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Automatic Parameter Selection of Image
Reconstruction Algorithms for Planar Array
Capacitive Imaging

Carl Tholin-Chittenden, Juan Felipe Perez-Juste Abascal and Manuchehr Soleimani

Abstract—Landmines are often be made out of plastic with
almost no metallic components which makes detection difficult.
A plausible solution is to detect superficial buried plastic objects
using planar array Electrical Capacitance Tomography (ECT).
Distance detection is a big limiting factor of planar array
ECT. Given the ill-posedness and loss of sensitivity with depth,
regularization and optimal selection of reconstruction parameters
are required for detection. In this work we propose an ’Automatic
Parameter Selection’ (APS) method for image reconstruction
algorithms that selects optimal parameters based on the input
data based on a 3 step process.

The aim of the first 2 steps is to provide an approximate
estimate of the parameters so that future reconstructions can
be performed quickly in step 3. To optimise the reconstruction
parameters the APS method uses the following metrics. Front
Surface Distance Detection (FSDD) is a method of determining an
accurate distance measurement from sensor head to object sur-
face in low resolution image reconstructions using interpolation
between voxels and Otsu thresholding. Cross-Section Reconstruc-
tion Score (CSRS) is a simple binary image comparison method
which calculates a ratio of expected image to reconstructed image.

An initial set of capacitance data was taken for an object at
various distances and used to train the APS method by finding the
best reconstruction parameters for each distance. Then another
set of capacitance data was taken for a new object at different
distances than before and reconstructed using the parameters
selected by the APS method. The results of this showed that
the APS method was able to select unique parameters for each
reconstruction which produced accurate FSDDs and consistent
CSRS:s. This has taken away the need for an expert to manually
select parameters for each reconstruction and sped up the process
of reconstructions after training. The introduction of FSDD and
CSRS is useful as they accurately describe how reconstructions
were score and will allow future work to compare results
effectively.

Index Terms—Electrical Capacitance Tomography Reconstruc-
tion Landmine Total-Variation

I. INTRODUCTION

Electrical Capacitance Tomography (ECT) is a non-invasive
and non-destructive method of imaging through a material
under test (MUT) [1]. By measuring the capacitance through
the MUT, it is able to build up a permittivity distribution
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indicating areas of low or high permittivity comparatively.
The process requires capacitance data acquisition, environment
modelling, simulation and image reconstruction. ECT systems
are often 2-dimensional circular array devices [2] as they
are imaging a region which can be accessed from all sides.
However when only 1 side is available, the sensor must be
flattened into a co-planar array [3]. The modelling must be
done in 3 dimensions as capacitance is arching through a 3D
space between the sensor electrodes. Due to their orientation
the inter-electrode capacitance is reduced thus decreasing
detectable distance from the sensor. Previous work on planar
array ECT has been able to detect objects as far away from the
sensor head as roughly the distance between the furthest apart
electrodes [4] which for a 200mm square grid-like sensor head
was approximately 100mm [5]. However the work was vague
on how distance is quantified from results and how image
reconstruction quality is scored which makes performance
comparisons difficult.

One possible application of planar array ECT is landmine
detection in which the buried landmine is only detectable from
above the ground and sensors cannot be placed all around the
viewing region. Current landmine technologies, such as metal
detectors, struggle to detect modern landmine technology as
they contain almost no metal at all [6]. Some work has been
done to show that ECT could be used to detect sub-surface
objects [7]. Theoretically, ECT would be able to detect any
material which differed from the ground it was buried in
as well as reconstructing a permittivity distribution of the
different materials contained in the landmine. This makes it
an attractive prospect for future landmine detection technology
but in order to get it to a stage where it could realistically be
used it needs to be improved in a number of ways. One of these
is improving the depth detection range which is currently a big
limiting factor of ECT [7]. In order to locate the landmine it
is important to know the depth of the landmine and the shape
of the landmine which could then also allow identification
to be possible. These metrics need to be clearly defined and
quantified.

