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Abstract  24  

Dendritic cells (DCs) are important sentinel cells of the immune system responsible for 25  

presenting antigen to T cells. Exercise is known to cause an acute and transient increase in the 26  

frequency of DCs in the bloodstream in humans, yet there are contradictory findings in the 27  

literature regarding the phenotypic composition of DCs mobilised during exercise, which may 28  

have implications for immune regulation and health. Accordingly, we sought to investigate the 29  

composition of DC sub-populations mobilised in response to acute aerobic exercise. Nine 30  

healthy males (age, 21.9 ± 3.6 years; height, 177.8 ± 5.4 cm; body mass, 78.9 ± 10.8 kg; body 31  

mass index, 24.9 ± 3.3 kg.m2; V̇O2 MAX, 41.5 ± 5.1 mL.kg.min−1) cycled for 20 minutes at 80% 32  

V̇O2 MAX. Blood was sampled at baseline, during the final minute of exercise and 30 minutes 33  

later. Using flow cytometry, total DCs were defined as Lineage− (CD3, CD19, CD20, CD14, 34  

CD56) HLA-DR+ and subsequently identified as plasmacytoid DCs (CD303+) and myeloid DCs 35  

(CD303−). Myeloid DCs were analysed for expression of CD1c and CD141 to yield four sub-36  

populations; CD1c−CD141+; CD1c+CD141+; CD1c+CD141− and CD1c−CD141−. Expression 37  

of CD205 was also analysed on all DC sub-populations to identify DCs capable of recognising 38  

apoptotic and necrotic cells. Total DCs increased by 150% during exercise (F(1,10)=60; p<0.05, 39  

η2=0.9). Plasmacytoid DCs mobilised to a greater magnitude than myeloid DCs (195 ± 131 % vs. 40  

131 ± 100 %; p< .05). Among myeloid DCs, CD1c−CD141− cells showed the largest exercise-41  

induced mobilisation (167 ± 122 %), with a stepwise pattern observed among the remaining sub-42  

populations: CD1c+CD141− (79 ± 50 %), followed by CD1c+CD141+ (44 ± 41 %), with the 43  

smallest response shown by CD1c−CD141+ cells (23 ± 54%) (p< .05). Among myeloid DCs, 44  

CD205− cells were the most exercise responsive. All DC subsets returned to resting levels within 45  

30 minutes of exercise cessation. These results show that there is a preferential mobilisation of 46  
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plasmacytoid DCs during exercise. Given the functional repertoire of plasmacytoid DCs, which 47  

includes the production of interferons against viral and bacterial pathogens, these findings 48  

indicate that exercise may augment immune-surveillance by preferentially mobilising effector 49  

cells; these findings have general implications for the promotion of exercise for health, and 50  

specifically for the optimisation of DC harvest for cancer immunotherapy. 51  

52  



4  
  

1. Introduction 53  

Acute aerobic exercise causes profound alterations to the cellular composition of 54  

peripheral blood, whereby the frequency of many leukocyte subsets increases during exercise, 55  

followed by a decline in the hours after [1]. For many types of immune cell subsets, the 56  

magnitude of change in response to exercise is usually largest among cells with the strongest 57  

effector potential [2-4]. Accordingly, this exercise-induced effect is considered a conserved 58  

evolutionary response which causes the redistribution of effector cells to peripheral tissues to 59  

conduct immune-surveillance [5]. Cells of a lymphoid lineage, such as T cells [2, 6] and natural 60  

killer (NK) cells [7], are the most widely researched. Cells with myeloid characteristics have 61  

received less attention in the exercise literature, except for a limited number of studies which 62  

have examined monocytes [8-10]. For example, it has been shown that alternatively-activated 63  

M2-like monocytes preferentially mobilise into blood during exercise [8, 9], whereas other work 64  

has shown that the most exercise responsive cells are classically-activated M1-like monocytes 65  

[10]. Studies examining the mobilisation patterns of dendritic cell (DC) subsets in response to 66  

exercise have provided equivocal evidence, despite the critical role DCs play in initiating and 67  

directing immune responses.  68  

DCs are often considered tissue resident cells, but these sentinels of the immune system, 69  

consist of multiple sub-populations with unique functions, and many DC subsets are found 70  

transmigrating between peripheral blood and the lymphatic system [11]. The central function of 71  

these professional antigen-presenting cells (APCs) is to ingest pathogens or debris from 72  

apoptotic or necrotic cells, and subsequently process and present antigen to lymphocytes [11]. 73  

DCs also help to regulate the immune response through co-stimulatory or co-inhibitory 74  

molecules [11, 12]. The two major sub-populations of DCs are myeloid DCs and plasmacytoid 75  
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DCs [13]. Some studies have shown that immediately after 15-20 minutes of moderate intensity 76  

exercise, total DC numbers increase in blood [14, 15] with a preferential increase in 77  

plasmacytoid DCs [16]. However, other studies have shown that after more prolonged exercise, 78  

such as a marathon, myeloid DCs increase but plasmacytoid DCs may decrease immediately 79  

post-exercise [17, 18]. In light of these contradictory findings, further investigation of the DC 80  

response to exercise is warranted. In addition, greater clarity on the phenotypic composition of 81  

plasmacytoid and myeloid DCs mobilised during exercise in healthy adults is needed to provide 82  

insight into the functional and homing characteristics of exercise-responsive DCs. 83  

