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OPTIMAL-TRANSPORT-BASED MESH ADAPTIVITY ON THE1

PLANE AND SPHERE USING FINITE ELEMENTS∗2

ANDREW T. T. MCRAE† , COLIN J. COTTER‡ , AND CHRIS J. BUDD†3

Abstract. In moving mesh methods, the underlying mesh is dynamically adapted without4
changing the connectivity of the mesh. We specifically consider the generation of meshes which are5
adapted to a scalar monitor function through equidistribution. Together with an optimal transport6
condition, this leads to a Monge–Ampère equation for a scalar mesh potential. We adapt an existing7
finite element scheme for the standard Monge–Ampère equation to this mesh generation problem.8
The problem we consider has additional nonlinearities over the basic Monge–Ampère equation due9
to the implicit dependence of the monitor function on the resulting mesh. We also derive the10
equivalent Monge–Ampère-like equation for generating meshes on the sphere. The finite element11
scheme is extended to the sphere, and we provide numerical examples. All numerical experiments12
are performed using the open-source finite element framework Firedrake.13

Key words. Monge–Ampère equation, mesh adaptivity, finite element, optimal transport14
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1. Introduction.16

1.1. Overview. This paper describes a robust, general-purpose algorithm for17

generating adaptive meshes. These can then be coupled to the computational solu-18

tion of time-dependent partial differential equations. The algorithm is based on the19

finite element solution of a nonlinear partial differential equation of Monge–Ampère20

type, and can be used to generate meshes both on the plane and on the sphere. The21

underlying theory behind this procedure is derived from the concept of optimal trans-22

port. This guarantees the existence of well-behaved meshes which are immune to23

mesh tangling. The use of a quasi-Newton method to solve the resulting nonlinear24

system produces an algorithm that does not need tunable parameters to be effective25

for a wide variety of examples. We demonstrate the effectiveness of this method on a26

series of examples on both the plane and on the sphere.27

1.2. Motivation. The evolution of many physical systems can be expressed, to28

a close approximation, using partial differential equations. In many interesting cases,29

the solutions of these equations will develop structures at small scales, even if these30

scales were not present in the initial conditions. Such small-scale phenomena often31

have an important role in the future evolution of the system – examples include shocks32

in compressible flow problems, or interfaces in chemical reactions. We are particularly33

motivated by the area of weather prediction and climate simulation. A core task is34

the numerical solution of partial differential equations (variants of the Navier-Stokes35

equations) that model the evolution of the Earth’s atmosphere. Current state-of-the-36

art models have resolutions of approximately 10km for global forecasts. There will37

always be physical processes occurring at smaller length scales than can be resolved in38

such a model. However, it may be advantageous to vary the resolution dynamically.39
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2 A. T. T. MCRAE, C. J. COTTER, AND C. J. BUDD

This could be used to better resolve features such as weather fronts and cyclones,40

which are meteorologically important and can result in severe weather leading to41

economic damage and loss of life.42

Obtaining a numerical approximation to the solution of such problems usually43

involves formulating a discrete problem on a mesh. Typically, a uniform-resolution44

mesh is used. However, if the mesh cannot adequately resolve the small scale features,45

this process may lead to poor-quality results. In such cases, it may be necessary to46

use some form of dynamic mesh adaptivity to resolve evolving small scale features47

and other aspects of the solution. A common approach is to use a form of local48

mesh refinement (h-adaptivity) in which mesh points are added to regions where49

greater resolution is required. An alternative form of adaptivity is a mesh relocation50

strategy (r-adaptivity), in which mesh vertices are moved around without changing51

the connectivity of the mesh. This is done to increase the density of cells in regions52

where it is necessary to represent small scales.53

r-adaptivity has certain attractive features: as mesh points are not created or54

destroyed, data structures do not need to be modified in-place and complicated load-55

balancing is not necessary. Furthermore, it avoids sharp changes in resolution, which56

can result in spurious wave propagation behaviour. A review of a number of different r-57

adaptive methods is given in Huang and Russell [35]. The simplest case of r-adaptivity58

involves the redistribution of a one-dimensional mesh. This has been implemented in59

several software libraries, such as the bifurcation package AUTO, and the procedure60

is currently used in operational weather forecasting within the data assimilation stage61

[47, 48]. While r-adaptivity is not yet used in other areas of operational weather62

forecasting, it has been considered for geophysical problems in a research environment.63

Examples include [29, 49, 54, 37, 17].64

For two- or three-dimensional problems, there is considerable freedom when choo-65

sing a relocation strategy. There has been a growing interest in optimally-transported66

r-adapted meshes [21, 27, 22, 28, 23, 55, 17, 14, 18, 56, 15]. These methods mini-67

mise a deformation functional, subject to equidistributing a prescribed scalar monitor68

function which controls the local density of mesh points. The appropriate mesh can69

be derived from a scalar mesh potential which satisfies a Monge–Ampère equation.70

The solution of such an equation then becomes an important part of the strategy for71

relocating the mesh points.72

Numerical methods for the Monge–Ampère equation go back to at least Oliker73

and Prussner [46], which uses a geometric approach. A range of numerical schemes are74

present in the literature. Finite difference schemes include [40, 7, 31, 32, 8]; several of75

these provably converge to viscosity solutions of the Monge–Ampère equation. Finite76

element schemes include [26, 25, 30, 39, 45, 3], which all introduce an extra discrete77

variable to represent the Hessian matrix of second derivatives, and [11, 12], which use78

interior penalty methods.79

In the context of global weather prediction, there is an additional complication80

for mesh adaptivity: the underlying mesh is of the sphere, rather than a subset of81

the plane. The recent paper Weller et al. [56] uses the exponential map to handle82

this, extending the Monge–Ampère-based approach on the plane. [56] also presents83

a finite volume/finite difference approach for generating optimally-transported mes-84

hes on the sphere, and a comparison of the resulting meshes with those generated85

from an alternative approach, Lloyd’s algorithm. However, they did not discretise86

a Monge–Ampère equation on the sphere, but instead enforced a discrete equidistri-87

bution condition in each cell. The related paper Browne et al. [15] then compares88

the nonlinear convergence of several different methods for solving the Monge–Ampère89
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OPTIMALLY-TRANSPORTED MESHES ON THE PLANE AND SPHERE 3

mesh generation problem on the plane, again in a finite volume context.90

In this paper, we present a method for generating optimally-transported meshes91

on the plane and on the sphere from a given monitor function prescribing the local92

mesh density. This method uses a mixed finite element discretisation of the underlying93

Monge–Ampère (or Monge–Ampère-like) equation, which might be particularly useful94

if finite element methods are already being used to solve the model PDE for which95

mesh adaptivity is being provided. The finite element formulation also allows us to96

take advantage of the automated generation of Jacobians for Newton solvers. We give97

two variants of the method, which differ in how the nonlinear equation is solved. The98

first variant uses a relaxation method to generate progressively better approximations99

to the adapted mesh. The second variant uses a quasi-Newton method combined with100

a line search.101

1.3. Summary of novel contributions.102

• We present a mixed finite element approach for the nonlinear Monge–Ampère-103

based mesh generation problem on the plane, based on Lakkis and Pryer [39].104

• We present a relaxation method for solving this nonlinear problem, an exten-105

sion and modification of the scheme given in Awanou [3], and a quasi-Newton106

method, which converges in far fewer nonlinear iterations and has no free pa-107

rameter.108

• We formulate a partial differential equation for the equivalent mesh-generation109

problem on the sphere. We present a nonlinear mixed finite element discreti-110

sation for this, and give relaxation and quasi-Newton approaches for solving111

this nonlinear problem.112

1.4. Outline. The remainder of this paper is structured as follows. In section 2,113

we present background material. In particular, we show how optimally-transported114

meshes on the plane can be generated through the solution of a Monge–Ampère equa-115

tion, and we present mixed finite element schemes from the existing literature for116

solving the basic Monge–Ampère equation. In section 3, we extend these finite ele-117

ment schemes to the mesh generation problem on the plane. In section 4, we pre-118

sent an equivalent approach for mesh generation on the sphere, based on an equa-119

tion of Monge–Ampère type that we derive from an optimal transport problem. In120

section 5, we give a number of examples of meshes generated using these methods121

with analytically-prescribed monitor functions. We also give an example of a mesh122

adapted to the result of a numerical simulation. We consider examples of meshes123

on both the plane and the sphere, and comment on the convergence of the methods.124

