinone 

microcrystals within the microporous PIM-7 host structure. The effect could also be linked to the 

local buffer concentration at the electrode surface with PIM-7 providing additional porosity and 

thereby better buffer access during anthraquinone reduction. The plot in Figure 4C summarises 

peak current data in a format similar to that in Figure 3, but it has to be kept in mind that data here 

is likely to be linked to considerably more complex processes.   

 

The results demonstrate that PIM-7 is readily modified with solid state redox systems. The aqueous 

solution environment within the PIM-7 coating closely matches that in bulk solution and therefore 

the mechanism for solid state anthraquinone reduction appears to be retained. This is a useful 

model case for processes requiring immobilisation of water-insoluble molecular or inorganic 

electrocatalysts, but more detailed study will be required in future to better reveal the local 

conditions at the electrode surface during electron transfer within the polymer coating. 

 

3.3. PIM-7 Modified Glassy Carbon III.: Palladium Electrodeposition and Hydrogen 

Evolution  

Next, a film of nano-palladium is electrodeposited onto the glassy carbon electrode surface to be 

employed as electrocatalyst bare and when stabilised with a PIM-7 film coating. Figure 2D shows 

a photograph where the presence of the palladium film is revealed as a thin mirror-like reflective 

layer, which after coating with PIM-7 takes on a slightly orange colouration (compare the colour 

of the PIM-7 solution). From TEM data (Figure 2) it can be seen that rather non-uniform nano-

scale palladium nanoparticles of up to 200 nm size are present in the metal film deposit with ca. 

45 nm estimated thickness (based on electrolytic charge passed during  deposition). In contrast the 

PIM-7 coating is estimated to be 400 nm thick (vide supra). 

 



13 
 

The presence of the palladium film is confirmed in electrochemical measurements (see Figure 5). 

In aqueous 1 M H2SO4 clear evidence for the presence of palladium is seen (i) in the oxide region 

from 0.2 V vs. Hg/Hg2SO4 to 0.7 V vs. Hg/Hg2SO4. Upon reversing the scan direction the 

palladium oxide is converted back into palladium metal in a well-defined peak at 0.1 V vs. 

Hg/Hg2SO4,
[38] which is known to be associated with some more complex reaction steps leading 

to Pd metal.[39] The charge under this peak can be employed to estimate the palladium surface area 

(based on a conversion constant of approx. 405 C cm-2 [40]), which is here constant at ca. 0.18 

cm2 (see Figure 5A; consistent with a roughness factor 2.5). 

 

The hydrogen region for the palladium coated electrode starts at –0.4 V vs. Hg/Hg2SO4. Initially, 

hydrogen is deposited as a mono-layer onto the palladium surface. In Figure 4B this can be seen 

in the extended potential window to –0.6 V vs. Hg/Hg2SO4, where a double-peak feature is seen. 

This feature seems close to identical for the bare nano-palladium and for the PIM-7 coated nano-

palladium. However, when extending the potential window more negatively, a higher cathodic 

current is observed and a peak feature is detected. This peak feature occurs at –0.70 V vs. 

Hg/Hg2SO4 for the bare palladium, but is shifted to –0.65 V vs. Hg/Hg2SO4 for the PIM-7 coated 

palladium (Figure 4C). The process can be identified as the binding of hydrogen into the palladium 

bulk.[41] Perhaps surprisingly, after reversal of the scan direction peaks are again observed at 

different peak potentials at –0.48 V vs. Hg/Hg2SO4 for bare palladium and at –0.52 V vs. 

