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The microscopic origins of charge transport in triphenylene systems
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We study the effects of molecular ordering on charge transport at the mesoscale level in a layer of
≈ 9, 000 hexa-octyl-thio-triphenylene, HOTT, discotic mesogens with dimensions of ≈ 20× 20× 60
nm3. Ordered (columnar) and disordered isotropic morphologies are obtained from a combination of
atomistic and coarse grained molecular dynamics simulations. Electronic structure codes are used to
find charge hopping rates at the microscopic level. Energetic disorder is included through the Thole
model. Kinetic Monte Carlo simulations then predict charge mobilities. We reproduce the large
increase in mobility in going from an isotropic to a columnar morphology. To understand how these
mobilities depend on the morphology and hopping rates, we employ graph theory to analyse charge
trajectories by representing the film as a charge transport network. This approach allows us to
identify spatial correlations of molecule pairs with high transfer rates. These pairs must be linked to
ensure good transport characteristics or may otherwise act as traps. Our analysis is straightforward
to implement and will be a useful tool in linking materials to device performance, for example to
investigate the influence of local inhomogeneities in the current density. Our mobility-field curves
show an increasing mobility with field as would be expected for an organic semiconductor

FIG. 1. Top panels: Top (left) and side (right) views of the
2,3,6,7,10,11-hexahexyl thiotriphenylene, HHTT, molecule
(R=octyl) corresponding to the central core of HOTT with
the chains replaced by hydrogen. The oblate Gay-Berne ellip-
soid for coarse grained simulations is also shown. The radius
of an HHTT molecule in the x− y-plane, r⊥ ≈ 0.653 nm and
radial height, r‖ ≈ 0.172 nm. Bottom panels: views along
(left) and across (right) the column axis direction from atom-
istic packing simulations.

I. INTRODUCTION

Displays for smartphones, colored light sources, off
grid solar cells and curved television screens are exam-
ples of applications of organic electronics. Organic semi-
conductors (OSCs) offer reduced production costs, ver-

satility of synthesis processes, and compatibility with
a vast range of substrates including transparent glass,
metals and flexible polymeric material. However, they
cannot yet compete with their inorganic counterparts in
terms of charge transport performance1. Charge carri-
ers are localised to molecules or conjugated segments of
molecules, in the case of polymers, and charge transport
is by donor-acceptor hopping2, rather than by a band
mechanism. At room temperature, charge mobility is
highly sensitive to molecular packing arrangements, due
to the short-range of electronic orbital overlaps and their
strong dependence on the relative orientation and sep-
aration of donor-acceptor pairs3. A detailed knowledge
of material morphologies, such as those illustrated in fig-
ure 1 for discotic OSCs4–11, is thus essential for a proper
understanding and prediction of charge mobility.

Multiscale simulations that combine models of mor-
phology and charge transport are an important means
of optimisation of materials and devices for OSC tech-
nology, particularly for the screening of candidate
materials12–14. While the charge mobilities can be mea-
sured experimentally15, synthesising and characterising
the films is time consuming and costly. Knowledge of
local charge densities and conductive pathways can be
critical to understanding heat dissipation and degrada-
tion in OSCs12. These effects are not captured by the
co-planar dimer model commonly used for prescreening
organic molecules16. Local current density variations can
cause self-heating that in turn may lead to higher lo-
cal conductivity and thereby creates more current flow,
leading to a positive feedback loop17. However, varia-
tions in charge dynamics at atomistic length scales are
hard to study experimentally. Localised current flow can
be studied by the cumbersome process of introducing an
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emissive interlayer into the material and measuring the
light emitted18. This procedure has a resolution of 2-3
nm and introduces errors due to interfacial interactions
with the emissive layer.

A common method to describe charge mobilities is to
use the Gaussian disorder model (GDM),19,20.This ap-
proach assumes a spatially random distribution of sites
where the localization length, a, is the relevant length
scale compared to site separations21,22. Using a lattice
model to describe transport introduces an error if the
lattice parameter is far from the localization length23.

We investigate the charge transport properties of hexa-
octyl-thio-triphenylene (HOTT or 8H-TT) molecules
whose chemical structure and coarse-grained shape are
shown in figure 1. From figure 1(a) we see that
HOTT is a planar molecule, consisting of three ben-
zene rings surrounding a central benzenic ring. The
lower panels come from a preliminary atomistic simu-
lation of HOTT used for parametrization of the coarse
grained model. The semiconducting properties of dis-
cotic molecules in OSC devices have been studied both
theoretically and experimentally24. The high aspect ratio
of discotic molecules allow us to examine the role of shape
anisotropy and structure in charge transport processes7.
Systems of these molecules possess a columnar phase and
a disordered phase5–7,25–29. The drastic change in struc-
ture across the phase transition means that it would be
impossible to describe both phases system using the same
lattice model. Experimental studies30 have shown that
the mobility suddenly increases as the system goes from
isotropic to columnar to crystal phases, while within a
given phase it gradually decreases with temperature. Dis-
cotics possess a strongly anisotropic charge mobility in
their columnar phase, much larger along the column axis
than perpendicular to it9,31,32. We compare charge trans-
port in the columnar phase at T=280 K and in the dis-
ordered phase at T=400 K.