We also discuss the nature of the resulting meshes. Finally, in section 6, we draw125

conclusions and discuss further work.126

2. Preliminaries.127

2.1. Notation. We consider a ‘computational’ domain, ΩC , in which there is a128

fixed computational mesh, τC , and a ‘physical’ domain, ΩP , with a target physical129

mesh, τP , which should be adapted for simulating some physical system of interest.130

We will always assume that ΩC and ΩP represent the same mathematical domain:131

ΩC = ΩP = Ω. For example, Ω may be the unit square [0, 1]2, the periodic unit132

square R2/Z2, or the surface of the sphere S2. We denote positions in ΩC by ~ξ, and133

positions in ΩP by ~x.134

The physical mesh τP will be the image of the computational mesh τC under the135

action of a suitably-smooth map ~x(~ξ) from ΩC to ΩP . Therefore, our aim is to find136

this map, or, rather, a discrete representation of it. The meshes τC and τP will have137
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4 A. T. T. MCRAE, C. J. COTTER, AND C. J. BUDD

the same topology (connectivity) but different geometry. τC is typically uniform (or138

quasi-uniform), while the density of the mesh τP is controlled by a positive scalar139

monitor function, which we label m.140

2.2. Optimally-transported meshes in the plane.141

2.2.1. Equidistribution. We wish to find the map142

(1) ~x(~ξ) : ΩC → ΩP143

such that the monitor function m(~x) is equidistributed. Letting θ be a normalisation144

constant, the equidistribution condition is precisely145

(2) m(~x) detJ = θ,146

where J represents the Jacobian of the map ~x(~ξ):147

(3) Jij =
∂xi
∂ξj

.148

It is clear that this problem is not well-posed in more than one dimension, as the149

desired map is far from unique. Intuitively, phrased in terms of meshes, (2) sets the150

local cell area, but does not control the skewness or orientation of the cell. Accor-151

dingly, many different additional constraints/regularisations have been proposed for152

r-adaptive methods in order to generate a unique map. The following subsection153

describes a notable example of such a constraint.154

2.2.2. Optimal transport maps and the Monge–Ampère equation. Using155

ideas from optimal transport (see Budd and Williams [22] for a more detailed over-156

view), the problem can be made well-posed at the continuous level by seeking the map157

closest to the identity (i.e., the mesh τP with minimal displacement from τC) over158

all possible maps which equidistribute the monitor function. From classical results in159

optimal transport theory [10], this problem has a unique solution, and (in the plane)160

the deformation of the resulting map can be expressed as the gradient of a scalar161

potential φ:162

(4) ~x(~ξ) = ~ξ +∇~ξφ(~ξ),163

where the quantity 1
2 |~ξ|

2 + φ is automatically convex, guaranteeing that the map is164

injective 1. Substituting (4) into (2) then gives165

(5) m(~x) det(I +H(φ)) = θ,166

where H(φ) is the Hessian of φ, with derivatives taken with respect to ~ξ. In the167

plane, there are two sources of nonlinearity: first, the determinant includes a product168

of second derivatives (1 + φξξ)(1 + φηη)− φ2
ξη (using the notation ~ξ = (ξ, η)), hence169

the equation is of Monge–Ampère type; second, the monitor function m is a function170

of ~x, which depends on φ via (4). We remark that the potential φ is only defined up171

to an additive constant.172

1In the optimal transport literature, this is usually written as just ~x = ∇~ξφ̃ with φ̃ a convex

function. However, the ‘deformation form’ given in (4) generalises better to other manifolds such as
the sphere.
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More generally, we could have173

(6) m1(~x) det(I +H(φ)) = m2(~ξ);174

the case where m2 is uniform reduces to (5). However, we do not use this most general175

formulation in the remainder of the paper.176

2.2.3. Boundary conditions. In our numerical experiments, we will only con-177

sider the doubly-periodic domain R2/Z2 and the sphere S2. However, for general178

domains which have boundaries, it is natural to seek maps from ΩC to ΩP which179

also map the boundary of one domain to that of the other. In this case, (5) must180

be equipped with boundary conditions. The Neumann boundary condition ∂φ
∂n = 0181

allows mesh vertices to move along the boundary (assuming a straight-line segment)182

but not away from it, per (4). However, by equality of mixed partial derivatives,183

orthogonality is unnecessarily enforced at the boundary. For further discussion, see184

(for example) Delzanno et al. [27].185

We remark that, unlike in some other mesh adaptivity methods (such as the va-186

riational methods described in [35]), vertices on the boundary do not require special187

treatment in our method beyond the inclusion of boundary conditions for the re-188

sulting PDE. A limitation is that, using the Neumann condition, boundary vertices189

must remain on the same straight-line segment. Extending the approach to handle190

curved boundaries would require the inclusion of a complicated, nonlinear constraint.191

Benamou, Froese, and Oberman [8] presents a scheme that can handle the boundary-192

to-boundary mapping in the general case, where vertices are not restricted to the193

same straight-line segment.194

2.3. Finite element methods for solving the Monge–Ampère equation.195

There are several finite element schemes in the literature for solving the Monge–196

Ampère equation, usually presented in the form197

(7) detH(φ) = f198

inside a domain Ω, with the Dirichlet boundary condition φ = g on ∂Ω. There are199

certain convexity requirements on the domain and boundary data, but we will not200

discuss these here. The schemes that we use are adapted from Lakkis and Pryer [39]201

and Awanou [3].202

Lakkis and Pryer [39] presented a mixed finite element approach in which a tensor-203

valued discrete variable is introduced to represent the Hessian H(φ). We label this204

variable σ, which belongs to a finite element function space Σ. The scalar variable φ205

is in the function space V . The nonlinear discrete formulation of (7) is then to find206

φ ∈ V, σ ∈ Σ satisfying207

〈v,detσ〉 = 〈v, f〉, ∀v ∈
◦
V,(8)208

〈τ, σ〉+ 〈∇ · τ,∇φ〉 − 〈〈τ · ~n,∇φ〉〉 = 0, ∀τ ∈ Σ,(9)209210

together with the boundary condition φ = g on ∂Ω, where
◦
V denotes the restriction of211

V to functions vanishing on the boundary. Here, and in the rest of the paper, we use212

angle brackets to denote the L2 inner product between scalars, vectors and tensors:213

〈a, b〉 =

∫
Ω

abdx, 〈~a,~b〉 =

∫
Ω

~a ·~bdx,(10)214

〈τ, σ〉 =

∫
Ω

τ : σ dx ≡
∫

Ω

∑
i

∑
j

τijσij dx.215

216
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6 A. T. T. MCRAE, C. J. COTTER, AND C. J. BUDD