A common method of image reconstruction in ECT is
Tikhonov regularisation but Total Variation (TV) algorithms
have also received a great deal of attention and many imple-
mentations are considered state of the art [8] [9] for image
reconstruction. These algorithms are used in many different
applications such as medical [10] [11] and industrial [12] [13]
with various implementations. Among the available methods



for TV minimization, splitting methods, such as proximal
algorithms [14] and the split Bregman method [15], [16], are
efficient and widely used. However there is no clear winner as
each application requires a different reconstruction approach
with very different parameter selections.

Image reconstruction in an ill-posed problem requires opti-
mal selection of image reconstruction parameters. For L2-
regularisation, the L-curve or the generalised cross validation
are widely used for selecting the regularization parameter [17],
[18]. Splitting algorithms have few parameters that need to be
tuned. For the case of split Bregman algorithm, previous work
provided some guidelines for manual parameter selection [15]
[19] [20] as well for automatic selection [21] for some of
these parameters. Tikhonov Regularisation has also received
attention on parameter selection, both automatic [22] and
manual, such as L-Curve method [23].

The aim of this paper is to propose a method of selecting
parameters of the image reconstruction algorithms automati-
cally and to assess it on planar array ECT data. The proposed
method is applied to a "Hybrid Tiknovov’ with NOSER regu-
larisation [24] and split Bregman based TV methods [15]. The
algorithm proposed here will attempt to automate selection of
multiple parameters.

Manual reconstruction parameters selection involves an expert
who knows how each parameter affects the reconstruction.
This is often done through a method of trial and improve-
ment which relies on looking at the result and changing the
parameters accordingly. This is usually very time consuming
and requires the expert knowledge on the algorithm and appli-
cation. However a method of automatic parameter selection,
which can select reconstruction parameters based only on the
measured data, would remove the need for the expert and thus
potentially speed up reconstructions and add consistency to
results. The proposed method of automatic parameter selection
involves finding a set of optimal parameters using a Genetic
Algorithm (GA). GAs have been successfully used for param-
eter tuning in several applications [25] [26].

Previous work in electrical tomography which is investigating
distance detection is often vague on quantifying how a distance
was calculated [27]. New methods of distance detection and
inclusion scoring from 3D reconstructions are proposed.

This work is aiming to produce a method which can be used
in other applications than just landmine detection. Therefore
testing will be performed in air, with objects centrally located
over the sensor in order to use the best case scenario for ECT.
ECT has been investigated with both buried objects [7] as
well as off-centre objects [5] previously but both of these add
difficulties to the reconstructions which will affect the results
and prevent clearer conclusions on the automatic parameter
selection alone.

II. ELECTRICAL CAPACITANCE TOMOGRAPHY

ECT is the method of reconstructing a permittivity distribution
from a set of capacitance measurements taken between differ-

ent combinations of electrode pairs. The raw capacitance data
measured can be used to infer something about the viewing
region in front of the sensor head.

A. Forward Problem

Before image reconstruction can be performed some pre-
calculations need to be made about the sensor head and
the viewing region. This is often referred to as the forward
problem and consists of modelling of the environment to
understand how a change of permittivity in the viewing region
will affect the capacitance measured by the electrodes on
the sensor head. To model the relationship between electric
potential from the electrodes and the permittivity of the
viewing region a combination of Gauss’s law is used with
Poisson’s equation and as there is no charge escaping the
viewing region:

V- (eVg) =0 (1)

where & is the permittivity distribution, ¢ is the electric
potential distribution and V- is the divergence operator. This
is the Partial Differential Equation (PDE) that can be used to
calculate electric potential distribution with a fixed permittivity
of the viewing area. Capacitance is proportional to the charge
on a surface so this can be calculated for one electrode on
the sensor head by finding the electric flux density over the
surface area of the electrode which can be found by taking
the surface integral:

C= l % SO(X, Y, Z)E(x’ Y, Z) dw (2)
Ve

where C is the inter electrode capacitance, V is the electric
potential on the excitation electrode, Q is the surface area and
E is the electric field distribution. From this it can be seen
that capacitance is a non-linear function of permittivity which
can be linearised as follows:

AC = JAe 3)

where J, the Jacobian, is essentially a conversion matrix that
maps a change in permittivity into a change in capacitance
values. The number of voxels in the viewing region is defined
as n, and the number of unique capacitance measurements,
m, is dictated by the following equation:

Nv(Nv - 1)
m=————

: )

where N, is the number of electrodes. This makes the Jacobian
size equal to m X n,, . Most commonly n >> m depending on
the image resolution selected which defines the number of
nodes.