We have chosen to study HOTT, as a typical dis-
cotic molecule, due to the existence of previous studies
that we can compare to and build upon. Lamarra et
al.9 investigated 4,000 discotic molecules with a simple
Miller-Abrahams description of electronic coupling that
depends only on molecule separation. Studies on ∼1,000
discotic molecules, where charge dynamics were de-
scribed by a Master Equation with charge transfer rates
obtained from the Marcus expression and transfer inte-
grals from quantum chemical calculations, showed struc-
tural anisotropy leads to anisotropic charge transport8.
Rühle et al. demonstrated a similar approach to our
own33, in a cell of 512 molecules, where they neglected
metallic contacts. Because their system size is small, they
found a single charge transfer channel which percolated
across their entire system. These studies demonstrated
the strong dependence of charge mobility upon struc-
tural ordering and the possibility of charge percolation
pathways, however they did not explore the underlying
causes. Herein we try to quantify the difference in trans-
port between the two phases in terms of the microscopic

processes and structure within.

We present a mesoscale model of charge transport in
a film of ∼ 9000 molecules, modelling the equivalent
of ∼700,000 atoms, starting from first principles. This
simulation size produces a relative error in the mobil-
ity due to finite-size effects of less than 5%34,35. It has
been shown elsewhere that a fully atomistic or a united
atom molecular dynamics approach can successfully pre-
dict morphologies and transition temperatures with the
accuracy of a few degrees for cyanobiphenyls36–38 and
quinquephenyl39. However, these atomistic simulations
are not feasible at the mesoscale system sizes that we re-
quire here, that are of the order of tens of nanometres40.
For morphologies derived from microscopic calculations,
we thus make use of coarse grained (CG) molecular dy-
namics (MD)41,42 parameterized with the help of small
scale atomistic simulations, as will be described in the
next section.

Our methods produce resolution at the microscopic
level by describing the charge transport between every
pair of molecules as discrete events in time so that we
can identify which structural properties lead to varying
local current densities. In systems this large, with so
many connected pairs, graph theory43 is a useful tool to
analyze the simulated charge transport trajectories. This
approach is an improvement over trajectory plots in that
it allows us to investigate correlations between structural
and dynamic properties e.g. the electronic coupling and
the observed carrier transport between molecules.

Network analysis has been used to study organic charge
transport networks and kinetic Monte Carlo (KMC)
methods before. Jackson et al. used dynamic network
techniques to study how the charge transport network
changes over time as the molecules move44, however they
did not model the resultant charge transport properties.
Cottaar et al. used percolation theory on a 2D lattice
to describe the effects of correlated and uncorrelated en-
ergetic disorder45, they considered the percolative path-
ways in terms of the current density between lattice sites
forming edges. The above study was lattice-based and
although they showed the existence of favoured charge
pathways they could not relate this to any structural
properties of the system, and the energetic disorder was
drawn from chosen distribution. Graph theoretical ap-
proaches were also applied to KMC simulations of chem-
ical kinetics by Stamatakis & Vlachos46, this is still a
system of discrete events and the underlying algorithm
is similar. Indeed, the use of graph theory to describe
networks of first order events is well established in many
contexts regarding kinetics. Uniquely we take advantage
of the one-to-one spatial equivalence of the transport net-
work with the morphology to quantify the microscopic
contributions to macroscopic transport and describe the
origins of the phenomena observed.

While other studies have combined the use of CGMD
and KMC to describe transport in molecular systems
they have not been able to combine the system sizes and
degree of detail that we present. Furthermore we will



3

use the microscopic resolution of our model to describe
the nature of observed charge transport in terms of the
relationship between the difference in site energies and
transfer integrals. We explain the prevalence of rattling
motion in OSCs due to the weak effect of the applied field.
In this manner we go further than measuring the charge
mobility, to enable truly predictive modelling one must
understand the origin of the observed transport phenom-
ena.

In this paper we present a methodology that allows us
to describe charge transport in disordered OSCs with mi-
croscopically resolved molecular packings, transport pa-
rameters and charge dynamics. We do not have to re-
sort to tuning parameters, such as reorganization ener-
gies or coupling length scales, and our model can describe
systems with multiple molecular species, anisotropic
molecules and structural features on all length scales. Be-
low, we describe the CG MD and charge transport mod-
els in section II. We relate the microscopic properties of
the system and the resultant charge transport through
the use of a directed graph representation in section III.
In this way we identify charge transport pathways on a
microscopic scale, describe their structural features and
measure their spatial extent and separation.

II. MODELS

II.1. Coarse Grained Molecular Dynamics

Molecular dynamics can provide a realistic structure
of an OSC system for given thermodynamic parameters,
provided there is an accurate description of the effective
inter particle potential interactions. Force fields can be
developed that are suitable for a wide range of tempera-
tures, pressures and densities and can reproduce multiple
phases of matter. In our CG model, we tuned the force
field for HOTT on the basis of MD simulations for a
fully atomistic model of the molecular system27. CGMD
has already been shown to reproduce the phase diagram
in columnar triphenylenes27,47. The CG potential em-
ployed for our MD simulations is based on the Gay-Berne
(GB) potential, where anisotropic particles are described
as rigid bodies of ellipsoidal shape9,27. The potential can
be considered as a generalization of the Lennard-Jones
6-12 potential, where shape and interaction anisotropies
have been introduced.