Similarly, we use double angle brackets 〈〈 · 〉〉 for integrals over the boundary ∂Ω.217

Equation (8) is clearly a weak form of (7) with the Hessian H(φ) replaced by the218

discrete Hessian σ. Equation (9) is derived by contracting219

(11) σ = H(φ),220

with the test-function τ and integrating by parts, which also produces a surface inte-221

gral. Assuming a mesh of triangles, a suitable choice of function space is the standard222

Pn space for φ and for each component of σ, with n ≥ 2 – more concisely, V = Pn,223

Σ = (Pn)2×2.224

Lakkis and Pryer [39] suggests using Newton iterations on the nonlinear system225

(8) and (9), or a similar approach such as a fixed-point method. They observe that,226

in their numerical experiments, the convexity of φ (defined appropriately in [1]) is227

preserved at each Newton iteration. In the earlier but related paper [38], the authors228

solve the resulting linear systems using the unpreconditioned GMRES algorithm.229

Awanou [3] proposes an alternative iterative method for obtaining a solution to230

the nonlinear system (8) and (9), effectively introducing an artificial time and using a231

relaxation method. Starting from some initial guess (φ0, σ0), one obtains a sequence232

of solutions (φ1, σ1), (φ2, σ2), . . . by considering the discrete linear problem233

−〈v, trσk+1〉 = −〈v, trσk〉+ ∆t〈v,detσk − f〉,(12)234

〈τ, σk+1〉+ 〈∇ · τ,∇φk+1〉 − 〈〈τ · ~n,∇φk+1〉〉 = 0,(13)235236

with each φk+1 = g on the boundary, for all v ∈
◦
V and for all τ ∈ Σ. Equation (12)237

is a discrete version of238

(14) − trH(φk+1)− trH(φk)

∆t
= detH(φk)− f,239

which can be recognised as a forward Euler discretisation in (artificial) time of240

(15) − ∂

∂t
∇2φ = detH(φ)− f.241

According to [3], the sequence (φk, σk)∞k=0 converges to a solution of the nonlinear sy-242

stem (8) and (9) if ∆t is sufficiently small and if the initial guess (φ0, σ0) is sufficiently243

close. Unsurprisingly, if ∆t is too large, the sequence of solutions diverges wildly. The244

linear systems given by (12) and (13) can be solved using a standard preconditioned245

Krylov method on the monolithic system, or by using a Schur complement approach246

to eliminate σ.247

As suggested in [39], we can obtain a similar method by replacing the −〈v, trσ〉248

terms by 〈∇v,∇φ〉. This is effectively an analytic Schur complement in which σk+1249

has been eliminated for φk+1. We then first solve250

(16) 〈∇v,∇φk+1〉 = 〈∇v,∇φk〉+ ∆t〈v,detσk − f〉, ∀v ∈
◦
V,251

to obtain φk+1, then recover σk+1 by solving252

(17) 〈τ, σk+1〉 = −〈∇ · τ,∇φk+1〉+ 〈〈τ · ~n,∇φk+1〉〉, ∀τ ∈ Σ.253

This is just a standard H1 Poisson equation followed by a mass-matrix solve.254
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3. Mesh adaptivity using finite element methods. On the plane, recall255

from (5) that we want to solve the Monge–Ampère equation256

(18) m(~x) det(I +H(φ)) = θ,257

where, as in (4),258

(19) ~x(~ξ) = ~ξ +∇~ξφ(~ξ).259

From here onwards, we will assume that we are working on the periodic plane. Then260

all surface integrals disappear, and
◦
V coincides with V . Adapting (8) and (9) to this261

problem gives the nonlinear equations262

〈v,m(~x) det(I + σ)〉 = 〈v, θ〉, ∀v ∈ V,(20)263

〈τ, σ〉+ 〈∇ · τ,∇φ〉 = 0, ∀τ ∈ Σ.(21)264265

If the monitor function m were a function of ~ξ, it would be very straightforward266

to adapt the mixed finite element approaches presented in subsection 2.3. We could267

fully solve the PDE in the computational domain ΩC to obtain φ, then obtain the268

new mesh ~x(~ξ) as a ‘postprocessing’ step via (19). We remark that this last step is not269

trivial: φ ∈ Pn, for some n ≥ 2, and the derivative ∇φ is (in general) discontinuous270

between cells. The position of the mesh vertex is then not well-defined. A solution is271

to L2-project the pointwise-derivative into the continuous finite element space [P1]2,272

which is an appropriate function space for representing the coordinate field of the273

mesh. This gives274

(22) ~x(~ξ) = ~ξ + Π[P1]2∇φ(~ξ).275

It is possible that this step introduces spurious oscillations, but at present we have276

not found this to be a problem.277

However, as m is a function of ~x, this additional nonlinearity has to be incor-278

porated into the iterative schemes. Furthermore, the normalisation constant θ must279

be evaluated carefully to make the linear systems soluble. We present two different280

methods below, extending the mixed finite element approaches given in subsection 2.3.281

3.1. Relaxation method. The first method we consider for solving the nonli-282

near equations (20) and (21) is an adaption of the modified Awanou method (16) and283

(17). Given a state (φk, σk), we obtain (φk+1, σk+1) as follows.284

1. Use φk to evaluate the coordinates of the physical mesh τP via (22).285

2. Evaluate the monitor function m(~x) at the vertices of τP ; in our numerical286

examples, m will be defined analytically. When performing integrals including287

m, we take m to be in the finite element space P1 on ΩC .288

3. Evaluate the normalisation constant289

(23) θk :=

∫
ΩC

mdet(I + σk) dx∫
ΩC

dx
.290

4. Obtain φk+1 by solving291

(24) 〈∇v,∇φk+1〉 = 〈∇v,∇φk〉+ ∆t〈v,mdet(I + σk)− θk〉, ∀v ∈ V.292

As remarked previously, this has a null space of constant φ. We also see that293

the normalisation constant is required for consistency, by considering v ≡ 1.294
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8 A. T. T. MCRAE, C. J. COTTER, AND C. J. BUDD

5. Obtain σk+1 by solving295

(25) 〈τ, σk+1〉 = −〈∇ · τ,∇φk+1〉, ∀τ ∈ Σ.296

6. Evaluate termination condition (based on, e.g., a maximum number of itera-297

tions, or the L2- or l2-norm of some quantity being below a certain tolerance);298

stop if met.299

3.1.1. Discussion. From the form of (24), it is clear that this scheme will have300

linear convergence as, at each iteration, the change in solution is proportional to301

the current residual. We showed in (15) that the relaxation method is effectively302

a discretisation of a parabolic equation, whose solution converges to the solution of303

the desired nonlinear problem as ‘time’ progresses. In a moving mesh context, this304

can be closely identified with the (one-dimensional) moving mesh equation MMPDE6305

