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Abstract 

This paper presents a detailed modelling and experimental study of the 

piezoelectric and dielectric properties of novel ferroelectric sandwich layer BaTiO3 

structures that consist of an inner porous layer and dense outer layers. The 

dependencies of the piezoelectric coefficients *
3 jd  and dielectric permittivity σε *33  of 

the sandwich structure on the bulk relative density α are analysed by taking into 

account an inner layer with a porosity volume fraction of 0.5–0.6. The observed 

changes in  *
3 jd  and σε *33  are interpreted within the framework of a model of a 
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laminar structure whereby the electromechanical interaction of the inner porous 

layer and outer dense layers have an important role in determining the effective 

properties of the system. The porous layer is represented as a piezocomposite with 

a 1–3–0 connectivity pattern, and the composite is considered as a system of long 

poled ceramic rods with 1–3 connectivity which are surrounded by an unpoled 

ceramic matrix that contains a system of oblate air pores (3–0 connectivity). The 

outer monolithic is considered as a dense poled ceramic, however its 

electromechanical properties differ from those of the ceramic rods in the porous 

layer due to different levels of mobility of 90°  domain walls in ceramic grains. A 

large anisotropy of *
3 jd  at α= 0.64–0.86 is achieved due to the difference in the 

properties of the porous and monolithic layers and the presence of highly oblate air 

pores. As a consequence, high energy-harvesting figures of merit *
3 jd

*
3 jg  are 

achieved that obey the condition  *
33d

*
33g /( *

31d
*
31g )∼ 102 at *

33d
*
33g ∼ 10-12 Pa-1, and 

values of the hydrostatic piezoelectric coefficients *
hd ≈ 100 pC / N and *

hg ≈ 20 

mV.m / N are achieved at α= 0.64–0.70. The studied BaTiO3-based sandwich 

structures has advantages over highly anisotropic PbTiO3-type ceramics as a result 

of the higher piezoelectric activity of ceramic BaTiO3 and can be used in 

piezoelectric sensor, energy-harvesting and related applications. 

 

Keywords: Piezoelectric properties, anisotropy, porous ferroelectrics,  

energy-harvesting figures of merit, dielectric permittivity. 
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1. Introduction 

Interest in the development of new porous ferroelectric materials and their 

applications [1–7] has arisen for a number of reasons. Firstly, when porous 

ferroelectric ceramics (FCs) with a perovskite-type structure are in a poled state, 

they exhibit piezoelectric properties [4–9] that are of value for piezotechnical and 

related transducer applications. Secondly, the microgeometry–properties relations 

in these porous materials are complex [6, 8, 9] and can be affected by a variety of 

conditions related to their manufacture, poling and mechanical properties [1–4]. 

Thirdly, the opportunity to manufacture novel ferroelectric materials with a 

specific microgeometry of air pores [1–3, 10, 11] enables researchers to tailor the 

effective electromechanical properties and their anisotropy [8, 9]. Fourthly, 

different methods [8, 11–16] can be applied*) to predict the effective properties of 

the porous material and features of its poling. Finally, in the last decade, the desire  

to produce high-performance lead-free FCs and improve their electromechanical 

properties [17–19] has become an important stimulus to manufacture novel porous  

----- 

*) Effective electromechanical properties of porous ferroelectric materials can be calculated, for 

instance, within the framework of the theoretical approach [12] based on the micromechanical 

model wherein the electromechanical coupling in the piezoelectric medium and the pore shape 

are taken into account. The full set of electromechanical constants of the porous material can 

also be evaluated using analytical formulae [11, 15], by consecutively applying the methods [8, 

12, 13] concerned with micromechanical models and specifics of the composite microgeometry, 

and by the finite element method [14, 16]. In work [14] an incomplete poling of porous samples 

is also taken into account. The finite element multi-inclusion modelling of piezocomposites [16] 

that contain a few components is also promising for an analysis of porous materials with a 

complex microgeometry.   
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piezoelectric materials [5–7] and structures with improved characteristics.  

Recently, a novel porous sandwich layer (PSL) BaTiO3 has been put forward 

[7] as a new kind of porous lead-free material that can be applied in piezoelectric 

transducers, energy harvesters and sensors. However in Ref. 7 only limited 

characteristics related to the longitudinal piezoelectric effect are discussed, and no 

data on the lateral piezoelectric effect, anisotropy of the piezoelectric coefficients 

*
3 jd  and related parameters are reported. The aims of the present paper are (i) to 

study the piezoelectric and dielectric properties and figures of merit (FOMs) of 

novel PSL BaTiO3 with an inner layer with a porosity volume fraction of 0.5–0.6 

and (ii) to highlight the density ranges whereby a large piezoelectric anisotropy is 

observed in these structures.  

