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Phase Noise in FMCW Radar Systems
Kashif Siddiq, CEng MIET, Mervyn K. Hobden, Hon. Fellow, BHI, Steve R. Pennock, Member, IEEE,

and Robert J. Watson, Member, IEEE.

Abstract—Phase noise is one of the fundamental performance
parameters in modern radar, communication, spectroscopic, and
metrological systems. In this paper a phase noise theory has been
developed for FMCW radar systems. A new design equation has
been derived to specify the maximum bound on the allowable
source phase noise level in radar systems. The non-linear phase
noise decorrelation function due to coherent mixing has been
analysed for propagation delays less than the coherence time of
the reference oscillator, and the spectral broadening of target
responses has been discussed for delay times greater than the
coherence time. The effects of the subsystems in the transceiver
chain are presented and a new model of phase noise in ADCs
is discussed. Phase noise modelling techniques are presented,
followed by a comparison of a PLL frequency synthesiser with
a low-noise frequency synthesiser to demonstrate the reduction
of phase noise sidebands for improved detection and tracking
performance. Practical measurements from two millimetre wave
FMCW radar systems utilising the two frequency synthesisers
have been presented to validate the developed theory.

Index Terms—Phase noise, FMCW radars, coherence, spectral
analysis, phase noise cancellation.

I. INTRODUCTION

A perfect monochromatic sinewave is an idealisation avail-
able only in textbooks. All natural and man-made oscillators
(whether optical, electronic, acoustic, atomic, or any other)
exhibit phase and frequency instabilities collectively known
as Phase Noise. These instabilities are related to the materi-
als making up the oscillator, the architectural design of the
oscillator, and the random noise phenomena in the oscillator.
This paper deals with the analysis of phase and frequency
instabilities in the oscillators used in frequency modulated
continuous wave (FMCW) radar systems.

It is well-known that the short-term frequency instability
in oscillators, described by the phase noise, manifests itself
as phase modulation sidebands in oscillator spectra [1]–[3].
Linear phase noise analysis [4]–[8] deals with the analysis
of the low-noise sidebands only in the RF spectrum of an
oscillator [4], [5], [9]. However the phase noise processes
also give rise to a nonlinear near-carrier spectrum [10]–[13],
a phase noise floor, and broadening of the linewidth of the
oscillator signal’s RF spectrum [12], [14], [15]. A complete
phase noise analysis must include all portions of the RF
spectrum.

Excessive phase noise in an oscillator (greater than 1 rad2)
leads to severe distortion in the RF spectrum in the form
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of a widened central peak and distorted sidebands. A well-
designed coherent radar system should have an integrated
phase noise much less than 1 rad2. In this paper an analysis
will be presented as the phase noise in a signal approaches
this limit under frequency multiplication and new results
will be presented for the allowable noise-sideband level in
the transmitted signal to comply with this limit. The noise
sideband response produced by radar systems is a function
of the target’s range (i.e. time delay) [4] and even if a low-
phase noise master oscillator is employed in a radar, the
demodulated return signal loses coherence with the transmitted
signal due to the frequency drift processes present in the
oscillator. Therefore, a well-designed radar should operate well
within the coherence time of the oscillator [14], [16] to avoid
excessive broadening of the demodulated signal’s spectrum.

Phase noise in FMCW radars has not received a detailed
attention as in other areas of radar systems. The present paper
attempts to fill in this void. In particular, this paper considers
the effects which are significant for compact low-cost radars,
which now constitute an important field of application of
FMCW radar systems. From the systems aspect, phase noise
in FMCW radars has been addressed from various aspects
in [5], [17]–[22]. In [5] the fundamentals of FMCW system
design have been presented including some noise aspects.
In [17] the impact of coherent integration on phase noise
has been addressed. In [18] the impact of oscillator noise
parameters like the noise figure and the corner frequency on
the phase noise performance has been analysed. In [5] and
[19] the impact of the internal noise leakage through the
receiver’s mixer has been analysed in detail. In [20]–[22] some
post-processing phase noise reduction techniques have been
proposed.

An important aspect of the present work is the demonstra-
tion of how to accurately relate the source phase noise to
the phase noise in the IF signal’s spectrum by quantifying
the phase noise introduced by the various stage of a typical
FMCW radar system, and the demonstration of the reduction
in phase noise by utilising a properly designed radar signal
source. Using those guidelines one can work back to determine
the source phase noise level required to achieve a given
specification of the dynamic range.