(see, for example, Budd, Huang, and Russell [19]), and the parabolic Monge–Ampère306

approach in Budd and Williams [21, 22].307

3.2. Quasi-Newton method. We consider a Newton-based approach as a se-308

cond solution method. In a Newton-type method, we require algorithms to evaluate309

the nonlinear residual and the Jacobian at the current state. (The latter should not be310

confused with the Jacobian of the coordinate transformation (3)!) By implementing311

these algorithms separately, we can use a line search or similar method to increase312

the robustness of the nonlinear solver.313

3.2.1. Residual evaluation. Given a state (φk, σk), we evaluate the nonlinear314

residual as follows.315

1. Follow steps 1–3 of the relaxation method to obtain m and θk.316

2. The residual is then317

(26) 〈v,mdet(I + σk)− θk〉+ 〈τ, σk〉+ 〈∇ · τ,∇φk〉, ∀v ∈ V, τ ∈ Σ,318

which corresponds to writing (20) and (21) in the form “F (φ, σ) = 0”. As319

this is a mixed finite element problem, (26) should be interpreted as two320

subvectors, where the ith component of the first subvector is (26) with v321

replaced by the ith basis function of V and τ replaced by zero, and the ith322

component of the second subvector is (26) with v replaced by zero and τ323

replaced by the ith basis function of Σ.324

3.2.2. Jacobian evaluation. Given a state (φk, σk), we evaluate the (approxi-325

mate) Jacobian as follows.326

1. Follow steps 1–3 of the relaxation method to obtain m and θk.327

2. The approximate Jacobian is then a partial linearisation of (26) about the328

state (φk, σk), represented by the bilinear form329

330

(27) 〈v,m(δσ11(1 + σk22) + (1 + σk11)δσ22 − δσ12σ
k
21 − σk12δσ21)〉331

+ 〈τ, δσ〉+ 〈∇ · τ,∇δφ〉, ∀v ∈ V, τ ∈ Σ.332333

As we have a mixed finite element problem, this should be interpreted as a334

2× 2 block matrix, where the separate blocks correspond to terms involving335

(v, δφ), (v, δσ), (τ, δφ) and (τ, δσ). Note that the first of these blocks is empty.336

The Jacobian is, of course, formally singular, since δφ is only defined up to a337

constant.338
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3.2.3. Discussion. The Jacobian we have presented, (27), is not a full lineari-339

sation of (26) since we have neglected the term resulting from the dependence of m340

on φ. Experimentally, we find that including this first-order term often causes the341

nonlinear solver to produce an intermediate solution that doesn’t satisfy the convex-342

ity requirements of the Monge–Ampère equation (the corresponding mesh, via (22), is343

tangled). The next linear solve is then ill-posed as the Jacobian is no longer positive344

definite.345

As we remarked previously in subsection 2.3, [39] noted that their solution remai-346

ned convex when solving the basic Monge–Ampère problem with a Newton method;347

in that case, the full Jacobian does not have a first-order term. While neglecting348

the first-order term seems to aid us with respect to keeping the linear problems well-349

posed, we expect that the neglected term is truly “O(1)” – it does not tend to zero350

as we approach the solution of the nonlinear problem – and so the convergence of the351

method will only be linear.352

As an alternative, but related, solution procedure, we could consider the norma-353

lisation constant θ to be another unknown in the nonlinear system. The nonlinear354

problem would then be to find (φ, σ, θ) ∈ V × Σ× R such that355

〈v,m(~x) det(I + σ)〉 − 〈v, θ〉 = 0, ∀v ∈ V(28)356

〈τ, σ〉+ 〈∇ · τ,∇φ〉 = 0, ∀τ ∈ Σ(29)357

〈λ, φ〉 = 0, ∀λ ∈ R,(30)358359

where R represents the space of globally-constant functions, i.e., real numbers. Furt-360

hermore, this formulation eliminates the null space of constant φ, but at the cost of361

introducing a dense row and column into the Jacobian matrix.362

4. Mesh adaptivity on the sphere. On the sphere S2, we again seek to equi-363

distribute a prescribed scalar monitor function over a mesh τP defined on the curved364

surface. As in Weller et al. [56], we make this well-posed by seeking the mesh τP365

with minimal displacement from τC , measured by squared geodesic distance along366

the sphere. We rely on the result from McCann [43]: for such optimally-transported367

meshes, there exists a unique scalar mesh potential φ such that ~x and ~ξ are related368

through the exponential map, denoted as369

(31) ~x = exp(∇φ)~ξ,370

where ∇ is the usual surface gradient with respect to ~ξ. The function φ is automa-371

tically c-convex with respect to the squared-geodesic-distance cost function; this is a372

natural generalisation of the earlier results for the plane.373

The exponential map is a map from the tangent plane Tξ at a point on the sphere,374

~ξ, to the sphere. Intuitively, it is defined as the result of moving a distance |∇φ| along375

a geodesic (for the sphere, great circle) starting at ~ξ, initially travelling in the direction376

∇φ. Indeed, this map is defined for arbitrary manifolds, and reduces to (4) in the377

plane. For a sphere of radius R centred at the origin, the exponential map can be378

written explicitly as379

(32) exp(∇φ)~ξ = cos

(
|∇φ|
R

)
~ξ +R sin

(
|∇φ|
R

)
∇φ
|∇φ|

,380

a reduction of Rodrigues’ well-known rotation formula.381
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U

u2

u1

u3

V

v2

v1
v3

Fig. 1. Diagram to aid the derivation in subsection 4.1. The area element U is parametrised by
~u1 and ~u2, while ~u3 points radially outwards. This is mapped to the area element V , parametrised
by ~v1 and ~v2, with ~v3 pointing radially outwards.

4.1. Formulation of a Monge–Ampère-like equation for obtaining the382

mesh potential on the sphere. Consider some small open set U ⊂ S2 containing383

the point ~ξ ∈ S2. The set will be mapped to an image set V under the action of the384

map (31). Define rφ(~ξ) to be the limiting ratio of the area of V , |V |, to the area of U ,385

|U |, in the limit |U | → 0. On the plane, this was simply det J , i.e., det(I +∇∇φ(~ξ)).386

However, the corresponding expression is more subtle for the sphere. We therefore387

derive an expression for the ratio of areas in this case, and hence a partial differential388

equation for obtaining the mesh potential φ.389

We formulate the problem using Cartesian coordinates with the sphere embedded390

in three-dimensional space centred at the origin; this avoids problems with the sin-391

gularities of an intrinsic coordinate system. Recall (2) for the plane: m(~x) detJ = θ,392

where J = ∇~x. This cannot be used directly, as J will be a 3× 3 matrix when using393

the embedded coordinates, but only has rank two, so the determinant is trivially zero.394

One possibility is to use the pseudo-determinant of J : the ratio of areas is the product395

of the two non-zero singular values of J := ∇ exp(∇φ)~ξ.396

We instead produce an equivalent object with full rank 2. In Figure 1, consider397

the area element U ⊂ ΩC to be parameterised by vectors ~u1, ~u2 which are tangent398

to S2. The corresponding image area element V ⊂ ΩP is parameterised by the image399

tangent vectors ~v1, ~v2. Define ~kC to be the unit outwards normal vector at ~ξ, and ~kP400

to be the unit outwards normal vector at ~x:401

(33) ~kC := ~ξ/R, ~kP := ~x/R.402

In the infinitesimal limit, the area elements U and V can each be converted into403

volume elements of equal magnitude by extruding them radially outwards a distance404

1 along ~u3 = ~kC and ~v3 = ~kP , respectively. The volumes of these elements are given405

by det(~u1 ~u2 ~u3) and det(~v1 ~v2 ~v3). We claim that406

(34) (~v1 ~v2 ~v3) =
(

(∇ exp(∇φ)~ξ) · Pξ + ~kP ⊗ ~kC
)

(~u1 ~u2 ~u3),407

2In the right bases, this entire procedure is analogous to treating the plane as being immersed in

3D and converting 2× 2 matrices

(
a b
c d

)
to ‘equivalent’ 3× 3 matrices

a b 0
c d 0
0 0 1

.
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where Pξ := I − ~kC ⊗ ~kC is a projection matrix.408