 

2. Manufacturing of porous sandwich layers and experimental results         

PSL BaTiO3 samples were manufactured by alternatively layering prepared barium 

titanate starting powders containing varying fractions of pore forming agent before 

uniaxial pressing and sintering. For the dense outer layers, the starting powder was 

prepared from commercial barium titanate powder (Ticon P, Ferro, UK) and 5 

wt.% organic binder, polyethylene glycol (PEG) (Sigma, UK), which was ball 

milled with zirconia milling media and distilled water for 24 h prior to drying, 

regrinding and sieving through a 150 µm mesh. The starting powder for the porous 

inner layer was produced from dry mixing barium titanate with PEG in varying 

quantities (25 and 35 wt. %) so as to achieve different inner layer porosities. The 
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powders were sequentially layered into a uniaxial tablet die with layers gently 

flattened before the next was layer added, before being pressed at 185 MPa to form 

the green pellets. The pellets were sintered in air at 1300°C for 2 h with a 

heating/cooling rate of 60°C / h, and a two-hour dwell stage was included at 400°C 

to burn off the organic binder/pore forming agent. The sintered pellets were 

cleaned, and their densities measured via the Archimedean method. Silver 

electrodes were painted onto the samples (RS Components, Product No 186-3600) 

prior to corona poling at 14 kV at a distance of 35 mm from the samples, at a 

temperature of 115°C.   

The piezoelectric properties, namely, piezoelectric coefficients *
3 jd , were 

measured using a Take Control Piezometer PM25 at 97 Hz. Impedance 

spectroscopy (Solartron 1260 and 1296 Dielectric Interface, Solartron Analytical, 

UK) was used to measure the dielectric properties of the samples allowing 

calculation of the relative permittivity. Scanning electron microscopy was used to 

investigate the PSL structure and measure the inner porosity pin in the porous layer. 

An optical micrograph of the outer surface of the PSL BaTiO3 sample is shown in 

figure 1(a). Samples produced with high fractions of pore-forming agent in the 

PSL demonstrated excellent cohesion between layers, although some inter-layer 

cracks perpendicular to the poling direction were occasionally observed in SEM 

images. These tended to be smaller than the pore size and therefore not thought to 

significantly influence the measured properties. Sequential pressing of layers also 

resulted in the PSL exhibiting a small slant with respect to the poling direction in 
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some samples, as can be seen in figure 1(a); a processing technique such as tape 

casting would likely be able to produce PSL materials with more consistent 

layering.   

Experimental data showing the changes in the piezoelectric coefficients *
3 jd  

and dielectric permittivity σε *33  at mechanical stress σ = constant with the relative 

density α of the PSL are represented in figure 2 for two levels of the inner layer 

porosity (pin); lower porosity fractions were difficult to achieve using the 

fabrication method discussed here due to inter-layer cracks forming during 

pressing and sintering. Hereafter we denote the samples PSL-1 and PSL-2 for pin ≈ 

0.5 and 0.6, respectively. It is seen that the piezoelectric coefficients *
3 jd  [figure 

2(a)] obey the condition  

*
33d / | *

31d | ≈ 10             (1) 

at *
33d ≈ (90–130) pC /N and the relative permittivity level σε *33 / ε0

  ∼ 102–103 [figure 

2(b)]. The studied PSL material has advantages over the highly anisotropic 

PbTiO3-type FCs [20] with a large anisotropy of *
3 jd  due to the lead-free nature of 

the PSL and the *
33d  values being about twice larger than d33 of the PbTiO3-type 

FCs. From the experimental results shown in figure 2, a large piezoelectric 

coefficient *
33g = *

33d  / σε *33  is achieved due to the relatively small dielectric 

permittivity σε *33 . For instance, at a relative density α = 0.653 for PSL-2, *
33g = 30.2 

mV.m / N, and at α = 0.698 for PSL-1, *
33g = 21.3 mV.m / N. This is in contrast to 
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the piezoelectric sensitivity of the monolithic poled BaTiO3 FC [21] which is 

characterised by a piezoelectric coefficient g33 = 12.6 mV.m / N at room 

temperature. Due to the relatively large values of the piezoelectric coefficient *
33d  

∼ 102 pC / N of the PSL in a wide α range [figure 2(a)], the order-of-magnitude of 

the energy-harvesting FOM  

( *
33Q )2 = *

33d
*
33g                (2) 

(or the squared FOM concerned with the longitudinal piezoelectric effect) is 

typically 10-12 Pa-1. As is known, the FOM from Eq. (2) is proportional to the 

‘signal – noise’ ratio [8] for a piezoelectric transducer at the longitudinal oscillation 

mode. The squared FOM concerned with the transverse piezoelectric effect of the 

PSL sample is 

( *
31Q )2 = *

31d
*
31g              (3)  

and small in comparison to ( *
33Q )2 from Eq. (2) while Eq. (1) is valid for the 

studied PSL material.   

