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Abstract— The increasing coupling between natural gas and 

electricity systems by gas-fired generation units brings new 
challenges to system analysis, such as pressure variations due to 
consumption perturbations of generation units. The emerging 
issues require revolutionary modeling and analysis techniques.  

This paper proposes a novel model to quantify gas pressure 
variations due to gas-fired power unit ramping and the impact of 
constraints from natural gas pressure change on ramp rates of 
gas-fired plants. By utilizing Laplace transform to resolve the 
governing equations of gas networks, the proposed model can 
significantly reduce modeling complexity and computational 
burden. The dynamic behaviors in time scale in s-domain and 
spatial partial differential equations are transformed into finite 
difference equations. By introducing the concept of transfer 
matrices, the relation between states at each node of gas systems 
can be expressed by transfer parameter matrices. Additionally, a 
simplified model is introduced to simply the analysis. The explicit 
expressions of nodal pressure variations in response to demand 
change are very convenient for analyzing system dynamic 
performance under disturbances, identifying the most influential 
factors. The new models are extensively demonstrated on three 
natural gas networks and benchmarked with traditional 
simulation approaches. Results illustrate that they produce very 
close results with the simulation approach, particularly when gas 
pipelines are long and enter steady states.  
 

Index Terms—Natural Gas Network, Electricity Networks, 
Transfer Matrix, Integrated Energy System, Dynamic Modelling 
 

I. INTRODUCTION 
ATURAL gas and electricity networks are being tightly 
linked by more gas-fired turbines installed, which can 

provide fast electricity balancing and relatively clean energy. 
For example, the current installed capacity of gas power plants 
in the UK is around 33GW, out of its 75.3 GW total capacity [1]. 
Thus, the reliable operation of power systems depends not only 
on the status of electric facilities but also on natural gas 
infrastructures. On the other hand, the operation of gas-fired 
power plants also has direct impact natural gas systems. Paper 
[2] reviews the interdependence of many critical infrastructures, 
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characterizes the interdependence, and discusses the pros and 
cons and challenges in integrated analysis. The tight couplings 
between natural gas and electricity infrastructures need new 
models and techniques to analyse the underlying impact.  

Previous work has devoted a large amount of efforts to 
analyzing the interactions of natural gas and electricity systems 
in unit commitment [3-5], risk assessment [6, 7], etc. In [3], 
both systems are represented as networks, consisting  of nodes 
and arcs with capacity and efficiency constraints considered. 
Then, the economic efficiency of energy flows in the integrated 
energy system is evaluated. In [4], an integrated model 
considering natural gas networks and hydroelectric power plant 
reservoirs is developed for operational planning of electricity 
systems. In [6], an integrated model for assessing the impact of 
the interdependence of electricity and gas networks on 
electricity system security is proposed. However, linear natural 
gas network constraints are adopted without considering the 
nonlinear relationship between gas flow and pressures. Paper [8] 
reviews the hybrid gas-electricity models and presents a new 
model to illustrate a few of potential coupling effects between 
gas and electric power systems. Work in [9] analyzes the 
impact of natural gas infrastructure contingencies on the 
operation of electric power systems. These studies mainly use 
steady state models, where the dynamic behaviors of natural 
gas networks are neglected.  Paper [10] shows that the use of 
steady-state natural gas flow models may result in impractical 
results, neglecting the linepack and slower traveling speed of 
natural gas flows.  

Thus, it is essential to develop dynamic models of natural gas 
networks for integrated gas-electricity system analysis in order 
to capture their interactions more precisely. Typically, the 
dynamic behaviors of isothermal gas flow are modeled as 
continuity and momentum equations [11, 12] with constant 
temperature. Many numerical methods have been introduced to 
study the dynamics, such as explicit finite-difference methods, 
implicit finite-difference methods, and finite element methods 
[13]. The implicit methods have been widely used because of 
high accuracy, efficiency and stability [14, 15]. In [10], 
transient flows modeled as partial differential equations (PDEs), 
are discretized in space and time, which can result in very 
large-scale algebraic equations. In [16], a surrogate network 
flow is used to model the dynamics, which is derived by a 
model reduction technique proposed in [17]. The pressure 
fluctuations caused by stochastic gas consumption are modeled 
in [18], where diffusive jitter is used to represent this effect. In 
[19], the dynamic interactions between a microgrid and 
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small-scale natural gas system are simulated on MATLAB. In 
the paper, the dynamic behaviors of natural gas in pipes are 
described by partial differential equations. 

The difficulties to characterize gas network dynamics 
present great challenges for integrated energy system modeling. 
Simulation approaches are not very convenient to use due to 
high complexity and not non-analytical features. In addition, 
they are very time consuming, particularly for large-scale 
systems. Lastly, some embedded implications of system 
performance can hardly be obtained by simulation approaches. 
Thus, it is essential to develop a dynamic model for gas 
networks which can be easily utilized for integrated 
gas-electricity system study. 

Laplace transform is a common tool to analyze system 
dynamic behaviors [20, 21]. In paper [20], the equivalent model 
based on distributed parameters is conducted from a predefined 
model with known parameters. The model is conducted based 
on the physical phenomenon of gas systems. Parameters are 
determined by the characteristics of gas composition and flows 
with many assumptions on length and diameters, probably 
compromising accuracy under specified frequencies. 
Additionally, the work treats a pipe as a whole and intersections 
are not considered and results are presented in time-delay 
model. In this paper, Laplace transform is also an essential step 
for deriving transfer functions and obtaining the relationship 
between two ends of pipelines. The model is based on transfer 
functions and numerical formulations, derived from the 
governing equations of pipelines.  

This paper proposes an equivalent model of natural gas 
networks for dynamic analysis, quantifying gas network 
pressure variations due to the ramp of gas-fired power plants. 
The dynamic behaviors in time scale are described in L-domain. 
By using Laplace transform, discretization spatial partial 
differential equations (PDEs) are transformed into finite 
difference equations. By using transfer matrix concept from 
electrical circuit theory, the relations between state variables 
can be expressed by transfer matrices. The explicit expression 
of pressure variations is very convenient for analyzing system 
performance under disturbance. This paper also examines the 
impact of constraints from natural gas pressure change on ramp 
rates of gas-fired plants. The new models are extensively 
demonstrated on three gas networks and benchmarked with a 
traditional simulation approach to illustrate the accuracy. 
Results illustrate that they produce very close results with the 
simulation approach, particularly when pipelines are long and 
in steady states. The new models are very useful for analyzing 
the dynamic couplings of gas-electricity networks, particularly 
considering the scale of both systems grows dramatically. 