 DCs express high levels of MHC class II (HLA-DR) and do not express other lineage 84  

markers expressed on monocytes, T cells, B cells and NK cells, and are therefore referred to as 85  

being Lineage− (CD3, CD19, CD20, CD14, CD56) HLA-DR+ [13, 19]. Expression of the cell 86  

surface protein CD303 enables further differentiation of plasmacytoid (CD303+) and myeloid 87  

DCs (CD303−) [20]. Among myeloid cells, four sub-populations can be identified based on 88  

CD1c and CD141 expression [21-24] (Table 1). Other cell-surface proteins, such as co-89  

stimulatory or co-inhibitory molecules, can indicate the functional characteristics of DCs, for 90  

example receptors such as CD205 (also known as DEC-205) [25] which enables recognition of 91  

apoptotic or necrotic cells [26]. Another commonly assessed cell-surface receptor expressed on 92  

activated DCs is CD209 (also known as DC-SIGN) which recognises a wide array of ligands 93  

from viruses and bacteria, and is also involved in adhesion, migration, signalling and antigen 94  

presentation [27]. To date, the effect of exercise on DCs that express these functional markers is 95  

not known. 96  

Clarifying the exercise-induced kinetics of DCs is important because it has been proposed 97  

that acute bouts of vigorous steady state exercise may be a strategy to optimise immune 98  
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competency, for example, by enhancing vaccination responses [28-31]. Additionally, it has 99  

recently been proposed that exercise could be a powerful means of increasing peripheral blood 100  

mononuclear cell yields for the purposes of immunotherapy [32, 33]. To date, the most targeted 101  

malignancies for DC immunotherapies are melanoma, prostate cancer, glioblastoma and renal 102  

cell carcinoma, but trials are being conducted with many other cancers [34, 35]. A common 103  

approach is to isolate peripheral blood mononuclear cells from patients to generate monocyte-104  

derived DCs ex vivo with growth factors and antigen stimulation, before re-administering the cell 105  

preparations [34, 36]. There are several examples of clinically effective DC immunotherapy 106  

regimens, but methodologies continue to be adapted and improved, with recent emphasis on 107  

harvesting DC sub-populations directly from blood, with a particular focus on either 108  

plasmacytoid DCs due to their effector potential, or CD1c+ and/or CD141+ myeloid subsets for 109  

their ability to cross present antigen to cytotoxic CD8+ T cells [34, 36]. Thus, if adjunctive 110  

strategies such as exercise are employed to improve cell yields for DC immunotherapy, it is 111  

important to understand how naturally occurring DC sub-populations respond to exercise-112  

induced stimulation. Therefore, the aim of this study was to conduct a detailed immuno-113  

phenotypic analyses of DC sub-populations present in peripheral blood before, during and after 114  

an acute bout of vigorous steady state aerobic exercise.   115  



7  
  

2. Methods 116  

2.1. Participants 117  

Nine healthy men were included in the present analyses (age, 21.9 ± 3.6 years; height, 177.8 ± 118  

5.4 cm; body mass, 78.9 ± 10.8 kg; body mass index, 24.9 ± 3.3 kg.m2; V̇O2 MAX, 41.5 ± 5.1 119  

mL.kg.min−1) (ethical approval reference: ERN_12-0830; University of Birmingham, UK). 120  

These nine participants represent a sub-group from a total of ten men who took part in other 121  

investigations [37-40] with peripheral blood mononuclear cells (PBMCs) that were available for 122  

analysis following cryopreservation. 123  

 124  

2.2. Pre-experimental procedures 125  

Height and body mass were assessed using standard methods and cardiorespiratory fitness (V̇O2 126  

MAX) was measured on a cycle ergometer. Expired air samples were assessed for oxygen 127  

consumption and carbon dioxide production using breath-by-breath analysis, with heart rate 128  

monitored via telemetry, and ratings of perceived exertion recorded using the Borg scale [37-40]. 129  

 130  

2.3. Exercise trial and blood sampling 131  

At least seven days after preliminary measurements, and following an overnight fast, participants 132  

reported to the laboratory in the morning, and a blood sample was collected from a cannulated 133  

forearm vein after a 15-minute seated rest (baseline). The exercise trial consisted of steady state 134  

cycling at 80% V̇O2 MAX for 20 minutes, at a power output determined from the V̇O2 MAX test. 135  

Exercise intensity was monitored with breath-by-breath measurements. Heart rate and ratings of 136  

perceived exertion were recorded throughout the exercise trial. A second blood sample was 137  
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collected in the final minute of exercise at 80% V̇O2 MAX (exercise) and a third blood sample 138  

collected post-exercise, after 30 minutes of seated rest (+30 minutes) [37-40]. 139  