The large piezoelectric anisotropy observed in the novel PSL BaTiO3 leads to 

an increase of the hydrostatic piezoelectric coefficients *
hd  = *

33d + 2 *
31d  and *

hg  = 

*
33g + 2 *

31g  when compared to the dh and gh parameters of the monolithic 

counterpart. Moreover, an increase of *
hg  of the PSL compared to the monolithic 

gh is also a result of the dielectric properties that strongly depend on porosity vp of 

the PSL structure. Examples of the experimental dependence of the piezoelectric 

coefficients on the bulk relative density α = 1 – vp are given in Table 1. According 
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to experimental data [21], the monolithic poled BaTiO3 FC is characterised by 

hydrostatic piezoelectric coefficients dh = 34 pC / N and gh = 2.26 mV.m / N. As 

follows from measurements on the monolithic poled BaTiO3 FC samples in the 

present study, their piezoelectric coefficients are d33
 = 124.8 pC / N and d31

 = –47.8 

pC / N and relative dielectric permittivity at 1 kHz is σε33
 / 

0ε  = 1504 (average 

values). This means that the hydrostatic piezoelectric coefficients are dh = 29.2 pC 

/ N and gh = 2.19 mV.m / N, i.e., in agreement with the hydrostatic parameters 

from Ref. 21. For the studied PSL samples, the typical ratios *
hd  / dh ≈ 2–3 and *

hg  

/ gh ≈ 4.1–9.5 are achieved, see experimental values in Table 1.  

 

3. Modelling and interpretation of the piezoelectric and dielectric properties 

of the PSL BaTiO3 

Recently, the modelling of the longitudinal piezoelectric response of the PSL 

BaTiO3 [7] showed that incomplete poling of the porous ferroelectric material had 

a strong influence on its piezoelectric activity and related parameters. Our current 

efforts are concentrated on describing the piezoelectric and dielectric properties of 

PSL materials by taking into account features of their porosity and domain-wall 

mobility in their FC grains and to interpret the influence of microgeometric factors 

on the piezoelectric anisotropy.  

The PSL structure is assumed to contain porous and monolithic FC layers 

poled along the co-ordinate OX3 axis, see figure 1(b). In the porous layer, the FC 

matrix contains isolated spheroidal air pores, see the inset of figure 1(b). It is 
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assumed that these pores are regularly distributed in the porous layer of the PSL. 

The shape of the air pore is described by the equation (x1 / a1p)2 + (x2 / a2p)2 + (x3 / 

a3p)2 = 1 relative to the axes of the co-ordinate system (X1X2X3), where the semiaxes 

of the pore are a1p = a2p and a3p, and ρp = a1p / a3p is its aspect ratio. The porous 

matrix shown in the inset in figure 1(b) is described by 3–0 connectivity in terms of 

work by Newhnam et al. [22]. This porous matrix is reinforced by a system of 

monolithic FC rods that are oriented along the OX3 axis. This particular orientation 

of the FC rods facilitates their poling under an applied electric field E || OX3 and 

promotes an effective electromechanical coupling between the layers that are shown 

in figure 1(b). We assume that each FC rod is in the form of a long circular cylinder 

which is characterised by a considerable mobility of the 90° domain walls in each 

FC grain in the poled state. The porous matrix surrounding the monolithic FC rods 

leads to a decrease of the mechanical stress during the 90° domain switching and 

can be regarded as an additional argument for the considerable domain-wall 

mobility. Changes in the parameters mp and ρp of the porous matrix enable us to 

vary the elastic anisotropy of the matrix and porous layer as a whole. This factor 

influences [8, 13] the piezoelectric properties and their anisotropy in the PSL 

structure.  

The porous layer shown in figure 1(b) is characterised by 1–3–0 connectivity, 

and its electromechanical properties depend on the volume fractions r and mp and 

domain-wall mobility in the FC rods. The outer monolithic layer of the PSL sample 

is represented by the same FC, but with a lower domain-wall mobility in FC grains 
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in comparison to the domain-wall mobility in the FC-rod grains. This lower 

domain-wall mobility may be a result of the perpendicular orientation of the 

monolithic layer with respect to the poling direction OX3, see figure 1(b). 