The main contribution is summarized as follows: i) the 
transfer matrix concept in electric circuits is introduced to 
model pipelines as a cascade of two-port sections, which can 
easily illustrate the relation between their inputs and outputs; ii) 
the equivalent model can improve dynamic analysis efficiency 
for integrated energy systems as the numerical efforts for 
modeling dynamic behaviors of whole gas systems can be 
significantly reduced. 

The remainder of the paper is organized as follows: Section 

II introduces the dynamic models of gas networks. Sections III 
and IV propose full transfer matrix for pipelines and simply the 
matrix. In Section V, the ramp of gas-fired plants is modelled 
that bridges gas and electricity networks. Case studies are given 
in Section VI and Section VII concludes the paper. 

II. DYNAMIC GAS FLOW MODEL 
This section briefly introduces the dynamic gas flow model 

and the application of Laplace transform, followed by 
numerical formulation for the model. 

A. Original Gas Pipeline Model 
In the dynamic modelling of gas pipelines in short time 

period, temperature variations and pipe inclination can be 
neglected, as they slightly change. For a pipeline with the 
length of L, gas flow model is governed by a series of PDEs on 
spatial dimension [ ]0,x L∈  and time dimension t [11, 22]  

The continuity equation is 

 
2

0t x
c m
A

π∂ + ∂ =   (1) 

where, π  is pressure (Pa), m  is mass flow (kg/s), and A  is the  
cross section area of the pipeline (m2). Here, c  is sound speed, 
which is decided by 

 c ZRT=   (2) 

where, Z  is compressibility factor, R  is gas constant and T  
is temperature. 

The momentum equation is 

 
22 2

0
2t x x

fc m mc mm A
A DA

π
π π

 
∂ + ∂ + ⋅∂ + = 

 

 
  (3) 

where, D  is the diameter of the pipeline, f  is friction factor  
Because gas flow velocities are normally small compared to 

sound speed, gas inertia term t m∂   and convective inertia term 

( )2
x m π∂   in (3) are neglected [14, 18]. Only friction losses 

term xπ∂  is considered in the momentum equation. 
The solutions to the dynamic model in (1)-(3) on [ ]0,t τ∈  

and [ ]0,x L∈  require the initial and boundary conditions 

 [ ] ( ) ( )00, : 0; ,x L m x m x∀ ∈ =    (4) 

 [ ] ( ) ( ) ( ) ( )0, : ;0 , ; .in outt m t m t m t L m tτ∀ ∈ = =      (5) 

 ( ) 00;0π π=   (6) 

where, 0m  is initial mass flow in the pipeline, inm  and outm  
are injections at the inlet and outlet, and 0π  is the initial 
pressure at the beginning of the pipeline. 

As discussed, traditional simulation-based approaches for 
resolving the models are not only time consuming but also 
complex. In linear dynamic systems, Laplace Transform [23] 
can transform differential equations into polynomial algebraic 
equations, i.e. from the time domain to frequency domain so 
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that dynamic analysis can be simplified.   

B. Linearization and Laplace Transform 
In order to simplify the analysis and apply Laplace 

Transform here, the nonlinear gas flow model is linearized 
around a steady operation point in uniform mass flow along 
pipelines. It is assumed that gas flow directions do not change 
when gas demand fluctuates, and thus 2m m m=   . Then, (1) 
and (3) are linearized as 

 ( ) ( )
2

; ; 0t x
ct x m t x
A

π∂ ∆ + ∂ ∆ =   (7) 

 ( ) ( ) ( )
2 2 2

2; ; ; 0
2

st st
x

st st

fc m fc m
A t x m t x t x

DA DA
π π

π π
⋅∂ ∆ + ∆ − ∆ =

 
   (8) 

where, stπ  is average steady pressure and stm  is steady mass 
flow at the operation point. 

Here, Laplace Transform is applied to the time differential 
terms in (7) and (8) so that the model is transformed from time 
domain into L-domain. Then, the dynamic gas flow equations 
only have spatial differential terms 

 ( ) ( )
2

; ; 0x
cs s x M s x
A

⋅ ∆Π + ∂ ∆ =   (9) 

( ) ( ) ( )
2 2 2

2; ; ; 0
2

st st
x

st st

fc m fc m
A s x M s x s x

DA DAπ π
⋅∂ ∆Π + ∆ − ∆Π =

   (10) 

where, ΔΠ and Δ M  are the pressure and mass flow of the gas 
pipeline on L-domain. 

C. Numerical Formulation  
The governing PDEs in (9) and (10) are discretized into 

algebraic equations on s-domain and space so that they can be 
resolved by implicit finite difference methods. 

 

……

L

∆x ∆x ∆x ∆x……

ix 1ix +

I

 
Fig. 1.  A piecewise natural gas pipeline. 
 

As shown in Fig. 1, a pipeline with the length of L is divided 
into N sections. For section I between points xi and xi+1, the 
spatial derivatives can be approximated by 

 
( ) ( ) ( ) ( )1 2; ;; i iI Y s x Y s xY s x

x
x x

ο+ −∂
= + ∆

∂ ∆
  (11) 

where, the term Y representing states π  and m , decided by 

 ( ) ( ) ( ) ( )1 2; ;
;

2
i i

I
Y s x Y s x

Y s x xο+ +
= + ∆   (12) 

It should be noted that this method is second-order accurate 
[22]. By discretizing (9) and (10) with (11), the governing 
equations are transformed into (13) and (14) with1 i N≤ ≤  

 ( ) ( ) ( ) ( )1 1
2

; ; ; ;
0

2
i i i is x s x M s x M s xAs

c x
+ +∆Π + ∆Π ∆ − ∆

⋅ + =
∆

 
  (13) 

 
( ) ( ) ( ) ( )

( ) ( )

2
1 1

2 2
1

2

; ; ; ;
2

; ;
0

2 2

i i i ist

st

i ist

st

s x s x M s x M s xfc mA
x DA

s x s xfc m
DA

π

π

+ +

+

∆Π − ∆Π ∆ + ∆
+

∆

∆Π + ∆Π
− =

 


  (14) 

For a pipeline with N+1 points, i.e. N sections, there are 2N  
equations and 2 2N +  unknown variables in (13) and (14). To 
ensure the solvability, two additional equations are needed, 
which are constructed based on the boundary conditions: i) the 
pressure setting at the inlet of the pipeline, and ii) the mass flow 
demand at the outlet of the pipeline. Thus, the number of 
equations is equal to the number of unknown variables, 
indicating that the equations can be mathematically solved. 