The GB interaction potential between two particles, i
and j, therefore depends on their orientations, defined

by the unit vectors ~̂ui, ~̂uj , and by their centre-centre
separating vector, ~rij :

U(~̂ui, ~̂uj , ~̂rij) = 4ε0ε(~̂ui, ~̂uj , ~̂rij)

×
[(

σ0

rij − σ(~̂ui, ~̂uj , ~̂rij) + σ0

)12

−
(

σ0

rij − σ(~̂ui, ~̂uj , ~̂rij) + σ0

)6]
(1)

where σ0 (ε0) fixes the scales of length (energy),

while σ(~̂ui, ~̂uj , ~̂rij) and ε(~̂ui, ~̂uj , ~̂rij) correspond to the
anisotropic contact distance and potential well depth, re-
spectively. More specifically, the contact distance is:

σ(~̂ui, ~̂uj , ~̂r) = σ0

×

{
1− χ

2

[
(~̂ui · ~̂r + ~̂uj · ~̂r)2

1 + χ(~̂ui · ~̂uj)
+

(~̂ui · ~̂r − ~̂uj · ~̂r)2

1− χ(~̂ui · ~̂uj)

]}−1/2
(2)

where

χ =
k2GB − 1

k2GB + 1
(3)

is the shape anisotropy parameter, defined by the aspect

ratio, kGB . The well depth ε(~̂ui, ~̂uj , ~̂r) is determined by
the product of two functions:

ε(~̂ui, ~̂uj , ~̂r) =
[
ε1(~̂ui, ~̂uj , ~̂r)

]µ
GB

[
ε2(~̂ui, ~̂uj)

]ν
GB

(4)

where

ε1 = 1− χ′

2

[
(~̂ui · ~̂r + ~̂uj · ~̂r)2

1 + χ′(~̂ui · ~̂uj)
+

(~̂ui · ~̂r − ~̂uj · ~̂r)2

1− χ′(~̂ui · ~̂uj)

]
(5)

ε2 =
[
1− χ2(~̂ui, ~̂uj)

2
]−1/2

(6)

while the parameter

χ′ =
(k′GB)1/µGB − 1

(k′GB)1/µGB + 1
(7)

is defined in terms of the well depth anisotropy k′GB ,
i.e. the ratio between well depths for the side-by-side and
end-to-end interactions, respectively. The form of the GB
potential can be adjusted to a specific molecule by vary-
ing the parameters µGB , νGB , kGB , k

′

GB , with the expo-
nents µGB , νGB tuning the orientational dependence of
the energy. For kGB and k

′

GB values smaller than unity
the potential describes disk-like mesogens (oblate ellip-
soids), and their discotic and columnar mesophases27,48.
The Gay-Berne parameters obtained from microscopic
level simulations in27 are shown in Table I.

II.2. Charge Transport model

II.2.1. Kinetic Monte Carlo, KMC, simulations

We took roughly equally sized samples from the CG
morphologies, they were replicated periodically in the x
and y directions while metallic boundary conditions were



4

applied in the z direction to model electrodes. Axes with
unit vectors ~ex, ~ey, ~ez were defined as shown in figure 3.

Charge motion is calculated using kinetic Monte Carlo
(KMC) methods49 as it allows for interactions between
the charge carriers and describes all mechanisms on a re-
alistic timescale. Hopping rates are determined by Mar-
cus theory where transfer integrals, representing elec-
tronic coupling, and hopping site energies are derived
from electronic structure and electrostatic interactions
between the charge carriers. The transfer integrals are
highly sensitive to the relative orientations of the or-
bitals and the hopping distances involved in the transfer
process3 and thus on the local packing. The parameters
determining packing and charge hopping rates are deter-
mined from electronic structure calculations and there is
no need for parameters to be fitted to experiment. This
feature of off lattice KMC means that one can quantita-
tively compare charge transport properties predicted by
our model across many different materials and morpholo-
gies.

We began by defining the centre of mass for each
molecule as a possible charge hopping site, with a max-
imum occupancy of one free charge carrier. We used
Marcus hopping rates50 to describe the hopping:

κij =
|Jij |2

~

√
π

λkBT
exp

[
− (∆Gij + λ)2

4λkBT

]
(8)

where the total reorganization energy, λ = λinner +
λouter, were calculated for charge transport between
HOTT molecules, the same value used for all molecule
pairs in the system. There are two major contributions
to the energy of free charges in the system: the molec-
ular orbital energy of the host molecule, and the elec-
trostatic energy of other free charges and any externally
applied electric field across the system. We calculated
the HOMO and LUMO energy levels for each molecule
allowing for polarization of neighbouring molecules using
the Thole multipole model51. We calculated the transfer
integral, Jij, for pairs of molecules with a separation, rij ,
less than a cutoff distance, rc = 2.5nm. These quantities
were obtained using the VOTCA33 package and molecu-
lar orbital information calculated with Gaussian52.

Following many other models of charge transport in
OSCs12, the change in the Gibbs free energy ∆Gij be-
tween pairs of molecules comes from electrostatic inter-
actions between the charges in an applied bias. In a de-
parture from standard practice, we solved the discretised
Poisson’s equation with a cloud-in-cell method to allow
for the long range nature of the Coulomb interactions,53

φ̄ = −∇2 ρ̄

ε
(9)

where φ̄ is the discretised electric potential and ε =
ε0εr is the permittivity of free space multiplied by the
material’s dielectric constant, with appropriate boundary
conditions describing the applied bias. A coarse-grained

charge density, ρ̄, is defined on a grid, projecting the
charges within each voxel onto the eight voxel vertices
before solving equation 9. Each hopping site’s electro-
static potential then comes from mapping φ̄ onto that
site. The charge density distribution and potential pro-
file is recalculated after every KMC event.