The 90° domain-wall mobility in the FC grains can be taken into account in 

terms of work [23]. According to Aleshin [23], it is assumed that during the poling 

stage of the FC sample, the 180° domains are removed. As a result, each grain is 

assumed to be split into the 90° domains that are separated by planar walls, and the 

90° domain-wall displacements are caused by an external field, which is either 

electric or stress based. The electromechanical properties of the poled FC depend on 

lg γ that characterises the mobility of the 90° domain walls, where γ = (Hc)-1.10-6 Pa, 

H is the average width of the 90° domain, and c links the domain-wall displacement 

x and thermodynamic pressure f in accordance with the linear relation f = cx. Full 

sets of electromechanical constants of the monolithic poled BaTiO3 FC were 

calculated by Aleshin [23] in the range –4 ≤ lg γ ≤ 4. The value of lg γ = –4 

corresponds to almost immovable 90° domain walls in the FC grain, and at lg γ = 4 

the highest mobility of the 90° domain walls is expected. At –4 ≤ lg γ ≤ 0, an 

appreciable increase of elastic compliances | E
abs |, piezoelectric coefficients | ijd | and 

dielectric permittivities σε pp  is observed. For instance, the piezoelectric coefficient 

d33 of the poled BaTiO3 FC monotonously increases from –75 to 158 pC / N. At  

0 < lg γ ≤ 4, the properties of the poled BaTiO3 FC undergo smaller changes [23]#),  

----- 
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#) It should be added that the concepts [23] were highlighted in work [24] on the 1–3-type FC / 

auxetic polymer composites and their piezoelectric performance. The full sets of 

electromechanical constants of the poled BaTiO3 FC at –4 ≤ lg γ ≤ 4 [23] were first applied [24] to 

find the piezoelectric coefficients *
33d  and *

33g , and their hydrostatic analogs *
33g  and *

hg  of the 

1–3-type composites. These parameters undergo minor changes at 0 < lg γ ≤ 4 in FC grains and at 

constant volume fractions of the FC component in the composite.   

 

e.g.  d33 ≈ 160 pC / N.  

The prediction of the effective electromechanical properties and energy-

harvesting FOMs from Eqs. (2) and (3) is carried out in three stages as follows. In 

the first stage, the effective properties of the porous 3–0 non-poled FC matrix [see 

the inset in figure 1(b)] are evaluated as a function of mp and ρp within the 

framework of the dilute approach [6, 12], and an interaction between the air pores is 

neglected. The matrix of the effective properties of the medium with spheroidal air  

pores is written as    

|| C(m)
 || = || C(1) || [|| I ||  – mp(|| I || – (1 – mp)|| S ||)–1].                     (4) 

In Eq. (4) || C(1) || is the 9 × 9 matrix that describes the properties of the monolithic 

FC, || I || is the 9 × 9 identity matrix, || S || is the 9 × 9 matrix containing components 

of the Eshelby electroelastic tensor [8, 25], and mp is the volume fraction of the air 

pores, see the inset in figure 1(b). Elements of || S || depend [25] on the aspect ratio 

ρp of the air pore and on the properties of the monolithic FC medium that 

surrounds the pores. The || C(1) || matrix from Eq. (4) is given by  

|| C(1) || = ⎟
⎟
⎠

⎞

−⎜
⎜
⎝

⎛

||||
||||

||||

||||
),1(

)1(

)1(

),1(

ξε

tE e
e

c
,                    (5)  
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where || c(1),E || is the 6 × 6 matrix of elastic moduli measured at E = constant, || e(1) || 

is the 6 × 3 matrix of piezoelectric coefficients, and || ε(1),ξ || is the 3 × 3 matrix of 

dielectric permittivities measured at mechanical strain ξ = constant. The superscript 

t in Eq. (5) denotes the transposition. Because of our assumption on the non-poled 

FC matrix in the porous layer of the PSL structure, the || e(1) || and || e(1) ||t matrices 

from Eq. (5) contain zero elements only. The || C(m)
 || matrix from Eq. (4) has the 

form shown in Eq. (5). 