 140  

2.4. Peripheral blood mononuclear cell (PBMC) isolation  141  

Blood with potassium ethylene-diamine-tetra-acetic acid (EDTA) as an anticoagulant was diluted 142  

1:1 with Roswell Park Memorial Institute Media (RPMI), and layered on top of Ficoll paque 143  

PLUS (GE Healthcare) (2 blood:1 Ficoll), before centrifuging at 400 × g for 30 minutes at 21°C. 144  

PBMCs were aspirated and washed three times in RPMI by centrifuging at 200 × g for 5 145  

minutes. Cells were re-suspended in freezing mixture (70% RPMI, 20% fetal calf serum (FCS) 146  

and 10% dimethyl sulfoxide (DMSO)) and frozen at −1°C/min using a freezing container 147  

(Nalgene ‘Mr Frosty’ Thermoscientific). Cells were stored at −80°C and analysed within six 148  

months [39, 40]. 149  

 150  

2.5. Flow cytometry  151  

PBMCs were thawed rapidly at 37°C and washed twice in phosphate buffered saline (PBS) 152  

containing 2% FCS and 2mM EDTA by centrifuging at 400 × g for 5 minutes. PBMCs were 153  

counted using a haemocytometer and approximately 300,000 cells were added to tubes for 154  

incubation with fluorescently conjugated antibodies to identify DCs and sub-populations using 155  

eight-colour flow cytometry (FACS-CANTO, Becton-Dickenson, San Jose, USA). The 156  

following monoclonal antibodies were used: FITC-conjugated anti-Lineage 2 cocktail (CD3 157  

clone # SK7, CD19 clone # SJ25C1, CD20 clone # L27, CD14 clone # MφP9, CD56 clone # 158  

NCAM 16.2), V500-conjugated anti-HLA-DR clone # G46-6, V450-conjugated anti-CD209 159  

clone # DCN46 (BD Biosciences, San Diego, USA), APC-conjugated anti-CD303 clone # 201A, 160  
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PE-Cy7-conjugated anti-CD141 clone # M80, APC-Cy7-conjugated anti-CD1c clone # L161 161  

(BioLegend, San Diego, USA), PE-conjugated anti-CD205 clone # MG38 (BD Pharmingen, San 162  

Diego, USA). In addition, 7-aminoactinomycin D (7-AAD) (BD Pharmingen, San Diego, USA) 163  

was used to exclude necrotic and apoptotic cells. Fluorescence-minus-one (FMO) tubes 164  

established negative and positive gating strategies for CD205 and CD209 expression (data not 165  

shown).  166  

 167  

2.6. Flow cytometry analysis 168  

Data were analysed using FlowJo version Xv 0.7 (Tree Star, Inc., Ashland, OR). Doublets were 169  

excluded by gating forward versus forward-scatter. PBMCs were gated on the forward versus 170  

side-scatter. Dead cells were excluded by gating 7AAD versus side-scatter. Total DCs were 171  

identified as being Lineage−HLA-DR+, and analysed for expression of CD303 to identify 172  

plasmacytoid DCs (Lineage−HLA-DR+CD303+) and myeloid DCs (Lineage−HLA-173  

DR+CD303−). Myeloid DCs were analysed for expression of CD1c and CD141 to yield four 174  

sub-populations:  CD1c−CD141−; CD1c+CD141−; CD1c+CD141+; CD1c−CD141+ (Table 1 175  

and Figure 1). All cell populations were examined for expression of CD205 and CD209. The 176  

absolute number of DCs and sub-populations was determined from the PBMC count (Coulter 177  

ACTdiff haematology analyser, Beckman-Coulter, High Wycombe, UK). 178  

 179  

2.7. Statistical analyses 180  

Data were inspected for normal distribution using the Shapiro-Wilk test. Non-normally 181  

distributed data were transformed logarithmically. Responses to exercise were examined using 182  

repeated-measures Analyses of Variance (ANOVA). When data violated sphericity, a 183  
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Greenhouse-Geisser correction was applied. Differences between individual time points were 184  

examined using post-hoc paired samples t-tests. Statistical significance was accepted at the p<.05 185  

level. Data are presented as means ± standard deviation (SD) unless otherwise stated. Data were 186  

analysed using SPSS statistical package version 22 (SPSS Inc, USA).  187  
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3. Results 188  

3.1. Exercise trial  189  

All participants completed the exercise trial [38]. The mean intensity of exercise was 80 ± 6% of 190  

V̇O2 MAX, average ratings of perceived exertion were 16 ± 1, and the mean heart rate throughout 191  

the exercise task was 176 ± 7 beats per minute representing 91 ± 3 % of measured maximum 192  

heart rate.   193  

     194  

3.2. DCs  195  

Total leukocytes, lymphocytes and monocytes exhibited the characteristic exercise-induced 196  

changes as reported previously [39, 40]. DCs (Lineage−HLA-DR+) increased in numbers in 197  

peripheral blood with exercise by approximately 150%, returning to baseline levels within 30 198  

minutes (main effect of time; F (1,10) = 60; p< 0.05 η2 =0.9) (Figure 2a and 2b). 199  