The first reaction method (FRM) was used to select
the next event to be performed in the KMC simulation54.
In brief the FRM method requires us to calculate the
rate (νk) of every possible event in the system, then for

each event draw a waiting time (t
(k)
w ) from a Poisso-

nian distribution parameterized by νk. At each KMC
step we perform the event with the shortest waiting
time. We note that the given a set of M events with

rates ν1, . . . , νM and waiting times t
(1)
w , . . . , t

(M)
w , the

probability that the kth event is performed is given by

P(t
(k)
w = min[t

(1)
w , . . . , t

(M)
w ]), which is equivalent to:

P(k|ν1, . . . , νM ) = νk/
∑
i

νi. (10)

We ran 6 simulations with different random number
seeds for each morphology. The simulations were initi-
ated with no charge carriers present in the cell. As the
simulation ran, injection of charge carriers took place at
the top electrode and extraction at the bottom electrode.
Injection was treated as a two step process in which the
probability of a carrier being on a random hopping site
adjacent to the electrode is multiplied by a Marcus hop-
ping rate from the selected site to a site in the bulk of the
device. The probability of being on an adjacent hopping

site is calculated as p = min
[
1, e
− δE
kBT

]
, where δE is the

difference in carrier energy between the Fermi level of the
electrode and the adjacent hopping site.

Once the dynamics reached steady state with respect
to charge injection and extraction, measurements of the
mean square displacement,

〈
r2(τ)

〉
, were taken at inter-

vals of ∆t = 5×103ps. If ∆t is too short,
〈
r2(τ)

〉
is

dominated by charge transfer back and forth within a
strongly coupled pair, in a rattling motion. Our choice
of ∆t ensured that we measure charge motion that con-
tributes to charge flow across the device. To measure the
charge carrier motion we calculated the mean square dis-
tance displacement of free charge carriers as a function
of time τ ,〈

r2(τ)
〉

=

M∑
j=0

1

N

N∑
i=0

[ri(tj + ∆t)− ri(tj)]
2

(11)

where M is the number of time steps. The maximum
simulation time τmax was set at 108ps. Continuous mea-
surements, such as the mean squared displacement, were
averaged over all KMC trajectories. The mobility was
measured using:

µ =
D

kBT
, D = Limτ→∞

〈
r2(τ)

〉
τ

, (12)

where kB is the Boltzmann constant.



5

FIG. 2. Schematic illustration of the network. Nodes are
the molecules shown as ellipses. For each pair of molecules
separated by less than rc there are two edges whose directions
are shown by the arrows joining the nodes. The node labels
show how the linked traffic T̂ij is calculated from equation 13

II.2.2. Network Analysis

To investigate the role of a given pair of molecules in
charge transport, as compared to properties of the entire
system, we need to use a description that treats pairs,
rather than individual molecules, as the simplest indi-
vidual object. To achieve this we used tools from graph
theory43 that explicitly consider the connections between
objects as entities in their own right. We mapped the
transfer integrals onto a transportation network, called a
graph, that consists of nodes linked by edges, an exam-
ple is illustrated in Figure 2. In this case, nodes are the
HOTT molecules and edges are links between a molecule
and all other molecules within the transfer cutoff rc.

To probe charge transport, we use the charge trajecto-
ries to find the elements of a traffic matrix T, an order
N square matrix with rows and columns each linked to
molecules i=1 to N . Its diagonal elements are zero. Its
off diagonal elements, Tij , are equal to the number of
charges that hopped between site i and site j i.e. the
traffic from site i to j.

We also define the linked traffic, T̂ij , of an edge as the
average traffic of the set of neighbouring edges in a given
direction. For an edge from i to j this set includes all
edges that end at i or start from j, excluding the reverse
edge from j to i. We can write T̂ij :

T̂ij =
1

2

[
(
∑
hThi −Tji)

Mi − 1
+

(
∑
kTjk −Tji)

Mj − 1

]
(13)

where Mi (Mj) is the number of neighbouring nodes to
node i (j) and h (k) is an index over this set. The sums
are over neighbouring edges, so the first (second) sum on
the right hand side is over all edges that begin at site i
(j) and end at site j (i). Given that the traffic Tij is an
extensive measurement in time, all traffic measurements
are made for the same simulation time τmax. There is a
net flux:

~Fij = (Tij −Tji)~eij/τmax (14)

where ~eij is the unit vector linking sites i and j. Note
that the flux matrix is skew symmetric.

TABLE I. Parameters linked to MD, VOTCA and KMC cal-
culations. The notation is defined in the text for this section

Gay-Berne Parameters27

µGB=1 χGB = 0.1948, χ′GB=0.15 equation 7

σ0 = 0.375 nm, ε0 = 1.5897 kcal/mol, equation 1

Parameters deduced from VOTCA calculations

λ = 0.43 eV σcol=0.064 eV, σdis=0.105 eV , equation 8

Parameters needed for running KMC

rc=2.5 nm, ∆t = 5× 103ps, τmax=108ps, Vbias = 2V, εr=2.655

(b)(a)

z
y

x

FIG. 3. HOTT morphologies after back-mapping to
atomic co-ordinates. (a) Disordered morphology gener-
ated at T=280K, system size is 15.67×15.67×52.85nm. (b)
Columnar morphology generated at T=400K, system size is
16.32×16.32× 65.36nm.

III. RESULTS

We simulated two morphologies of HOTT molecules
at two different temperatures, 9011 molecules at 280K
and 8968 molecules at 400K, with the CG MD method
described in section II.1. We used these two systems to
investigate the effects of structural ordering on the dis-
tribution of charge transfer integrals Jij as well as the
long-range transport properties of the systems. Finally,
we use the microscopic information embedded in the mor-
phologies and KMC simulation to explain the trends in
both short- and long- range charge transport.