The rest of this paper is organised as follows. Section
II presents the fundamentals of phase noise including the
notation and the definitions used in the paper. The develop-
ment of the phase noise models of the radar subsystems is
presented in Section III to present a phase noise modelling
methodology for FMCW radar systems. New results on phase
jitter cancellation in analog-to-digital converters are presented.
In section IV, the derivation of a novel design equation is
presented to prevent excessive demodulated phase noise due
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(a) RF spectrum of a general oscillator. (b) RF spectrum of a synthesised radar signal source including the noise
pedestal’s parameters.

Fig. 1: Illustration of the RF spectra of radar signal sources.

to the source phase noise and/or frequency multiplication in
the transmitter. Section V demonstrates the application of the
modelling methodology for the accurate modelling of phase
noise in a practical millimetre wave (MMW) radar system.
The benefits of using a low-phase noise frequency synthesiser
to achieve high dynamic range target discrimination will be
demonstrated using practical measurements.

II. CHARACTERISATION OF PHASE NOISE IN RF SPECTRA

Phase noise in oscillators is most popularly characterised by
the spectral density of phase fluctuations Sφ(f) that normally
consist of power law frequency components [23]. On the other
hand, practical radio, radar, and spectroscopic systems, to
name a few, use the RF spectrum of the oscillator SRF (ν0, f)
as the working spectrum during their operation, and will be
the focus in the forthcoming discussion. Fig. 1a illustrates the
RF spectrum SRF (ν0, f) of a general oscillator, where ν0 is
the centre- or carrier-frequency of the measured spectrum, and
f is the offset frequency from the carrier frequency. When
the sidebands in SRF (ν0, f) are due to phase modulation
(PM) noise, they are referred to as Phase noise sidebands,
are denoted by L(f) = SRF (ν0, f)/P (where P is the total
power in the measured oscillator signal), and have the units
of decibels relative to the carrier per Hertz (dBc/Hz).

As shown in Fig. 1a the frequency offset f = fα divides
the phase noise portion of the spectrum into two part, i.e., the
near-carrier phase noise and the far-from-carrier phase noise.
The IEEE Standard 1139-1999 [23] defines phase noise as,

L(f) = Sφ(f)

2
. (1)

L(f) in this definition is a single-sided quantity, and is
related to SRF (ν0, f) only in the far-from-carrier region, i.e.,
for all f ≥ fα such that,∫ ∞

fα

Sφ(f)df = 0.1 rad2. (2)

Below fα, SRF (ν0, f) is nonlinearly related to Sφ(f). A
nonlinear relationship between Sφ(f) and the normalised two-
sided baseband RF spectrum SbRF (f) is given in [10]–[12] as,

SbRF (f) = e−σ
2
φ

[
δ(f) + Sφ(f) +

1

2!
Sφ(f) ∗ Sφ(f) + ...

]
,

(3)
where σ2

φ is the variance of the phase noise process φ(t), or
equivalently,

σ2
φ =

∫ ∞
0

Sφ(f)df, (4)

and is assumed to be finite. Equation (3) can be used to model
the near-carrier phase noise as well as the far-from-carrier
phase noise, although in the latter case (1) is easier to use.
In (3) the carrier has been modelled as a Delta function: in
practice SRF (f) has a finite linewidth and a defined lineshape
that are a function of the frequency noise processes in the
oscillator. These are dealt with in [12], [14].

Fig. 1b illustrates a typical target spectrum displayed by
a radar system employing a synthesised signal source. The
phase noise pedestal can originate due to a phase locked
loop (PLL) based synthesiser having a finite loop bandwidth,
or due to the finite bandwidth of the frequency multiplier
chain being employed in the system to frequency multiply,
say, a crystal reference oscillator to higher frequencies. A
detailed analysis of the behaviour of the noise pedestal under
frequency multiplication can be found in [12], [24], [25] where
measurements of the noise sidebands have been presented.

Equation (3) can also be written as,

SbRF (f) = ScRF (f) + SpRF (f), (5)

where ScRF (f) is the RF spectral density of the central carrier
peak and SpRF (f) is the RF spectral density of the phase noise
pedestal. For linear phase noise analysis one has to invoke the
low-phase noise condition, σ2

φ � 1. Under this condition (3)
simplifies to:

SbRF (f) ≈ e−σ
2
φ [δ(f) + Sφ(f)] . (6)
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Fig. 2: Block diagram of a general FMCW radar system. The phase noise L(f) at various points in the system is marked.