B. Inverse Problem

Equation 3 shows that a permittivity is linearly related to a set
of capacitance values. This is a linear ill posed problem, so
regularization is needed to obtain a unique solution. Tikhonov
regularisation [28] is the most common and simple choice of
regularization.

Improvement on standard Tikhonov Regularisation can be
achieved by adding NOSER regularisation [24]. Tikhonov
regularisation performs very well with ill-posed problems by
reducing noise but it tends to over-smooth the output image
as it assumes the solution to be smooth. The NOSER method
is very good at position reconstruction but performs worse
with noise which affects the solution more when the object
is at larger distances. However the combination of Tikhonov
and NOSER perform well. This leads to a ’"Hybrid Tikhonov’
which is defined by the following equation:

-1
Ae = (JTJ +a T+ oz2diag(JTJ)) JTAC 5)

where I', the regularisation matrix, is the identity and a;
and @, are the scaling parameters of Tikhonov and NOSER
respectively. The problem with this solution however is that
boundaries gradients between different permittivity levels will
be smooth and so they won’t show sharply contrasting bound-
aries. A buried foreign object has very distinct boundaries with
the ground around it. For this reason L-2 regularization is not
an ideal prior for object detection.

III. TOTAL VARIATION ALGORITHM

Total variation methods have been shown to outerperform L2-
regularization methods in terms of image quality, as TV func-
tional achieves piecewise-constant reconstructions with sharp
edges [29]. This is a reasonable assumption in ECT where
target objects can be accurately represented with piecewise-
constant functions and sharp edges would improve the char-
acterization of the object’s shape and size.

The unconstrained formulation of the TV image reconstruction
problem is given by

1
n&inEHJAe—ACH% + a||VAel|, (6)

where ||VAel|; is the TV functional, i.e. the L1-norm of the
gradient of the reconstructed image, and « is a regularization
parameter that can be selected using the L-curve or similar
method [17].

The TV functional is an optimal choice for many applications;
however, it suffers from non-differentiability and a loss of
contrast [30]. A common approach is to use a smooth approxi-
mation of the TV functional [29] [31], but this can compromise
effective regularization or slow down convergence. An alter-
native that has been proposed to solve these issues is the use
of the split Bregman formulation [15], which is an efficient
formulation to solve L1-regularization approaches. Using this

formulation, one aims at solving the constrained formulation
of the TV image reconstruction problem

1
min [|[VAell; st. =|lJAe - AC|)? < o (7)
Ae 2

where o2 accounts for noisy data. The constrained formulation

6 enjoys further benefits with respect to the unconstrained
formulation 7: it does not need to estimate the regulariza-
tion parameter using the L-curve and the data constraint is
imposed iteratively, which has the potential to achieve better
reconstruction.

In the Split Bregman formulation constraints are imposed
iteratively using the Bregman iteration as explained below.
In addition, introducing auxiliary variables allows separating
L2- and Ll-norm functionals in such a way that they can
be solved analytically in two alternating steps, avoiding non-
differentiability issues that appear in standard approaches. To
allow for splitting, we include new variables, d, d,, d,, and
formulate a new problem equivalent to equation 7, as follows:

min - ||(dx, dy)ll + lldz [l st.