Hg/Hg2SO4 for the PIM-7 coated palladium. That is, although the midpoint potential for this 

process remains identical with/without PIM-7, the peak-to-peak separation is affected, This is 

consistent with the formation of the same product (PdHx with 0.0 < x < 1.0 with a phase 

transformation at x = 0.7 [42]) but with a change in rate. For both reduction and oxidation processes 

the PIM-7 coated nano-palladium reacts faster. Note that the electrochemically active surface area 

for the two electrodes is not significantly different and therefore this effect seems to originate from 

the presence of PIM-7 at the interface palladium | aqueous electrolyte as depicted schematically in 

Figure 5F.  
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Figure 5. Cyclic voltammograms (in argon-purged solution; scan rate 0.02 Vs-1) for a palladium-

coated glassy carbon electrode (black) and for a palladium and PIM-7 coated glassy carbon 

electrode (red) immersed in aqueous 1 M H2SO4 solution over a potential window (A) 0.7 to –0.5 

V vs. Hg/Hg2SO4, (B) 0.7 to –0.6 V vs. Hg/Hg2SO4, (C) 0.7 to –0.7 V vs. Hg/Hg2SO4, and (D) 0.7 

to –0.8 V vs. Hg/Hg2SO4. (E) Cyclic voltammogram (in aerated solution, scan rate 0.02 Vs-1) for 

the reduction of oxygen. (F) Schematic drawing to illustrate the PIM-7 structure interacting as a 

“gas management” layer with a palladium surface.  
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When extending the potential window further negative, the hydrogen evolution process is 

observed. Again, in the presence of PIM-7 on the palladium surface the hydrogen evolution 

reaction is substantially faster. Also, hydrogen evolved in the presence of PIM-7 is “trapped” and 

re-oxidised (see the broad peak in Figure 5D) consistent with recent observations of hydrogen 

storage in PIM-1 materials.[17] The onset of hydrogen evolution is linked to the position of the 

reduction peak (formation of PdHx) and both processes are likely to be coupled. Therefore, the 

shift in the peak to more positive potential and the enhanced rate in hydrogen evolution caused by 

PIM-7 should depend on a similar mechanism. It seems likely that the ability of PIM-7 (similar to 

PIM-1) to store hydrogen in nanochannels could lead to this type of enhancement. However, 

alternatively it may also be possible that the PIM-7 in the vicinity of the palladium surface causes 

a disturbance in the way water and/or hydrogen can interact with the surface (Figure 5F). In this 

particular case the presence of gas bubbles at the catalyst surface could be detrimental/blocking 

and the PIM-7 coating could act as a “gas management” layer taking away the bubbles and 

providing a more active catalyst surface.  

 

Figure 5E is shown in contrast to data in Figure 5B, and it demonstrates the effects of ambient 

oxygen on the voltammetric responses. At both types of electrode with/without PIM-7 coating, the 

oxygen reduction process commences at 0.1 V vs. Hg/Hg2SO4. The similarity in the voltammetric 

features suggests that oxygen readily diffuses into the PIM-7 and it undergoes electrochemical 

reduction in a similar manner with or without PIM-7. It is interesting to expand this study to other 

related catalytic processes, in which gas (hydrogen) evolution is involved and PIM-7 effects 

predicted. 

 

3.4. PIM-7 Modified Glassy Carbon IV.: Palladium Electrodeposition, Formic Acid 

Oxidation, and Methanol Oxidation 

A classic case of a catalytic reaction on palladium catalysts is the oxidation of formic acid. This 

process is important for example in fuel cell systems[43] based on formic acid as a hydrogen storage 

fuel.[44] The oxidation of formic acid in acidic aqueous media is known to occur with some 

complexity in the mechanism.[45] There are three reaction pathways[46,47] for the oxidation of 
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formic acid on palladium linked to (i) the direct pathway via 2-electron transfer and formation of 

CO2, (ii) the indirect pathway via dehydration and formation of CO followed by oxidation, and 

(iii) the hydrogen pathway based on HCOOH converting to CO2 and H2 
[48,49] with the latter then 

being oxidised.[50] Catalytic formic acid decomposition reactions have been proposed based on 

palladium causing spontaneous formation of hydrogen.[51] It is interesting to explore the effects of 

PIM-7 on the process based on the hydrogen pathway. 