The phase noise pedestal shown in Fig. 1b can be modelled
by a modified Lorentzian function as follows:

SpRF (f) =
2Lp

1 +
(
|f |

0.5Wp

)k , (7)

where SpRF (f) is the double-sided RF spectral density of the
noise pedestal, Lp is the flat-top level of the pedestal (in dB-
rad2/Hz), Wp is the 3-dB width of the noise pedestal, and k is
the order of the roll-off and is generally between 2 and 4 for
microwave frequencies. Under the low-phase noise condition,
σ2
φ can also be computed from SpRF (f) as,

σ2
φ =

∫ ∞
0

SpRF (f)df. (8)

In practice, the computation of this integral can be done
for a finite upper limit of f defined by the width of the noise
pedestal and the order of the roll-off. Also, the assumption
of finite σ2

φ in (3) is only valid for a finite observation time
Tobs (or measurement time) for the oscillator signal [6], [26]–
[28], which in fact is equivalent to defining a non-zero low-
frequency cutoff at 1/Tobs for the phase noise spectrum [27].
For excessively large measurement times, the flicker frequency
and random-walk frequency components of phase noise cause
excessive broadening of the measured RF spectrum [27]–[30].

Phase noise can be equivalently defined by the timing jitter
in oscillators. The RMS timing jitter σt in a signal having a
nominal radian operating frequency of ω0 = 2πν0 is related
to σ2

φ as [31],
σt = ω0 σφ. (9)

The timing jitter formulation of phase noise is especially
helpful when analysing phase noise in ADCs.

III. PHASE NOISE IN THE ELECTRONIC SUBSYSTEMS

Fig. 2 shows a block diagram of the system under con-
sideration which is a basic homodyne FMCW radar system.
The FMCW Signal Generation block synthesises the FMCW
waveform which is frequency multiplied up to the transmit
frequency band using the ×N frequency multiplier. The re-
ceived signal is frequency mixed with the transmitted signal to
generate the intermediate frequency (IF) signal: the frequency

difference between the transmitted signal and the received
signal is proportional to the target’s range [5]. The IF signal is
digitised using an analog-to-digital converter (ADC or A/D).
Complex Fast Fourier Transform (FFT) processing is then
used to extract the information about targets like range, phase,
signal strength, etc. In the following subsections, the phase
noise contribution of these electronic subsystems is discussed.

A. Frequency Synthesisers

Indirect and direct frequency synthesisers [31]–[33] are
used to generate the desired transmit waveform in radar
systems. Popular examples include arbitrary waveform gen-
erators, Phase Lock Loops (PLL), Direct Digital Synthesisers
(DDS), and variants based on these.

In PLL based frequency synthesis it is well-known that
inside the loop filter’s bandwidth, the reference oscillator’s
phase noise dominates, while outside the loop bandwidth the
voltage controlled oscillator’s (VCO) phase noise dominates
[31]. Modern phase-frequency detector (PFD) based PLL’s
are versatile in that they perform automatic phase and fre-
quency locking [31]. However for high dynamic range radar
applications the phase noise performance of PFDs may not be
acceptable [9] leading to high levels of in-band phase noise.
The PLL-synthesised signal has a spectrum of the type shown
in Fig. 1b which shows a noise pedestal around the carrier
frequency.

To reduce the noise pedestal one solution is to reduce
the loop bandwidth of the PLL. However that also reduces
the modulation bandwidth of the system in the Type-2 PLL
scheme [31] commonly employed. In the case of FMCW
radars this is the bandwidth required to correctly synthesise
the ramping waveform: excessive reduction of the loop band-
width caused ringing in the transient response of the PLL.
Therefore, the modulation requirement sets the limit on the
least achievable loop bandwidth. PLL synthesisers have been
discussed in [34]–[36] in the context of FMCW radar systems.
Insufficient loop bandwidth can also cause the loop to become
unlocked, especially if a fast flyback is required at the end of
the sweep.

Offset PLLs [37]–[39] have been used successfully to im-
prove the phase noise performance over conventional PLLs.
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Offset PLLs combine frequency mixing with frequency di-
vision in the feedback path to reduce the overall frequency
multiplication factor inside the loop. The overall architecture
is complicated by the use of DDS sources for frequency
sweeping and the spurii generated by the DDS and the mixer
have to be filtered. State-of-the-art DDS synthesisers have
better phase noise than PLL synthesisers although they are
costlier, and they suffer from spurii problems [33]. The DDS
output usually needs to be frequency mixed to the desired
frequency band, and mixers produce their own spurii.