A€,dy,dy,d;

$Il7Ae = AC|12 < 02, dy = VA€, dy = VyA€, d; = V.A€(8)
Using the Bregman iteration, the constrained problem 8 can be
easily handled by using an equivalent unconstrained formula-

tion for which constraints are imposed by adding a Bregman
iteration b; for each constraint. Thus, equation 8 becomes

, p
min ||(dx, dy)lh + lldelli + 5

€,dx,dy,dz 2

7A€ - ACK 13
A
+5dx = Vehe = B[l
A k12
+5lldy = Vyhe = B3
A
+§”dz - VZAE - bl;”% (9)

where k is the iteration number and the Bregman iterations
are given by

= b+ VAT - ayt!
Byt o= b+ VAt — it
BT = bE VoA - gkt
ACK! = ACK + AC — JAEK! (10

The Bregman iterations impose constraints iteratively by
adding the error back into the respective functionals [32] [15],
thus making the solution of the problem 9 to converge to
the solution of the constrained problem 8. The last line in
equation 10 enforces the data constraint, producing a sequence
of solutions such that the solution error norm and the data
fidelity term decrease monotonically.

To solve 9 we note that reconstructed image and auxiliary
variables are independent of each other, so equation 9 can
be split into several problems, one for each variable, and



Expenmental setup

Sensor head layout

Fig. 1: Sensor head layout and experimental setup for training
data (sample 1).

be solved sequentially. The permittivity change is solved
analytically by solving the following linear system:

(wITJ+2 Z VI'V; +yI)Ae =
=X,y,2
pACK + 2 Z V7 (d; — b;) + yAe*
i=x,y,2
where the last term on both the LHS and RHS is added

for stability. Auxiliary variables are given by the following
shrinkage formulae [15]:

Y

Vi Ak 4+ bk

d*1 = max(s¥ - 1/4,0) . , (12)
s
+1 bk
d}’f” = max(s* —1/4,0) T 2, (13)
S
& = Z |V;Aek+1 +b§|2, (14)
i=X,y,2
k+1 + bk
A = max(|V A +b’;|—1/ﬁ,0)4< >

|V A€ k+1 |

IV. EXPERIMENTAL PROCEDURE

The TV algorithm parameters, Pry, that are going to be
optimised in order to produce the best result are u, A and 7.
The algorithm also has a Bregman iteration count, np, which
controls how many iterations are used in the reconstruction.
The higher this is, the more the data constraint is imposed.
Decreasing u (weight of the data fidelity term) and increasing
lambda (weight of the gradient constraints) leads to lower ny,
requiring fewer iterations to converge. Optimal selection of
these parameters can reduce computational time significantly
[19]. Tikhonov, equation 5, also requires input parameters,
Piikhonov, but only 2, and these are a; and a».

Training to find optimal parameters for each distance is
referred to as Parameter Optimisation. This training will
results in Parameter-Distance curves which will show optimal
parameters for each distance.

ECT is greatly affected by the distance of the object to the
sensor [4] which means that objects imaged with ECT will
have a much more accurately reconstructed front surface (the

200

Fig. 2: Sensitivity region plot of the sensor used for all
experiments.

closest surface to the ECT sensor) than the other surfaces
further away. For this reason, the closest surface is used
to localise the object. This surface is referred to as the
front surface. The other sides of the object are likely to be
reconstructed with less accuracy.

The software used in these experiments is DeTECT [7], a
MATLAB based toolbox used for ECT simulation, reconstruc-
tion and visualisation. It is specifically designed for use with
planar array ECT systems. It uses a finite difference method
(FDM) for the forward problem modelling.

A test in this paper is defined as reconstructing a 3D permittiv-
ity distribution for a particular set of parameters and detecting
the distance of the front surface of the reconstructed object.
The detected distance, dg, is then compared to the expected
distance, d., and used to compute the difference, dy;rr. A 2D
slice is also taken from the original permittivity distribution
and an inclusion is extracted from it through segmentation.
This inclusion is then compared to the expected inclusion and
a score is calculated to show how accurate it is. This results in
“distance difference’ and ’reconstruction score’ qualifiers for
all tests.

All tests will use both simulated capacitance data as well
as real captured capacitance data and the same Jacobian to
reconstruct the permittivity. The simulated capacitance data
is obtained by simulating a block with DeTECT , suspended
centrally over the sensor head at 3cm incrementing heights
above the sensor head which is a 3 x 4, 12 electrode sensor
as shown in figure 1 with external dimensions of 20cm by
20cm. The real captured capacitance data is measured with
the same distances using a wooden block as the inclusion and
the sensor head used in previous sensor optimisation work [7].
This sensor has achieved depth penetration up to 90mm and
a sensitivity region plot can be seen in figure 2.