III. TRANSFER MATRIX OF GAS PIPELINES 
In the dynamic analysis of a gas pipeline, only the states of 

pressure and mass flow at the inlet and outlet are concerned. It 
is similar to a two-port network in electrical engineering, where 
the relation between voltages and currents at input and output 
ends are to be determined. Thus, in this section, the concept of 
transfer matrix for a two-port network is extended to represent 
the states of a gas pipeline at its both ends. 

A. Transfer Matrix for a Two-port Network 
In electrical engineering, a two-port network is used to 

represent isolated portions of a large/long circuit. The inner 
properties are regarded as a black box, represented by a matrix, 
named transfer matrix. This simplification makes analysis very 
easy, without detailed modeling of internal states. 

 
2a

2b

1a

1b  
Fig. 2.  A two-port network. 
 

Fig. 2 is a section of an electric circuit with two state 
variables at each end. It can be represented by a transfer matrix 

 2 111 12

21 222 1

a aT T
T Tb b

    
=    

    
  (15) 

where, a1, a2, b1, b2 are state variables, and T11, T12, T21, and T22 
are the elements of the transfer matrix, decided by the physical 
characteristics of the section.   

The output of one cascade section of a long circuit on the left 
side is the input for  the next cascade section on the right side. 
Thus, the transfer matrix can be easily extended to represent a 
network of a series of cascade two-port sections, linked from 
left to right. Hence, the transfer matrix of N cascade two-port 
sections with identical physical features is  

 1 111 12 11 12

21 22 21 221 1

N

N

N

a aT T T T
T T T Tb b

+

+

      
=      

     




  (16) 
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where, aN+1 and bN+1 are the output state variables at the end of 
the series of two-port sections.  

B. Transfer Matrix for a Single Pipeline 
In this paper, the transfer matrix is used to represent the 

relation between state variables, i.e. pressure and mass flow, at 
the inlet and outlet of a gas pipeline. 

∆x

( )im x∆  ( )1im x +∆ 

( )1ixπ +∆( )ixπ∆

 
Fig. 3.  A representative pipeline section. 
  

For a section pipeline shown in Fig. 3, there are two states on 
each side, pressure and gas flow. Similarly to the quadripole in 
an electrical circuit, it can be modeled as a two-port network, 
whose transfer relation is  

( )
( ) ( ) ( )

( )
( )
( )

1 11 12

1 21 22

i i i

i i i

x x T T x
s

M x M x T T M x
+

+

     ∆Π ∆Π ∆Π 
= =           ∆ ∆ ∆      

T    (17) 

where, ( )sT  is the transfer matrix determined by (13) and (14) 
and the specific elements are 

 

( )
( )
( ) ( )
( )

2 2 2 2 2
11

2
12

3 2 2
21

2 2 2 2 2
22

4

4

4

4

st st st st cmn

st st cmn

st cmn

st st st st cmn

T s Afm x A D fc m x T

T fc m x T

T s A D x c T

T s Afm x A D fc m x T

π π

π

π

π π

 = − ⋅ ∆ + + ∆

 = ∆


= ⋅ ∆

 = − ⋅ ∆ − + ∆

 



 

 (18) 

where,  2 2 2 2 24cmn st st st stT s Afm x A D fc m xπ π= ⋅ ∆ − + ∆  . 
The transfer matrix relates the state variables at left-hand 

side port to the state variables at right-hand side port. The 
relation between the two groups of variables are 

( )
( )

( )
( )

( )
( )

11 121 1 1

21 221 1 1

N NN N

N NN

T Tx x x
T TM x M x M x

+

+

 ∆Π  ∆Π   ∆Π  
= =       ∆ ∆ ∆     

T     (19) 

If assuming that the pressure at the inlet of the pipeline is 
constant, then 

 ( )1 0x∆Π =   (20) 

When there is a gas demand variation at the end of the 
pipeline, the pressure fluctuations at pipeline end, ( )1Nx +∆Π , 
and the mass flow at inlet, ( )1M x∆  , can be quantified as 

 ( ) ( )
( ) ( )12

1 1
22

N
N N

N

T s
x M x

T s+ +∆Π = ⋅ ∆    (21) 

 ( ) ( ) ( )1 1
22

1
N

N
M x M x

T s +∆ = ⋅ ∆    (22) 

When the number of sections is large, the order of transfer 
functions’ denominators in (21) and (22) could be high, making 
analysis difficult. Thus, an approach to simplify the transfer 

matrix is required, which will be discussed in Section IV. 

C. Transfer Matrix for a Meshed Gas Network 
Here, the transfer matrix for a single pipeline is extended to a 

meshed gas network. It is assumed that the directions of gas 
flows in pipelines remain unchanged when gas demand 
fluctuates at any specific sites.  

In a network with bN branches and nN nodes, the transfer 
matrix for the pipeline from node i to j is 

 
j i

i j
ij MM →

∆Π  ∆Π 
  =     ∆∆   

T


  (23) 

where, iM∆   and jM∆   are the mass flow in the pipeline at 
node i and node j, i j→T  is the transfer matrix of this single 
pipeline constructed in subsection III-B, and the subscript 
i j→  means that the gas flows from node i to j. 