Parasitic nonlinearities in the linear FMCW waveform due
to, for example, nonlinear tuning curves of voltage controlled
oscillators (VCO) also lead to spectral broadening but are con-
sidered systematic noise [37], [40]–[42] as opposed to phase
noise that is random in nature. The influence of sweep linearity
on FMCW radar system performance has been addressed in
[37], [40]. A combination of VCOs and frequency multipliers
is commonly used in FMCW radar systems to reduce the
effects of the VCO’s non-linear tuning characteristic [43].

B. Frequency Multipliers

Fig. 3a shows the propagation of phase noise through a
frequency multiplier [31]. The timing jitter is preserved during
the frequency multiplication process while the RMS phase
noise increases by N , where N is the frequency multiplication
factor. Frequency multipliers are used in conjunction with
frequency synthesisers to increase the FM modulation index
of the transmitted signal to combat VCO non-linearities [43].
It is well-known that the phase noise sidebands increase as
20 log10N dB under frequency multiplication (so that the
phase SNR degrades by 20 log10N dB). However, it is im-
portant to note that this increase happens only when the small
phase noise approximation is valid even after the frequency
multiplication.

Special results have been derived for frequency multiplica-
tion of the type of spectrum shown in Fig. 1b. In [12], [24],
[25] it has been demonstrated using theoretical analysis and
practical measurements that if σ2

φ < 1 then under frequency
multiplication by N , Wp stays the same while Lp increases as
20 log10(N) as expected. However, when σ2

φ > 1 the carrier
starts broadening and so does the noise pedestal. For radar
systems this phenomenon would result in the target response
being broader so that it occupies a larger number of range bin,
which is undesirable.

The carrier’s 3-dB linewidth also increases under the process
of frequency multiplication [14]. In general the linewidth in-
creases N2-times if the radar signal has white frequency noise,
N -times if it has flicker-frequency noise, and N2/3-times if it
has random-walk frequency noise [12], [14]. However for short
time delays, the phase noise processes decorrelate (explained
shortly) which leads to a narrower linewidth than predicted
[44].

C. Mixers

Fig. 3b shows the propagation of phase noise through a
mixer [31]. Mixers can be used for up-conversion in the

transmitter (instead of frequency multipliers), and for down-
conversion in the receiver. When implemented in the transmit-
ter chain, the phase noise of the frequency synthesisers adds to
that of the local oscillator. When implemented in the FMCW
receiver chain, the inputs to the mixer are the transmitted
and the received signals, while the output of the mixer is
the IF signal. Mixers add or cancel the phase noise in the
input signals: cancellation of phase noise happens when the
two input signal are coherent, i.e. they have a defined phase
relationship with each other (or in other words, are derived
from the same reference source). It has been shown that
in radar systems the mixing of the time-delayed transmitted
signal with itself causes phase noise decorrelation as follows
[4], [5], [45], [46]:

LIF (f) = LTx(f)× 4 sin2(πfτd), (10)

where τd is the round-trip time-delay to the target. This
relationship will be analysed in detail later in this section. A
caveat in (10) is on the usage of the offset frequency variable
f . While the operating frequency at the IF can be orders of
magnitude lower than the operating frequency at the Tx (i.e.
the transmitter), the offset frequency f stays the same. In other
words, (10) relates the phase noise at an offset f from the IF
operating frequency to the phase noise at the same offset f at
the transmitter’s operating frequency.

Equation (10) implies that the integrated (RMS) phase noise
at the IF stage in Fig. 2 is:

σ2
φIF =

∫ ∞
0

2LTx(f)× 4 sin2(πfτd) df. (11)

In general, for smaller τd the phase noise cancellation will
be large. Correspondingly, σ2

φIF
will be small. The converse

is true in general for large τd.
Referring to Fig. 3b, if the two inputs to the mixer are

uncorrelated, the integrated output phase noise will be:

σ2
φo = σ2

φi1 + σ2
φi2 = ω2

1σ
2
ti1 + ω2

2σ
2
ti2, (12)

even for the difference frequency signal. If the two signals
have roughly the same operating frequency and phase jitter
we get,

σ2
φo = ω2

oσ
2
to ≈ 2σ2

φi = 2ω2
i σ

2
ti. (13)