 200  

3.3. DC sub-populations  201  

All DC sub-populations exhibited a statistically significant increase in cell numbers during 202  

exercise, except for CD1c−CD141+ myeloid DCs, and returned to pre-exercise levels within 30 203  

minutes of exercise cessation (Table 2). Overall, plasmacytoid DCs mobilised to a greater 204  

magnitude than myeloid DCs (195 ± 131 % vs. 131 ± 100 %; p< .05; Figure 2b). Among 205  

myeloid DCs, CD1c−CD141− showed the largest magnitude of exercise-induced change (167 ± 206  

122 %) with a stepwise mobilisation pattern among remaining sub-populations: CD1c+ CD141− 207  

(79 ± 50 %), followed by CD1c+ CD141+ (44 ± 41 %) with the smallest response shown by 208  

CD1c−CD141+ cells (23 ± 54%) p< .05.  209  

 210  
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3.4. DCs and sub-populations expressing CD205 and analysis of CD205 cell-surface expression 211  

density 212  

The majority of DCs and sub-populations were CD205+ (mean ± SD; 97.8 ± 3.6%; across all 213  

sub-populations and participants) [13]. There were no differences in the proportion of DCs 214  

expressing CD205+ between the different sub-populations (data not shown). Generally, CD205+ 215  

and CD205– cells among all sub-populations mobilised into blood during exercise, returning to 216  

baseline levels within 30 minutes of exercise (Table 2 and Figure 3). However, there was a trend 217  

for a larger mobilisation of CD205– cells in the majority of sub-populations (Figure 3). 218  

Compared to CD205+ cells, a larger and statistically significant mobilisation of CD205– cells 219  

was observed among CD1c−CD141+ cells and the CD1c+CD141+ cells (p’s < .05; Figure 3e 220  

and 3f). For example, CD1c−CD141+CD205– cells and CD1c+CD141+CD205– cells exhibited 221  

a mobilisation that was 80% and 70% greater than their CD205+ counterparts. Different to other 222  

cells, plasmacytoid DCs exhibited a trend for a larger mobilisation of CD205+ cells (Figure 3c). 223  

We also examined whether exercise altered the cell-surface expression density of CD205. At 224  

baseline, the cell-surface expression density of CD205 was greater in the three myeloid sub-225  

populations; CD1c−CD141+ and CD1c+CD141+ and CD1c+CD141− compared to 226  

CD1c−CD141− and plasmacytoid DCs (data not shown). In addition, CD205 expression density 227  

did not change in response to exercise (data not shown).  228  

 229  

3.5. DCs and sub-populations expressing CD209 and analysis of CD209 cell-surface expression 230  

density 231  
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DCs and their sub-populations did not express CD209 and there were no changes in the numbers 232  

or proportions of CD209– cells, or alterations in the cell-surface expression density of CD209 in 233  

response to exercise (data not shown).    234  
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4. Discussion  235  

The present study demonstrates that the total number of DCs increased in peripheral 236  

blood during exercise by 150% and among the major DC sub-populations, plasmacytoid DCs 237  

mobilised by 195% whereas myeloid DCs exhibited a smaller increase of 131%. We show for 238  

the first time, that among the four sub-populations of myeloid DCs, there was a stepwise 239  

mobilisation pattern: a 167% increase with CD1c−CD141− cells, a 79% increase with 240  

CD1c+CD141− cells, a 44% increase with CD1c+ CD141+ cells and a 23% increase with 241  

CD1c−CD141+ cells.  242  

To date, the phenotypic characteristics of DC kinetics during exercise remains unclear as 243  

only a limited number of studies have investigated the mobilisation of DC sub-populations in 244  

response to physical stressors, and these studies have produced seemingly contradictory findings. 245  

In the study herein, we show that both major DC subsets increase during exercise, with a greater 246  

mobilisation response observed among plasmacytoid DCs compared to myeloid DCs. In 247  

agreement with these results, a large and preferential exercise-induced mobilisation of 248  

plasmacytoid DCs (200% increase) compared to myeloid DCs (100% increase) has also been 249  

reported by a study that collected blood samples after vigorous ice hockey [16]. Contradicting 250  

these findings, in two studies it has been shown that plasmacytoid DCs may decrease 251  

immediately after long-duration exercise [17, 18]. However, these latter findings may be an 252  

artefact, because DC sub-populations were analysed as a proportion of total leukocytes, and thus 253  