In the second stage, the effective (averaged) properties of the porous layer of 

the PSL structure are evaluated using the effective field method [8]. In this case we 

consider the electromechanical interaction between the monolithic FC rods, and the 

effective properties of the porous layer as a whole (1–3–0 composite) depend on the 

volume fraction r of the monolithic FC rods and parameter mp and ρp of the porous 

matrix that surrounds these rods. The evaluation of the effective properties of the 

porous layer is carried out on assumption that the linear sizes of each pore are much 

smaller than the radius of the FC rod, i.e., the system of FC rods is surrounded by 

the porous medium with a set of effective constants. The effective properties of the 

porous layer are represented in accordance with the effective field method as   

|| C(pl) || = || C(m) || + r (|| C(FC) || – || C(m) ||) [|| I || + (1 – r) || S(m) || || C(m) ||–1 (|| C(FC) || –   

|| C(m) ||)]–1.                                  (6)  

In Eq. (6) the matrices of the properties || C(FC) || (poled FC rods) and || C(m) || [porous 

non-poled FC matrix, see figure 1(b)] have the form shown in Eq. (5), r is the 

volume fraction of the poled FC rods in the porous layer of PSL material, || I || is the 
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identity matrix, and || S(m) || is the matrix that contains components of the Eshelby 

electroelastic tensor [25] of the non-poled porous FC medium. Elements of || S(m) || 

depend on the shape of the FC rod and on the properties of the porous FC medium 

that surrounds each FC rod. 

The third stage is concerned with averaging of the properties of the monolithic 

and porous layers on the volume fraction m [see figure 1(b)], and during this 

averaging, we take into account the electromechanical interaction between the 

piezo-active layers and boundary conditions [8] for mechanical and electric fields at 

the interface x3
 = constant [see figure 1(b)]. The boundary conditions at x3

 = constant 

imply a continuity of components of mechanical stress σ13, σ23 and σ33, strain ξ11, 

ξ12 and ξ22, electric displacement D3, and electric field E1 and E2. Thus, the effective 

electromechanical properties of the PSL sample shown in figure 1(b) are given by 

the || C* || matrix that depends on mp, ρp, r, m, lg γ1, and lg γ2, where γ1 refers to the 

domain-wall mobility in grains of the FC rod, and γ2 refers to the domain-wall 

mobility in grains of the monolithic FC layer. The || C* || matrix has the form shown 

in Eq. (5) so that the PSL FC is characterised by the following electromechanical 

constants: E
abc
* , *

ije  and ξε *vv . Taking the parameters from figure 1(b) into account, 

we represent the relative bulk density of the PSL sample as α = 1 – (1 – r)mmp. A 

transition from the effective piezoelectric coefficients *
ije  to *

ijd  and *
ijg  is carried 

out by using conventional formulae [26] for the piezoelectric medium.     
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Results of our evaluations are shown in figures 3–5 and Tables 1 and 2. In 

general, the graphs from figure 3 are consistent with the experimental *
3 jd (α) 

dependence shown in figure 2(a). Hereby the porous layer of PLS is characterised 

by an inner layer porosity pin = (1 – r)mp, see figure 1(b). At mp = 0.6 we obtain pin 

= 0.54, 0.51 and 0.48 for r = 0.10, 0.15 and 0.20, respectively, and these pin values 

can correspond to PSL-1. At mp = 0.7 we have pin = 0.63, 0.595 and 0.56 for r = 

0.10, 0.15 and 0.20, respectively, and these pin values can correspond to PSL-2. 

The graphs in figure 3 suggest that even relatively small changes in the volume 

fraction r of the poled FC rods in the porous layer can lead to the distinct changes 

in the piezoelectric coefficients *
3 jd  of the PSL BaTiO3 and also influence the 

anisotropy of *
3 jd . On increasing r, the anisotropy of *

3 jd  becomes smaller, and this 

trend is caused by the small anisotropy of d3j of the monolithic BaTiO3 FC at 

various values of γ. In the present study, we consider the situation when the 90° 

domain-wall mobility in the grains of the FC rods is more than that in the 

monolithic layer of PSL, i.e., the condition γ1 > γ2 holds. Comparing figure 3(a) to 

figure 3(c) and figure 3(b) to figure 3(d), we see that the anisotropy of *
3 jd  becomes 

smaller on decreasing the aspect ratio ρp of the air pore. This decrease strongly 

influences the elastic properties of the porous FC matrix shown in the inset of 

figure 1(b) and leads to changes in the piezoelectric coefficients *
3 jd  of the PSL 

BaTiO3. The mutual arrangement of curves 1–3 (piezoelectric coefficient *
33d ) in 

figure 3(b) differs from the arrangements in the remaining graphs of figure 3. This 
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can be accounted for by a specific competition of the piezoelectric properties of the 

porous and monolithic layers at a relatively small difference between the 

piezoelectric coefficients 33d  of these layers. The competition is related to the PSL 

where the matrix porosity level is high (mp = 0.7) and the pores are highly oblate 

(ρp = 100). Such a porous structure leads to a large elastic anisotropy that also 

influences the piezoelectric properties of the porous layer and PSL structure as a 

whole. A simple comparison of figure 3(a) and (b) enables us to state that for the 

smaller matrix porosity mp = 0.6, a crossing of the curves 1–3 is also observed, but 

at higher relative densities α of the PSL structure compared to mp = 0.7. We 

observe minor changes of the *
33d  values [cf. curves 1–3 in figure 3(a) and (b)], and 

therefore, the aforementioned competition of the piezoelectric properties of the 

layers is effective.      