This situation happens in, for example, millimetre wave
(MMW) FMCW radars where the two inputs to the mixer have
almost the same operating frequency so that their difference
frequency is a very low frequency IF signal. The above result
shows that for incoherent inputs the IF signal’s integrated
phase noise is twice that of the transmitted signal: however
the relationship for timing jitter is more interesting. Equation
(13) can be rearranged as follows:

σ2
to ≈ 2

ω2
i

ω2
o

σ2
ti, (14)

or using the radar terminology,

σ2
tIF ≈ 2

ω2
RF

ω2
IF

σ2
tRF , (15)

which implies that the timing jitter in the IF signal is much
larger than the timing jitter in the RF signal because generally
ωRF � ωIF . This result will be used in the next subsection.
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(a) Frequency Multiplier (b) Mixer (c) Analog-to-Digital Converter

Fig. 3: Phase noise propagation through electronic subsystems.

D. Analog-to-Digital Converter

The subject of phase jitter/noise in ADCs has been dealt
with in [47]–[52]. As shown in Fig. 3c, from the noise
perspective the ADC can be thought of as a time-modulator
or a time-mixer. Extending the argument of coherent phase
noise cancellation in mixers, we propose that if the input
signal is coherent with the sampling clock, the jitter in the
sampled signal is time-decorrelated in the same way as the
inputs to a mixer are phase-decorrelated. The decorrelation
will be dependent on the time-delay between the signal being
sampled and the clock signal, and most importantly how close
the time jitters on the two are.

If the radar’s transmitted signal and the sampling clock
are derived from the same reference source then their time
jitters can be close to each other. However, as noted in (15)
the IF signal being sampled has a time jitter greater than
the received RF signal by a large factor. So the time jitter
cancellation is less effective in this case. Nevertheless, as a
guideline the transmitted signal’s phase jitter is related to the
reference oscillator’s phase jitter through the transfer function
of the frequency synthesiser being employed. For example,
for a PLL synthesiser the in-band phase jitter at the output of
the PLL is equal to the phase jitter in the reference oscillator,
while beyond the loop bandwidth the phase jitter at the input
and the output of the PLL are uncorrelated. In this case the
ADC’s sampling clock can be used to partially cancel the in-
band phase jitter (according to the time delay) while there will
be no noise cancellation for frequency offsets outside the loop
bandwidth.

For the non-coherent case, the jitter in the sampling clock
adds to the jitter in the input signal. Therefore the integrated
phase noise in the sampled signal is,

σ2
φo = ω2

oσ
2
to = ω2

i

[
σ2
ti + σ2

t clk

]
= σ2

φi +
ω2
i

ω2
clk

σ2
φ clk. (16)

Due to the term ω2
i /ω

2
clk a higher IF frequency input signal

experiences a larger phase noise transferred from the sampling
clock. A detailed analysis of (16) in the context of radars is
presented in [52].

E. Phase noise decorrelation

The phase noise decorrelation factor in (10) is 4 sin2(πfτd).
This factor introduces periodic ripples in the demodulated
phase noise spectrum as a function of τd. The critical value
in (10) is the frequency offset of fτd = 1/6 for which

LIF (f) = LTx(f). Beyond this frequency offset no further
phase noise cancellation happens: in fact LTx(f) and LRx(f)
add in-phase so that LIF (f) starts increasing. The following
points can be note:
• Coherent phase noise cancellation happens for frequency

offsets f ≤ 1/6τd
• At fτd = 1/4, LIF (f) = 2LTx(f).
• Finally for f = 1/(2τd), LIF (f) = 4LTx(f).
The last point implies that due to coherent mixing the

resultant phase noise can be up to 6 dB larger than the
transmitter’s phase noise.

The above discussion is valid for delay times less that the
coherence time of the oscillator [14], [16]. As pointed out
earlier, for excessively large measurement times (or measure-
ments at very long ranges in the case of radar systems), the
frequency noise processes in the oscillators cause excessive
broadening of the measured RF spectrum [27]–[30]. An anal-
ysis of how the power shifts between the carrier portion and
the sideband portion of the spectrum as a function of the delay
time τd is given in [28], [44].

As a final comment, if non-coherent frequency mixing is
used in a radar system, no cancellation of phase noise will
happen at any range. In fact, the IF phase noise will just be
twice the transmitter’s phase noise and no coherent ripples
will be observed. The linewidth of target response will also
be larger compared with a coherent radar.