The Jacobian is computed with DeTECT at a resolution
of 21x21x21 in the x, y and z directions respectively and
then used with the capacitance data to reconstruct the 3D
permittivity distribution. The sensor used is the same as that
referred to as ’original sensor’ in previous work on planar
array ECT [7].



1D Slices of Permittivity

Extracted section of permittivity
in the ’core’ around the threshold

7 = 8 = 80mm

Z =9 = 90mm

9| 04| 15

36| 38 32

Interpolation between both
voxel planes results in:
Edge Distance = 87.49mm

Fig. 3: Distance detection method showing interpolation be-
tween voxel levels around the Otsu Threshold value. GREEN
- Smaller than threshold, RED - Bigger than threshold.

A. Front Surface Distance Detection (FSDD)

The distance d; to the front surface is calculated in several
stages. As the reconstruction is not perfect, the front surface
may not be smooth which means that if the distance was
measured from a single point on the surface it might not be
representative of the actual distance of object. For this reason
the distance detection is performed on multiple points and an
average distance detected is taken from this. The algorithm 1
explains how the distance is detected and a visualisation of
this can be seen in figure 3.

Algorithm 1 Calculate front surface distance, dy

Input: Permittivity distribution, &
QOutput: Detected distance, dy
while £ # MedianFilter(e) do
& = MedianFilter(g)
end while
Extract 3x3 core, &.0,¢, from centre of &
Setup empty cores distances variable, dcore
for x =[12 3] do
for y =112 3] do
€D = 8core(xa y)
Torsu = OtsuT hreshold(e1p)
z=1
while SID(Z) < T()tsu do
z=z+1
end while
Ae = g1p(z) —e1p(z - 1)
8 = V(T — e1p(z = 1)
d=z-1+Ad
dcore(xv y) = d
end for
end for
dg = Mean(Dcore)

3x3 ’core’T

2D slice extracted . . .
EXPC()t()(l lIlChlSl()Il comparison

%

[T7 777777777

0

0

IIIIIIIIIII’
[T 777777777

[T 777777777

Fig. 4: 2D slice taken from centre of ’core’ and then the

inclusion cut-out based on threshold values from the FSDD
method.

Threshold inclusion cut-out
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o

B. Cross-section Reconstruction Score (CSRS)

The distance d; from FSDD is only useful if the inclusion
that was reconstructed is close in shape to that of the actual
inclusion otherwise the detected distance could be coincidental
and not representative of a good parameter set. For this reason
every test also checks a cross-section of the permittivity dis-
tribution to check on the shape of the reconstructed inclusion.
Algorithm 2 explains how this score is calculated.

Algorithm 2 Calculate cross section correlation, scorecg,s

Input: Permittivity distribution, &
Output: Cross section correlation score, Scorecsys
Extract 3x3 core, &.0r¢, from centre of &
Setup empty Egverage
for x =[12 3] do
&p = &(x)
Torsu = OtsuT hreshold(eyp)
ep(&p < Torsu) =0
Eaverage = €average T €2D
end for
8average(5average #0)=1
Load expected inclusion gexpected
Initialise correct voxel count, cv =0
Initialise incorrect voxel count, iv = 0
Calculate total area of cross section, r = 21 * 21
for x =1 to 21 do
fory=1to 21 do
if 8average(xa y) = 8expected(xa y) then

cv=cv+1
else
v=iv+1
end if
end for
end for
SCOrecsrs = SV

t




C. Parameter Optimisation

Parameter optimisation is a hard problem. Several methods
have been proposed to optimise the regularisation parameter
for Tikhonov [29]. Performance of these methods depends on
the application and data dependent, so methods are generally
compared for a new application [18]. Automatic selection of
other hyperparameters, such as those in the split Bregman
formulation (they are not regularization parameters), is still
an open issue, where some guidelines have been previously
proposed [15] [19] [33]. For optimising TV and Tikhonov
parameters three methods were tried.

