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Abstract 

The aim of this paper is to present the first study on spatial and temporal variation in the 

enantiomeric profile of chiral drugs in eight European cities. Wastewater-based epidemiology 

(WBE) and enantioselective analysis were combined to evaluate trends in illicit drug use in the 

context of their consumption vs direct disposal as well as their synthetic production routes. 

Spatial variations in amphetamine loads were observed with higher use in Northern European 

cities. Enantioselective analysis showed a general enrichment of amphetamine with the R-(-)-

enantiomer in wastewater indicating its abuse. High loads of racemic methamphetamine were 

detected in Oslo (EF = 0.49 ± 0.02). This is in contrast to other European cities where S-(+)-

methamphetamine was the predominant enantiomer. This indicates different methods of 

methamphetamine synthesis and/or trafficking routes in Oslo, compared with the other cities 

tested. An enrichment of MDMA with the R-(-)-enantiomer was observed in European 
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wastewaters indicating MDMA consumption rather than disposal of unused drug. MDA’s chiral 

signature indicated its enrichment with the S-(+)-enantiomer, which confirms its origin from 

MDMA metabolism in humans. HMMA was also detected at quantifiable concentrations in 

wastewater and was found to be a suitable biomarker for MDMA consumption. Mephedrone 

was only detected in wastewater from the United Kingdom with population-normalised loads 

up to 47.7 mg 1000 people-1 day-1. The enrichment of mephedrone in the R-(+)-enantiomer in 

wastewater suggests stereoselective metabolism in humans, hence consumption, rather than 

direct disposal of the drug. The investigation of drug precursors, such as ephedrine, showed 

that their presence was reasonably ascribed to their medical use. 
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1. Introduction 

Since the first study by Zuccato et al. (Zuccato, Chiabrando et al. 2005), where wastewater-

based epidemiology (WBE) was introduced as an approach to estimate community-wide illicit 

drug use trends, WBE has proven to provide valuable and complementary information to 

traditional epidemiological approaches (Thomas and Reid 2011, Kasprzyk-Hordern, Bijlsma et 

al. 2014). Indeed, the analysis of carefully selected biomarkers, which are often unique human 

urinary metabolic excretion products, has allowed for near real-time profiling of the 

community-wide use of a number of illicit drugs (Thomas, Bijlsma et al. 2012, Ort, van Nuijs 

et al. 2014), new psychoactive substances (NPS) (Reid, Derry et al. 2014, Castiglioni, Borsotti 

et al. 2015), alcohol (Reid, Langford et al. 2011) and tobacco (Castiglioni, Senta et al. 2014) 

use and counterfeit medicines (Causanilles, Emke et al. 2016). The study by Zuccato et al. was 

followed and further developed by other research groups (Van Nuijs, Pecceu et al. 2009, van 

Nuijs, Pecceu et al. 2009, Karolak, Nefau et al. 2010, Metcalfe, Tindale et al. 2010, Terzic, 

Senta et al. 2010, Reid, Langford et al. 2011, van Nuijs, Castiglioni et al. 2011). The first 

Europe-wide study in 2011, led by the SCORE group (www.score-cost.eu), involved 19 cities 

and estimated temporal and spatial drugs use trends across Europe (Thomas, Bijlsma et al. 

2012). This was followed by Europe-wide monitoring of 23 cities in 2012 (Ort, van Nuijs et al. 

2014) and then 42 cities in 2013 (http://www.emcdda.europa.eu/topics/pods/waste-water-

analysis 2016). WBE is currently used to report on world-wide illicit drug use trends (Lai, 

O'Brien et al. 2016, Tscharke, Chen et al. 2016) and feeds into the Europe-wide evidence based 

early warning system managed by the European Monitoring Centre for Drugs & Drug 

Addiction (EMCDDA) (http://www.emcdda.europa.eu/activities/wastewater-analysis).  

There are several key stages that need to be considered when developing new WBE 

applications: (i) biomarker selection; (ii) collection of representative wastewater samples; (iii) 

measurement of biomarkers in wastewater; (iv) calculation of population-normalised mass 

loads and, finally, (v) estimation of the consumption pro capita. Biomarker selection is 

considered to be of critical importance. This cannot be limited to the parent drug itself if the 

determination of drug consumption estimate is the aim, since bias related to disposal of the 
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unused drug might take place. A biomarker should be uniquely formed in the body, be stable 

and present in wastewater at quantifiable concentrations. Furthermore, the impact of 

transformation of biomarkers in sewer biofilm/suspended solids between the discharge and the 

sampling points should be considered as it could affect the detected amount of the analytes, 

thereby influencing epidemiological observations (McCall, Scheidegger et al. 2016, Ramin, 

Libonati Brock et al. 2016). Unfortunately, as it is not always possible to select a unique 

metabolic biomarker, different solutions need to be sought. One of the innovative approaches 

focuses on enantiomerism of chiral drugs and their stereoselective human metabolism [26]. 

Enantiomeric profiling can complement WBE data with valuable information on abuse trends 

and potency of chiral drugs. It can also help with distinguishing between the legal and illicit 

use of drugs, as well as providing an indication of actual consumption as opposed to disposal 

of non-consumed drugs [2]. This is because drug synthesis is associated with different chiral 

signatures that depend on the routes of synthesis. Furthermore, chiral drugs undergo 

stereoselective disposition in humans leading to changes in their chiral signature (expressed as 

enantiomeric fraction, EF) (Kasprzyk-Hordern 2010) when excreted. 

The potential of enantioselective analysis for WBE purposes has thus far only been 

demonstrated in a few limited studies focussing on (i) verification of the fate of chiral drugs 

during wastewater treatment and in the environment (Camacho-Muñoz 2015), (ii) confirmation 

of origin of amphetamine found in wastewater in the United Kingdom (UK) (Kasprzyk-Hordern 

and Baker 2012) and (iii) confirmation of MDA present in wastewater as a result of MDMA 

consumption rather than MDA use (Kasprzyk-Hordern and Baker 2012). Vázquez-Roig et al. 

(Vazquez-Roig, Kasprzyk-Hordern et al. 2014) reported usage patterns of chiral drugs in the 

catchment area of Valencia (Spain), by linking selective enrichment of MDMA with the R-(-)-

enantiomer in wastewater to human consumption. Enantioselective analysis also proved 

invaluable in establishing that the unexpectedly high quantity of MDMA detected during a 

monitoring campaign in 2011 in Utrecht was due to direct disposal of unused MDMA as a 

consequence of a police raid at a nearby illegal production facility (Emke, Evans et al. 2014) 

and not as a result of high levels of consumption. Similarly, Petrie et al. (Petrie, Youdan et al. 

2016) linked high levels of fluoxetine in wastewater with the disposal of the unused drug rather 

than its consumption. Recently, Castrignanò et al. (Castrignanò, Lubben et al. 2016) found 

mephedrone enriched with R-(+)-enantiomer in wastewater in the UK suggesting human use. 

Despite these findings, a limited number of studies have correlated the enantiomeric 

composition of chiral biomarkers to official statistics (Camacho-Muñoz 2015). Hence, this is 

the first pan-European study aimed at investigating enantiomeric profiling of “common” drugs 

of abuse, NPS and chiral drug precursors in eight cities from different countries with a total 

population equivalent of 4.9 million. The focus of this research was to: 

 quantify selected drugs in wastewater from eight European cities, 

 verify if drug residues in wastewater originated from the direct disposal of unused drugs 

into the sewer system or their consumption. 

 

2. Experimental 

2.1.Chemicals and materials 



The following chiral analytes were selected in this study (Figure S1): (±)-mephedrone, (±)-4-

hydroxy-3-methoxymethamphetamine (HMMA), (±)-3,4-methylenedioxymethamphetamine 

(MDMA), (±)-4-hydroxy-3-methoxyamphetamine (HMA), (±)-methamphetamine, (±)-

amphetamine, (±)-3,4-methylenedioxyamphetamine (MDA), (±)-3,4-methylenedioxy-N-ethyl-

amphetamine (MDEA), (±)-ephedrine, (±)-pseudoephedrine, (±)-para-methoxyamphetamine 

(PMA), (±)-norephedrine. Table S1 shows properties of all analytes. Amphetamine-D5, 

methamphetamine-D5, mephedrone-D3, MDA-D5, MDMA-D5, MDEA-D5 and 1S,2R-(+)-

ephedrine-D3 were used as internal standards (ISs). 

All standards and ISs were of the highest purity available (>97%). Stock and working solutions 

of standards were stored at -20 °C. Methanol, acetonitrile and ammonium acetate were 

purchased from Sigma Aldrich, UK. Ultrapure water was obtained from MilliQ system (UK). 