According to the law of mass conservation, the mass flow at 
node i should meet 

 + 0
i j j i

load inject
i i i iM M M M

→ →

∆ − ∆ ∆ − ∆ =∑ ∑
B B

      (24) 

where, i j→B   and j i→B  are the branch sets related to node i, 

i j

iM
→

∆∑
B

  denotes the total gas flow leaving node-i, 
j i

iM
→

∆∑
B

  

denotes the total gas flow entering node-i, load
iM∆   is gas 

demand at node i, and inject
iM∆   is gas injection at node i. 

As (23) and (24) are linear equations, the relationship 
between any two state variables can be obtained by eliminating 
other variables. 

D. Simplification of the Transfer Function 
In order to simplify analysis, high-order elements in the 

transfer function models in (19)-(22) are approximated with a 
lower-order model, which can inherit the dynamic and 
steady-state characteristics.  

In inverse Laplace transform, it is known that a small time 
constant leads to fast dynamics. The dynamics of natural gas 
systems are usually very slow compared to electricity networks, 
and thus it is reasonable to approximate high-frequency 
dynamics by using approximate equivalent terms. If a transfer 
function ( )T s  has a denominator of the r-th order polynomial, 
the normalized step response for ( )T s  can be represented as 

 ( )
( ) ( )

0 1

1 1 1
r

r

T s m m m
s s s sτ τ

= + + +
+ +

   (25) 

where, 1 rτ τ> >  and they are denominator time constants, 
and 0 , , rm m  are gain coefficients. 

To derive the approximation, for a small value of s, the 
following feature of transfer functions is considered [24] 
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 1 1
1

s
s

τ
τ

≈ −
+

 (26) 

Then, for the terms in (25) whose denominator time 
constants are less than setτ  (the minimum threshold time 
constant considered), the following relation holds 

 

( ) ( )
1

1

i set i set

i set

i set

i set

i
i i i

i

i i

i
i

m
m m s

s

m

m s
m

τ τ τ τ

τ τ

τ τ
τ τ

τ
τ

τ

≤ ≤

≤

≤
≤

≈ −
+

 
 
 ≈ +
 
 
 

∑ ∑

∑
∑ ∑

  (27) 

where, the second approximation is a lag dominant process, 
representing the terms with fast dynamics. 

By approximating the terms with small time constants, the 
transfer functions can be expressed in a simplified form but the 
dynamic characteristics are still preserved. 

IV. IMPLEMENTATION STEPS AND ERROR ANALYSIS 
This subsection provides the implementation steps of the 

proposed approach and discusses potential errors.  

A. Implementation Steps 
The proposed model can be easily implemented through the 

following steps for dynamic study:  
Step 1) use natural gas system data to build dynamic models, 

which are continuity equation in (1) and momentum 
equation in (3); 

Step 2) Linearize the governing equations of (1) and (3), 
where the resultant equations are in (7) and (8); 

Step 3) Use Laplace transform to convert (7) and (8) from 
time domain into frequency domain in (9) and (10); 

Step 4) Discretize (9) and (10) into algebraic equations on 
s-domain and space in (13) and (14) so that they can 
be resolved by implicit finite difference methods; 

Step 5) Use transfer matrix concept to relate input state 
variables and output variables in (17)-(19) for a 
single pipeline; 

Step 6) Combine (23) and (24) for meshed natural gas 
networks to study the relation of inputs and outputs; 

Step 7)   Use (27) to simplify the relation in (24). 

B. Error Analysis 
It is noted that errors may appear in each step: 

1) Linearization: In the first step, the linearization of original 
pipelines will inevitably cause errors because of neglected 
nonlinearity. The level of errors is very much decided by the 
nonlinearity of the original model. If the model has a high level 
of nonlinearity, the error from our proposed model could be 
large, vice versa. 
2) Discretization: In solving dynamic systems governed by 
partial differential equations, the most common way is to 
transfer the equations into finite difference equations. In this 
step, errors are related to the number of discretization and 

measures of numerical simulation. The errors can be reduced if 
bigger discretization numbers are used. 
3) Laplace Transformation: Once the models are linearized, 
Laplace transform has no influence on the accuracy. 
4) Transfer Matrix: Similarly, for linear systems, the transfer 
matrix can fully capture system characteristics and introduces 
no errors once the models are linearized. 
5) Simplification: The full transfer matrix can be transformed 
into a simplified form by neglecting high-frequency dynamics 
if they are small, producing errors. In fact, it is hard to prove 
that the majority of natural gas system dynamics are low 
frequencies because different pipelines may have distinctive 
parameters. In the case that all dynamics are desirable, full 
transfer functions should be utilized. 

V. IMPACT OF THE RAMP OF GAS-FIRED POWER PLANTS  
Natural gas and electricity systems are coupled by natural 

gas-fired power plants, which consume gas to generate 
electricity, particularly for balancing the fluctuation of wind 
power and electricity demand. In order to illustrate how the 
proposed model can be used, this paper investigates the impact 
of: i) gas-fired plants ramp on gas network pressures due to 
electricity generation fluctuations; and ii) the constraints from 
gas pressure change limits on ramp rates of gas-fired plants.  

A. Model of Gas-fired Plants 
If gas-fired plants are used to balance electricity variations, 

each plant has a ramp rate to assist the system operator in 
determining the speed of the called plant to respond to 
impending imbalance. The ramp rates of individual generating 
units are normally different because of distinct operating 
characteristics and parameters of plants. 

The coupling gas-fired power plants are modeled according 
to the heat value of natural gas and conversion efficiency. The 
efficiency of energy conversion is formulated by [25] 

 i
gen i iP HR η∆ = ⋅   (28) 

where,  is the coefficients of heat rate and HR is heat value of 
natural gas. 

Then, the gas flow changed for the generation is  

 ,i
i

HR
m

GHV
∆ =   (29) 

where GHV is gross heat value of natural gas. 

B. Change Rates of Gas Pressure 
Gas-fired power plants are big consumers of natural gas and 

their rapid change of consumption will inevitably cause fast gas 
pressure fluctuation, which may be harmful to other gas-fired 
equipment. For example, the M701F gas-fired turbine by 
Mitsubishi must be operated with the change rate of gas 
pressure less than 80 kPa/s, otherwise, it will be tripped. If the 
ramp rates of gas-fired plants are too large, gas pressure 
controllers of some equipment may not be able to handle such 
rapid changes properly. It can be disastrous to other gas 
consumers without pressure controllers. Therefore, the 
operation of gas-fired plants should respect the constraints of 
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gas pressure change rates in order to ensure gas system safety. 