DCs may artificially appear to be reduced because of a larger relative influx of NK cells, T cells 254  

and other highly exercise-responsive leukocyte subsets. In a separate study, plasmacytoid and 255  

myeloid DCs were examined before and after a combined protocol of moderate aerobic and 256  

intermittent resistance exercise undertaken by patients with multiple sclerosis, and healthy 257  
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participants [15]. In the aforementioned work, it was shown that myeloid cells increased by 75% 258  

and plasmacytoid cells increased by 50% and there were no differences between patients and 259  

healthy controls [15]. Thus, sustained vigorous steady state exercise appears to at least mobilise 260  

both myeloid and plasmacytoid DCs, yet we and others [16] have found higher mobilisation 261  

responses among plasmacytoid DCs. 262  

A preferential mobilisation of plasmacytoid DCs likely represents an adaptive process, in 263  

which cells capable of mounting effector responses against infections or cancerous cells are 264  

redistributed. Indeed, plasmacytoid DCs are major effector cells in the context of viral infection 265  

due to their robust production of type 1 interferons [41, 42]. In addition, these cells express high 266  

levels of the toll like receptors TLR7 and TLR9, which transduce signals from virus or self-267  

nucleic acids leading to rapid identification and robust eradication of pathogens [43, 44]. In 268  

comparison, myeloid cells are specialised in producing IL-12 that is critical for T cell activation 269  

and differentiation [42, 45, 46]. Thus, in an evolutionary context, given that plasmacytoid DCs 270  

have a greater inflammatory and migratory potential compared to myeloid DCs [42, 47], it is 271  

perhaps unsurprising that these effector cells are preferentially mobilised by exercise. 272  

Mechanistically, the magnitude of this mobilisation response is – akin to other effector immune 273  

cells preferentially mobilised by acute exercise – likely to be intensity-dependent and driven, in a 274  

dose-dependent fashion, by the density of adrenergic receptors on the surface of DCs [48, 49]. 275  

Indeed, it has been demonstrated that the degree of DC mobilisation during strenuous exercise 276  

appears to correlate positively with the concentration of catecholamines released into the 277  

peripheral blood [16]. 278  

Extending previous investigations, we show for the first time that among myeloid DCs, 279  

there is a stepwise mobilisation pattern, with the largest responses exhibited by CD1c−CD141− 280  
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cells, followed by a decreasing magnitude of response from CD1c+CD141− cells, then 281  

CD1c+CD141+ cells, with the smallest exercise-induced change exhibited by CD1c−CD141+ 282  

cells. The least exercise responsive CD1c−CD141+ cells identified in the present study, 283  

represent a small sub-population of myeloid DCs that have a strong capacity to phagocytose 284  

apoptotic and necrotic cells or their debris, cross-presenting antigen to CD8+ cytotoxic T cells 285  

[24, 50, 51]. In the present study, the two DC sub-populations that mobilised moderately with 286  

exercise (CD1c+CD141+ and CD1c+CD141−) both expressed CD1c, and DCs with this 287  

characteristic, are potent stimulators of CD4+ T cells [24, 51]. Recently, two additional sub-288  

populations of CD1c+ DCs have been established, referred to as CD1c+_A and CD1c+_B, which 289  

exhibit non-inflammatory and inflammatory characteristics respectively [23]. However, as these 290  

new sub-populations must be identified by uniquely expressed cell-surface proteins (CD32B for 291  

CD1c+_A, and CD163 and CD36 for CD1c+_B), in the present study, we are unable to infer 292  

whether the CD1c-expressing cells mobilised by exercise exhibit inflammatory potential [23]. 293  

Importantly, the present study provides novel information about the least well-characterised 294  

myeloid DC sub-population [23]: we show that DCs with a CD1c−CD141− phenotype, are the 295  

most exercise-responsive myeloid subset. In addition, future studies may seek to investigate the 296  

functional characteristics and homing properties of these cells to better infer the clinical 297  

implications of CD1c−CD141− mobilisation during exercise. 298  

We also show for the first time, that among myeloid DCs, the most exercise responsive 299  

cells are CD205−. For example, CD1c−CD141+ and CD1c+CD141+ cells which did not express 300  

CD205, exhibited an exercise-induced mobilisation that was 80% and 70% greater than their 301  

CD205+ counterparts, respectively. The cell surface protein CD205 (also known as DEC-205) is 302  

upregulated upon DC maturation [25] and facilitates recognition of apoptotic or necrotic cells 303  
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[26] by having a critical role in receptor-mediated antigen uptake [52]. Thus, these CD205− 304  

cells, which are not specialised in recognising apoptotic or necrotic cells, may have other 305  

functions, such as targeting viral infection [53]. In the present study, we also examined DC 306  

expression of CD209 (also known as DC-SIGN), a multifunctional receptor which recognises 307  

glycans from viruses and bacteria, and is involved in adhesion, migration, signalling and antigen 308  

presentation [27]. In agreement with prior research, we showed that DCs in peripheral blood do 309  

not express CD209 [13, 54] but we extend these findings by showing that exercise does not 310  

stimulate an upregulation of CD209, or at least, does not preferentially mobilise a sub-population 311  

of DCs that already express CD209. Circulating DCs become primed to acquire antigens when 312  