Deactivation of the glassware was carried out as described in (Castrignanò, Lubben et al. 2016) 

to prevent the adsorption of basic analytes to the hydroxyl sites on the glass surface. 

2.2.Sample collection, storage and sample preparation 

24-hour composite wastewater influent samples were collected over seven consecutive days in 

March 2015 from wastewater treatment plants (WWTPs) across Europe using best practice 

sampling protocol (Castiglioni, Thomas et al. 2014). The week in March was chosen as a 

“routine week”, in which no national and local festivities were taking place. Sampling sites 

were in Norway (Oslo), United Kingdom (Bristol), Denmark (Copenhagen), The Netherlands 

(Utrecht), Belgium (Brussels), Switzerland (Zurich), Italy (Milan) and Spain (Castellón). Table 

S2 provides information on population and flow for the selected cities in the study. After 

collection, samples were transported to the local laboratory in refrigerated conditions and 

shipped on ice blocks to the UK within 24 hours. A fully validated analytical method was used 

for the detection and quantification of chiral drugs of abuse in wastewater as described 

elsewhere (Castrignanò, Lubben et al. 2016). 

2.3.Sample analysis 

Samples were analysed in triplicate using enantioselective high performance liquid 

chromatography coupled with tandem mass spectrometry system. Separation of all chiral 

analytes was undertaken with a CHIRALPAK® CBH HPLC column 5 μm particle size, L × 

I.D. 10 cm × 2.0 mm with a chiral-CBH guard column 10 × 2.0 mm, 5 μm particle size (Chiral 

Technologies, France) using a Waters ACQUITY UPLC® system (Waters, Manchester, UK) 

under isocratic conditions at a 0.1 mL min-1. The mobile phase was a solution 1 mM ammonium 

acetate/methanol 85:15 v/v. The temperature was kept at 4 °C in the ACQUITY UPLCTM 

autosampler, whilst at 25 °C in the column compartment. The injection volume was set at 20 

µL. 

A triple quadrupole mass spectrometer (Xevo TQD, Waters, Manchester, UK) equipped with 

an electrospray ionisation source was used in positive mode operating in the multiple reaction 

monitoring (MRM) mode. Table S3 shows MRM transitions used for selected analytes. 

MassLynx 4.1 (Waters, UK) was used to control the Waters ACQUITY system and the Xevo 

TQD. Data processing was carried out using TargetLynx software (Waters, Manchester, UK). 

Method validation data are provided in Tables S4-S8. 



2.4.Calculations 

Enantiomeric fraction (EF) was calculated using the following equation (1): 

 
    


EF                             (1) 

where (+) is the concentration of (+)-enantiomer or the first eluted enantiomer and (-) is the 

concentration of (-)-enantiomer or the second eluted enantiomer. EF equals 0.5 in the case of a 

racemate, whilst 1 or 0 in the case of the enantiopure compound. 

In order to obtain daily mass loads, the concentrations of analytes expressed in ng L-1 (see Table 

S9) were multiplied by the flow rate (L day-1) and then normalised by the population size of the 

catchment area. This was essential for comparing data coming from different cities involved in 

the study.  

All relevant information on the selected chiral illicit drugs is gathered in Table S10. It includes: 

biomarkers used as drug target residue (DTR), urinary excretion data, correction factors (CFs) 

used for WBE estimates, EF expected in urine after human metabolism (EFurine), EF calculated 

from illegal synthesis of the drug (EFillegal_synth), information derived from the legal use of the 

drug with EF derived from the legal use of the drug (EFlegal source) and consumption estimates 

from official health statistics and from wastewater analysis. CF was calculated as the ratio 

between the molar ratio of the drug and its DTR and the urinary excretion data.  

Estimated community-wide consumptions were calculated using population-normalised mass 

loads and CF. 

 

3. Results and Discussion 

3.1.Amphetamines 

Data on amphetamines consumption, reported by the European drug report 2015 (as a sum of 

amphetamine and methamphetamine), showed that 1.3 million Europeans within the ages of 15 

- 34 used amphetamines in the last year (EMCDDA 2015). This data was obtained using the 

EMCDDA’s five key epidemiological indicators, which consist of “estimates of recreational 

use (based mainly on surveys), estimates of high-risk use, drug-related deaths, infectious 

diseases and drug treatment entry” along with Reitox focal points and other sources (EMCDDA 

2015). In this work, we applied WBE to estimate amphetamine and methamphetamine use in 

eight European cities. Unfortunately, no metabolic biomarkers of amphetamine and 

methamphetamine are validated for a reliable estimation of their abuse via WBE. Therefore, 

amphetamine and methamphetamine themselves are commonly used as biomarkers. This 

constitutes a problem since the analysis of parent drugs does not allow for distinguishing 

between consumed and unconsumed (meth)amphetamine. Additionally, amphetamine is also a 

metabolite of other (prescription) drugs, such as fenethylline, fenproporex, methamphetamine 

(Baselt) and selegiline (Ort, van Nuijs et al. 2014). Furthermore, the percentage of the 

unchanged amphetamine fraction in urine can change due to changes in urine pH (Table S10), 

leading to high uncertainty of calculations and possible over or underestimation of 



amphetamine use. The awareness of this uncertainty is well recognised in the scientific 

community studying amphetamine use using WBE (Chiaia-Hernandez, Banta-Green et al. 

2011), (Kasprzyk-Hordern, Dinsdale et al. 2009), (Postigo, Lopez de Alda et al. 2010), (van 

Nuijs, Mougel et al. 2011). As reported by Ort et al. (Ort, van Nuijs et al. 2014), the estimation 

of the amphetamine consumption has to be carried out in the context of methamphetamine data 

to distinguish between drug consumption from its metabolism. However, verification of the 

amphetamine/methamphetamine ratio cannot provide comprehensive information on drug 

consumption against direct disposal of unused drug. Additional evidence is therefore needed to 

distinguish between amphetamine abuse from its direct disposal or its usage as a prescription 

drug. The phenomenon of enantiomerism of amphetamines may provide invaluable insight (see 

section S1-2 for further information). 

3.1.1. Amphetamine 

Population-normalised amphetamine loads were <5 mg day-1 1000 people-1 in Milan to a 

maximum weekly average value of 122.3 mg day-1 1000 people-1 in Oslo, which shows higher 

amphetamine prevalence in Northern Europe (Figures 1a and S2, estimated consumptions also 

shown in Table S11). There was a decreasing amphetamine usage from Northern to Southern 

cities with only Italian and Spanish cities notably below the overall mean load of 28 mg day-1 

1000 people-1 reported in the 2013 European study (Ort, van Nuijs et al. 2014). By looking at 

the results from previous monitoring studies undertaken since 2012 (Ort, van Nuijs et al. 2014), 

temporal trends show that amphetamine loads increased in Oslo, Copenhagen, Brussels and 

Milan, even if they are very low for the latter city. They remained stable in Bristol and decreased 

in Zurich and in Utrecht. 

Enantiomeric profiling revealed that amphetamine in wastewater was enriched with the R-(-)-

enantiomer in most European cities (EFww<0.5, EF determined in the wastewater is referred as 

EFww; the enrichment was significant as the unpaired t-test showed “t Stat > t Critical one-tail” 

8.25 > 1.81 for α = 0.05 and 8.25 > 4.14 for α = 0.001, p one-tail 0.0000045 < 0.001). This 

could indicate the consumption of racemic amphetamine (see section S1 for further discussion). 

Interestingly, amphetamine was found to be enriched with S-(+)-enantiomer in Milan 

(EFww=0.67±0.16). This suggests either usage of S-(+)-amphetamine (prescribed or illicit) or 

its formation as a result of metabolism of methamphetamine. Indeed, the illicit origin of 

amphetamine is very likely as methamphetamine was also found to be enriched with the S-(+)-

enantiomer (see section 3.1.2). 

3.1.2. Methamphetamine 

In this study, population-normalised methamphetamine loads were <5 mg day-1 1000 people-1 

in Bristol and Brussels to a maximum value of 172.4 mg day-1 1000 people-1 in Oslo wastewater 

(Figures 1b and S2, estimated consumptions in Table S12). According to the EMCDDA 

(EMCDDA 2015), high methamphetamine seizures were reported in Norway. A correlation 

(not statistically significant) was found between amount seized and loads in wastewater (Baz-

Lomba, Salvatore et al. 2016). Zurich wastewater was found to have the second highest 

methamphetamine loads of 20.2 mg day-1 1000 people-1 as a weekly average of eight cities. 