The graphs in figure 4 show that the evaluated σε *33 (α) dependence correlates 

with the experimental data from figure 2(b), however there are differences between 

the calculated and experimental σε *33  values. The main reason for these differences 

is the regular porous structure at mp = constant and ρp = constant, see the inset in 

figure 1(b). The next reason may be concerned with features of the monolithic 

poled FC rods and their regular arrangement in the porous matrix: in the present 

study we consider the system of the long cylindrical FC rods oriented parallel to 

the poling axis only. The interfaces that separate the monolithic and porous layers 

in the PSL sample are planar [see figure 1(b)], however any deviation from the 
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ideal planar interface could lead to changes in the electromechanical coupling 

between the layers and influence the piezoelectric and dielectric properties of the 

PSL sample as a whole. It should be added that recently, Wang et al. [27] studied 

sandwich-structured polymer BaTiO3-based composites wherein the interfaces 

between adjacent layers strongly influence the dielectric properties, breakdown 

strength and other characteristics of these materials. A minor reason for the 

differences between the calculated and experimental 
σε *33  values [see figures 2(b) 

and 4] consists in the poling degree of the porous and monolithic layers within the 

PSL material. We assume that its porous matrix is fully non-poled, and each grain 

of the monolithic FC rod is characterised by the domain-wall mobility γ1 that is 

constant over the whole porous layer. By analogy with the FC rod, the domain-wall 

mobility of the monolithic FC layer is γ2 = constant. Despite the aforementioned 

reasons, we state that the columnar FC structure in the porous layer represents 

reliable polarisation paths though the porous inner layer and strongly influences its 

piezoelectric and dielectric properties (figures 3 and 4).   

To compare the calculation results, we used analytical formulae for effective 

electromechanical properties of the 1–3 [28] and series-connected 2–2 [15] 

composites based on FCs. The formulae from work [28] were applied to find the 

full set of electromechanical constants of the porous layer of the PSL on 

assumption that the properties of the porous matrix were previously determined by 

using Eq. (4). The formulae from monograph [15] were applied to the laminar 

structure [figure 1(b)] wherein the electromechanical interaction between the 
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monolithic and porous layers was taken into consideration. Hereby we state good 

agreement between the effective properties found for the PSL by different 

methods: a difference between the similar parameters calculated in different ways 

is less than 3%.  

Based on the piezoelectric and dielectric properties of the PSL BaTiO3, we 

show the dependence of its squared FOMs 
2*

3 )( jQ  on the relative density α (figure 

5). Due to validity of Eq. (1), the condition  

( *
33Q )2 >> ( *

31Q )2           (7) 

holds. On increasing the volume fraction r and on decreasing the volume fraction 

mp, we observe decreasing ( *
3 jQ )2 that is caused by the considerable influence of 

the piezoelectric coefficients *
3 jg  on the squared FOMs, see Eqs. (2) and (3). Based 

on the electromechanical constants of the poled BaTiO3 FC [21], we evaluate its 

squared FOMs (Q33)2 = 2.40 and (Q31)2 = 0.404 (in 10-12 Pa-1). The squared FOMs 

evaluated from experimental data on the monolithic FC samples used in the present 

study are (Q33)2 = 1.17 and (Q31)2 = 0.172 (in 10-12 Pa-1). Thus, the studied PSL 

structure enables us to increase ( *
33Q )2 by a few times in comparison to the poled 

monolithic BaTiO3 FC, and the obtained ( *
3 jQ )2 values obey the condition (7) in 

the wide α range.  

In Table 2 we show the performance of the PSL BaTiO3 with a small 

difference between γ1 and γ2, i.e., when the domain-wall mobility in grains of the 

monolithic FC components undergoes small changes. It is seen that the 
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piezoelectric coefficient *
33d  is overestimated even at a volume fraction r ≤ 0.1 of 

the FC rods, and no *
33d (α) dependence is observed among the calculated values. 

An average value of *
31d  related to r = 0.10 and 0.05 is in good agreement with the 

experimental *
31d  value [see figure 2(a)] when α is constant. The dielectric 

permittivity σε *33  
is smaller than that measured on the PSL sample [see figure 2(b)]. 

The large *
33d  values related to PSL BaTiO3 at r ≤ 0.1 (see Table 2) suggest that 

the domain-wall mobility γ2 of the monolithic layer is to be decreased at the 

unchanged characteristics of the porous layer.    