The planar shape of the benzene rings allows molecules
to form a π−π stacking arrangement with little steric hin-
drance. Figure 3 shows the morphologies of the HOTT
systems generated by back-mapping the coarse-grained
morphologies into atomic co-ordinates. At the lower
temperature there is a clear long-range ordering of the
molecules into columns. This ordering is destroyed at
higher temperatures with no clear structure visible.

The peaks in figure 4 correspond to separations in a
column of HOTT molecules with r‖ (figure 1) parallel to
the column axis, as well as regular separations between
columns in the radial plane. In the disordered phase
there is no ordering beyond first neighbours along r‖ and
a broad correlation around 2.0 nm.
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0 1 2 3 4
r(nm)

0

2

4

6

8

g(r)

Columnar
Disordered

FIG. 4. Pair correlation function g vs molecular separation r
(nm) or HOTT molecules in columnar and disordered phases.
For the former, the first peak is at 0.43 nm and represents the
intra-column vertical separation, the second peak is at 0.904
nm, while the first minimum is at 0.74 nm The first peak in
the disordered phase is at 0.515 nm.

Figure 5 shows the square of the transfer integrals be-
tween pairs of molecules, needed for the hopping rates in
equation 8, against the spatial separation,

∆~r = ∆x~ex + ∆y~ey + ∆z~ez (15)

using axes shown in Figure 3. The distribution of J2 in
the columnar phase shows spatial ordering of the trans-
fer integrals in all three dimensions. Although the ∆x
and ∆y distributions are similar for figures 5(a) and (b)
apart from where J2 ≈ 1× 10−12, the ∆z distribution is
markedly different. In the z-direction there are islands
with large values of J2 from coupling to the nearest and
second-nearest molecules in the same column. Higher
order neighbours in the same column follow the same
trend although J2 are of the same magnitude as for inter-
column transfer.

All possible hops are affected in the same way by an
increase in temperature through equation 8, so if there
is any favoured set of hops (e.g. in columns), they would
be favoured at all temperatures. Thus the reason any
particular coupling is more or less favoured is not due
to a global parameter such as temperature, but rather
the local morphology. The distribution of smaller J2 val-
ues that correspond to inter-column hopping in the z-
direction in the columnar phase is broad and continuous
in both phases, falling off exponentially with ∆z, shown
by the dashed line in figure 5(a). Comparing the value
of ∆z at which J2 is large in figure 5(a) to the molecular
dimensions given in figure 1, the most significant charge
transfer path corresponds to hopping between molecules
separated by roughly 2r‖ - directly above or below one
another.
J2 variations in the x − y-plane shown in Figure 5(a)

distinguish between intra and inter-column hopping. The
clustering of ∆x and ∆y around ∆r= 0 and ∆r=0.4nm

-3 -2 -1 0 1 2 3
∆r(nm)

1×10-60

1×10-48

1×10-36

1×10-24

1×10-12

1×100

J2
(e
V
2 )

∆x
∆y
∆z

-3 -2 -1 0 1 2 3
∆r(nm)

1×10-60

1×10-48

1×10-36

1×10-24

1×10-12

1×100

J2
(e
V
2 )

∆x
∆y
∆z

(a)

(b)

FIG. 5. The distribution of hole transfer integrals J2
ij between

pairs of molecules with respect to the cartesian components of
the pair separation, according to r2ij = ∆x2ij+∆y2ij+∆z2ij(nm)
(a) Columnar phase. The dashed red line illustrates the vari-
ation of J2 when moving along a column. (b) Disordered
phase.

show that the largest transfer integrals correspond to
charge transfer within the same column. Inter-column
transfer occurs at ∆x ≈ 1.9 nm Given the column sep-
aration distances are much larger than rc, there are
few transfer integrals between molecules beyond near-
est neighbour columns. Figure 5(b) shows that the dis-
tribution of J2 at T=400 K is isotropic, as would be
expected for a disordered morphology, and decay expo-
nentially with ∆r. The range of J2 values is comparable
to the ordered system, suggesting that the origin of large
J2 is the same at both temperatures: a pair of molecules
arranged in a π-stacking configuration.

Looking at figures 4 and 5 we can see that although
the nearest neighbour separation is similar in both the
columnar and isotropic phases, the distribution of pair
separations in Cartesian directions and the distribution
of transfer integrals are very different. One could not
use a single lattice model to recreate both of these sys-
tems: the lattice would have to be a fine cubic mesh in
the isotropic phase, while it would be a coarser stacked
hexagonal lattice in the ordered phase. Even with dif-
ferent shaped lattices one would need to describe the
anisotropic coupling between molecules accurately. We
stress that our model can describe all phases of a sys-
tem accurately and we will show below how the same
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FIG. 6. Charge mean squared displacement
〈
r2z
〉

(solid lines)

and
〈
z2z
〉

(dotted lines) versus simulation time τ (ps) for
columnar and disordered phases. Inset: A sub-sample of the
same data on a linear scale.

methodology can be applied to both ordered and disor-
dered systems.

A useful measure of charge transport is the mean
square distance travelled in a given time. Figure 6 shows
that in the columnar phase the ratio

〈
z2
〉
/
〈
r2
〉

is nearly
constant at 0.9 and motion along columns is strongly
favoured. By comparison the charge transport in the
disordered phase is isotropic, with transport parallel to
the columns contributing a third of the total movement.
That the motion is isotropic despite an applied voltage of
2.0V shows that the change in energy due to movement
parallel to the field is small compared to the intrinsic dis-
order and transfer integrals. In the columnar phase the
mobility µz = 4.782× 10−6(cm2V−1s−1) and in the dis-
ordered phase its value is µz = 7.938×10−7(cm2V−1s−1)
(see Supplementary Material for further details).