Estimates in Copenhagen and Brussels were below the overall mean value. Wastewater from 

other European cities contained low levels. Despite being below the European average 



(http://www.emcdda.europa.eu/topics/pods/waste-water-analysis 2016), data from Milan has 

shown that the methamphetamine load has doubled when compared to data from the same area 

in 2013-14 and reaching 2012 loads. 

Enantiomeric profiling of European wastewater revealed that methamphetamine used in most 

European locations tested was the enantiopure S-(+)-methamphetamine with EFww ranging 

from 0.89±0.01 to 1.00±0.00. Norwegian wastewaters were an exception as they contained 

racemic methamphetamine (EFww(n=7)=0.49±0.02), which also indicated direct disposal of 

unused (±)-methamphetamine. Indeed, it has been reported by the EMCDDA (EMCDDA 2014) 

that methamphetamine available in Norway (and in Sweden) is mainly produced from 

phenylacetone and trafficked as racemate from Lithuania (see section S2 for further 

information). This is because clandestine production facilities in Lithuania tend to utilise a 

different synthetic route for methamphetamine production than facilities in Central Europe. 

Interestingly, since S-(+)-methamphetamine is the most potent psychotropic enantiomer 

(Freeman and Alder 2002) of methamphetamine, one can conclude that despite the lower usage 

of methamphetamine in Zurich, Copenhagen, Brussels and Milan, the potency of the drug is 

much higher in these cities than in Oslo. 

3.2.MDMA and MDA 

The European drug report 2015 stated that 1.8 million Europeans with an age range from 15 

and 34 used ecstasy (with MDMA as the main ingredient) in the last year, with a low and stable 

prevalence trend (EMCDDA 2015). Europe-wide MDMA usage was also estimated using WBE 

(Thomas, Bijlsma et al. 2012, Ort, van Nuijs et al. 2014). Unfortunately, so far estimations are 

based on quantification of MDMA as a DTR in wastewater. Such an approach does not allow 

for accurate evaluation of MDMA consumption against the direct disposal of unused drug. 

There are two possible solutions: (1) specific metabolic biomarkers should be sought as MDMA 

is known to metabolise to MDA, DHMA and HMMA (Figure S3) (Castrignanò, Lubben et al. 

2016, Gonzalez-Marino, Zuccato et al. 2017), and (2) enantiomeric profiling should be 

implemented as MDMA undergoes stereoselective metabolism leading to the formation of 

chiral metabolites (see section S3 for further information). 

In the current study, population-normalised MDMA loads ranged from a minimum average 

value of 3.2 mg day-1 1000 people-1 in Castellón to a maximum value of 62.0 mg day-1 1000 

people-1 in Utrecht (Figures 2 and S2, estimated consumptions also in Table S13). Increasing 

MDMA loads were found during the weekend in all the countries involved, with the exception 

of Utrecht that had also high MDMA loads on a weekday. The overall MDMA weekly mean in 

2013 was 18 mg day-1 1000 people-1 (Ort, van Nuijs et al. 2014). A geographical trend of 

MDMA loads from North to South was also found. Indeed, Northern European cities (except 

for Brussels) were mostly above the average. Enantiomeric profiling revealed that MDMA in 

wastewater is enriched with R-(-)-MDMA (0.32<EFww<0.40). This indicates that MDMA 

retrieved in wastewater comes from consumption, due to the stereoselective metabolism of 

MDMA in humans. Figure S3 shows expected EFwws in wastewater for MDMA consumption 

using the conditions reported in Castrignanò et al (Castrignanò, Lubben et al. 2016). Although 

illicit MDMA production sites are presumably mainly located in The Netherlands and Belgium 

(as mentioned in the EMCDDA report (EMCDDA 2015)), MDMA loads in Utrecht and 



Brussels were linked to human consumption rather than its direct disposal. In contrast, 

incidental findings in the wastewater of the city of Utrecht (Emke, Evans et al. 2014) have 

shown that aberrantly high loads of (±)-MDMA can occur and can be ascribed to disposal of 

the unconsumed drug. 

The hypothesis that MDMA was present in European wastewaters as a result of its consumption 

was further evidenced by the study of MDA and its chiral signature. MDA can be a drug of 

abuse itself or a metabolite of MDMA and MDEA (3,4-methylenedioxyethylamphetamine). It 

is therefore of utmost importance to verify the origin of MDA. It does not have any medical 

applications and is available on the illicit market as a racemate (Karch and Drummer 2001) 

(EFillegal_synth=0.5). This is due to its non-stereoselective synthetic route. Similarly to MDMA, 

MDA’s metabolism favours the S-(+)-enantiomer (Meyer, Peters et al. 2009). Therefore, if 

MDA is consumed, it will be excreted in urine enriched with the R-(-)-enantiomer (EFurine<0.5). 

However, if MDA is formed as a result of the metabolism of MDMA or MDEA, it will be 

present in urine (and in wastewater) enriched with S-(+)-enantiomer (Levine 2003, Kasprzyk-

Hordern, Kondakal et al. 2010) (EFurine>0.5). In this study, MDEA, for which a new CF was 

proposed, was not detected in any European location. The highest loads of MDA were recorded 

in Utrecht with 3.2 mg day-1 1000 people-1, followed by Bristol with 1.9 mg day-1 1000 people-

1 and Oslo with 0.5 mg day-1 1000 people-1 at average weekly loads (Table S14). Interestingly, 

these countries have also high MDMA use, which led us to the conclusion that MDA could be 

present in wastewater due to consumption of MDMA. In most cases, MDA was found in 

wastewater enriched with S-(+)-enantiomer proving that its presence was associated with the 

consumption of MDMA, with exception of three days in Bristol, one day in Oslo and in Utrecht 

when MDA was enriched of the R-(-)-form. This could indeed indicate an abuse of MDA. In 

the case of racemic MDA found in Utrecht for two days, this could indicate a combination of 

either the consumption of MDA and MDMA (most likely as HMMA data confirmed it) or 

simply the direct disposal of non-consumed MDA. 

As MDA is a minor and not exclusive metabolite of MDMA, other metabolites were also 

considered as possible DTRs for MDMA consumption: HMA and HMMA. HMA was detected 

at 3.4 mg day-1 1000 people-1 as weekly average in three days of the monitoring week in the 

Dutch city (Saturday, Sunday and Monday) and at 7.4 mg day-1 1000 people-1 in two days in 

Bristol samples (Sunday and Monday) (Table S15). Because of the low percentage of excretion 

of HMA after a dose of MDMA, its choice as MDMA DTR could be considered only in the 

case of high MDMA intake. Indeed, it was only found in those countries reporting the highest 

levels of MDMA. EFww showed values close to 0.5 when high HMA loads were detected. 

However, the relevance of enantioselective analysis is difficult to comment on because of the 

low number of positive samples for HMA. 

HMMA, on the other hand, was found in wastewater at ng/L level in six cities (i.e. no HMMA 

was detected in Oslo and Milan) (Table S16). HMMA’s excretion is 20%, which indicates that 

it could be used as MDMA’s DTR. Due to the stereoselective metabolism of MDMA, HMMA 

and its glucuronide derivative are formed enriched with S-(+)-enantiomer. Interestingly, 

HMMA sulphate is formed via non-stereoselective route (Schwaninger, Meyer et al. 2012). In 

this study, HMMA was enriched with the second eluting enantiomer. Assuming the same 

elution order of MDMA enantiomers for HMA and HMMA under the same chromatographic 



conditions, the second-eluting enantiomer could be assigned as S-(+)-enantiomer. The expected 

EFww would then be >0.5 for HMMA. Therefore, we hypothesize that, if an enrichment of R-(-

)-MDMA occurred in the case of consumption, the presence of S-(+)-HMMA would be 

observable along with an EF>0.5. Consumption estimates from wastewater analysis were 

calculated taking into consideration the following DTRs: MDMA itself (CF applied was 1.5 as 

it was widely used in literature (Zuccato, Chiabrando et al. 2008, Postigo, Lopez de Alda et al. 

2010, Nefau, Karolak et al. 2013) even though a new CF of 6.7 was proposed in this study as a 

result of the most recent excretion data), MDA, HMMA and HMA (see CF in Table S10). The 

estimates obtained with MDA and HMA showed that these compounds were not suitable as 

biomarkers of MDMA consumption. Indeed, the estimates calculated by using HMMA were 

quite superimposable to the parent drug MDMA, except for Oslo. 

3.3.Mephedrone 

Mephedrone was previously detected in the UK (Castrignanò, Lubben et al. 2016), Italy 

(González-Mariño, Gracia-Lor et al. 2016), other European cities (Bade, Bijlsma et al. 2017) 

and in China (Khan, van Nuijs et al. 2014). Its occurrence in wastewater can be only ascribed 

to illegal disposal or consumption as there is no medical use in Europe (EMCDDA 2011). In 

this study, a new CF value has been proposed for the first time to allow for the estimation of 

mephedrone use via WBE. Considering urinary excretion of 15.4%±8.4% as unchanged 

mephedrone after an oral dose of 150 mg (n=6) (Olesti, Pujadas et al. 2017), CF was set at 6.5. 