This can be shown as follows: by design, Pξ~ui = ~ui for i = 1, 2, while Pξ~u3 = 0.409

The Jacobian of the exponential map, ∇ exp(∇φ)~ξ, maps tangent vectors ~u1, ~u2 to410

tangent vectors ~v1, ~v2, so
(

(∇ exp(∇φ)~ξ) · Pξ
)

(~u1 ~u2 ~u3) = (~v1 ~v2
~0). On the other411

hand, ~kC · ~ui = 0 for i = 1, 2, and ~kC · ~u3 = 1, so
(
~kP ⊗ ~kC

)
(~u1 ~u2 ~u3) = (~0 ~0 ~kP ) =412

(~0 ~0 ~v3). Adding these together gives the claimed result. The volume ratio, and413

therefore area ratio, is then the determinant of the quantity in the large brackets in414

(34). After replacing ~kC and ~kP by expressions involving ~ξ and φ, this gives415

(35) rφ(~ξ) = det

(
(∇ exp(∇φ)~ξ) · Pξ +

exp(∇φ)~ξ

R
⊗
~ξ

R

)
.416

The exponential map can then be replaced by the expression (32), although for brevity417

we did not do this in (35). The corresponding equation for mesh generation is then418

(36) m(~x) det

(
(∇ exp(∇φ)~ξ) · Pξ +

exp(∇φ)~ξ

R
⊗
~ξ

R

)
= θ.419

Due to its construction, this equation will have similar numerical properties to the420

Monge–Ampère equation on the plane.421

4.2. A numerical method for the equation of Monge–Ampère type on422

the sphere. We now present a numerical method for finding approximate solutions423

to (36). We adapt the mixed finite element methods given in section 3 to this equation424

posed on S2. Accordingly, we define the auxiliary variable as425

(37) σ = ∇ exp(∇φ)~ξ.426

The nonlinear discrete equations are then427 〈
v,m(~x) det

(
σ · Pξ +

exp(∇φ)~ξ

R
⊗
~ξ

R

)〉
= 〈v, θ〉, ∀v ∈ V,(38)428

〈τ, σ〉+ 〈∇ · τ, exp(∇φ)~ξ〉 = 0, ∀τ ∈ Σ.(39)429430

This can be solved using a relaxation method, as in subsection 3.1, or with a quasi-431

Newton method, as in subsection 3.2. In the latter case, we make use of automatic432

differentiation techniques to avoid calculating the Jacobian manually. The only step433

that requires significant modification is obtaining the coordinates of the physical mesh434

τP from a given φk. Assuming that the coordinate field of the sphere mesh is in the435

finite element space [Pn]3 for some n > 1, we now do this as follows:436

1. Calculate the L2-projection of the pointwise surface gradient of φ into [Pn]3:437

(40) ~w = Π[Pn]3∇φ(~ξ).438

2. Ensure that ~w is strictly tangential to the sphere: at each mesh node, calculate439

(41) ~w′ = ~w − ~w · ~ξ
R2

~ξ.440

3. Evaluate the coordinates of τP using (32):441

(42) ~x = cos

(
|~w′|
R

)
~ξ +R sin

(
|~w′|
R

)
~w′

|~w′|
.442
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5. Numerical results. In this section, we give several examples of meshes pro-443

duced using the methods we described in section 3, using analytically-defined monitor444

functions. We comment on the convergence of the relaxation and quasi-Newton sche-445

mes for these examples. We also give an example of a mesh adapted to the output of446

a quasi-geostrophic simulation.447

We implemented these numerical schemes using the finite element software Fire-448

drake [50]. We make use of recently-developed functionality in Firedrake, including449

the use of quadrilateral meshes [33, 44], and the ability to solve PDEs on immersed450

manifolds [52]. The new form compiler TSFC [34] turns out to be particularly impor-451

tant due to its native support for higher-order coordinate fields, as we will see shortly,452

and its ability to do point evaluation. Our quasi-Newton implementation makes use of453

the automatic differentiation functionality of UFL [2], which is particularly helpful on454

the sphere, and the local assembly kernels are automatically optimised by COFFEE455

[41]. Finally, we use linear and nonlinear solvers from the PETSc library [4, 5], via456

Firedrake and petsc4py [24].457

5.1. Meshes on the periodic plane. We use the domain [0, 1]2 with doubly-458

periodic boundary conditions. In these examples, this is meshed as a 60 x 60 grid of459

squares. We use the finite element spaces V = Q2, Σ = (Q2)2×2 – this varies slightly460

from [39] and [3], which both used triangular meshes and hence used the Pn family461

of finite element spaces.462

We define some diagnostic measures of convergence in order to analyse the met-463

hods. Inspired by the PDE (20), we expect the l2-norm of the residual vector464

(43) 〈v,mdet(I + σk)− θk〉, ∀v ∈ V,465

to tend to zero. We normalise this by the l2-norm of 〈v, θk〉. This diagnostic is related466

to the solution of the discrete nonlinear PDE, but the physical mesh τP only appears467

indirectly during the generation of m. We therefore introduce a second measure.468

Define469

(44) Mi :=

∫
ePi
m dx∫

eCi
dx

470

the integral of m over the ith cell of τP , normalised by the area of the corresponding471

cell of τC . The second, “equidistribution”, measure is then the coefficient of variation472

of the Mi – the standard deviation divided by the mean. Unlike in Weller et al. [56],473

this quantity will not converge to zero (on a fixed mesh) in our method due to dis-474

cretisation error. The quantity will approach zero on a sequence of refined meshes,475

however.476

We use the same monitor function examples as used in [56]: a ‘ring’ monitor477

function478

(45) m(~x) = 1 + 10 sech2(200(|~x− ~xc|2 − 0.52))479

and a ‘bell’ monitor function480

(46) m(~x) = 1 + 50 sech2(100|~x− ~xc|2),481

where ~xc denotes the centre of the feature. We take ~xc to be the centre of the mesh,482

(0.5, 0.5), in our examples. The resulting meshes, which have mesh cells concentrated483

where the monitor function is large, are shown in Figure 2 (these were generated484
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Fig. 2. Meshes adapted to the ring monitor function (45) and the bell monitor function (46).
The meshes are notably well-behaved in the transition regions between areas of low and high mesh
concentration. For visualisation purposes, the above meshes are 30x30 rather than 60x60.

Fig. 3. Part of a 240x240 mesh adapted to the ring monitor function (45), verifying that even
highly-refined meshes generated using our methods do not tangle.

numerically with the relaxation scheme). A close-up of a highly-refined mesh adapted485

to the ring monitor function is shown in Figure 3 (generated using the quasi-Newton486

scheme).487

5.1.1. Relaxation method. Our implementation of the relaxation method dif-488

fers very slightly from what was described in subsection 3.1: we evaluate diagnostics489

(and the termination condition) between steps 3 and 4. We terminate the method490

when the normalised l2 residual is below 10−8. In practice, it is very unlikely that491

a mesh will need to be generated this accurately, but we want to illustrate that the492

scheme is convergent.493

There is one free parameter in the relaxation method, namely the ‘step size’ ∆t.494
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Fig. 4. Left: convergence of diagnostic measures (43) and (44) when using the relaxation met-
hod, for the plane monitor functions (45) and (46). The residual converges to zero exponentially;
the equidistribution measure initially decreases at the same rate but does not go to zero. Right: com-
parison of the convergence of the quasi-Newton and relaxation methods for these monitor functions.
The quasi-Newton method also converges linearly, but in far fewer iterations than the relaxation
method.