The highly directional nature of the MSD in the colum-
nar system suggests filamentary transport. It is known
that one dimensional transport depends upon the sys-
tem size and eventually fails as a single defect severs the
chain. Even if the transport chain is not severed the link
with the lowest rate will still be the rate determining step
with respect to long-range transport. To investigate this
effect we modified the hopping networks to halve the sys-
tems’ effective height and changed the voltage to keep the
field consitent, this should increase the observed mobil-
ity as the number of weak links should reduce. The ratio
of the halved system mobility to the original mobility,
κ = µ′z/µz, is a measure of both the extent of filamen-
tary transport and the density of weak connections in
the filaments. In the columnar system κ = 1.420, while
in the amorphous system κ = 1.019. These measure-
ments reinforce the quantitative difference in the trans-
port mechanisms: the columnar system is reducible to
a set of separate conducting filaments, while the amor-
phous system is truly isotropic.

Our large system size allows us to look at spatial vari-
ations in charge transport. Figure 7(a) shows that in the

columnar phase, the highest charge transfer rates are be-
tween sites in the same column, while transfers between
columns are typically much weaker, consistent with fig-
ure 5. The dark blue regions within columns indicate
continuous chains of transfers. In the disordered system
Figure 7(b) shows there is no spatial ordering of strongly
coupled molecule pairs. Comparing panels 7(a) and (b)
does not explain the difference in transport properties
between the columnar and disordered systems, nor the
extent of rattling motion. For both phases we can see
from figure 7(c-d) that very few pairs of molecules ex-
change free charge carriers. In the columnar phase there
is clear spatial ordering of charge hops along columns. In
the disordered phase, even fewer pairs of molecules ex-
change carriers and those that do are clustered in small
groups of three or four hopping sites although measures
of transport should be evenly spread across the film.

Figure 7(c-d) shows the number of hops along edges
as coloured arrows, edges where there are no hops are
omitted. Dark blue edges that carry a noticeable level
of traffic are clustered in small chains. The pink edges
that carry exceptionally high traffic are isolated and have
no obvious spatial distribution. From the applied color
scale we can see that the maximum observed numbers of
hops in an edge are comparable in the two morphologies
although the number of edges that carry a noticeable
level of traffic is smaller in the disordered system than
the ordered system.

In graph theory the disconnected clusters in figure 7(c-
d) are called subgraphs. Using Tij we identified the num-
ber of sites in each subgraph as well as their length, i.e.
the maximum extent of the subgraph parallel to the z
axis in Figure 8. In the ordered system the clusters are
filamentary, their length scales linearly with the number
of sites which are stacked in a column with a fixed pair
separation of 6.5 nm. Inter-column connections in the
x−y plane do not play a role in charge transport. In the
disordered morphology the cluster size scales as N

1
3 as

can be seen in the figure. For a smaller simulation cell,
the charge transport length would be directly compara-
ble to the percolation length and there may only appear
to be one or two favoured pathways. The ability to sim-
ulate a large system means we can study the density and
growth of these pathways.

It is known that one dimensional transport will eventu-
ally fail as only a single fault will completely disrupt the
entire transport network. In the system sizes presented
the columnar ordering percolates the system, thus we
cannot describe the effect of dislocations to the charge
transport. However the study of the amorphous system
shows that if two columnar regions are separated by a
small amorphous region (a 1D crystal defect), transport
will still occur, albeit slowly and isotropically. The re-
gions between columns would effectively transport charge
an order of magnitude more slowly than the columns,
they would be the limiting factor to the overall perfor-
mance of the device.

Figure 9 shows that the columnar phase exhibits a bi-



8

FIG. 7. Simulation cells where 0 ≤ x ≤ xmax,0 ≤ y ≤ ymax, 0 ≤ z ≤ zmax and xmax, ymax, zmax are given in the Figure
3 caption. Panels (a-b) edges with transfer integrals |Jij |2 > 10−6eV shown as arrows; panels (c-d): traffic T between pairs
(lines); panels (e-f) The extensive flux Fτmax integrated over τmax in columnar and disordered phases. The grids are to guide
the reader’s eye

FIG. 8. Cluster size vs cluster length along the z axis (the
direction of an applied bias of 2V), for the columnar phase at
simulation times of 105 (blue diamonds)and 107 ps (circles)
and for the disordered phase at 107 ps (red squares).

modal distribution with very few values of Jij around
10−6eV, consistent with figure 5(a). This minimum cor-
responds to the first minimum in g(r) at r=0.74nm. At
this molecular separation, there are very few molecule
pairs that have the correct alignment for Jij to exceed

its cutoff value (figure 4). The columnar morphology has
more edges with large Jij than the disordered morphol-
ogy although the maximum observed Jij are comparable.
These large Jij occur between particles that are at closest
approach, equivalent to neighbouring molecules that are
parallel to the x-y plane. The large number of connected
particle pairs explains the faster charge transport shown
in figure 6. In the disordered system the distribution of
particle separations is smoother and thus the distribution
of Jij is smoother too, as the strength of the coupling cou-
pling decreases with increasing pair separation the two
distributions have mirror symmetry. The dashed line in
figure 9 shows that the distribution of Jij over a smaller
range of separations, the larger peak corresponds to the
shoulder in the distribution of pair separations (see figure
inset); the shoulder in P (Jij) also has a counterpart in
the separation distribution. Averaged over a large num-
ber of configurations we would expect the distribution of
Jij at a fixed value of rij , or a range small enough to only
include nearest neighbour pairs, would become Gaussian
due to the central limit theorem.