VI. CASE STUDIES 
In this section, the effectiveness of the proposed models is 

tested in three cases: i) a single pipeline, and ii) two real gas 
networks with 6 nodes and 15 nodes. 

A. Case I: A Single Pipeline 
The parameters of a single pipeline in Figure 4 are given in 

Table I. The steady state flow is assumed to be 30kg/s. Its 
beginning is assumed to be pressure control and the gas flow at 
the end changes caused by a gas-fired power plant. Here, the 
normalized step response of the pressure at pipeline end is 
investigated by three models: traditional simulation, full 
transfer function, and simplified transfer function. 

G
Gas 

injection

Pipeline 
end

 
Fig.4. A single pipeline model 
 

TABLE I 
PARAMETERS OF THE PIPELINE IN CASE I 

Symbol Value Symbol Value 

D 0.6 m Z 0.9 
f 0.05 R 500 J/(kg.K-1) 

∆x 100 m T 278 K 
πst 4 MPa stm  30 kg/s 

 
1) Accuracy 
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Fig. 5.  Normalized step response with 2000 m length pipeline. 

 
Results from the time-step simulation using the original 

model are used as a benchmark to illustrate the accuracy of the 
two proposed transfer function models. The simplified transfer 
function is derived from the full transfer function by 
approximating high-frequency dynamic elements whose time 
constants are less than 1 second. Two scenarios of different 
pipeline length, 2000 meters and 7000 meters, are considered. 
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Fig. 6.  Normalized step response with 7000 m length pipeline. 

 
In Fig.5, the triangles represent results from the simplified 

model, the dots are results from the simulation model, and the 
black line represents results from the full transfer function. 
Clearly, the results from the proposed equivalent models are 
very close to simulation results, particularly when elapsed time 
is longer than 20 seconds, although the difference is relatively 
big  from 5~15 seconds. Compared with simulation results, the 
average percentage errors from the full and simplified transfer 
functions are 0.009% and 1.2%, respectively. The results from 
the simplified transfer function are almost the same with those 
from the full transfer function. It is because the fast dynamics 
less than 1 second have little influence. 

Fig. 6 compares the results from the three approaches for a 
longer pipeline of 7000 meters. As seen, the dynamics are much 
slower compared to those in Fig.5. The average percentage 
errors of the full and simplified transfer functions are 0.0006% 
and 0.34% respectively, which are smaller than those in the 
case of the 2000-meter pipe. In the 2000 meter length case, the 
pressure at pipeline end needs only about 20 seconds to reach 
steady state, while in this case, the time is about 3 minutes. It 
clearly illustrates that the dynamics of long natural pipelines are 
very slow compared to electric networks. 

 
TABLE II 

THE FIRST THREE DENOMINATOR TIME CONSTANTS  
Length (km) τ1 (s) τ2 (s) τ3 (s) 

5 22.56 2.49 0.57 
6 32.53 3.57 1.28 
7 44.34 4.87 1.74 
8 58.00 6.36 2.28 
9 73.53 8.06 2.89 

10 90.92 9.96 3.57 
20 369.15 39.89 14.29 
30 843.15 89.89 32.18 
40 1521.69 160.05 57.23 

 
 To further investigate pressure response speed at pipeline 

ends in response to demand perturbations, Table II provides the 
first three denominator time constants with different pipeline 
length. As length increases, the time constants become larger, 
indicating that longer pipelines have slower transient behaviors. 
When it is 5km, the first-order time constant is 22.56 seconds, 
which grows exponentially to 1521.69 seconds for the 40km 
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case. By contrast, the third-order time constants increase fairly 
slowly, from 0.57 seconds to 57.23 seconds.  

Equations (30) and (31) illustrate the unit pressure variations 
at the end of the pipeline with respect to time when the power 
plant increases its demand by 10MW.  

 ( ) 0.141 0.17241 0.316 1.27t tt e eπ − −≈ + −   (30) 

 ( ) 0.000562 0.0006571 0.3 1.256t tt e eπ − −≈ + −   (31) 
2) Influence of section numbers  

This subsection investigates the impact of pipeline cutting 
numbers on the precision of the proposed models, i.e. PDEs 
approximated by finite difference equations. A pipeline of 
10km is chosen as an example and the results are provided in 
Fig. 7. All parameters for the pipeline are in Table I and the 
simulation time is 5 min. The results from numerical simulation 
are used as a benchmark, where the time step is 10s and section 
length in the finite implicit method is 500m. For the equivalent 
model, if only one section is considered, i.e., N = 1, the results 
involve large errors compared to those from the simulation 
approach, especially at the start of transience. If N = 2, the 
results are much better than those with N = 1, but still involve 
large errors within the first 50 seconds. When N = 5, where ∆x 
is 2km, the results are very close to the simulation results along 
all 300 seconds. It is mainly because that with a small number 
of discretization, the finite difference equations cannot fully 
reflect the characteristics of partial differential equations. 
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Fig. 7.  Normalized step response with different numbers of sections. 

 
3) Influence of steady gas flow  

This subsection investigates the properties of natural gas 
flows under perturbations. Fig.8 provides the results of the 
largest denominator time constant of a pipeline of 8000 meters 
under various steady gas flows. Apparently, the time constant is 
largely in linear relation with steady gas flows. When gas flow 
is 20kg/s, the largest time constant is around 38 seconds, which 
grows to around 100 seconds when the gas flow is 
approximately 50kg/s. It indicates that with larger gas flow, it 
will take longer for pipeline pressure to enter state states.  
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Fig. 8.  Relation between steady gas flow and largest dominator time constant. 

B. Case II: 6-Node Gas Network 
In this subsection, a 6-node gas network adopted from the 

natural gas system of The Consumer Power Co. in the US [26] 
is used to illustrate the effectiveness of the proposed models. Its 
configuration is in Fig.9 and the parameters are in Table III.  