Population-normalised loads ranged throughout a sampling week from 14.9 to 47.7 mg 1000 

people-1 day-1 in the UK (Figures 3 and S2, estimated consumption in Table S17). Increasing 

loads were found in weekend days rather than weekdays with a mean value of 25.6 ± 12.0 mg 

1000 people-1 day-1. A similar trend was observed by Castrignanò et al. (Castrignanò, Lubben 

et al. 2016), classifying mephedrone as a recreational drug like MDMA. Furthermore, 

mephedrone was found to be enriched with the R-(+)-enantiomer in wastewater (EFww in 2014 

(n=6)=0.57±0.02 and EFww in 2015 (n=4)=0.57±0.04). This indicates that mephedrone was consumed 

rather than directly disposed (Castrignanò, Mardal et al. 2017) (see section S4 for further 

information). 

3.4.Other drugs and precursors 

The analysis of drug precursors, such as norephedrine, ephedrine and pseudoephedrine (referred 

in the text as ephedrines), was performed only for Oslo, Bristol, Utrecht (only norephedrine) 

and Milan (see section S5 for further information). 

Mean population-normalised norephedrine loads were 51 mg 1000 people-1 day-1 in Oslo 

(probably linked to methamphetamine’s metabolism), 7.1 mg 1000 people-1 day-1 in Milan and 

3.4 mg 1000 people-1 day-1 in Bristol (Table S18-Figure 4c). Norephedrine was not detected in 

wastewater from Utrecht. EFs were 0.48±0.04, 0.56±0.11 and 1.00±0.00 (due to <MQL values 

for the first eluting enantiomer), respectively.  

Only two stereoisomers of ephedrine were found in European wastewaters: 1R,2S-(-)-ephedrine 

and 1S,2S-(+)-pseudoephedrine. Population-normalised 1R,2S-(-)-ephedrine loads were 0.7 mg 

1000 people-1 day-1 in Oslo, 3.4 mg 1000 people-1 day-1 in Milan and 0.6 mg 1000 people-1 day-

1 in Bristol (Table S19-Figure 4a). Mean population-normalised 1S,2S-(+)-pseudoephedrine 



loads were 21.2 mg 1000 people-1 day-1 in Oslo, 35.7 mg 1000 people-1 day-1 in Milan and 96.4 

mg 1000 people-1 day-1 in Bristol (Table S19-Figure 4b). 

Chiral PMA (para-methoxyamphetamine), a phenylisopropylamine with hallucinogenic 

properties, has no legitimate therapeutical use. It is abused alone or in combination with MDMA 

or PMMA. Seizures have been reported in several European countries, including Belgium, 

Denmark, Spain, the Netherlands and the UK. However, it was not found in wastewater from 

any studied city. This is also in accordance with Kinyua et al. (Kinyua, Covaci et al. 2015). 

3.5.Consumption estimates of (meth)amphetamine and ephedrines corrected for legal use: 

a case study in England 

In England, legal amphetamine prescriptions in 2015 were as follows: 17.8 kg/year of S-(+)-

amphetamine (73.4% correction from 23.7 kg/year as dexamfetamine sulphate (Team, Centre 

et al. 2016) to the free base) and 20.3 kg/year as S-(+)-amphetamine (29.7% correction from 

68.4 kg/year as lisdexamfetamine dimesylate (Team, Centre et al. 2016) to the free base) (Table 

1). Taking into account urinary excretion, the annual amount excreted as S-(+)-amphetamine is 

calculated as 5.2 kg from dexamfetamine sulphate consumption and 8.4 kg from 

lisdexamfetamine dimesylate. Moreover, 1.3 kg of R-(-)-amphetamine was excreted in 2015 

from 9.7 kg/year of prescribed selegiline (Team, Centre et al. 2016). As a result, the contribution 

of legal prescribed and excreted amphetamine to wastewater in the WWTP considered in the 

study was 1.6 and 0.10 mg day-1 1000 people-1 of S-(+)- and R-(-)-amphetamine, respectively 

(this does not consider legally purchased drugs traded illegally). Consumption estimates from 

wastewater analysis were back-calculated by using amphetamine and norephedrine as DTRs 

(3.3 and 44.7 as corresponding CFs). Despite the good agreement between estimates obtained 

with considered DTRs, norephedrine is not recommended as a biomarker for amphetamine use 

as it can result from other sources (e.g. disposal of norephedrine and metabolism of ephedrine 

and methamphetamine). In relation to these findings, the presence of amphetamine in Bristol 

was linked to an illegal use of the substance since the contribution of estimates from the legal 

sources was negligible (Table 1). 

Regarding methamphetamine, 2.7 kg/year of the R-(-)-enantiomer was excreted into wastewater 

as a result of 9.7 kg/year of selegiline intake (Team, Centre et al. 2016). Thus, by normalising 

the data with the population equivalent served by the local WWTP in England, 0.18 mg day-1 

1000 people-1 of R-(-)-methamphetamine (originating from selegiline consumption) was 

estimated in the studied location. Consumption estimates were performed considering 

methamphetamine itself, amphetamine and norephedrine as DTRs (see CFs in Table S10). The 

estimates obtained with amphetamine and norephedrine as DTR were 100-fold higher than the 

estimate calculated from methamphetamine. 2.70 mg day-1 1000 people-1 of (±)-

methamphetamine, of which 1.8 as R-(-)-enantiomer, were estimated by using 

methamphetamine as DTR, suggesting that its presence was associated mainly with illegal use. 

The estimates of the legal use of ephedrines in England in 2015 are as follows (Table 1): 

- ephedrine: 0.83 kg/year as hydrochloride (or 0.62 kg/year as free base) resulting in 

annual excretion of 0.46 kg of ephedrine in England; 



- pseudoephedrine: 253.54 kg/year as hydrochloride (or 223.12 kg/year as 1S,2S-(+)-

enantiomer) resulting in annual excretion of 196.34 kg of 1S,2S-(+)-pseudoephedrine in 

England; 

- norephedrine: 0.35/year and 0.02 kg/year excreted as a result of dexamfetamine sulphate 

and ephedrine consumption, respectively. 

Furthermore, the metabolism of selegiline produces 0.62% (n=4) of (1S,2R)-(+)-ephedrine, 

0.04% (n=4) as (1R,2R)-(-)-pseudoephedrine and 0.12% (n=4) as (1S,2R)-(+)-norephedrine 

(Shin 1997). In 2015 in England, 0.06 kg/year of (1S,2R)-(+)-ephedrine, 0.004 kg/year of 

(1R,2R)-(-)-pseudoephedrine and 0.011 kg/year as (1S,2R)-(+)-norephedrine were excreted as 

a result of 9.72 kg/year of selegiline intake (Team, Centre et al. 2016).  

Final estimates, normalised with local WWTP, were 0.034, 10.61 and 0.02 mg day-1 1000 

people-1 of ephedrine, pseudoephedrine and norephedrine respectively (CFs in Table S10). For 

Bristol, consumption estimates were in agreement with the legal usage of ephedrine when 

ephedrine itself was used as DTR and discordant in the case of pseudoephedrine and 

norephedrine (most likely due to their availability on the OTC market). 

 

4. Conclusions 

This study was the first to spatially and temporally assess the enantiomeric profiling of chiral 

illicit drugs in wastewater serving 4.9 million people in eight European cities. Spatial variations 

in drug loads were observed across Europe with higher use of amphetamine in Northern 

European cities, revealing a general enrichment of R-(-)-amphetamine in wastewater. The chiral 

signature of amphetamine revealed that it is present in wastewater as a result of its consumption. 

High methamphetamine loads were detected in Oslo, where racemic methamphetamine was 

present, likely due to different trafficking routes from the Baltic countries, rather than Western 

and Central Europe. The more potent S-(+)-methamphetamine was the predominant enantiomer 

found in wastewater from the other European cities tested, which indicates distribution of 

enantiopure S-(+)-methamphetamine on the illicit market. It could suggest that direct 

comparison of methamphetamine loads in Oslo and the other European cities should not be 

undertaken without considering its chiral signature and the different potency of individual 

enantiomers. The analysis of precursors was compatibly ascribed to their medical use. MDMA 

was commonly enriched with R-(-)-enantiomer in studied European cities, which indicates 

consumption rather than disposal of the unused drug. MDA was commonly found to be enriched 

with S-(+)-enantiomer, which indicates that its presence in European wastewaters originates 

from MDMA metabolism (especially during weekends) rather than consumption of MDA itself. 