Even for the ordered morphology, the transport is
poor. To get an estimate of how few edges contribute
to charge transport we can compare N ′e, the number
of edges where Tij > 0, to the total number of edges
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FIG. 9. Distribution of Jij in the columnar and disordered
phases. For the former there is a clear bimodal distribu-
tion due to the high spatial and orientational ordering of the
molecules. For the latter, the distribution is flatter. The solid
line is the distribution taken over all molecule pairs up to 2.5
nm apart, the dashed line is for pairs up to 1 nm. Inset: The
distribution of pair separations in the two phases.

Ne. At a bias of 2V in the columnar phase the ratio
N ′e/Ne = 1.17 × 10−3 is an indicator of the variability
in transport behaviour between molecules. In the disor-
dered system the ratio is an order of magnitude smaller,
carrier hops are more localised along fewer edges. This
suggests that the distribution of transfer rates is more
sparse. To quantify the degree of rattling motion we
calculate Ñhops = 1

2

∑
|Fij |, the number of carrier hops

that contribute to a flux. The ratio of Ñhops to the total
number of recorded hops is small, of the order 10−4 in
the columnar phase and an order of magnitude smaller in
the disordered phase, suggesting that most carrier hops
represent rattling motion. More precise values of these
quantities are included in the Supplemental Material56.

The effect of the transfer integral distribution in the
columnar phase is that hops between columns are very
unlikely despite the change in Gibbs free energy, ∆Gij ,
being roughly equal for intra- and inter-column edges.
Although the transfer integrals limit charge motion to
the z axis they do not dictate whether charges hop up or
down columns, hence any net transport must be driven
by energetic considerations. This means that a require-
ment for long-range transport is for the set of edges with
∆Gij ≈ −λ to be asymmetrically distributed around
∆z = 0. Changes in site energies due to energetic disor-
der are in general much larger than the electrostatic en-
ergy changes when moving between nearest neighbours.
The weakness of the asymmetry is critical to understand-
ing why the number of edges that contribute to flux is so
small. We can visualise this argument from gigure 1 of
the supplemental material (SM)56.

Due to the low asymmetry of ∆Gij with respect to
∆zij , few edges contribute to the carrier flux matrix F.
The closer −λ is to the bottom edge of the distribution
of ∆Gij , or the larger the optimal transfer integral sep-

1×10-8 1×10-4 1×100

Tij

1×10-8

1×10-6

1×10-4

1×10-2

T̂ij

Columnar
Disordered

FIG. 10. The traffic between two molecular sites versus the
linked traffic of that pair as defined in equation 13. Both
measures of the traffic are more tightly distributed in the
ordered system.

aration, then the weaker the applied bias needs to be.
Figure 10 shows the traffic along a given edge, Tij plot-

ted against the linked traffic of the edge, T̂ij . There is
little correlation between the traffic of an edge and the
average traffic of its neighbours. However, in the ordered
morphology the distribution of both traffic measures is
narrower and closer to equality between the two mea-
sures. This result suggests that in the ordered system
the flow along edges is more uniform and the transport
environment around an edge is similar to that of the edge
concerned. We can relate the strong correlation between
structural ordering and electronic coupling to the dynam-
ics of long-range charge transport: structural ordering
means less variation in local structural environment (see
figure 4) and corresponds to π-stacking in this system.
The stacking results in a relatively narrow distribution
of transfer integrals (see figure 9), affecting the dynamic
behaviour, and the traffic along edges is distributed rel-
atively narrowly around equality between 〈Tij〉 = Tij .

The edges that host most charge hopping events occur
for ∆Gij ≈ −λ, outside this range the rate of a hop is at
least 107 times smaller. Comparing two hopping events
with such large differences in rates we can see that when
ν1 � ν2 then using equation 10 the probability that the

waiting time t
(1)
w < t

(2)
w = ν1/(ν1 + ν2) ≈ 1. Recall

that in the FRM we perform the event with the small-
est waiting time at each iteration. Thus only hopping
events with rates close to the maximum rate will occur
and so only those events with ∆Gij close to −λ are rele-
vant for transport. This limitation of charge transport to
a narrow range of ∆Gij explains why so few edges carry
any traffic. If an OSC had a reorganization energy close
to the typical difference in energy between pairs, deter-
mined by the disorder in HOMO/LUMO energies, then
many more edges would be involved in transport.

If the transfer integral dominates in equation 8 then
charge hopping is not spatially confined and despite dif-
ferences in ∆Gij many edges are equally likely to carry
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FIG. 11. Poole-Frenkel mobility-field plot for columnar and
disordered phases. The mobility increases with increasing ap-
plied field in both systems, although the response is much
stronger in the columnar system. The weak dependence upon
the applied field in the amorphous system is consistent with
figures 5 and 6, the field is more effective when aligned to the
coupling topology.

traffic. In practice, the exponential factor dominates
so despite many edges having similar transfer integrals,
those with ∆Gij closest to −λ carry almost all the traffic.
We suggest that to identify high transfer rate edges it is
more useful to consider that high transfer integrals select
from the set of edges with ∆Gij ≈ −λ, than favourable
values of ∆Gij select from the set of all edges with high
J2. This selective pressure explains why so few edges in
the 400 K morphology carry traffic despite the isotropic
nature of the transfer integrals. For predictive power one
must know the distribution of ∆Gij , or at least ∆Gij in
the absence of charges, in the system as well as {Jij} to
identify favoured traffic directions.