This has to be chosen with some care. If it is too large then the iterations diverge495

and method is unstable. However, if it is too small then the number of iterations496

is unnecessarily large, wasting time. The optimal value is highly dependent on the497

monitor function m, and unfortunately we do not have a method for estimating it in498

advance. Empirically, we take ∆t as 0.1 for the ring monitor function, and 0.04 for499

the bell.500

To solve the Poisson problem, and hence to obtain the iterate φk+1, we use the CG501

method with GAMG, a geometric algebraic multigrid preconditioner. To obtain σk+1,502

we invert the mass matrix using ILU-preconditioned CG. The constant nullspace is503

handled by the Krylov solver.504

The convergence properties of the relaxation method are shown in Figure 4. As505

can be expected from the form of the method, the convergence of the l2-norm mea-506

sure is linear. The equidistribution measure initially decreases at the same rate, but507

converges to some non-zero value. We see that the bell monitor function requires508

far more iterations (4.5x) than the ring monitor function to reach the same level of509

convergence, and that this is not simply due to the smaller step size.510

5.1.2. Quasi-Newton method. We have also implemented the scheme descri-511

bed in subsection 3.2. We use a line-search method that minimises the l2-norm of512

the residual at each nonlinear iteration, as described in [16], terminating when the513

residual has decreased to 10−8 of its initial size. In our numerical examples, we do 5514

inner iterations to determine the step-length λ at each nonlinear iteration; in practice515

1 or 2 such iterations is likely to be sufficient. We remark that, since our approximate516

Jacobian omits an “O(1) term”, the step length will not tend to 1 as we converge to517

the solution.518

We use the GMRES algorithm to solve the linear systems, preconditioned using519

a block Gauss-Seidel algorithm, as defined in [13]. We use a custom preconditio-520

ning matrix, in which the diagonal blocks are replaced by those from the Riesz map521

operator522

(47) 〈v, δφ〉H1 + 〈τ, δσ〉L2 ;523

This manuscript is for review purposes only.



OPTIMALLY-TRANSPORTED MESHES ON THE PLANE AND SPHERE 15

this is sufficient to give asymptotically mesh-independent convergence 3. More de-524

tails on the inspiration for such preconditioners can be found in [42]. On the δφ525

block, we precondition with GAMG, which uses the default Chebyshev-accelerated526

ILU smoothing; on the δσ block we precondition with ILU. We again have the Krylov527

solver project out the constant nullspace, and the overall linear system is solved to528

the default relative tolerance of 10−5.529

The convergence of the quasi-Newton method is shown in Figure 4. We see530

that convergence is reached in far fewer iterations than for the relaxation method.531

However, the convergence is still linear due to the use of an approximate Jacobian. The532

convergence behaviour is notably ‘wavy’, particularly in the bell case. This is possibly533

a side-effect of the line search technique, although we remark that similar behaviour534

is seen in Browne et al. [15]. Using this method on a range of different problem535

sizes (not shown here), we observe that the nonlinear convergence is essentially mesh-536

independent. More details are given in subsection 5.3.537

5.1.3. Adaptation of a mesh to interpolated simulation data. As a more538

realistic example, we consider a mesh adapted to the output of a numerical simulation539

performed on a higher-resolution fixed mesh. Compared to the previous examples,540

the evaluation of an analytically-prescribed monitor function at arbitrary points in541

space is replaced by the evaluation of a finite element field that lives on a separate542

grid using interpolation.543

We use the quasi-geostrophic equations. The velocity, ~u, is defined to be the 2D544

curl of a scalar streamfunction, ψ:545

(48) ~u = ∇⊥ψ.546

The potential vorticity, q, is linked to the streamfunction by547

(49) ∇2ψ − Frψ = q,548

where Fr is the Froude number, a physical quantity that we here set to 1. The system549

then evolves according to550

(50)
∂q

∂t
+∇ · (q~u) = 0.551

We use SSPRK3 timestepping [53]. q is represented using discontinuous, piecewise-552

linear elements; we use the standard upwind-DG formulation for the evolution equa-553

tion (50). ψ is represented using continuous, piecewise linear elements; within each554

Runge–Kutta stage, we invert (49) to obtain ψ from q. The discretisation is from [9],555

and the code is based on a tutorial available on the Firedrake website.556

For the numerical simulation, we use the periodic unit square [0, 1]2. This is557

uniformly divided into a 100 x 100 grid of squares, and each square is subdivided558

into two triangles. We initialise q as a continuous field of grid-scale noise, with each559

entry drawn uniformly from [−1, 1]. Coherent vortices form over time. The q field560

at T = 500 is shown on the left in Figure 5. Although values of q are analytically561

3In more recent tests, we found that the linear solver performance is highly impaired if the
size of the domain is not O(1). This is because the first term in the Riesz map operator given is
〈v, δφ〉H1 := 〈v, δφ〉L2 + 〈∇v,∇δφ〉L2 , and these two components scale differently as the size of
the domain varies. We therefore advocate using the preconditioner corresponding to 1

H2 〈v, δφ〉L2 +
〈∇v,∇δφ〉L2 + 〈τ, δσ〉L2 , with H a length-scale representing the size of the domain. Alternatively,
one can always generate a unit-sized adapted mesh and scale this appropriately.
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Fig. 5. Left: potential vorticity field generated by quasi-geostrophic simulation on a doubly-
periodic domain, as discussed in subsection 5.1.3. Right: optimally-transported mesh adapted to a
monitor function based on this field.

preserved, per (50) (since the velocity field is divergence-free), due to discretisation562

error q only takes values in [−0.4, 0.38] by this point in the numerical simulation.563

To create a monitor function, we project this q into a continuous space, which564

helps greatly with numerical robustness. We use the monitor function m = q2, with565

the condition that this must be at least 0.005; this is to prevent the mesh density566

going to zero. As before, we start with a 60 x 60 grid of quadrilaterals, and adapt567

this to the monitor function using the quasi-Newton method. The resulting mesh is568

shown on the right in Figure 5.569

5.2. Meshes on the sphere. In these examples, we set ΩC and ΩP to be570

the surface of a unit sphere. There are many ways to mesh a sphere: in weather571

forecasting, a latitude–longitude mesh is common, although we do not use this here.572

We firstly take τC to be a cubed-sphere mesh comprised of 6 x 162 quadrilaterals on573

the surface of the sphere. In the later example, we use an icosahedral mesh of 20 x574

162 triangles.575

We present results for both bilinear (lowest-order) and biquadratic representa-576

tions of the sphere, where this refers to the polynomial order of the map from a577

“reference element” (in the context of finite element calculations) to each mesh cell.578

The biquadratic representation is more faithful than the bilinear representation, but579

formally there is no additional smoothness: both are only C0. We continue to use bi-580

quadratic (Q2) finite elements to represent φ and σ, independent of the representation581

of the mesh. The precise finite element spaces V and Σ are only defined implicitly:582

we use Q2 basis functions on the reference cell, but we never explicitly construct the583

corresponding basis functions on the surface of the sphere. Rather, all calculations584

are performed in the reference element, and we only need to evaluate (at appropriate585

quadrature points) the Jacobian of the coordinate mapping from the reference ele-586

ment. Further details on the implementation of finite element problems on manifolds587

can be found in, for example, Rognes et al. [52].588

We use the same diagnostic measures as on the plane, adapted appropriately589

to the equation we solve on the sphere. We add a third diagnostic measure: for590

certain choices of monitor function (i.e., functions which are symmetric about some591
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Fig. 6. Front and rear of the cubed-sphere X2 mesh adapted to the monitor function given by
(52) with γ = (1/2)4.