 

4. Conclusions  

This paper describes a detailed experimental and modelling analysis of the 

piezoelectric properties, dielectric properties and energy-harvesting parameters of 

novel porous sandwich layer (PSL) structures based on BaTiO3 containing dense 

outer layers and inner layer with a porosity of pin ≈ 0.5–0.6. The experimental 

study of the microgeometry and physical properties of this lead-free ferroelectric 

material demonstrate that conditions in Eqs. (1) and (7) are valid in a wide range of 

the relative density (α). The ability of the structure to achieve a large piezoelectric 

anisotropy with a high *
33d  ≈ 100 pC / N suggests that this lead-free piezoelectric 

material has obvious advantages over conventional highly anisotropic PbTiO3-type 

FCs.  The *
3 jd (α) and σε *33 (α) dependences are interpreted in terms of a model of a 

laminar structure [figure 1(b)] whereby the electromechanical interaction of the 
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porous and monolithic layers plays a key role in forming the beneficial 

electromechanical properties and their anisotropy. The porous layer is represented 

as a piezocomposite with 1–3–0 connectivity, and the system of the monolithic FC 

rods strongly influences the electromechanical properties of this layer. The 

difference between the 90° domain-wall mobility levels in grains of the FC 

components of PSL structures and the presence of the heavily oblate air pores are 

to be taken into account at the prediction of the piezoelectric and dielectric 

properties, hydrostatic parameters and squared FOMs. The studied PSL BaTiO3 is 

characterised by the squared FOM ( *
33Q )2  ∼

 10-12 Pa-1 under longitudinal excitation 

and by the hydrostatic piezoelectric coefficients *
hd  ≈ 100 pC / N and *

hg  ≈ 20 

mV.m / N at α = 0.64–0.70. The new type of ferroelectric structure proposed here 

that is based on a lead-free material provides a fascinating route for the design of 

ferroelectric structures for piezoelectric sensor, energy-harvesting and related 

transducer applications.  
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Appendix. List of symbols and abbreviations 

a1p, a2p and a3p, semiaxes of the pore   

c, coefficient that links the 90° domain-wall displacement and thermodynamic 

pressure  

|| cE || is the matrix of elastic moduli measured at electric field E = constant 

|| C(FC) ||, matrix of electromechanical properties of poled ceramic rods  

|| C(m)
 ||, matrix of electromechanical properties of the poled ceramic medium with 

spheroidal pores  

|| C(1) ||, matrix of electromechanical properties of the monolithic ceramic  

D, electric displacement  

hd , hydrostatic piezoelectric coefficient  

ijd , piezoelectric coefficient  

E. electric field  

|| e(1) ||, matrix of piezoelectric coefficients of the monolithic ceramic  

ije , piezoelectric coefficient  

hg , hydrostatic piezoelectric coefficient  

ijg , piezoelectric coefficient  

H, average width of the 90° domain  

|| I || identity matrix   

m, volume fraction of the porous layer, see figure 1(b) 

mp volume fraction of air pores in the ceramic medium, see figure 1(b)  
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pin, inner layer porosity 

( 31Q )2, squared figure of merit concerned with the transverse piezoelectric effect   

( 33Q )2, energy-harvesting figure of merit, squared figure of merit concerned with 

the longitudinal piezoelectric effect   

r, volume fraction of poled ceramic rods in the porous layer, see figure 1(b)   

|| S ||, matrix containing components of the Eshelby electroelastic tensor of the 

poled ceramic medium  

|| S(m) ||. matrix containing components of the Eshelby electroelastic tensor of the 

non-poled porous ceramic medium 

E
abs , elastic compliance at electric field E = constant  

t, superscript that denotes the matrix transposition 

vp, porosity of the porous sandwich layer structure, see figure 1(b)    

α, bulk relative density of the porous sandwich layer structure   

γ, factor that characterises the 90° domain-wall mobility in ceramic grains; γ1 refers 

to the domain-wall mobility in grains of the ceramic rod, and γ2 refers to the 

domain-wall mobility in grains of the monolithic ceramic layer [see figure 1(b)]  

ε0, dielectric permittivity of free space (ε0 = 8.854.10−12 F m−1)  

|| ε(1),ξ ||, matrix of dielectric permittivities of the monolithic ceramic at mechanical 

strain ξ = constant  

σε pp , dielectric permittivity at mechanical stress σ = constant 

ρp, aspect ratio of the air pore  
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σ, mechanical stress  