1) Brute Force: A ’brute force’ method of evenly searching
all combinations of parameters in a given size range was
attempted. It was found however that if the number of
parameter combinations was too large then the optimisa-
tion took too long and if too small then the gaps between
parameter values was too large.

2) Neighbour Search: This method used a starting set of
parameters and then varied them to try improving the
results. If the reconstruction scored badly, the parameters
step size was increased and then decreased as the recon-
struction score improved thus aiming to converge on an
optimal solution. The starting parameter set used was
that of the optimal parameter set of the ’neighbouring’
reconstruction distance. This method produced good
results but not consistently enough.

3) Genetic Algorithm Optimisation (GAO): The GA was
implemented using the MATLAB Optimization Toolbox
[34]. It uses a multi-start global search method which
means that it has many start points and searches for
the best parameter set regardless of parameter values.
It is attempting to find the global minima of difference
between FSDD and expected distance by searching for
local minima and selecting the best one. The GA is given
2 stopping criteria to prevent it over-searching. It is given
a maximum number of local minima, LM,,,,, found
before it then assigns the lowest one as the solution.
It also stops if it finds a local minima lower than a
chosen threshold , Ty;rr, as this is deemed a suitable
solution. However if a solution has a CSRS lower than
the threshold, T, s, then this solution is not counted as
a valid solution.

V. EXPERIMENTAL RESULTS

For training of reconstruction parameters, real capacitance
data was collected at 30mm, 60mm, 90mm and 120mm as
described in the experimental procedure. Simulated data was
then created for the same distances. These two sets are referred
to as Sample 1.

For both Sample 1 data, GAO was used to find optimal param-
eters at each distance, d,, of the wooden block. GAO used the
settings, Ty;irr = 0.05de, Tegrs = 50 and LM,y,qx = 10. These
values were selected as they gave the best balance between
testing time and testing accuracy.

90mm

%107

1.5

0.5

0

Fig. 5: TV reconstruction of real data captured with object at
90mm from sensor head. Red box shows expected location of
object. Sensor is located at the bottom of image.

The TV algorithm used a n, value of 10 to allow for a bal-
ance between quick reconstruction (~ 2s) and reconstruction
accuracy. Given the relation between u and n [19], one can
fix one of these parameters and modify the other one.

Figure 5 shows a reconstruction by the TV algorithm of an
inclusion at 90mm from the sensor head. In this reconstruction
and all subsequent reconstructions shown the sensor is located
at the top of the image as the images are mimicking a landmine
detection scenario where the viewing direction would be down
through the ground. The red square in the image shows the
expected location of the inclusion.

A. Capacitance Measurements

The raw capacitance measurements of Sample 1 can be seen
to show an interesting relationship between capacitance and
distance of object. As the distance of the object increased from
the sensor head, the euclidean norm of the raw capacitance
measurements proportionally changed too. This can be seen
in figure 6.

This Capacitance-Distance relationship allows an ’estimated’
distance to be found by simply taking a capacitance mea-
surement, before any reconstruction is performed. Using this
estimated distance, appropriate parameters can be chosen by
using the Distance-Parameter relation found through Parameter
Optimisation.

This relationship is very specific to this experimental setup, a
higher permittivity object observed at different distances in a
lower permittivity surrounding. However for other situations
the relationship can be found through experimental calibration
in that environment which will give a unique Capacitance-
Distance relationship.
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Fig. 6: Capacitance-Distance relationship curve.
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Fig. 7: Parameter-Distance curves for TV and Tikhonov.

B. Parameter Optimisation Comparison

The GAO method found *optimal’ parameters for both TV and
Tikhonov reconstructions for each distance tested. This data
now forms Distance-Parameter relationship curves which can
be used for Automatic Parameter Selection. These can be seen
in figure 7.

A brief look at the individual parameters found by the optimi-
sation showed that the TV parameters were a lot less affected
by their individual magnitudes and more affected by the ratio
to each other. For example using parameters of 1, 1 and 1
for u, v and A respectively was almost identical to using
1e719, 1710 and 1710 respectively. However for Tikhonov
the parameters magnitude was far more important as they
effectively act as weights to decide how much regularisation
is applied. Therefore they are not as strongly linked to each
other but more to their own values.