F. System Noise Floor

Fig. 2 shows two amplifiers in the system that affect
the noise floor performance of the overall system [5], [17].
Including a low-noise amplifier (LNA) as the first stage in
the receiver minimises the thermal noise floor of the system.
However, there are two major drawbacks of using an LNA.
Firstly, targets close to the radar cause large reflected signals.
The LNA further amplifies these signals causing the mixer
stage to saturate earlier than when no LNA is present. Sec-
ondly, the direct leakage signal from the transmitter to the
receiver is amplified further by the LNA. In some cases, this
phase noise leakage signal can dominate the noise floor of the
receiver, so that the thermal noise reduction of the LNA is
negated. A power amplifier (PA) in the transmitter gives the
radar the ability to detect further in range, but also increases
the leakage signal. The PA can also distort the noise spectrum
by adding an independent noise component (that will not be
cancelled by the mixer), and also through AM noise to FM
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noise conversion, which can be potentially significant when
high levels of cancellation are required.

Therefore, a complete noise analysis needs to be done
to compare the thermal noise floor to the leakage phase
noise floor. Another path of phase noise leakage is through
the receiver’s mixer stage. Detailed analyses of these noise
components can be found in [4], [5]. The additional noise
from the PA can be dealt with by either taking the mixer LO
from after the PA, or an additional leakage noise cancellation
stage, as employed in some monostatic FMCW configurations.

As a final comment, it should be noted that the leakage sig-
nals demodulate to zero, or almost zero, operating frequency.
Therefore, for the single-channel system shown in Fig. 2, the
negative phase noise sideband will fold over and add to the
positive sideband. Therefore, the average noise floor will be 3
dB higher. This, however, will not be a problem in a system
utilising I/Q demodulation.

IV. THE MAXIMUM BOUND ON THE PEDESTAL HEIGHT Lp

Having discussed the troubles σ2
φ > 1 can cause it is

imperative to analyse this condition further for typical radar
signal sources. Fig. 1b shows the phase noise pedestal in the
RF spectrum centred at the carrier frequency ν0, along with
the central carrier peak. A double-sided baseband model for
the phase noise pedestal is the generalised Lorentzian function
described in (7) but repeated here for convenience,

SpRF (f) =
2Lp

1 +
[
|f |

0.5Wp

]k , (17)

where Lp and Wp are indicated in Fig. 1b, and k is the order
of the roll-off of the pedestal.

We will now derive the maximum bound on Lp for a given
Wp in order to meet the condition σ2

φ < 1 for k ≥ 2. Note
that the noise pedestal obviously does not include the central
carrier peak and the phase noise floor. If σ2

φ < 1 then σ2
φ is

approximately equal to the RMS noise power in the pedestal
and can be computed as:

σ2
φ =

∫ ∞
0

SpRF (f)df. (18)

The above integral was solved for various values of k: the
results are shown in Table I. The second column shows that
the integral converges to σ2

φ = WpLp in the limit of large
k. The third column shows the maximum bound for Lp as a
function of Wp for each k.

Also shown in Table I (fourth column) are computed Lp’s
for Wp/2 = 100 kHz (this value of Wp is used in the plots
in the next section). Note that 3 dB is to be subtracted from
the value of Lp in dB-rad2/Hz to compute the single-sideband
level of Lp in dBc/Hz: the latter will be the representative
value for Lp measured on a spectrum analyser centred at the
carrier frequency ν0.

Table I shows an interesting result that the maximum bound
on Lp does not change significantly with k. The maximum
value of the integral is at k = 2 and gives the tightest bound
on Lp. Therefore, to ensure σ2

φ < 1 we need,

Lp <
2

πWp
. (19)

TABLE I: Maximum allowable Lp for various values of k.

k σ2
φ (rad2) Max Lp (rad2/Hz) Max Lp for

Wp = 200 kHz

2 π
2
WpLp 0.64/Wp −58 dBc/Hz

2.5 1.32 WpLp 0.76/Wp −57.2 dBc/Hz

3 1.12 WpLp 0.89/Wp −56.5 dBc/Hz

4 1.11 WpLp 0.9/Wp −56.5 dBc/Hz

12 1.01 WpLp 0.99/Wp −56.1 dBc/Hz

TABLE II: Parameters of the FMCW radar being studied.