The disordered morphology which exhibits slower long-
range charge transport contains molecule pairs that ex-
change ∼ 104 holes during the simulation. Figure 7(b)
and (d) shows that high traffic edges are isolated and the
connected edges are not strong, either with respect to
the transfer integral or the observed traffic. This lack of
connectedness leads to a relatively small contribution to
transport despite high coupling and traffic.

The difference in energy between two sites is composed
of the inherent energetic disorder and electrostatic contri-
butions, as the applied field is increased then it becomes
relatively large compared to the disorder and ∆Gij be-
comes correlated with ∆zij . The gradient of Figure 11 is
positive since the application of a field breaks the sym-
metry of ∆Gij about ∆z = 0, the population of edges
with ∆z < 0 move closer to ∆Gij ≈= λ while those with
∆zij > 0 move farther away. A drift component parallel
to the field is therefore superimposed on the the random
motion of charges. Beyond an optimum bias the typical
hopping rate would decrease due to the inverted region
of the Marcus equation dominating when ∆Gij <<= λ.
In the ordered system the most highly connected edges
are already parallel to the field so the effect is amplified,

while in the disordered system an increasing field will
only favour those edges which are aligned correctly. No
electric field dependence was observed by Kwiatkowski
et al.14, suggesting that the origin of such a dependence
is more subtle than simply the presence of energetic dis-
order. We suggest that the topology of the electronic
transport network, defined by transfer integrals, plays a
role in the electric field dependence of the mobility.

IV. CONCLUSIONS

We compared the charge transport properties of an
organic semiconductor discotic system in two distinct
structural phases using explicitly calculated electronic
transfer integrals and orbital energies in a kinetic Monte
Carlo simulation. The ordered columnar phase exhibits
much higher charge carrier mobility parallel to the col-
umn axis while transport between columns is very rare.
Inter-column transport is restricted by weak transfer in-
tegrals, the change in free energy both along and between
columns is roughly equal due to energetic disorder.

Discrete charge transport via hopping mechanisms
maps well to graph theory methods and discussion of
edges and nodes. Metrics which can describe paths of
arbitrary length across the system and measures of ro-
bustness help identify good charge transport criteria. If
efficient charge transport is more reliant on the collective
behaviour of a series of hops, on pathways rather than
pairs, then graph theory is a natural expression. In the
future it would be interesting to see if this approach could
be used to define which sites in the system contribute to
charge flux and which can be described as dynamic traps.
These sites are likely to be important for light emission
and recombination in optoelectronic devices

Although the energetic term dominates the Marcus
rate equation it is still important to calculate the trans-
fer integrals explicitly. If we only consider hopping due
to energetic terms we would expect to see as many hops
between columns as along columns, although symmetry
would lead to 〈∆x〉 = 〈∆y〉 = 0. Instead we see no hops
between columns at all, due to the much weaker elec-
tronic coupling between columns as shown in figure 5.
By calculating the transfer integrals between each pair
of molecules we reproduced the strong coupling caused
by co-planar aromatic rings. However the distribution of
transfer integrals does not promote net charge transport
along columns either, the distribution is symmetric with
respect to ∆z.

The distribution of ∆Gij is weakly asymmetric with re-
spect to ∆z - it is this asymmetry that leads to net flow
of charge carriers. The asymmetry caused by the change
in energy due to the applied field between molecules i

and j is q∆φ = −q ~F · ~rij where ~F is the local field and
~rij is the displacement between the molecules. The ex-
ponential decay of the transfer integrals with separation
means increasing the asymmetry by increasing the near-
est neighbour separations is not possible but increasing
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the applied field does increase the mobility. The largest
transfer integrals inside columns are linked to an inter-
molecular separation d=0.4 nm parallel to the field so

with an applied bias of 2V |q ~F 〈~rij〉 | = 0.585kBT . Com-
paring the thermal energy to the driving field energy we
can see why charge flux is so small and why rattling mo-
tion dominates at low applied fields .

We used the KMC trajectories to define a measure of
locally correlated charge flow and thus to identify edges
(directed molecular pairs as shown in figure 2) that carry
high traffic, but contribute little to flow: and conversely
edges that carry relatively traffic but are well connected
in terms of flow. More important to particle flux is the
connectedness of edges with large transfer integrals to
create a pathway. We see that the disordered system
has the same range of transfer integrals, compared to
the ordered system yet the charge transport is slower.
The lack of spatial correlations between edges with good
transport properties means that it is unlikely carriers will
reach good edges and if they do they are unlikely to move
far away. This resolved the paradox that the disordered
phase contains edges that carry an order of magnitude
more traffic than the columnar phase, yet performs worse
with respect to overall charge transport. To achieve ef-
ficient charge transport over device length scales it is

necessary to have a continuous chain of hops, all with
reasonable electronic coupling. Furthermore the weight-
ing of any single edge is a poor indicator of how effective
that edge is in terms of long-range transport, there is lit-
tle correlation between edge traffic and the average traffic
of its neighbours. Assuming that the structural order of
a system is compatible with high electronic coupling, as
in π-stacked systems, we can directly correlate structural
ordering to the motion of charges.

The hop with the slowest rate is the most critical hop
with respect to the overall transport time along the chain,
both in terms of being the slowest hop forward but also
increasing the relative probability of a reverse hop back
along the chain. Reducing the variance in edge weights
means that the probability of one pathological molecule
pair in a chain is reduced, this leads to improved charge
transport across the entire chain. Isolated high-weight
edges host high traffic without longer-range flow.
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