C. Distance Detection Comparison

The TV algorithm was much more consistent when detecting
distance than Tikhonov which can be seen in figure 8. The TV

Distance Comparison

120 »
—-TV Real Data P
--#-TV Simulated /'/
—x=Tik Real Data 52

--»--Tik Simulated 35
—+—Expected

100 -

80

FSDD d, (mm)

030 4‘0 5‘0 6‘0 7‘0 BlO 90 1 60 1 ‘;O 120

Distance de (mm)
Fig. 8: Distance detected from Sample 1 reconstructions using
optimal parameters.

reconstructions of both real and simulated Sample 1 data were
not accurate beyond 60mm but the error was consistent. If the
distance detection error is consistent it means that a scaling
factor could be used to get more accurate detection measure-
ments. In these results when the inclusion was at 120mm the
detected distance was ~80mm. Therefore in practice a detected
80mm reconstruction could be scaled to give a 120mm reading
as an actual 80mm inclusion would result in a ~70mm reading
as shown by figure 8.

The Tikhonov results were far more inconsistent. It performed
poorly at 120mm and was not consistent with results at 90mm,
therefore the same scaling theory used for TV would not work.

Both algorithms performed extremely well at 30mm and
60mm when optimised with real data but with simulated data
the results are not so good.

Overall it shows that both TV and Tikhonov show an ability
to detect up to 90mm with limited error and promise of being
able to potentially detect up to 120mm. This not only proves
the ability of the algorithms and DeTECT software but also
the hardware used to collect the data [7].

D. Automatic Parameter Selection

Automatic Parameter Selection (APS) uses the Parameter-
Distance relationship curves for both TV and Tikhonov com-
bined with the Capacitance-Distance relationship curve, to
automatically select the optimal parameter set for a given
capacitance reading. First the euclidean norm of the mea-
sured capacitance data is found. An ’estimated’ distance is
found using this value by interpolating between the closest
2 capacitance values on the Capacitance-Distance curve. Next
optimal parameters are found in a similar way by interpolating
between the 2 closest points on the Parameter-Distance curve
for each parameter individually. Algorithm 3 describes how
this is performed in more detail.

In order to assess the ability of algorithm 3, new capacitance
data sets, Sample 2, were collected with the same setup as



Algorithm 3 Get optimal parameter set, P for current capac-
itance reading, C

Input: Capacitance Measurement, C
Output: Optimal Parameter Set, P

1: Load Capacitance-Distance relationship, distances d;,
norm capacitances Cy
n=1
Cnnrm = ”CHZ
while C,.(n) > C,,orm do

n=n+1

end while
AC = C(n) C(n—l)

d, (n)=d, (n
Ve = el

Ad = Vc(c,,o,m —C(n-1)

d=d,(n-1)+Ad > d is the ’estimated’ distance

: Load optimal parameter values, Pcompbinea and associated
distances, d), from Parameter-Distance curves

122 m=1

13: for all p € P.ompinea do

R U o

—_—
_= o

14: n=1

15: while d,(n) < d do
16: n=n+1

17: end while

18: Ad=dn)—dn-1)

19: Vd = %

0. Ap= Vd(d—d(n— 1)
21: P(m)=pn-1)+Ap
22: m=m+1

23: end for

Fig. 9: Experimental setup of Sample 2 gathered for testing
of Automatic Parameter Selection.

before, but with the inclusions at varying distances and with
a different object. Sample 2 only consists of real data. The
experimental setup can be seen in figure 9. The object was
randomly orientated to produce a very different scenario to
the real data in Sample 1. The distances of the object are

also random so that they lie in between the distances of the
training data. For this reason interpolated parameters are used
instead of exact optimal parameters. Using the exact optimal
parameters found through training on Sample 1 would be
expected to get the same results. If interpolated parameters
from algorithm 3 were used, then this should result in a
parameter set which is yet untested, and if this is able to
reconstruct the inclusion accurately, then this helps to support
a relationship between parameters and distance.