However, on a few occasions (UK and The Netherlands), MDA was found to be enriched with 

R-(-)-enantiomer, which indicates its consumption. As MDA is a minor metabolite of MDMA, 

other metabolites were considered as possible MDMA DTRs, namely HMA and HMMA. 

HMMA was found to be a suitable MDMA DTR. Furthermore, its chiral signature indicated its 

enrichment with S-(+)-enantiomer, which confirms its origin from MDMA metabolism. 

Population-normalised mephedrone loads were up to 47.7 mg 1000 people-1 day-1 in wastewater 

in the UK, where an enrichment of R-(+)-enantiomer suggested stereoselective metabolism in 

humans, indicating consumption rather than direct disposal.  
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Figure 1 Amphetamine (a) and methamphetamine (b): population-normalised mass loads and 

enantiomeric fraction values in a week monitoring campaign (M, T, W, T, F, S, S indicate week 

days). The absence of the bars indicates ‘not detected’. 
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Figure 2 MDMA (a), MDA (b) and HMMA (c): population-normalised mass loads and enantiomeric fraction values in a week monitoring campaign (M, T, 

W, T, F, S, S indicate week days). For HMMA: EF values are reported assuming that the first-eluting enantiomer is R-(-)-HMMA and the second one is S-(+)-

HMMA. The absence of the bars indicates ‘not detected’. 
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Figure 3 Population-normalised mephedrone loads and enantiomeric fraction values in a 

week monitoring campaign (M, T, W, T, F, S, S indicate week days). The absence of the bars 

indicates ‘not detected’. 
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Figure 4 Ephedrine (a), pseudoephedrine (b) and norephedrine (c): population-normalised 

mass loads and enantiomeric fraction values in a week monitoring campaign (M, T, W, T, F, S, 

S indicate week days). The absence of the bars indicates ‘not detected’. 
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Table 1 Consumption estimates and contribution from legal use in England in 2015. The following information is provided: biomarkers of 

drugs of abuse and precursors (AMP=amphetamine, METH=methamphetamine, EPH=ephedrine, PSEUDOEPH=pseudoephedrine and 

NE=norephedrine), parent compound or metabolite used as drug target residue (DTR), information derived from the legal use of drugs in England 

in 2015 and consumption estimates calculated from official health statistics in relation to the population served by the wastewater treatment plant 

in the study (Bristol) and from wastewater analysis (a calculated from weekly average loads of considered DTR). 

Drug DTR Legal Use in England in 2015 Consumption estimates (mg day-1 1000 people-1) 

From metabolism 

of prescribed 

pharmaceuticals 

Amount prescribed in England 

in 2015 (kg/year) 

Excretion (%) Amount excreted as 

metabolite in England in 

2015 (kg/year) 

Health national statistics 

(2015) 

Wastewater analysis 

(2015)a 

A
M

P
 

AMP 73.4% S-(+)-AMP 
base from 

dexamphetamine 

sulfate 

23.67 kg/year as dexamfetamine 
sulfate (or 17.38 kg/year as S-(+)-

AMP) 

30.0% in neutral pH condition, up to 
74.0% in acidic and 1.0% in alkaline 

urine (Baselt 2008) 

5.21 kg in neutral pH urine 
(or 12.86 kg in case of acidic 

urine or 0.17 kg in case of 

alkaline urine)  

0.32 as S-(+)-AMP  272.7 as (±)-AMP, of 
which 120.1 as S-(+)-

AMP; 213.7 as NE 

NE Lisdexamfetamine 68.35 kg/year as 

lisdexamfetamine dimesylate (or 

20.30 kg/year as S-(+)-AMP) 

41.5% S-(+)-AMP (Krishnan, Pennick 

et al. 2008) 

8.42 kg  1.26 as S-(+)-AMP 

Selegiline 9.72 kg/year 3.06±1.10 (n=4) as R-(-)-AMP (Shin 

1997), 13.5% (Cody 2002) 

1.31 kg as R-(-)-AMP (using 

13.5% as excretion) 

0.10 as R-(-)-AMP 

M
E

T
H

 METH Selegiline 9.72 kg/year 36.96±8.17 (n=4) as R-(-)-METH (Shin 

1997); 27.5% (Cody 2002) 

2.67 kg as R-(-)-METH 0.18 as R-(-)-METH  2.7 as (±)-METH, of 

which 1.8 as R-(-)-
METH; 1661.1 as (±)-

AMP and 94.2 as NE 

AMP 
NE 

E
P

H
 

EPH  EPH 0.83 kg/year as EPH 
hydrochloride (or 0.62 kg/year as 

EPH) 

75% used as average of excretion 0.46 kg 0.03 as EPH  0.8 as 1R,2S-(−)-EPH, 
93.2 as (±)-NE 

NE Selegiline 9.72 kg/year  0.62±0.29 (n=4) as (1S,2R)-(+)-EPH 
(Shin 1997) 

0.06 kg as (1S,2R)-(+)-EPH  0.004 as (1S,2R)-(+)-EPH 

P
S

E
U

D
O

E
P

H
 

PSEUDO

EPH  

PSEUDOEPH 253.54 kg/year as PSEUDOEPH 

hydrochloride (or 223.12 kg/year 
as 1S,2S-(+)-PSEUDOEPH) 

88.0% (Baselt 2008) 196.34 kg as 1S,2S-(+)-

PSEUDOEPH 

10.61 as 1S,2S-(+)-

PSEUDOEPH  

106.0 as 1S,2S-(+)-

PSEUDOEPH 

Selegiline 9.72 kg/year 0.04±0.03 (n=4) as (1R,2R)-(-)-

PSEUDOEPH (Shin 1997) 

0.004 kg as (1R,2R)-(-)-

PSEUDOEPH 

0.0002 as (1R,2R)-(-)-

PSEUDOEPH 

N
E

 

NE Dexamfetamine 23.67 kg/year as dexamfetamine 
sulfate 

2.0% in neutral pH condition (Baselt 
2008) 

0.35 kg in neutral pH urine  0.02 as NE  4.1 as (±)-NE 

EPH 0.83 kg/year as EPH 

hydrochloride  

4.0% (Baselt 2008) 0.02 kg  0.0015 as NE 

Selegiline 9.72 kg/year 0.12±0.05 (n=4) as (1S,2R)-NE (Shin 

1997) 

0.011 kg as (1S,2R)-NE  0.0008 as (1S,2R)-NE 

Baselt, R. (2008). "Disposition of Toxic Drugs and Chemicals in Man" Chemical Toxicology Institute, Foster City, USA. 
Cody, J. T. (2002). "Precursor medications as a source of methamphetamine and/or amphetamine positive drug testing results." Journal of occupational and environmental medicine 44(5): 435-450. 
Krishnan, S. M., M. Pennick and J. G. Stark (2008). "Metabolism, distribution and elimination of lisdexamfetamine dimesylate: open-label, single-centre, phase I study in healthy adult volunteers." Clin Drug Investig 

28(12): 745-755. 
Shin, H.-S. (1997). "Metabolism of Selegiline in Humans." Identification, Excretion, and Stereochemistry of Urine Metabolites 25(6): 657-662. 
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Figure S1 Chiral analytes selected in the study. 
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Table S1 Selected analytes and their properties (MW molecular weight, Exp experimental, Pred predicted, a extracted from [38], b predicted 

using ACD/labs software (http://www.chemspider.com). 