‘activating stimuli’ such as cytokines interact with a variety of cell surface receptors [11]. Upon 313  

activation, DCs upregulate chemokine receptors, adhesion molecules and co-stimulatory 314  

molecules, including CD209 [11]. Indeed, it is well established that developing DCs in vitro for 315  

several days with granulocyte-macrophage colony stimulating factor (GM-CSF) and IL-4 leads 316  

to an increase in CD209 expression [32, 55]. In addition, inflammatory stimuli such as TNF-317  

alpha, IFN-gamma, and lipopolysaccharide, which also increase with vigorous exercise, 318  

upregulate cell surface expression of CD209 [56]. In the present study, it seems that the 319  

inflammatory stimulus of exercise was too short, or of insufficient magnitude, to elicit an 320  

upregulation of CD209, and thus, these signals might most likely be encountered post-exercise in 321  

peripheral tissues, where DCs have been shown to strongly express CD209 [55].  322  

The findings presented in this study improve our understanding of how exercise could be 323  

used to bolster cell yields for DC immunotherapy [32, 33]. Our results are timely, given the 324  

recent focus of harvesting DC sub-populations directly from blood [34, 36, 51, 57]. For example, 325  

a feasibility study isolated peripheral blood plasmacytoid DCs from 15 patients with stage IV 326  
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melanoma for expansion ex vivo with cytokines and antigen, before re-infusing the cell 327  

preparations [58]. The results showed that 7 out of 15 patients were alive two years after 328  

plasmacytoid DC administration, compared with 6 of 72 patients treated with standard 329  

chemotherapy [58]. Using similar methodology in another feasibility study of 14 patients with 330  

stage IV melanoma, immunotherapy using CD1c+ myeloid DCs resulted in long-term 331  

progression free survival for 12-35 months [59]. Furthermore, CD1c+ DC immunotherapies are 332  

being trialled with other cancers, including prostate cancer [60]. The results of the present study 333  

show that if peripheral blood DCs could be harvested during exercise, the total DC yield might 334  

increase by 150%, with a potential increased cell yield among plasmacytoid and myeloid 335  

dendritic cells by 195% and 131% respectively. Depending on the subset of myeloid cells being 336  

targeted, exercise could improve cell yields by 23-167%. Future studies are needed to establish 337  

whether exercise can increase the yield of peripheral blood DCs in patients with different forms 338  

of cancer, and in addition, whether these changes, which might improve the preparation of DC 339  

immunotherapy products, leads to better clinical outcomes. 340  

The findings of the present study also provide some support for mechanisms underlying 341  

vaccine-enhancing effects of acute psychological stress [61] and acute bouts of exercise [29]. 342  

Indeed, both stressors cause a substantial leukocytosis, and it has been suggested that as part of 343  

this response, DCs are mobilised into peripheral blood, later homing to the site of vaccine 344  

administration in skeletal muscle, facilitating antigen processing and presentation [62]. Further, 345  

the most robust and consistent interventions that enhance vaccine responses induce damage and 346  

local inflammation in the muscle selected for vaccine administration [28]. Our study confirms 347  

that as part of exercise-induced leukocytosis, DCs are mobilised into peripheral blood, with a 348  

preferential response from plasmacytoid cells. Other human studies have shown that leukocytes 349  
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appear in muscles damaged by exercise within four to six hours [63, 64]. In support, animal 350  

studies have shown that DCs accumulate in damaged muscle within 24 hours [65] perhaps in 351  

response to myoblast-derived cytokines and chemokines [66] or heat shock proteins, uric acid 352  

and cell debris from necrotic cells [67]. Thus, given the results of the present study and those 353  

discussed herein, it is likely that Matzinger’s ‘danger model’, which proposes that antigen 354  

presenting cells are attracted to distressed and injured cells, and subsequently activated by 355  

endogenous cellular alarm signals, could be a mechanism for improved vaccine responses 356  

following muscle-damaging exercise [68]. Further support for this idea is provided by the 357  

observation that DCs, and in particular plasmacytoid DCs, are a common feature of lesions in 358  

inflammatory myopathies [69, 70].  359  

When interpreting the results from the present study it should be considered that DCs did 360  

not fall below resting levels 30 minutes after exercise. It is likely that the intensity and/or 361  

duration of exercise was insufficient to stimulate a post-exercise extravasation of DCs to 362  

peripheral tissues [5]. It is well established that a dose-response relationship between exercise 363  

duration and the magnitude of lymphocyte trafficking exists, but relationships have not been 364  

investigated among DCs [71]. The extravasation of cells out of the bloodstream is likely to be 365  

driven by catecholamines and cortisol, and the magnitude of this neuroendocrine response is 366  

positively correlated with exercise intensity and duration [72]. In support, a strong positive 367  

correlation between adrenergic activity and the exercise-induced increase of plasmacytoid DCs 368  

has been reported [16], suggesting an adrenergic dependent mechanism of DC mobilisation, as 369  

with other cell populations [73]. However, if in the present study, exercise did indeed invoke a 370  

neuroendocrine response of sufficient magnitude, extended blood sampling may have enabled 371  

assessment of DC extravasation, given that the post-exercise nadir among lymphocytes is 372  
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typically 1-2 hours after the stimulus [3]. To better determine the DC kinetics in response to 373  

exercise, future studies should investigate different durations and intensities of exercise with 374  

extended post-exercise blood sampling. 375  

In summary, acute exercise increased the number of DCs in peripheral blood by 150% 376  

with a preferential mobilisation of plasmacytoid DCs (195%) compared to myeloid DCs (131%). 377  