Node 1 is assumed to be in pressure control mode whose 
pressure is maintained at 4.0 MPa, and node 2 is in mass flow 
controlled mode, whose gas injection is constant. Two gas-fired 
generators denoted as G1 and G2, are connected at nodes 4 and 5, 
whose heat rate is assumed to be 2.89 MJ/MW. The gross heat 
value of natural gas is 47 MJ/kg [27]. It is assumed that the 
fluctuations of electricity need to be suppressed by the two 
gas-fired plants in one minute.  

1 2
3

4 5

6G1 G2

 
Fig. 9.  A 6-node gas network. 
 

TABLE III 
PARAMETERS OF 6-NODE GAS NETWORK 

Pipeline parameters 

Branch From To L (km) f D (m) Flow 
(kg/s) 

1 1 3 57.0 0.010 0.50 -4.6 
2 1 4 48.6 0.011 0.44 17.6 
3 2 3 25.7 0.010 0.50 10.6 
4 2 5 26.6 0.013 0.60 34.4 
5 4 6 21.4 0.011 0.39 -8.4 
6 5 6 36.6 0.013 0.60 26.4 

Node parameters 

Node 2 3 4 5 6 
Gas injection 

(kg/s) 45.0 -6.0 -26.0 -8.0 -18.0 

Pressure (MPa) 4.01 4.032 3.738 3.902 3.789 

 
The steady states of all pipelines and nodes are also provided 
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in Table III, where the state flows are in column 7 and nodal 
results of gas injection and pressures are at the bottom. The 
negative gas injection means demand. The pressures at nodes 4 
and 6 are the lowest due to large consumption. The 
second-order transfer functions are employed to approximate 
the dynamics of each pipeline that is divided into 40 sections.  
1) Accuracy comparison with simulation results 

Here, we focus on the pressure response at node 5 in 
response to the output change of G1 at node 4. Simulation 
results are used as a benchmark to validate the proposed model, 
where the time step of simulation is 1 minute. 
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Fig. 10.  Normal step (10MW) response of pressure at nodes 5 and 6. 

 
Fig. 10 presents the results by the proposed and simulation 

methods with 10MW step change of gas demand increase at G1. 
It can be seen that the results of the proposed model are very 
close to those from the simulation for both nodes 5 and 6. The 
pressures at the two nodes drop by around 4.5kPa and 7kPa 
respectively compared to original steady state values. The 
pressure at node 6 drops more sharply than that at node 5, and 
the biggest difference is around 2.5kPa when the system 
reaches steady state. It is mainly because that node 5 is further 
away from node 4 than node 6. Another interesting point is that 
because the average distance between all nodes is about 36 km, 
the dynamic response of the system is very slow, roughly taking 
2 hours for it to reach steady state. 
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Fig. 11.  Pressure percentage error of normal step response at node 6. 
 

To further investigate the precision of the proposed 
simplified model, Fig. 11 gives the pressure percentage errors 

at node 6 under nodal step response when the gas-fired plant at 
node 4 increases its electricity output. Three scenarios are 
considered, where the equivalent gas consumption increases at 
node 4 are 10MW, 30MW and 50MW respectively. Apparently, 
when the gas demand fluctuates heavily, the errors from the 
introduced model are larger, particularly when the dynamic 
starts. However, the errors are very small in amount, within the 
range of -0.015%~0.005% and drop dramatically with the 
system entering the steady state. 

When G1 increases its demand by 10 MW equivalent gas, the 
response of pressure changes at nodes 5 and 6 can be obtained 
by the simplified model, analytically given in (32) and (33) 

( ) ( )0.0025 0.0005
5 4638.7 5870.631192 +t tt e e kPaπ − −∆ ≈ − −   (32) 

( ) ( )0.0022 0.0005
6 7153.67 581.4 +6706.34t tt e e kPaπ − −∆ ≈ − +  (33) 

They explicitly illustrate the pressure variations at nodes 5 
and 6 with time, very convenient for understating pressure 
change. This is one key advantage of the proposed models over 
the traditional simulation approach, which can hardly express 
pressure variations with analytical equations.  
2) Impact of gas pressure change limits on gas-fired plants  

Considering the constraints of pressure change rates, the 
ramp limit of each gas-fired plant can be obtained from the 
proposed model. Table IV shows the maximum ramp rates 
under various gas pressure change constraints. Clearly, the 
ramp limit becomes larger with a bigger tolerance of gas 
pressure fluctuations. When the pressure change rate is 60 
kPa/s, the upper ramp rates of G1 and G2 are 15.5 MW/min and 
17.1 MW/min, which increase to 20.7 MW/min and 22.8 
MW/min when the pressure limit is 80 kPa/s. The results imply 
that the constraints from gas systems greatly affect the unit 
commitment of electricity power generation. 

 
TABLE IV 

THE RAMP LIMITS OF EACH GAS-FIRED PLANTS 
Limit of gas pressure 
change rate (kPa/s) G1 (MW/min) G2 (MW/min) 

60 15.5 17.1 
80 20.7 22.8 

100 25.9 28.5 
120 31.1 34.2 

C. Case III: 15-Node Gas Network 
In this subsection, the new model is further demonstrated on 

a practical 15-node gas network from [26] in Fig. 12. Two 
gas-fired plants are connected to NG-4 and NG-15. 
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NG-5 NG-6

NG-7 NG-8

NG-9 NG-10

NG-11 NG-12

NG-13

NG-14

NG-15

G

G

 
Fig. 12.  A 15-node gas network. 
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With 10MW step change of gas demand increase at NG-15, 
the responses of gas pressure at NG-4 and NG-15 are 

( )
4 52.2 10 3.5 10

4 80.8 5.4 +76.21t t
NG e e kPaπ

− −− × − ×
−∆ ≈ − +   (34) 

( )
4 52.2 10 3.5 10

15 526.2 15.4 +517.7t t
NG e e kPaπ

− −− × − ×
−∆ ≈ − +   (35) 
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Fig. 13.  Normal step (10MW) response of pressure at nodes 5 and 6. 

  
Fig. 13 compares the results of 15NGπ −∆  from the two 

methods. It can be seen that the results are very close, which 
means the proposed method is still effective for large-scale 
systems. Due to that the total length of all pipelines is over 1600 
km, it roughly takes 12 hours for the system to reach steady 
state. When pipelines are longer, more gas can be stored in 
pipelines, working as buffers, which can absorb the disturbance. 
From this point, if we are only concerned with slow dynamics, 
other simplified models could be derived for example 
modelling pipelines as gas tanks.  