Compound CAS Formula MW pKa  LogP LogDb  Supplier 

        Exp.a Pred.a Exp.a Pred.b 
pH 

5.5 
pH 7.4  

(±)-Amphetamine 300-62-9 C9H13N 135.2 
10.1 

(20°) 
10.01 1.85 1.81±0.20 -1.28 -0.63 

LGC(Cerilliant 

product) 

(±)-Methamphetamine  4846-07-5 C10H15N 149.2 
9.87 

(25°) 
10.21 2.07 1.94±0.21 -1.15 -0.79 

LGC (Cerilliant 

product) 

(±)-Mephedrone 1189726-22-4 C11H15NO 177.7 - - - 1.86±0.31 -0.03 1.55 
Sigma-Aldrich 

(Cerilliant product) 

PMA (p-

Methoxyamphetamine) 
3706-26-1 C10H15NO 165.0 - - - 1.72±0.23 -1.36 -0.76 LGC 

(±)-MDA (3,4-

methylenedioxyampheta

mine) 

4764-17-4 C10H13NO2 179.2 
9.67 

(25°) 
10.01 1.64 1.67±0.27 -1.41 -0.77 

LGC (Cerilliant 

product) 

(±)-MDMA (3,4-

methylenedioxymetham

phetamine) 

42542-10-9 C11H15NO2 193.2 - 10.143 
-

1.65,1.86 
1.81±0.27 -1.29 -0.90 LGC  

(±)-MDEA (3,4-

methylenedioxyethylam

phetamine) 

82801-81-8 C12H17NO2 207.3 - - - 2.66±0.27 -0.42 0.30 
LGC (Cerilliant 

product) 

D,L-HMA (d,l-4-

Hydroxy-3-

methoxyamphetamine) 

13062-61-8 C10H15NO2 181.2 - - - - - - Kinesis  

D,L-HMMA (d,l-4-

Hydroxy-3-methoxy-

methamphetamine) 

438625-58-2 C11H17NO2 195.2 - - - 1.41 -1.68 -1.24 Kinesis  

(±)-Ephedrine 50-98-6 C10H15NO 165.2 10.3 (0°) 
13.89, 

9.52 
1.13 1.05±0.27 -1.99 -0.96 Sigma-Aldrich 

(±)-Norephedrine 154-41-6 C9H13NO 151.2 
9.44 

(20°) 

13.9, 

9.37 
0.67 0.81±0.26 -2.21 -1.07 Sigma-Aldrich 
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Table S2 Selected cities in the study, population and flow data. 

 

City Bristol Oslo Milan Utrecht Castellon Brussels Zurich Copenhagen 

Country UK Norway Italy The 

Netherlands 

Spain Belgium Switzerland Denmark 

Residentia

l 

population 

886650 580639 1100000 300000 180690 954000 410000 531000 

Day Flow in m3/day 

Monday 197493.3 254570.5 597470.0 45970.0 37469.0 234774.0 177167.0 148724.0 

Tuesday 204490.8 252721.5 423110.0 44580.0 40476.0 359951.0 160912.0 150936.0 

Wednesday 198950.4 333480.1 403240.0 47740.0 50228.0 234264.0 157084.0 147175.0 

Thursday 197523.0 308279.1 412310.0 45030.0 49161.0 235442.0 161005.0 144840.0 

Friday 252682.2 277449.7 402240.0 49530.0 43728.0 234906.0 161427.0 145197.0 

Saturday 220687.2 256766.4 403020.0 46030.0 38301.0 233096.0 200010.0 137793.0 

Sunday 193194.0 250383.9 422690.0 46900.0 37243.0 230375.0 243013.0 137244.0 
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Table S3 MRM transitions selected for studied analytes. 

 
Compound CV/C

Ea 

MRM1 

(quantificatio

n) 

CV/C

Ea 

MRM2  

(confirmation) 

CV/CEa MRM3  

(confirmation

) 

MRM1/MRM2 

ratio ± SD 

MRM1/MRM3 

ratio ± SD 

IS 

Amphetamine   18/16 136.16 > 91.1 18/8 136.16 > 119.1 - - 1.2 ± 0.1 - Amphetamine-D5 

Methamphetamine  24/19 150.2 > 91.1 24/10 150.2 > 119.1 - - 1.8 ± 0.1 - Methamphetamine-D5 

MDA  21/11 180.0 > 163.1 21/22 180.0 > 105.1 - - 2.6 ± 0.4 - MDA-D5 

MDMA 24/13 194.1 > 163.1 24/24 194.1 > 105.1 - - 2.1 ± 0.1 - MDMA-D5 

MDEA 28/13 208.1 > 163.1 28/27 208.1 > 105.1 - - 2.1 ± 0.2 - MDEA-D5 

HMA 6/14 182.1 > 165.0 6/24 182.1 > 105.0 6/18 182.1 > 133.0 1.8 ± 0.7 2.4 ±1.4 Amphetamine-D5 

HMMA 16/12 196.1 > 165.0 16/26 196.1 > 105.0 16/22 196.1 > 133.0 3.1 ± 0.6 3.8 ±0.6 Methamphetamine-D5 

Mephedrone 10/12 178.1 > 160.1 10/22 178.1 > 145.0 10/22 178.1 > 119.0 1.6 ± 0.2 8.5 ±2.1 Mephedrone-D3 

p-Methoxyamphetamine 

(PMA) 

20/20 166.0 > 121.0 20/20 166.0 > 149.0 - - 12.5 ± 1.5 - MDA-D5 

Ephedrine  23/12 166.1 > 148.1 23/21 166.1 > 133.0 - - 7.4 ± 0.8 - 1S, 2R-(+)-ephedrine-

D3 

Pseudoephedrine 23/12 166.1 > 148.1 23/21 166.1 > 133.0 - - 6.9 ± 0.6 - 1S, 2R-(+)-ephedrine-

D3 

Norephedrine 23/10 152.1 > 134.1 23/16 152.1 > 117.1 - - 3.1 ± 0.4 - 1S, 2R-(+)-ephedrine-

D3 

ISs CV/CEa MRM1 

(quantification) 

Amphetamine-D5 22/16 141.0 > 92.9 

Methamphetamine-D5 28/12 155.1 > 121.0 

Mephedrone-D3 30/22 181.1 > 163.1 

MDA-D5 21/11 185.1 > 168.1 

MDMA-D5 26/13 199.1 > 165.1 

MDEA-D5 28/13 213.1 > 163.0 

1S,2R-(+)-Ephedrine-

D3 

23/18 169.2 > 151.0 

aCV, cone voltage (V); CE, collision energy (eV) 
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Table S4 Validation parameters - retention time, relative retention time, linearity range, correlation coefficient obtained from calibration curve 

and instrumental and method limits of detection and instrumental and method limits of quantification. 

 
Compound Rt 

(min) 

Rel. Rt Sample diluent WWTP influent 

Linearity 

range in 

mobile phase 

(µg/L) 

R2 IDLS/N (µg/L) IQLS/N (µg/L) MDL (ng/L) MQL (ng/L) 

R-(-)-Amphetamine 15.5 ±0.3 0.1 0.125-500 0.9987 0.12 0.50 0.76 2.89 

S-(+)-Amphetamine 22.6 ±0.4 0.2 0.125-500 0.9988 0.12 0.50 0.72 2.87 

R-(-)-

Methamphetamine 

14.5 ±0.4 0.3 0.050-500 0.9989 0.05 0.12 0.26 0.66 

S-(+)-

Methamphetamine 

16.5 ±0.4 0.3 0.050-500 0.9994 0.05 0.12 0.30 0.74 

E1-Mephedrone 16.5 ±0.4 0.3 0.250-500 0.9990 0.25 0.50 1.30 2.60 

E2-Mephedrone 21.0 ±0.5 0.2 0.250-500 0.9993 0.25 0.50 0.66 2.63 

R-(-)-MDA 28.1 ±0.5 0.2 0.500-500 0.9991 0.50 2.50 2.80 14.02 

S-(+)-MDA 47.4 ±0.8 0.4 0.500-500 0.9980 0.50 2.50 2.50 12.48 

R-(-)-MDMA 21.9 ±0.5 0.2 0.050-500 0.9992 0.05 0.25 0.29 1.44 

S-(+)-MDMA 32.9 ±0.5 0.1 0.050-500 0.9994 0.05 0.25 0.27 1.35 

E1-MDEA 19.0 ±0.5 1.8 0.125-500 0.9994 0.12 0.25 0.65 1.30 

E2-MDEA 21.0 ±0.5 0.2 0.125-500 0.9995 0.12 0.25 0.66 1.32 

E1-HMA 17.7 ±0.4 0.4 2.500-500 0.9900 2.50 5.00 11.83 23.65 

E2-HMA 34.3 ±0.5 0.8 2.500-500 0.9903 2.50 5.00 11.28 22.55 

E1-HMMA 15.9 ±0.4 2.5 0.250-500 0.9982 0.25 0.50 1.39 2.79 

E2-HMMA 18.6 ±0.5 2.5 0.250-500 0.9974 0.25 0.50 1.13 2.27 

E1-Norephedrine 13.6 ±0.3 0.4 0.125-500 0.9981 0.12 0.25 0.56 1.11 

E2-Norephedrine 15.1 ±0.4 2.2 0.125-500 0.9983 0.12 0.25 0.64 1.28 

E1-PMA 21.3 ±0.5 0.5 0.125-500 0.9964 0.12 0.25 0.66 1.32 

E2-PMA 36. 8 ±0.4 1.4 0.125-500 0.9994 0.12 0.25 0.58 1.17 

(+)-Ephedrine 12.3 ±0.3 0.6 1.000-500 0.9974 1.00 5.00 5.91 29.53 

(-)-Ephedrine and (-)-

Ψephedrine 

13.4 ±0. 0.5 0.500-1000 0.9975 0.50 1.00 2.40 4.81 

(+)-Ψephedrine 32.94 ±0.8 1.9 1.000-500 0.9903 1.00 5.00 5.60 27.99 

 
  



Table S5 Validation parameters - method precision. 