 

Figure 6A shows cyclic voltammograms for the oxidation of aqueous 0.1 M formic acid at the 

electrodeposited palladium film on glassy carbon. The equilibrium potential under these conditions 

is at approximately –0.7 V vs. Hg/Hg2SO4 consistent with the potential for hydrogen evolution 

(compare Figure 5D). The overlay of data for the bare palladium film (black) and the PIM-7 coated 

palladium film (red) clearly reveals the difference in reactivity. In the presence of PIM-7 oxidation 

currents are enhanced to approximately twice of those observed in the absence of PIM-7. In 

addition, the potentials where the formic acid oxidation seizes (on the positive going potential scan 

entering the oxide region) and re-starts (on the negative going potential scan) are clearly shifted to 

more positive values. The reason for this shift is currently not fully understood (the local pH or 

presence/absence of bubbles on the Pd surface may be factors). The localised storage of some 

hydrogen in the PIM-7 coating could help remove the oxide film and in this way cause the observed 

pattern. 

 

When increasing the scan rate, the magnitude of current peaks increases (Figure 6) and a hysteresis 

in forward and backward voltammetric responses occurs. Figure 7 shows data obtained by cyclic 

voltammetry in aqueous formic acid with a scan rate of 100 mVs-1 and as a function of formic acid 

concentration. It can be observed that significant enhancement effects by the PIM-7 film are 

apparent particularly at higher concentration of formic acid. Figure 7E shows data for 0.2 M formic 

acid with almost four-fold increase in currents. A summary of currents is shown in a plot in Figure 

7F. The enhancement effect is proposed to be associated with a faster rate and with some degree 

of hydrogen storage within the PIM-7 film without the formation of bubbles that block the 

electrode surface. Next, redox processes are investigated that occur without the spontaneous 

formation of hydrogen.  
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Figure 6. Cyclic voltammograms (scan rate of (A) 10 ms-1, (B) 50 mVs-1 , (C) 100 mVs-1, and (D) 

500 mVs-1) for a palladium-coated glassy carbon electrode (black) and for a palladium and PIM-7 

coated glassy carbon electrode (red) immersed in aqueous 0.1 M formic acid solution.  
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Figure 7. Cyclic voltammograms (scan rate of 100 mVs-1) for a palladium-coated glassy carbon 

electrode (black) and for a palladium and PIM-7 coated glassy carbon electrode (red) immersed in 

aqueous (A) 10 mM, (B) 20 mM, (C) 50 mM, (D) 100 mM and (E) 200 mM formic acid solution. 

(F) Plot of peak currents versus concentration of formic acid.  
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Palladium is well known to catalyse the oxidation of aliphatic alcohols such as methanol,[52,53] 

ethanol,[54] or butanol.[55] In general, palladium electrocatalysis has been considered for direct 

alcohol fuel cells[56] as well as for the valorisation of glycerol.[57] Here, the oxidation of methanol 

is investigated in aqueous 0.1 M phosphate buffer media. This process is sensitive to pH (at pH 7 

only insignificant levels of catalytic activity are observed and therefore work here is reported for 

pH 12) and sensitive to the nature of the alcohol (tests with butanol revealed mechanical instability 

and detachment of the catalyst layer, and relatively low reactivity for both cases, with or without 

PIM-7 coating and at pH 12).  

 

Figure 8A shows cyclic voltammetry data for the oxidation of 33 mM methanol in 0.1 M phosphate 

buffer pH 12 (under argon) for bare palladium (black) and for PIM-7 coated palladium (red). The 

reduction peak at –0.7 V vs. Hg/Hg2SO4 can be attributed to the conversion of oxide to palladium 

metal. The oxidation peak at approximately –0.5 V vs. Hg/Hg2SO4 is associated mainly with the 

oxidation of methanol. The presence of the PIM-7 coating clearly hinders the methanol oxidation. 

When increasing the concentration of methanol to 166 mM (Figure 8B) a similar pattern is 

observed. With a methanol concentration of 1.0 mol dm-3 (Figure 8C) a cross-over point seems to 

have been reached (see also the plot in Figure 8D), but this is not linked to enhanced catalysis. The 

palladium film coating is mechanically weakly adhered to the glassy carbon substrate and the 

presence of organic components seem to further weaken the bond. In the plot of peak current versus 

methanol concentration the loss of activity is linked here most likely to the loss of palladium from 

the electrode surface (and not molecular scale kinetic effects). The PIM-7 coating does prevent the 