Among myeloid DCs, there was a stepwise mobilisation pattern: 167% increase with 378  

CD1c−CD141− cells, a 79% increase with CD1c+CD141−, a 44% increase with CD1c+CD141+ 379  

cells and a 23% increase with CD1c−CD141+ cells. The most exercise responsive myeloid DCs 380  

did not express CD205, suggesting that immature cells, unspecialised in recognising apoptotic or 381  

necrotic cells, are preferentially mobilised.  382  

 383  

Figure legends 384  

Figure 1  385  

Flow cytometry gating strategy. Doublets were removed by gating forward versus forward-386  

scatter (a). Mononuclear cells were gated on the forward versus side-scatter (b) dead cells were 387  

excluded gating 7AAD versus side-scatter (c) followed by subsequent gating of 388  

Lineage−HLADR+ dendritic cells (d), which were analysed for expression of CD303 (e). 389  

Plasmacytoid dendritic cells were identified as Lineage−HLA-DR+ CD303+ and myeloid 390  

dendritic cells identified as Lineage−HLA-DR+CD303− (e). Myeloid dendritic cells 391  

Lineage−HLADR+CD303− were analysed for expression of CD141 and CD1c (f) to yield four 392  

sub-populations CD1c−CD141+; CD1c+CD141+; CD1c+CD141−; CD1c−CD141− (g). CD205 393  

gating was determined using fluorescence-minus-one (FMO) tubes and applied to all cell 394  

populations (h). 395  
 396  
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Figure 2  397  

Mobilisation of total dendritic cells and subpopulations during exercise. (a) Exercise-induced 398  

kinetics of dendritic cells. Main effect of time: F (1,10) = 60.0 ; p< 0.05 η2 =0.9. * Indicates a 399  

significant difference from baseline p<0.05 (t-test between baseline and exercise; t (8)= −6.9, 400  

p<0.05) and a significant difference from +30min (t-test between exercise and +30min; t (8) = 401  

14.2, p<0.05). Data are expressed as cell/µL (mean ± SEM). (b) Percentage change from baseline 402  

for major dendritic cell subsets in response to exercise. * Indicates a significant difference 403  

between subsets p<0.05 (t-test; Plasmacytoid vs. Myeloid, t (8)= −2.9, p<0.05). Data are 404  

expressed as percentage change from baseline (mean ± SEM). (c) Percentage change for myeloid 405  

dendritic cell sub-populations in response to exercise. * Indicates a significant difference 406  

between subsets p<0.05 (t-test; CD1c−CD141+ vs CD1c−CD141−, t (8)= −3.0, p<0.05; 407  

CD1c+CD141+ vs CD1c−CD141− t (8)= −3.1, p<0.05; CD1c+CD141− vs CD1c−CD141−, t (8)= 408  

−3.9, p<0.05). No other significant differences were observed between cell types. Data are 409  

expressed as percentage change from baseline (mean ± SEM). 410  
 411  
Figure 3 412  

Differential magnitude of dendritic cell and subpopulation mobilisation on the basis of CD205 413  

expression. Percentage change from baseline for major dendritic cell subsets and the myeloid 414  

dendritic cell sub-populations in response to exercise. * Indicates a significant difference 415  

between CD205+ and CD205− p<0.05 t-test. CD1c−CD141+, t (8)= −2.5, p<0.05; 416  

CD1c+CD141+, t (8)= −3.1, p<0.05. Data are expressed as percentage change from baseline 417  

(mean ± SEM).  418  
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Table 1. Dendritic cell sub-population identification  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
Legend: Indentation indicates a sub-population of parent cells (i.e., Myeloid Dendritic Cells are a sub-population of Dendritic Cells, and CD1c+CD141− 
Dendritic Cells are a sub-population of Myeloid Dendritic Cells). Lineage cocktail = CD3, CD19, CD20, CD14, CD56.  HLADR = marker for major 
histocompatibility complex MHC class II. CD = cluster of differentiation. In addition CD205 (DEC-205) a cell surface marker that enables recognition 
of apoptotic or necrotic cells (Cao et al 2015) and CD209 (DC-SIGN) a cell surface marker that recognises a wide variety of ligands, is involved in 
adhesion, migration and antigen presentation (Garcia-Vallejo and van Kooyk 2013) were examined on all dendritic cells and sub-populations.  
 
 

Sub-population name Cell surface markers Functional properties Reference 
    

DCs Lineage− HLADR+  Presentation of ingested pathogens or cell debris to 
T-cells. 

Ziegler Heitbrock (2010) 
Merad (2013) 

    
Plasmacytoid DCs Lineage− HLADR+ 

CD303+ 
Major effector sub-population of DCs. Produce type 
1 interferons in response to viral infection.   

Dzionek (2000) 
Liu (2005) 

    
Myeloid DCs Lineage− HLADR+ 

CD303− 
Regulatory DC sub-populations. Produce IL-12 for 
T-cell activation and differentiation. 