Parameters MMW Radar

Carrier Frequency, ν0 76.5 GHz

Swept Bandwidth, BS 660 MHz

Sweep Time, TS 1.25 ms

FFT Bandwidth, 1/TS 800 Hz

Freq. Multiplication Factor, N 8

PLL Loop Bandwidth, BL 100 kHz

PLL In-band noise level, Lp -88 dBc/Hz

Window Function Blackman-Harris

The beauty of (19) is that this result does not depend on the
actual operating frequency of the radar or the multiplication
factor. The radar’s transmitter only needs to comply with this
limit as a minimum to be an acceptable radar signal source.
If Lp and Wp are even lower, the radar signal source will
remain coherent with itself (or self-coherent) to a much larger
range than a radar signal source having larger Lp and Wp. The
model developed here closely agrees with the measurements
in [12] which also happen to be at 9.5 GHz.

A change in Wp would directly affect the bound on Lp.
For example, if a noise bandwidth of 10 kHz was sufficient
for the PLL employed in the transmitter then Wp = 20 kHz
and the maximum allowable Lp = -48 dBc/Hz to ensure
σ2
φ < 1. Therefore, by reducing Wp the bound on Lp has been

relaxed. Finally we emphasise that the bound on Lp has been
stated in the units of dBc/Hz (i.e. normalised to the integration
bandwidth) and should be used as such.

V. APPLICATION OF PHASE NOISE MODELLING TO A
MMW FMCW RADAR SYSTEM

The phase noise modelling methodology was applied to a
commercial MMW FMCW radar system having subsystems
as in Fig. 2. The parameters of the radar system are shown in
Table II. First, a PLL-based radar signal source will be used
to measure the target responses of trihedral corner reflectors.
The phase noise sidebands will be visible in this measurement.
Next a low phase noise source will be used for the same
measurement to demonstrate the performance improvement.
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Fig. 4: Measured RF Spectrum of an X-band PLL synthesised
oscillator.

A. Phase Noise Modelling of the PLL Based System

The radar used for measurements initially employed a
PLL/VCO scheme to generate the X-band signal that was
frequency multiplied to 76.5 GHz. Fig. 4 show a spectrum
analyser display of the non-sweeping carrier signal. Since the
swept bandwidth is small compared with the carrier, the same
phase noise levels will be expected for the swept signal. The
phase noise sidebands are visible: for example, at 100 kHz the
phase noise is around -88 dBc/Hz.

A spectrum measurement of the transmitted signal at 76.5
GHz was also done (but not included here) which confirmed
that there was no change in the width of the noise pedestal,
and the pedestal height did go up by 20 logN = 18 dB.
This conforms to the theory presented in the last section:
the noise pedestal height Lp = −88 dBc/Hz is much less
than the maximum bound suggested by Table I. Fig. 5 shows
the final simulated single sideband target response at various
target ranges taking into account the effects of phase noise
decorrelation using (10). This type of simulation model is
extremely useful in predicting the expected target response
to analyse the phase noise performance of radar systems. The
simulated target response is 6 dB higher at the peak of the
coherent ripples as expected. The critical frequency offset
fcrit = 1/6τd (converted to range bin values) is plotted as
a vertical dotted line: it can be seen that beyond this point
the phase noise sideband increases up to 6 dB beyond the
transmitter’s integrated phase noise level, and there is no
further phase noise cancellation other than the troughs of the
ripples.

The simulated target response at 150 m has a peak phase
noise level of −45 dBc, while the simulated target response
at 750 m has a peak phase noise level of −33 dBc. These
values are to be compared with the measurement results of
the next subsection. Due to the large difference between the
RF operating frequency (76.5 GHz) and the IF (up to 7 MHz)
the computed effect of the ADC jitter was minimal, and had
minimal effect on the measurements.

B. Measurement results from the PLL based radar

Fig. 6 displays a measurement on two corner reflector
targets placed at 173 m and 770 m respectively. The mea-
surements were done using a CTS Radar system developed by
Navtech Radar Ltd. having the parameters displayed in Table
II. This figure also appears in [9] but has been subject to new
analysis. It can be seen that thermal noise is superimposed on
the phase noise sidebands, so the average noise level should
be taken as the representative value of phase noise. The lower
end of the two double-arrows have been placed to indicate the
expected signal to phase noise level.

Comparing with Fig. 5 it can be seen that the theoretical
modelling is compatible with the experimental results. The
measured target response at 173 m indeed has an average phase
noise level of around −45 dBc, while the measured target
response at 770 m has an average phase noise level of around
−33 dBc.