axis), the continuous problem (36) reduces to a one-dimensional equation. This can be592

solved numerically to obtain the desired map ~x e(~ξ) to an arbitrary degree of accuracy593

(details are given in Appendix A). We can then compute the difference between the594

‘exact’ mesh coordinates, produced in this way, and the coordinates produced via the595

numerical solution of (36). The diagnostic measure is then the root mean square of596

the vertex deviation,597

(51) ‖~x− ~x e‖ :=

√∑
i ‖~xi − ~x ei ‖2

N
,598

where ‖ · ‖ represents the geodesic distance. Again, due to discretisation errors, this599

will not converge to zero on a fixed mesh.600

We use the (axisymmetric) monitor function601

(52) m(~x) =

√
1− γ

2

(
tanh

β − ‖~x− ~xc‖
α

+ 1

)
+ γ,602

which is based on a mesh density function given in [51] 4. This monitor function603

produces an ‘inner region’, in which the monitor function approaches 1, and an ‘outer604

region’, in which the monitor function approaches
√
γ. Writing γ = κ4, the ratio of605

cell edge lengths between the two regions is κ. The inner region has radius β, centred606

on ~xc, and the transition occurs over a lengthscale α.607

As in [51] and [56], we take α = π/20, β = π/6, and ~xc’s latitude to be 30 degrees608

North. We consider γ = (1/2)4, (1/4)4, (1/8)4, (1/16)4. The resulting meshes are609

referred to as X2, X4, X8 and X16 meshes, where the number refers to the ratio of edge610

lengths between the inner and outer regions. The X2 (most gentle) and X16 (most611

extreme) cubed-sphere meshes are shown in Figures 6 and 7; these were generated612

numerically using the relaxation method with a biquadratic cell representation.613

In our second example, we take τC to be a regular icosahedral mesh. We use the614

(non-axisymmetric) monitor function615

(53) m(~x) = 1 + α sech2(β(‖~x− ~x1‖2 − (π/2)2)) + α sech2(β(‖~x− ~x2‖2 − (π/2)2)),616

4In Ringler et al. [51], the prefactor inside the square root was incorrectly given as 1
2(1−γ) . This

was identified as a mistake in Weller et al. [56], but the authors incorrectly updated the prefactor to
1

2(1+γ)
, rather than the correct 1−γ

2
.

This manuscript is for review purposes only.



18 A. T. T. MCRAE, C. J. COTTER, AND C. J. BUDD

Fig. 7. Front and rear of the cubed-sphere X16 mesh adapted to the monitor function given by
(52) with γ = (1/16)4.

Fig. 8. An icosahedral mesh adapted to the monitor function given by (53). The mesh is
well-aligned to the two bands, and is very regular at the intersection and away from the bands.

with α = 10 and β = 5. The ‘poles’ ~x1 and ~x2 are chosen such that the bands cross617

at a 60◦/120◦ angle: ~x1,2 = (±
√

3
2 , 0,

1
2 ). On this triangular mesh, we use a quadratic618

representation of the mesh cells, and we use quadratic finite elements to represent φ619

and σ. The resulting mesh, obtained numerically via the quasi-Newton method, is620

shown in Figure 8. We do not show the convergence of our methods for this monitor621

function as the behaviour is qualitatively identical to the convergence of the first622

example.623

5.2.1. Relaxation method. We implemented a relaxation method for the sp-624

here in the same way as for the plane. To avoid significant over/underintegration, we625

use a quadrature rule capable of integrating expressions of degree 8 exactly. All other626

options, including the linear solver choices and the termination criteria, are identical.627

We only analyse the X2 and X16 problems, as these are the least and most extreme,628

respectively. We take the step size parameter ∆t to be 2.0 in both cases.629

The convergence of the relaxation method for X2 and X16 problems, using a630

cubed-sphere mesh, is shown in Figure 9. For the gentle X2 problem, there is only a631
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Fig. 9. Convergence of diagnostic measures, when using the relaxation method, for the sphere
monitor function (52). Left: X2 mesh, with γ = (1/2)4. Right: X16 mesh, with γ = (1/16)4. In
this case, the method diverges when a bilinear representation of the mesh is used (top-left of plot).

Fig. 10. Failure of bilinear mesh representation to create mesh adapted to monitor function
(52) with γ = (1/16)4 using relaxation method. Pictured is the mesh generated at an intermediate
iteration. The method works successfully with the biquadratic representation; the resulting mesh was
shown in Figure 7.

small difference between the bilinear and biquadratic mesh representation behaviour.632

The convergence of the l2-norm measure is again linear, and the equidistribution and633

“exact mesh” error measures converge to some non-zero value. For the extreme X16634

problem, we find that the method only converges when using the biquadratic mesh635

representation. In this case, the convergence behaviour is largely the same as for the636

X2 problem, although far more iterations are required. The bilinear (lowest-order)637

mesh initially evolves in the same way, but wildly diverges after just some 10 iterations.638

In Figure 10 we show the mesh produced at some intermediate iteration when using639

a bilinear representation, in a tangled state, shortly before complete blow-up occurs.640

5.2.2. Quasi-Newton method. We also implemented a quasi-Newton scheme641

for the sphere, similarly as for the plane. Automatic differentiation is used to avoid642

manually calculating the linearisation of (38) for assembling the Jacobian. We study643
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Fig. 11. Comparison of the convergence of the quasi-Newton and relaxation methods for the
sphere, with the cubed sphere X2 mesh and the monitor function (52), with γ = (1/2)4
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Fig. 12. Performance of the quasi-Newton method for creating a cubed-sphere mesh adapted
to the monitor function (52), for a range of values of γ. Left: when a bilinear mesh representation
is used. Convergence is only achieved for the X2 problem; the green squares denote failure of the
nonlinear solver. Right: when a biquadratic mesh representation is used. Convergence is achieved
for the X2, X4 and X8 problems, but not for the X16 problem.

the convergence of the X2, X4, X8 and X16 cubed-sphere meshes.644

We again find that it is essential to use the biquadratic mesh representation. It645

is only for the simple X2 problem that the bilinear mesh representation also leads to646

convergence. In Figure 11, we compare the convergence of the quasi-Newton method647

to the relaxation method in this case. Convergence is reached in about half as many648

iterations as for the relaxation method, although (as in the plane) each iteration is far649

more expensive. With the biquadratic mesh representation, we also get convergence650

for the X4 and X8 cases, though not in the most challenging X16 case, in which the651

monitor function varies by a factor of 256. This is summarised in Figure 12. The652

typical failure mode is stagnation of GMRES iterations in the linear solver after a few653

nonlinear iterations, suggesting the linear problem is not well-posed due to, e.g., loss654

of convexity. This failure of convergence with the quasi-Newton method for extreme655

monitor functions is not specific to the sphere. The same occurs on the plane for656

harsher monitor functions than were presented in subsection 5.1 (the bell monitor657
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function only varied by a factor of 51).658

5.3. Comments. We found the relaxation method is completely robust for ge-659

nerating adapted meshes on the plane, so long as the step size is small enough for the660

method to be stable. On the sphere, if a lowest-order representation of the mesh is661

used then the relaxation method fails for moderately-challenging monitor functions.662