Dzionek (2000) 
Heufler (1996) 

    
 CD1c−CD141+ Lineage− HLADR+ 

CD303− CD1c− CD141+ 
 

Cross presentation of antigen to CD8+ T -cells for 
anti-tumour immunity.  

Penna (2002) 
Ding (2014) 

 CD1c+CD141+ Lineage− HLADR+ 
CD303− CD1c+ CD141+ 
 

Cross presentation of antigen to CD8+ T cells for 
anti-tumour immunity and stimulate CD4+ T-cells. 

Villani (2017) 
Ding (2014) 

 CD1c+CD141− Lineage− HLADR+ 
CD303− CD1c+ CD141− 
 

Stimulate CD4+ T-cells. Villani (2017) 
Ding (2014) 

 CD1c−CD141− Lineage− HLADR+ 
CD303− CD1c− CD141− 
 

Unknown Villani (2017) 



Table 2. Total DCs, and DC sub-populations differentiated on CD205 expression (mean ± SD) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Legend: *<0.05 **<0.01 ***<0.001 indicates a significant difference (paired samples t-test from baseline). † indicates a significant difference 
<0.05 (paired samples t-test from exercise to +30 min). 

Cells /µL   Baseline Exercise +30 min  Main effect of time 

          DCs   79 ± 38 196 ± 126*** 76 ± 34†  F (1,10) = 59.9 ; p< 0.05 η2 =0.9 
 CD205+  78 ± 37 192 ± 123*** 74 ± 33†  F (1,10) = 59.9 ; p< 0.05 η2 =0.9 
 CD205− 

 
 1.4 ± 1.4 

 
4.3 ± 4.8*** 

 
1.5 ± 1.5† 
 

 F (2,16) = 27.8 ; p< 0.05 η2 =0.8 
         Plasmacytoid DCs   19 ± 11 55 ± 42*** 22 ± 19†  F (2,16) = 45.9 ; p< 0.05 η2 =0.9 

CD205+  19 ± 11 55 ± 42*** 22 ± 19†  F (2,16) = 45.9 ; p< 0.05 η2 =0.9 

CD205− 
 

 0.07 ± 0.07 
 

0.1 ± 0.09** 

 
0.06 ± 0.03 
 

 F (2,16) = 5.0 ; p< 0.05 η2 =0.4 
              Myeloid DCs   60 ± 30 139 ± 88*** 53 ± 22†  F (2,16) = 43.6 ; p< 0.05 η2 =0.8 

CD205+  58 ± 30 135 ± 85*** 52 ± 21†  F (2,16) = 43.4 ; p< 0.05 η2 =0.8 

CD205− 
 

 1.4 ± 1.3 
 

4.2 ± 4.7*** 

 
1.4 ± 1.5† 
 

 F (2,16) = 28.1 ; p< 0.05 η2 =0.8 
          CD1c− CD141+    2.1 ± 1.3 2.4 ± 1.5 1.7 ± 0.9  F (2,16) = 1.4 ; p> 0.05 η2 =0.2 

CD205+  2.0 ± 1.3 2.2 ± 1.5 1.6 ± 0.9  F (2,16) = 1.5 ; p> 0.05 η2 =0.2 

CD205− 
 

 0.08 ± 0.1 
 

0.1 ± 0.2 
 

0.09 ± 0.1 
 

 F (2,16) = 3.6 ; p> 0.05 η2 =0.3 
          CD1c+ CD141+    0.6 ± 0.2 0.8 ± 0.4** 0.6 ± 0.2  F (2,16) = 5.1 ; p< 0.05 η2 =0.4 

CD205+  0.54 ± 0.2 0.78 ± 0.38* 0.54 ± 0.2  F (2,16) = 4.6 ; p< 0.05 η2 =0.4 

CD205− 
 

 0.01 ± 0.01 
 

0.03 ± 0.01*** 
 

0.01 ± 0.01† 
 

 F (2,16) = 21.3 ; p< 0.05 η2 =0.7 
 

 CD1c+ CD141−    20 ± 12 34 ± 18*** 16 ± 6†  F (2,16) = 31.2 ; p< 0.05 η2 =0.8  

 CD205+  20 ± 12 33.7 ± 17.4*** 16 ± 6†  F (2,16) = 31.1 ; p< 0.05 η2 =0.8 

 CD205− 
 

 0.07 ± 0.08 
 

0.14 ± 0.16 
 

0.04 ± 6† 
 

 F (2,16) = 3.9 ; p< 0.05 η2 =0.3 
          CD1c− CD141−    37 ± 22 102 ± 78*** 35 ± 21†  F (2,16) = 45.2 ; p< 0.05 η2 =0.9 

CD205+  35.7 ± 21.3 98.1 ± 74*** 33.3 ± 19.6†  F (2,16) = 45.2 ; p< 0.05 η2 =0.9 

CD205−  1.3 ± 1.1 4 ± 4.4*** 1.3 ± 1.3†  F (2,16) = 27.1 ; p< 0.05 η2 =0.8 
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Figure	
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