VII. CONCLUSION 
This paper proposes a novel method to quantify gas pressure 

variations due to gas-fired power plant operation and the impact 
of constraints from natural gas pressure change on ramp rates of 
gas-fired plants. Through extensive demonstration, the 
following observations are reached:  
 Gas demand variations affect the pressures of other nodes and 

the degrees are decided by variation size and location. 
Compared to electricity networks, the dynamics of natural gas 
systems are very slow and high-frequency dynamics can be 
neglected in most cases as they have little impact on systems.  
 The proposed models can significantly reduce computational 

burden by utilizing Laplace transform theory to analytically 
resolve the governing equations of gas networks. Results 
illustrate that they produce very close results with simulation 
approaches, particularly when pipelines are long and entering 
steady states.  
 The explicit expressions of pressure variations in response to 

demand change are very convenient for analyzing system 
performance under disturbances and identifying the most 
influential frequency elements.  
It is admitted that the designed models also come along with 

disadvantages, such as: 
 The proposed simplified model is derived from linearized 

model and thus if the disturbances in natural systems are very 
large, big errors could appear; 
 The model can only respect one-directional gas flows and is 

not able to handle the case of bi-directional gas flows in pipes; 
 There are many compressors and pressure controllers in gas 

systems, whose dynamics are neglected in the model. The 
applicability of the models and concept to their dynamics 
needs further investigation. 
Future work will be dedicated to the detailed modelling of 

gas-fired power plants and other key components of gas 
systems, such as compressors. The effort will be also paid to 
investigating the potential to designing models which can 
represent pipelines with respect to various frequency dynamics.   

REFERENCES 
[1] DECC. (2015). Electricity statistics. Available: 

https://www.gov.uk/government/collections/electricity-statistics 
[2] S. M. Rinaldi, J. P. Peerenboom, and T. K. Kelly, "Identifying, 

understanding, and analyzing critical infrastructure interdependencies," 
Control Systems, IEEE, vol. 21, pp. 11-25, 2001. 

[3] A. Quelhas, E. Gil, J. D. McCalley, and S. M. Ryan, "A multiperiod 
generalized network flow model of the US integrated energy system: 
Part I - Model description," IEEE Transactions on Power Systems, vol. 
22, pp. 829-836, May 2007. 

[4] C. R. Cintra, C. L. T. Borges, and D. M. Falcao, "A Simplified Operation 
Planning Model Considering Natural Gas Network and Reservoir 
Constraints," 2010 IEE PES Transmission and Distribution Conference 
and Exposition: Smart Solutions for a Changing World, 2010. 

[5] A. Alabdulwahab, A. Abusorrah, X. Zhang, and M. Shahidehpour, 
"Coordination of Interdependent Natural Gas and Electricity 
Infrastructures for Firming the Variability of Wind Energy in Stochastic 
Day-Ahead Scheduling," Sustainable Energy, IEEE Transactions on, 
vol. 6, pp. 606-615, 2015. 

[6] T. Li, M. Eremia, and M. Shahidehpour, "Interdependency of Natural 
Gas Network and Power System Security," IEEE Transactions on Power 
Systems, vol. 23, pp. 1817-1824, Nov 2008. 

[7] C. M. Correa-Posada and P. Sanchez-Martin, "Integrated Power and 
Natural Gas Model for Energy Adequacy in Short-Term Operation," 
Power Systems, IEEE Transactions on, vol. 30, pp. 3347-3355, 2015. 

[8] P. Duenas, T. Leung, M. Gil, and J. Reneses, "Gas-Electricity 
Coordination in Competitive Markets Under Renewable Energy 
Uncertainty," Power Systems, IEEE Transactions on, vol. 30, pp. 
123-131, 2015. 

[9] M. Shahidehpour, Y. Fu, and T. Wiedman, "Impact of natural gas 
infrastructure on electric power systems," Proceedings of the IEEE, vol. 
93, pp. 1042-1056, May 2005. 

[10] C. Liu, M. Shahidehpour, and J. Wang, "Coordinated scheduling of 
electricity and natural gas infrastructures with a transient model for 
natural gas flow," Chaos, vol. 21, p. 025102, 2011. 

[11] A. Thorley and C. Tiley, "Unsteady and transient flow of compressible 
fluids in pipelines—a review of theoretical and some experimental 
studies," International Journal of Heat and Fluid Flow, vol. 8, pp. 3-15, 
1987. 

[12] A. D. Woldeyohannes and M. A. A. Majid, "Simulation model for 
natural gas transmission pipeline network system," Simulation 
Modelling Practice and Theory, vol. 19, pp. 196-212, 2011. 

[13] M. Behbahani-Nejad and A. Bagheri, "The accuracy and efficiency of a 
MATLAB-Simulink library for transient flow simulation of gas 
pipelines and networks," Journal of Petroleum Science and Engineering, 
vol. 70, pp. 256-265, 2// 2010. 

[14] T. Kiuchi, "An implicit method for transient gas flows in pipe networks," 
International Journal of Heat and Fluid Flow, vol. 15, pp. 378-383, 
1994. 

[15] E. B. Wylie, M. A. Stoner, and V. L. Streeter, "Network: System 
transient calculations by implicit method," Society of Petroleum 
Engineers Journal, vol. 11, pp. 356-362, 1971. 

[16] A. Zlotnik, M. Chertkov, and S. Backhaus, "Optimal control of transient 
flow in natural gas networks," arXiv preprint arXiv:1504.02505, 2015. 

[17] S. Grundel, N. Hornung, B. Klaassen, P. Benner, and T. Clees, 
"Computing surrogates for gas network simulation using model order 

https://www.gov.uk/government/collections/electricity-statistics


> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 
 

10 

reduction," in Surrogate-Based Modeling and Optimization, ed: 
Springer, 2013, pp. 189-212. 