This continues to happen even if the step size is made arbitrary small. However, if a663

higher-order representation is used (quadratic for triangular meshes, biquadratic for664

quadrilateral meshes), the method is again completely robust. On both the plane665

and sphere, the convergence is heavily dependent on the complexity of the monitor666

function. The speed of convergence depends heavily on the monitor function; if m667

varies by a factor of 100 or 1000 or more, it takes hundreds or thousands of iterations668

for the method to converge.669

The quasi-Newton method is moderately robust on the plane and sphere (assu-670

ming a higher-order mesh representation), struggling for only the most challenging671

monitor functions. The convergence is only first-order, since we only use a partial li-672

nearisation when forming the Jacobian, but still converges in far fewer iterations than673

the relaxation method. The use of a line-search allows the method to take smaller674

steps in the first iterations. Indeed, the quasi-Newton and relaxation methods often675

initially converge at a similar rate; this is particularly noticeable in Figure 4.676

Of course, each iteration of the quasi-Newton method is much more expensive677

than an iteration of the relaxation method. We refrain from making definitive sta-678

tements comparing the wall-clock time of the two methods, since we have not put679

significant effort into optimising our implementations (for example, our preconditio-680

ner for the quasi-Newton method can surely be improved, the Firedrake framework681

assumes an unstructured mesh although our τC is partially or fully structured, we use682

an algebraic multigrid preconditioner rather than geometric, and so on). However, to683

give a ballpark estimate, we find that one quasi-Newton iteration takes very roughly684

ten times as long as an iteration of the relaxation method. It is therefore clear that685

the Newton-based method will only dominate the relaxation method if we are able to686

use a full linearisation to increase the rate of convergence.687

Some timings are given in Figure 13 for applying the methods to a range of mesh688

sizes from 60 x 60 to 180 x 180, using the ring monitor function. These timings are689

only indicative; they were measured on a desktop computer with no other signifi-690

cant applications running, but do not represent precise performance measurements.691

Repeated runs would typically vary by one or two percent.692

Both methods appear to be O(N), as expected, where N is the number of mesh693

cells. For the relaxation method, this is easy to explain: it is essentially a sequence694

of Poisson solves, which are O(N) when using a multigrid solver or preconditioner 5.695

The number of nonlinear iterations is then independent of mesh resolution since they696

correspond to timesteps in some artificial time (per (15)). The linear solves in the697

quasi-Newton method are also O(N) since we use the Riesz map block preconditioning698

matrix and an AMG preconditioner on the elliptic part of the system. We also observe699

the nonlinear convergence to be effectively mesh-independent.700

Although these methods are O(N), the ‘constant’ is higher than we would like.701

There are at least two mitigating factors. Firstly, the tolerances used are the same702

5We remark that [14] only claimed O(N logN) for their “Parabolic Monge–Ampère” method
(essentially another relaxation method). This is because they used an FFT-based approach to solve
their linear elliptic equations. Had they used an optimal-complexity algorithm such as multigrid,
their implementation would, of course, also be O(N).
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Fig. 13. Timings for generating a mesh adapted to the ring monitor function, for a range of
mesh sizes. Both the relaxation and quasi-Newton methods appear to be O(N).

as in subsection 5.1, which are considerably tighter than would be used in practice.703

For example, if we reduced the tolerance from 10−8 to 10−2, the time taken would704

decrease fourfold. Secondly, if we were doing a true moving mesh simulation, we705

would have a good ‘initial guess’ available, while in these examples we were always706

starting from a uniform mesh.707

6. Conclusions and future work. In this paper, we have presented two ap-708

proaches for solving a nonlinear problem for the generation of optimally-transported709

meshes on the plane and sphere. The resulting algorithms are robust, particularly the710

relaxation method. They are well-suited to parallel architectures, since we reduced the711

mesh generation problem to the numerical solution of a PDE with the finite element712

method. In all cases, a suitable adapted mesh can be quickly generated following the713

specification of a scalar mesh density. We plan to give a more detailed analysis of the714

regularity of such meshes of the sphere in a future paper [20], extending the results715

of Budd, Russell, and Walsh [18] on the plane.716

We remark that our variety of mesh adaptivity, in which the topology of the717

mesh must remain fixed, is far from ideal for the monitor functions we used on the718

sphere. We believe that r-adaptivity is best used in the presence of local features,719

with negligible large-scale distortion of the mesh. However, particularly in the X16720

case, the global behaviour was completely dominated by the ‘inner region’; almost all721

of the mesh cells were pulled in. In these situations, the fixed topology could be a722

severe hindrance. The fact that our method produces a passable mesh, even in this723

‘worst-case’ scenario, is a testament to the robustness of the optimal-transport-based724

approach. In practice, one is likely to use a regularisation (as proposed in, say, Beckett725

and Mackenzie [6]) which modifies the equidistributed monitor function so that this726

undesirable behaviour does not occur in the first place.727

Extending the work in this paper, we expect to improve the convergence rate of728

the Newton-based approach by using a full linearisation of the residual when forming729

the Jacobian. This may involve, for example, solving a regularised Monge–Ampère730

equation whose convexity requirements are less strict. In the longer term, our ultimate731

aim is to simulate PDEs describing atmospheric flow using r-adaptive meshes. This732

will involve coupling a suitable discretisation strategy for the physical PDEs with733
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moving meshes generated using the methods described in this paper.734
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Appendix A. Exact construction of meshes in the presence of axisym-741

metric monitor functions.742

More details of this construction are given in the parallel paper [20], currently in743

preparation, in which we analyse the regularity of the resulting meshes.744

Let Ω be a sphere centred at the origin. Consider a monitor function which is745

axisymmetric about an axis ~xc ∈ Ω. Then746

(54) m(~x) ≡M(s),747

where748

(55) s := ‖~x− ~xc‖,749

is the geodesic distance on the physical mesh. It is clear that the exact map ~x e(~ξ)750

should only move points along geodesics passing through ~xc. Define751

(56) t := ‖~ξ − ~xc‖,752

the geodesic distance on the computational mesh. The problem of finding the map753

~x e(~ξ), and hence the resulting mesh, is therefore reduced to the problem of finding754

s(t).755

From geometrical considerations, the equidistribution condition implies that s756

and t are linked by the integral identity757 ∫ s

0

M(s′) sin(s′) ds′ = θ

∫ t

0

sin(t′) dt′(57)758

= θ(1− cos t),(58)759760

where θ is a normalisation constant that ensures that the surface of the sphere is761

mapped to itself, i.e. that s(0) = 0 and s(π) = π:762

(59) θ =
1

2

∫ π

0

M(s′) sin(s′) ds′.763

For a given function M(s), θ can be evaluated to an appropriate degree of accu-764

racy using numerical quadrature. Our algorithm is then the following: for a single765

computational mesh vertex ~ξi, we evaluate t from (56). We then obtain the corre-766

sponding s using interval bisection, making use of numerical quadrature to evaluate767

the left-hand-side of (57). Finally, we generate the mesh point ~x ei , making use of768

(32).769

In our implementation, we use the quadrature and interval bisection routines from770

SciPy [36]. The quadrature is performed with a relative error tolerance of 10−7, and771

the interval bisection is performed with a tolerance of 10−6.772

Appendix B. Code availability. All of the numerical experiments given in773

this paper were performed with the following versions of software, which we have ar-774

chived on Zenodo: Firedrake [60], PyOP2 [63], TSFC [64], COFFEE [57], UFL [65],775
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FInAT [59], FIAT [58], PETSc [61], petsc4py [62]. The code for the numerical expe-776

riments can be found in the supplementary material to this paper.777
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