C. Discussion on the measurements from the PLL based radar

The modulation loop bandwidth of 100 kHz causes the PLL
to have a large noise bandwidth (or noise pedestal width)
of 200 kHz. The upshot is that both targets in Fig. 6 have
large shoulder-like sidebands superimposed on them. This
phenomenon causes severe difficulties in the detection and
tracking of the objects in the region having a raised noise
floor: the detection of all targets is degraded and small target
can disappear in this noise floor.

To gain a better understanding of the artefacts of phase
noise, we used a higher power radar with 17.5 cm range
bins. Fig. 7 displays the measured target response of the 770
m corner reflector. Averaging was turned on to reduce the
variance of the noise components in the display. The coherent
sideband structure is much more visible in this plot along
with other small targets (grass at shorter-ranges and trees at
longer ranges). The coherent ripples can be compared with the
top-right inset in Fig. 5. It can be noticed that the measured
sideband level is now at −30 dBc instead of −33 dBc because
this particular radar uses a tighter loop bandwidth, causing an
increase in the in-band phase noise. However this does not
affect the width of the coherent ripples.

It is worth noting that the coherent ripples in Fig. 7 were
only visible after the systematic noise was mitigated in the
frequency synthesiser [32]. The presence of systematic noises
can smear the sideband structure and also cause a raised noise
floor. We will not dwell further on systematic noise.

D. Improved phase noise design

To lower the phase noise sidebands we designed a low-phase
noise frequency synthesiser. A spectrum analyser display of
the synthesiser’s output is shown in Fig. 8. A comparison
with Fig. 4 shows that the new synthesiser indeed has very
low phase noise for a compact, low-cost source. At the
100 kHz offset the measured phase noise is -111.8 dBc/Hz
which is at least 23 dB better than the PLL source (as this
measurement is close to the spectrum analyser’s noise floor):
the actual improvement is greater than 30 dB as shown next.
A comparison of the modelled phase noise spectra of the two
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Fig. 5: Plots of the target response (single-sideband) at various ranges. Coherent phase noise cancellation gives an improvement
(reduction) in phase noise in the region to the left of the vertical dotted line.

Fig. 6: Targets at 173m and 770m. Range bins are 25 cm each.
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Fig. 7: The 770 m target’s response produced by a higher
power radar employing a PLL-based source.

sources is presented in Fig. 9. The huge improvement in the
phase noise sidebands and the phase noise floor can be noticed.
The effects of decorrelation in the new low-noise synthesiser
can be worked out using plots similar to Fig. 5.

Fig. 10 shows the same scene as in Fig. 7, viewed with
the higher-power radar system employing the new low-noise
frequency synthesiser. A remarkable improvement in the phase
noise sidebands of around 30 dB can be seen, significantly
improving the definition in the scene. The grassy patch before
the target and the trees after the target are clearly visible
now. In addition, a hedge right behind the corner reflector
has now been revealed that was completely hidden in Fig.
7. Therefore, any small targets near this large target can
now be detected with precision. Potential applications of
this type of improvement are in perimeter security systems
where an intruder is walking right next to a large building:
a conventional radar sensor will fail to pick up the intruder
due to the spread of the phase noise sidebands around the
building’s large radar response. However an improved radar
system based on low-phase noise technology will indeed be
able to detect the intruder and raise an alarm.

VI. CONCLUSION

There are many causes of spectral broadening of the target
responses in FMCW radar systems including internal factor
like phase noise, unfocused lenses, and parasitic nonlinearities
due to VCO tuning curves, and external factors like cross-
demodulated radar interference signals [53], environmental
precipitation, and distributed targets. This paper exclusively
focused on the sideband spectral broadening of the radar
target responses due to phase noise. A complete phase noise
analysis methodology was described to model the phase noise
at various stages of a complete radar system. New models
of phase noise in ADCs and of phase noise pedestals were
presented and applied to modelling phase noise in radar
systems. Factors affecting the linewidth of the demodulated
signal were discussed. Measurements were presented that are

Fig. 8: Measured RF Spectrum of the low phase noise source.

Fig. 9: Phase noise modelling of the PLL source and the low-
noise source at 9.5 GHz.

in very good agreement with the developed theory. Finally, the
use of a low-phase noise frequency synthesiser was described
to reduce the phase noise sidebands by 30 dB, significantly
improving the detection and tracking performance of the radar.
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