ξ, mechanical strain  

1–3–0, 1–3, 3–0, and 2–2, connectivity indexes of composites    

Asterisk (*) is used to show effective properties and parameters of the porous 

sandwich layer or composite 

FC, ferroelectric ceramic  

FOM, figure of merit  

PEG, polyethylene glycol  

PSL, porous sandwich layer; PSL-1 and PSL-2 are related to inner layer porosity 

pin ≈ 0.5 and 0.6, respectively  

SEM, scanning electron microscopy 
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Table 1. Experimental and calculated values of piezoelectric coefficients *
33d , *

hd  

(in pC / N), *
33g , and *

hg  (in mV.m / N) of PSL BaTiO3 at α = const  

Sample PLS-1 PLS-2 

α 0.70 0.72 0.74 0.66 0.72 0.82 

*
33d , experimental 110 122 115 121 114 109 

*
hd , experimental 84.1 89.3 86.2 101 90.5 73.2 

*
33g , experimental 19.6 18.6 17.6 25.6 20.4 13.9 

*
hg , experimental 15.0 13.6 13.2 21.4 16.2 9.3 

*
33d , calculated 132 131 129 133 129 119 

*
hd , calculated 91.4 89.8 86.4 92.6 86.0 67.8 

*
33g , calculated 26.1 25.1 23.7 28.9 23.3 17.5 

*
hg , calculated 18.1 17.1 15.9 20.1 15.5 10.0 

Note. Calculations of the piezoelectric coefficients were performed within the 

framework of the model shown in figure 1(b) and by using the averaging 

procedures described in Section 3. Hereby the following parameters were used: mp 

= 0.6, ρp = 100, r = 0.20, lg γ1 = 0, and lg γ2 = –4 (for PSL-1), and mp = 0.7, ρp = 

100, r = 0.20, lg γ1 = 0, and lg γ2 = –4 (for PSL-2).  
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Table 2. Experimental and calculated values of piezoelectric coefficients *
3 jd  

(in pC / N) and relative dielectric permittivity σε *33  of PSL-2 BaTiO3 at α = const, 

lg γ1 = 0, and lg γ2 = –1  

α 
*
33d  

*
31d  0

*
33 /εε σ

 

Experimental 

0.66 121 –10.0 534 

0.72 114 –11.8 631 

0.82 109 –17.9 886 

Calculated at mp = 0.7, ρp = 100 and r = 0.10 (inner 

layer porosity pin = 0.63) 

0.66 136 –13.2 374 

0.72 136 –15.1 431 

0.82 134 –19.8 568 

Calculated at mp = 0.7, ρp = 100 and r = 0.05 (inner 

layer porosity pin = 0.57) 

0.66 124 –7.0 220 

0.72 124 –8.1 252 

0.82 124 –11.3 345 
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Figure 1. Optical micrograph of PSL BaTiO3 (a) and schematic (b) that is used to 

describe the electromechanical properties and related parameters of the PSL 

structures. In the micrograph (a), the porous layer is located between the 

monolithic FC layers. The PSL sample as a whole has been poled in the vertical 

direction. In the schematic (b), (X1X2X3) is the rectangular co-ordinate system, m 

and 1 – m are volume fractions of the porous and monolithic layers, respectively, r 

is the volume fraction of monolithic FC rods in the porous layer, and mp is the 

volume fraction of air pores in the matrix (see the inset) that surrounds the 

monolithic FC rods in the porous layer.  

Porous	layer	

Monolithic	layer	

Monolithic	layer	
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a 

 
b 

Figure 2. Room-temperature piezoelectric coefficients *
3 jd  and relative dielectric 

permittivity σε *33 / ε0 as functions of the bulk relative density α of PSL BaTiO3 at the 

the inner layer porosity pin ≈ 0.5 and 0.6. The relevant layer is shown in the middle 

part of figure 1(a) and termed ‘porous layer’ in figure 1(b). 
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a      b 

  

c      d 

Figure 3. Evaluated piezoelectric coefficients *
3 jd  (in pC / N) as functions of the 

bulk relative density α of PSL BaTiO3 at fixed volume fractions r of the poled FC 

rods in the porous layer [see the schematic in figure 1(b)].  
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a      b 

  

c      d 

Figure 4. Evaluated relative dielectric permittivity σε *33 / ε0 as a function of the bulk 

relative density α of PSL BaTiO3 at fixed volume fractions r of the poled FC rods 

in the porous layer [see the schematic in figure 1(b)].  

 

 



	

32 

	

  

a      b 

Figure 5. Evaluated squared FOM ( *
33Q )2 (in 10-12 Pa-1) as a function of the bulk 

relative density α of PSL BaTiO3 at fixed volume fractions r of the poled FC rods 

and mp of air pores in the porous layer [see the schematic in figure 1(b)]. 

 

 

 