loss of palladium in this case. However, in contrast to observations for formic acid oxidation, there 

seems to be no significant current enhancement due to the presence of PIM-7. This could be a 

further indication that indeed gas (hydrogen) evolving reactions benefit most from the coating with 

microporous PIM-7. 
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Figure 8. Cyclic voltammograms (scan rate 10 mVs-1) for a palladium-coated glassy carbon 

electrode (black) and for a palladium and PIM-7 coated glassy carbon electrode (red) in (A) 0.03 

mol dm-3, (B) 0.17 mol dm-3, (C) 1.0 mol dm-3 methanol in 0.1 M phosphate buffer pH 12. (D) 

Plot of peak current versus concentration (mol dm-3) of methanol. Note that mechanical damage 

to the Pd catalyst without PIM-7 protection occurs at a methanol concentration of approx. 0.2 mol 

dm-3. 

 

Further experiments with methanol were performed also in 1 M H2SO4 but instability of the 

palladium film (without or with PIM-7 coating) prevented meaningful measurements in this 

system. The presence of organic components in the reaction mixture seems to cause surface tension 

effects that destabilise the palladium – glassy carbon interface and in this way lead to damage of 

the catalyst layer. It seems likely that in future better conditions for adhesion can be found with a 

different rougher carbon substrate or with nano-palladium dispersed in Vulcan carbon[58] to give 

mechanically stable catalyst systems with PIM protection. However, benefits from the PIM-7 
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coating in terms of enhanced catalytic kinetics appear to be limited to cases with the presence of 

gaseous reactants or triphasic reaction conditions. Therefore, future applications of PIM-7 coatings 

in electro-organic synthesis could be of interest primarily in cases such as CO2 reduction or for 

reactions requiring N2, O2, CH4, or ethylene as gaseous reagents interacting with electrocatalytic 

surfaces. 

 

4. Conclusions 

It has been shown that a coating of PIM-7 provides a stable microporous film that allows smaller 

molecules such as hydroquinone and methanol reactants to diffuse in and reaction products to 

diffuse out. For water-insoluble species such as anthraquinone, the PIM-7 film offers a host, in 

which microcrystalline solid material is immobilised close to the electrode surface to undergo 

redox transformations. When studying electrocatalysis at palladium film coatings, it became 

apparent that PIM-7 can affect the processes that are linked to the hydrogen evolution reaction. 

Both, the formation of PdHx and the formation of hydrogen gas during hydrogen evolution seemed 

to occur at an enhanced rate, but also the formation (oxidation) of hydrogen from formic acid was 

enhanced in the presence of the PIM-7 coating. All of these phenomena are suggested to be linked 

to compositional changes at the palladium | aqueous electrolyte interface due to the presence of 

the microporous PIM-7 coating. The most likely interpretation of the data appears to be a scenario 

in which hydrogen gas can be absorbed into the PIM-7 film without interfacial nucleation of 

hydrogen bubbles and catalyst blocking at the palladium surface. In this way the palladium surface 

can remain active and processes can occur with an apparently enhanced rate. The PIM-7 coating 

can act as a “gas management” layer at the interface. In this way PIM coatings could be useful in 

electrochemical technology to lower overpotentials and to bring down energy costs. This 

conclusion is consistent with observations for methanol oxidation electrocatalysis, where the 

effects of PIM-7 on the rate are weak and detrimental rather than beneficial. 

 

In the future, a wider range of PIM materials could be screened and investigated so that gas 

absorption and permeability under triphasic reaction conditions can be correlated with effects on 

the rate of electrocatalytic processes. Further work will be required addressing the question of 
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adhesion between PIM coatings and the underlying electrode. Most beneficial appears to be the 

PIM-7 induced combination of mechanical stabilisation of nano-catalysts and enhanced reactivity 

in processes involving gaseous reagents in aqueous media. There are many triphasic 

electrocatalytic processes (involving O2, CO2, H2, N2, etc.) where beneficial effects could be 

possible. Furthermore, PIM-based materials could be combined with metal or carbon nano-

materials to provide nano-composite electrodes with enhanced gas diffusion properties, surface 

area, and reactivity.  
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