[18] M. Chertkov, M. Fisher, S. Backhaus, R. Bent, and S. Misra, "Pressure 
Fluctuations in Natural Gas Networks caused by Gas-Electric 
Coupling," 2015 48th Hawaii International Conference on System 
Sciences (Hicss), pp. 2738-2747, 2015. 

[19] X. Xu, H. J. Jia, H. D. Chiang, D. C. Yu, and D. Wang, "Dynamic 
Modeling and Interaction of Hybrid Natural Gas and Electricity Supply 
System in Microgrid," IEEE Transactions on Power Systems, vol. 30, 
pp. 1212-1221, May 2015. 

[20] A. Abdul-Ameer, "The Modelling and Simulation of Gas Pipeline 
Dynamic," presented at the Recent Researches in Automatic Control, 
Systems Science and Communications, Porto, 2012. 

[21] R. Whalley and A. A-Ameer, "The computation of torsional, dynamic 
stresses," Proceedings of the Institution of Mechanical Engineers, Part 
C: Journal of Mechanical Engineering Science, vol. 223, pp. 1799-1814, 
August 1, 2009 2009. 

[22] J. F. Helgaker, B. Muller, and T. Ytrehus, "Transient Flow in Natural 
Gas Pipelines Using Implicit Finite Difference Schemes," Journal of 
Offshore Mechanics and Arctic Engineering-Transactions of the Asme, 
vol. 136, Aug 2014. 

[23] D. V. Widder, Laplace Transform (PMS-6): Princeton University Press, 
2015. 

[24] S. Skogestad, "Simple analytic rules for model reduction and PID 
controller tuning," Journal of Process Control, vol. 13, pp. 291-309, 
2003. 

[25] U. S. EIA. (2016, March 20). SAS Output. Available: 
https://www.eia.gov/electricity/annual/html/epa_08_02.html 

[26] E. B. Wylie, V. L. Streeter, and M. A. Stoner, "Network System 
Transient Calculations by Implicit Method," Society of Petroleum 
Engineers Journal, vol. 11, pp. 356-&, 1971. 

[27] C. f. T. Analysis. (2016). Lower and Higher Heating Values of Gas, 
Liquid and Solid Fuels. Available: 
http://cta.ornl.gov/bedb/appendix_a/Lower_and_Higher_Heating_Valu
es_of_Gas_Liquid_and_Solid_Fuels.pdf 

 
Yongzhi Zhou received the B.S. degree in College of Electrical Engineering, 
Shandong University, China, in 2008. He then worked as an operator at a 
thermal power plant from 2008 to 2012. He is a Ph. D. candidate in College of 
Electrical Engineering, Zhejiang University since 2012. He was visiting the 
University of Bath from September 2015 to March 2016. 
 
Chenghong Gu (M’14) was born in Anhui province, China. He obtained 
Bachelor degree and Master degree in electrical engineering from Shanghai 
University of Electric Power and Shanghai Jiao Tong University in China in 
2003 and 2007 respectively. In 2010, he obtained his Ph.D. from University of 
Bath, U.K. Now, he is a Lecturer and EPSRC fellow with the Dept. of 
Electronic & Electrical Eng., University of Bath, UK. His major research is in 
multi-vector energy system, smart grid and power economics. 
 
Hao Wu (M10) received the B.A. degree from Shanghai Jiao Tong University, 
Shanghai, China, and the Ph.D. degree from Zhejiang University, Hangzhou, 
Zhejiang, China, both in electrical engineering. He was with Zhejiang 
University since 2002 and currently he is an Associate Professor. 
 
Yonghua Song (F’08) is Executive Vice-President of Zhejiang University. He 
is a fellow of the Royal Academy of Engineering, a fellow of the IEEE and 
Vice- President of Chinese Society for Electrical Engineering (CSEE). He 
received his BEng and PhD from Chengdu University of Science and 
Technology, and China Electric Power Research Institute in 1984 and 1989 
respectively. In January 2007, he took up a Pro-Vice Chancellorship and 
Professorship of Electrical Engineering at the University of Liverpool. 
 

https://www.eia.gov/electricity/annual/html/epa_08_02.html
http://cta.ornl.gov/bedb/appendix_a/Lower_and_Higher_Heating_Values_of_Gas_Liquid_and_Solid_Fuels.pdf
http://cta.ornl.gov/bedb/appendix_a/Lower_and_Higher_Heating_Values_of_Gas_Liquid_and_Solid_Fuels.pdf

	I. INTRODUCTION
	II. Dynamic Gas Flow Model
	A. Original Gas Pipeline Model
	B. Linearization and Laplace Transform
	C. Numerical Formulation

	III. Transfer Matrix of Gas Pipelines
	A. Transfer Matrix for a Two-port Network
	B. Transfer Matrix for a Single Pipeline
	C. Transfer Matrix for a Meshed Gas Network
	D. Simplification of the Transfer Function

	IV. Implementation Steps and Error Analysis
	A. Implementation Steps
	B. Error Analysis
	1) Linearization: In the first step, the linearization of original pipelines will inevitably cause errors because of neglected nonlinearity. The level of errors is very much decided by the nonlinearity of the original model. If the model has a high le...
	2) Discretization: In solving dynamic systems governed by partial differential equations, the most common way is to transfer the equations into finite difference equations. In this step, errors are related to the number of discretization and measures ...
	3) Laplace Transformation: Once the models are linearized, Laplace transform has no influence on the accuracy.
	4) Transfer Matrix: Similarly, for linear systems, the transfer matrix can fully capture system characteristics and introduces no errors once the models are linearized.
	5) Simplification: The full transfer matrix can be transformed into a simplified form by neglecting high-frequency dynamics if they are small, producing errors. In fact, it is hard to prove that the majority of natural gas system dynamics are low freq...


	V. Impact of The Ramp of Gas-fired Power Plants
	A. Model of Gas-fired Plants
	B. Change Rates of Gas Pressure

	VI. Case Studies
	A. Case I: A Single Pipeline
	1) Accuracy
	2) Influence of section numbers
	3) Influence of steady gas flow

	B. Case II: 6-Node Gas Network
	1) Accuracy comparison with simulation results
	2) Impact of gas pressure change limits on gas-fired plants

	C. Case III: 15-Node Gas Network

	VII. Conclusion
	References