 
Analyte Intra-day RSD% (n=4)                                                    Inter-day RSD% (n=3)  

25 

ng/L** 

25 

ng/L 

25 

ng/L 

250 

ng/L 

250 

ng/L 

250 

ng/L 

2500 

ng/L 

2500 

ng/L 

2500 

ng/L 

25 

ng/L 

250 

ng/L 

2500 

ng/L  
D 1* D 2 D 3 D 1 D 2 D 3 D 1 D 2 D 3 

   

R-(-)-Amphetamine 3.3 2.5 4.6 5.2 14.7 10.8 6.2 3.9 6.2 3.5 10.2 5.4 

S-(+)-Amphetamine 3.1 4.3 12.6 1.4 6.5 4.7 3.8 7.0 7.3 6.7 4.2 6.0 

R-(-)-Methamphetamine 8.9 6.7 9.3 3.4 7.0 8.3 4.8 5.2 5.4 8.3 6.2 5.1 

S-(+)-Methamphetamine 6.8 3.6 15.4 1.2 5.5 4.0 2.7 2.9 4.2 8.6 3.6 3.3 

E1-Mephedrone 9.8 13.7 14.1 3.6 6.8 14.6 3.7 10.0 5.6 12.5 8.3 6.4 

E2-Mephedrone 10.7 12.0 4.6 5.2 12.9 8.4 9.2 3.7 2.8 9.1 8.8 5.2 

R-(-)-MDA 1.7 6.6 9.7 3.0 3.4 5.7 0.1 7.7 1.1 6.0 4.0 3.0 

S-(+)-MDA 4.4 3.8 7.8 2.6 6.7 5.3 7.2 3.7 4.5 5.3 4.9 5.1 

R-(-)-MDMA 7.0 1.8 4.0 5.8 4.6 3.9 3.4 1.5 6.5 4.3 4.8 3.8 

S-(+)-MDMA 1.0 1.9 6.9 0.6 3.1 2.9 1.2 2.8 0.7 3.3 2.2 1.6 

E1-MDEA 6.9 6.2 3.0 5.1 8.5 7.8 4.7 2.2 4.3 5.4 7.1 3.7 

E2-MDEA 6.0 6.3 2.8 1.4 9.2 4.9 8.3 1.4 1.7 5.0 5.2 3.8 

E1-HMA 4.4 5.1 1.6 7.6 1.1 4.4 6.4 6.0 5.9 3.7 4.4 6.1 

E2-HMA 5.2 4.8 12.6 3.8 2.0 5.0 7.0 6.5 6.0 7.5 3.6 6.5 

E1-HMMA 7.4 7.6 7.5 2.8 3.8 6.0 4.1 2.7 0.3 7.5 4.2 2.4 

E2-HMMA 4.7 6.4 3.6 2.1 2.1 6.2 2.9 3.1 3.6 4.9 3.5 3.2 

E1-Norephedrine 7.3 3.8 1.3 2.8 3.0 7.3 4.4 3.0 7.4 4.1 4.3 5.0 

E2-Norephedrine 5.7 4.6 6.3 3.1 3.9 6.1 2.2 2.1 3.5 5.5 4.3 2.6 

E1-PMA 7.7 4.8 8.3 1.4 4.4 3.7 3.8 4.3 5.3 6.9 3.2 4.5 

E2-PMA 6.2 8.8 11.6 7.8 4.6 6.6 1.7 3.9 2.9 8.9 6.3 2.8 

(+)-Ephedrine 5.3 16.5 9.8 5.0 4.5 6.6 7.2 2.8 3.3 10.5 5.4 4.4 

(-)-Ephedrine and (-)-Ψephedrine 8.3 14.8 5.2 1.8 0.8 5.4 5.7 1.0 3.3 9.4 2.7 3.3 

(+)-Ψephedrine 2.8 2.5 6.2 5.8 1.3 9.4 2.9 2.0 1.7 3.8 5.5 2.2 

*-D indicates day 
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Table S6 Validation parameters -instrumental precision. 

Analyte Intra-day RSD% (n=4) Inter-day RSD% (n=3)  
5 

µg/L** 

5 µg/L 5 µg/L 50 µg/L 50 µg/L 50 µg/L 500 

µg/L 

500 

µg/L 

500 

µg/L 

5 µg/L 50 µg/L 500 µg/L 

  D 1* D 2 D 3 D 1 D 2 D 3 D 1 D 2 D 3 
   

R-(-)-Amphetamine 4.8 5.8 3.0 2.3 3.1 0.1 3.9 4.7 3.1 4.5 1.9 3.9 

S-(+)-Amphetamine 3.7 5.3 6.5 4.6 3.3 4.3 3.2 4.1 3.4 5.2 4.1 3.6 

R-(-)-Methamphetamine 6.0 5.8 6.3 3.9 5.5 2.3 3.0 5.1 2.8 6.0 3.9 3.7 

S-(+)-Methamphetamine 2.4 2.3 7.7 2.7 0.7 2.1 1.1 4.8 3.4 4.1 1.8 3.1 

E1-Mephedrone 9.3 6.7 5.5 1.9 5.7 5.4 2.9 5.5 4.4 7.1 4.3 4.3 

E2-Mephedrone 3.5 6.7 1.1 3.6 2.5 2.7 9.3 4.3 2.2 3.8 3.0 5.2 

R-(-)-MDA 6.9 1.3 2.7 0.4 5.6 0.1 1.5 0.3 1.6 3.6 2.1 1.1 

S-(+)-MDA 5.7 3.2 6.4 8.0 8.9 3.1 0.3 1.1 6.1 5.1 6.7 2.5 

R-(-)-MDMA 2.5 5.5 2.0 1.8 6.4 3.9 4.8 3.7 6.1 3.3 4.0 4.9 

S-(+)-MDMA 3.5 1.1 4.3 0.5 1.8 1.3 2.5 1.5 2.7 3.0 1.2 2.3 

E1-MDEA 8.6 5.3 5.9 2.2 3.8 1.1 6.1 4.3 0.1 6.6 2.4 3.5 

E2-MDEA 3.6 2.3 10.3 5.3 1.1 0.4 5.6 1.9 0.7 5.4 2.3 2.7 

E1-HMA 11.3 5.6 6.3 5.3 6.7 9.1 7.4 4.9 2.1 7.7 7.1 4.8 

E2-HMA 6.1 1.7 1.1 3.1 0.4 2.5 8.9 6.3 9.0 3.0 2.0 8.1 

E1-HMMA 5.3 8.3 4.1 0.8 6.5 6.6 8.2 4.2 1.7 5.9 4.6 4.7 

E2-HMMA 6.6 5.7 9.4 2.4 3.3 7.4 3.8 4.0 4.6 7.2 4.4 4.1 

E1-Norephedrine 5.9 7.1 3.1 2.7 6.9 5.7 2.2 1.3 1.1 5.4 5.1 1.5 

E2-Norephedrine 5.4 3.1 4.4 2.4 4.7 3.6 3.4 5.2 2.1 4.3 3.6 3.6 

E1-PMA 2.7 8.4 5.6 1.2 8.6 6.1 2.6 0.3 0.4 5.6 5.3 1.1 

E2-PMA 4.6 5.4 4.5 4.6 3.9 2.6 3.1 1.6 1.1 4.9 3.7 1.9 

(+)-Ephedrine 6.9 3.5 6.5 4.3 5.7 3.2 6.3 1.0 3.4 5.6 4.4 3.6 

(-)-Ephedrine and (-)-

Ψephedrine 

2.6 2.7 4.1 3.6 3.1 2.3 6.4 0.7 4.4 3.1 3.0 3.8 

(+)-Ψephedrine 10.6 6.2 5.6 5.9 0.5 2.4 3.4 9.1 3.2 7.4 2.9 5.3 

*-D indicates day 

**- the following concentrations were used: 10, 100 and 1000 ng/L in the case of compounds that were not enantioseparated 
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Table S7 Validation parameters –ion suppression. 