Figure 10 shows the detected distances, d;, using parameter
sets from algorithm 3 as well as the CSRSs of these recon-
structions. Looking at detected distance, d; shows that all the
optimal parameters sets perform very similarly. There appears
to be 2 distinct regions on the graph where the behaviour
differs. The first region is up to 60mm which is roughly the
typical burial depths of landmines [35]. The reconstruction
algorithms behave similarly and are on average accurate to
within 7.2mm.

Tikhonov reconstruction was able to detect objects with an
average error of 5.7mm between distances 30mm - 60mm
and TV reconstruction had an average error of 8.7mm. Above
60mm is quite deep for a landmine and here there seems
to be an constant shift in detected distance from expected
distance. If this is consistent in future experiments it could
mean that the values could be scaled such that for example
a detected distance of 100mm actually represents an object
at 120mm. The percentage error from expected distance to
detected distance is quite consistent at *30%.

Using APS both algorithms are still able to produce similar
results to the Sample 1 results 8, and Tikhonov is even able
to reconstruct up to 130mm with only ~4% error. It could be
that the new data sets, in Sample 2, are better quality with
less noise and fewer background signals. But the consistency
of the distance detection for both reconstruction methods and
optimisation parameter sets shows that for this application
there is some relationship between parameter values and front
surface distance of an object.

Both TV and Tikhonov have similar FSDDs and therefore it
could be a one-off result meaning that Tikhonov might perform
better in some tests and TV in other tests. However when
comparing CSRSs, TV performs much better on average. In
figure 10 the TV CSRSs are far better at almost all distances.
This means that TV is able to reconstruct the inclusions with
a much better overall shape, not just the front surface and
therefore the TV reconstructions are more reliable as the
inclusion can be located with more certainty.

Figure 11 shows reconstructions of Sample 2 data using opti-
mal parameters trained from real data. The red lines indicate
the expected location of the top surface. Both reconstruction
methods produce similar images and none of them perfectly
find the top surface.

The TV reconstructions have slightly better defined edges than
the Tikhonov reconstructions. This is to be expected due to
the nature of the TV algorithm. It means that the overall
object edges can be defined with more certainty whereas
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Fig. 11: Detected distances d; against the expected distance d, for TV and Tikhonov reconstructions on Sample 2 data.

with Tikhonov the exact location of the inclusion boundary
is estimated using Otsu thresholding select edges from the
blurred inclusion.

Landmine detection is far safer if objects can be accurately
reconstructed and located. The TV reconstructions show the
inclusion location more accurately and the shape can be
assumed with more certainty than Tikhonov reconstructions.

The aim of automatic parameter selection was not to produce
the best images but to remove the need for an expert to select
the reconstruction parameters. The images produced show
that it is possible to select parameters automatically. Through
some manual parameter selection during experimentation is
was observed that changing the parameters can drastically
change the appearance of the reconstructed image. Thus,
automatic parameter selection can lead to more consistent
distance detection.

VI. CONCLUSION

In order to use ECT for landmine detection, distance detection
of planar array ECT needs to be consistent and reliable. Planar
array ECT suffers from poor reconstruction of inclusions
further away from the sensor. A way of improving this is
through optimisation of the image reconstruction parameters.
However selecting appropriate parameters is often done by

The development of the APS method has removed the need for
expert calibration of image reconstruction parameters for TV
and Tikhonov. The initial training of the APS method showed

that there was not much difference between training with
simulated data or real data of Sample 1 and both reconstruction
algorithms performed similarly. However when Sample 2 data
was used to test the automatic parameter selection algorithm
Tikhonov was more consistent in distance detection than
TV although TV was still producing good results at smaller
distances. These results could be explained by the fact that
selecting Tikhonov parameters is more robust due to the non-
iterative nature and fewer parameters of the algorithm whereas
TV relies more on iteration count and the larger number of
parameters.

It could be that better TV optimal parameters can be found
using different training methods instead the GA used in this
work.

The main conclusion of this paper is the ability to auto-
matically select parameters and produce results which are
consistent and quick without any expert calibration. Also for
future comparisons to be made with this work, the clear
explanation of the FSDD and CSRS scoring has created
quantifiers for accurate distance scoring whilst making sure
the reconstruction is showing expected inclusion shape.
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