Analyte Signal suppression (%) (n=4) 

R-(-)-Amphetamine 38 ± 10 

S-(+)-Amphetamine 53 ± 9 

R-(-)-Methamphetamine -29 ± 13 

S-(+)-Methamphetamine -6 ± 9 

E1-Mephedrone -22 ± 12 

E2-Mephedrone -40 ± 14 

R-(-)-MDA -15 ± 1 

S-(+)-MDA -13 ± 2 

R-(-)-MDMA -44 ± 7 

S-(+)-MDMA -58 ± 8 

E1-MDEA -34 ± 2 

E2-MDEA -58 ± 7 

E1-HMA -50.4 ± 6.2 

E2-HMA -69 ± 14 

E1-HMMA -82 ± 34 

E2-HMMA -77 ± 15 

E1-Norephedrine 63 ± 3 

E2-Norephedrine 22 ± 5 

E1-PMA -22 ± 8 

E2-PMA -39 ± 4 

(+)-Ephedrine -78 ± 5 

(-)-Ephedrine and (-)-Ψephedrine -72 ± 8 

(+)-Ψephedrine -77 ± 16 

 

 

Table S8 SPE recovery for the studied analytes. 

Analyte 

SPE relative recovery % (n=3) 

25 ng/L* 250 ng/L* 2500 ng/L* 

R-(-)-Amphetamine 101.0  ± 6.6 76.0  ± 1.6 82.0 ± 4.7 

S-(+)-Amphetamine 81.0  ± 10.6 99.0  ± 2.0 82.0 ± 4.2 

R-(-)-Methamphetamine 91.0 ± 4.4 113.0 ± 0.7 82.0 ± 5.0 

S-(+)-Methamphetamine 84.0 ± 1.9 86.0 ± 1.2 84.0 ± 7.1 

E1-Mephedrone 109.0 ± 3.2 99.0 ± 4.8 80.0 ± 7.0 

E2-Mephedrone 99.0 ± 8.5 99.0 ± 4.3 87.0 ± 11.5 

R-(-)-MDA 93.0 ± 6.2 94.0 ± 4.2 81.0 ± 1.0 

S-(+)-MDA 110.0 ± 8.5 99.0 ± 1.5 91.0 ± 1.5 

R-(-)-MDMA 91.0 ± 3.7 81.0 ± 7.8 89.0 ± 4.3 

S-(+)-MDMA 93.0 ± 1.7 100.0 ± 0.7 84.0 ± 1.9 

E1-MDEA 102.0 ± 2.0 95.0 ± 8.6 91.0 ± 5.9 

E2-MDEA 99.0 ± 1.8 92.0 ± 1.9 93.0 ± 13.4 

E1-HMA 97.0 ± 8.7 114.0 ± 0.3 106.0 ± 16.4 

E2-HMA 106.0 ± 4.6 107.0 ± 2.9 120.0 ± 11.5 

E1-HMMA 84.0 ± 8.8 85.0 ± 9.4 100.0 ± 3.3 

E2-HMMA 108.0 ± 7.5 105.0 ± 2.4 118.0 ± 1.7 

E1-Norephedrine 112.0 ± 2.8 117.0 ± 1.1 108.0 ± 1.5 

E2-Norephedrine 115.0 ± 5.9 95.0 ± 2.1 83.0 ± 1.4 

E1-PMA 110.0 ± 8.5 94.0 ± 2.4 80.0 ± 0.7 

E2-PMA 113.0 ± 3.5 118.0 ± 5.9 91.0 ± 0.4 

(+)-Ephedrine 81.0 ± 9.0 82.0 ± 2.6 91.0 ± 2.1 

(-)-Ephedrine and (-)-Ψephedrine 112.0 ± 0.6 87.0 ± 2.5 113.0 ± 9.6 

(+)-Ψephedrine 104.0 ± 10.6 83.0 ± 0.3 81.0 ± 1.0 
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Table S9 Concentrations of analytes expressed as ng L-1 (n.a. means not available). 

 
 R-(-)-Amphetamine S-(+)-Amphetamine 

Bristol Oslo Milan Utrecht Castellón Brussels Zurich Copenhagen Bristol Oslo Milan Utrecht Castellón Brussels Zurich Copenhagen 

Mon 207.5 161.0 4.0 57.6 - 161.0 33.2 144.6 153.0 138.5 13.0 48.3 - 112.1 38.1 116.0 

Tues 208.5 129.5 - 205.9 - 77.9 32.3 145.7 170.5 74.0 - 165.2 - 54.3 32.4 116.6 

Wed 202.0 132.8 - 172.1 - 112.6 34.8 141.9 170.5 105.7 - 138.6 - 79.3 33.5 102.4 

Thur 190.5 141.3 4.0 109.6 - 118.7 33.7 171.4 147.0 101.7 6.0 91.3 - 81.6 32.2 127.2 

Fri 163.5 159.8 - 134.1 - 137.2 37.4 167.4 137.5 126.2 - 111.0 - 90.6 23.0 116.3 

Sat 202.5 172.9 - 173.4 - 149.4 32.3 179.0 157.5 148.6 - 146.0 - 105.5 35.8 129.8 

Sun 204.5 108.5 5.0 50.3 - 182.5 33.5 180.6 147.0 103.5 6.0 43.1 - 132.1 33.2 133.5 

 R-(-)-Methamphetamine S-(+)-Methamphetamine 

Bristol Oslo Milan Utrecht Castellón Brussels Zurich Copenhagen Bristol Oslo Milan Utrecht Castellón Brussels Zurich Copenhagen 

Mon 2.0 392.9 - <MQL - - <MQL <MQL 2.0 333.6 15.9 <MQL <MQL 16.2 49.9 27.6 

Tues 3.0 259.5 1.8 <MQL <MQL - <MQL <MQL 1.5 217.5 30.9 <MQL <MQL 8.3 46.1 22.5 

Wed 3.5 107.0 2.4 <MQL - - <MQL <MQL 2.0 92.5 23.7 <MQL <MQL 15.7 47.1 24.0 

Thur 3.0 173.1 3.7 - - - <MQL <MQL 2.0 163.4 22.0 <MQL <MQL 13.6 40.3 18.7 

Fri - 126.5 - - - - <MQL <MQL - 107.0 25.9 <MQL <MQL 16.0 46.6 20.2 

Sat 8.5 217.2 - <MQL <MQL - <MQL <MQL 2.5 178.8 28.3 <MQL <MQL 15.5 47.1 31.4 

Sun 3.5 130.2 - <MQL <MQL - <MQL <MQL 2.0 102.8 30.1 <MQL <MQL 14.9 44.7 25.7 

 R-(-)-MDMA S-(+)-MDMA 

Bristol Oslo Milan Utrecht Castellón Brussels Zurich Copenhagen Bristol Oslo Milan Utrecht Castellón Brussels Zurich Copenhagen 

Mon 163.0 91.9 8.9 189.1 11.0 77.6 96.0 80.0 64.5 66.1 4.5 101.6 5.0 
34.6 

37.0 37.0 

Tues 76.5 43.7 0.0 380.4 8.1 20.0 38.0 42.0 33.5 24.3 7.4 203.7 4.7 
8.7 

13.0 22.0 

Wed 63.0 24.6 5.0 214.7 0.0 25.7 20.0 26.0 39 18.4 3.3 107.4 0.0 
13.6 

7.0 16.0 

Thur 44.5 42.8 1.9 74.5 0.0 22.8 14.0 28.0 28.5 14.3 1.9 54.7 0.0 
12.8 

8.0 18.0 

Fri 71.0 23.5 6.4 226.2 8.2 26.9 22.0 33.0 51.5 13.5 3.2 154.7 5.4 
15.0 

14.0 22.0 

Sat 265.0 60.6 21.3 353.6 7.2 63.8 57.0 120.0 184 42.9 11.6 240.6 4.8 
41.6 

34.0 98.0 

Sun 318.0 71.2 34.1 278.1 11.8 148.6 155.0 175.0 186.5 36.3 12.0 221.2 8.2 
102.7 

97.0 125.0 

 R-(-)-MDA S-(+)-MDA 

Bristol Oslo Milan Utrecht Castellón Brussels Zurich Copenhagen Bristol Oslo Milan Utrecht Castellón Brussels Zurich Copenhagen 
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Mon 6.9 2.0 - 11.1 - - - - 7.3 - - 15.9 - - - - 

Tues 4.3 - - 12.3 - - - - - - - 14.4 - - - - 

Wed - - - 8.6 - - - - - - - 3.6 - - - - 

Thur - - - 5.4 - - - 2.2 - - - 5.5 - - - 1.1 

Fri 2.0 - - 4.9 - - - - - - - 7.9 - 4.7 - - 

Sat 3.9 - - 8.3 - - - - 12.9 1.0 - 12.5 - - - - 

Sun 9.8 - - 11.1 - - - - 11.6 5.0 - 25.2 - - - - 

 E1-HMA E2-HMA 

Bristol Oslo Milan Utrecht Castellón Brussels Zurich Copenhagen Bristol Oslo Milan Utrecht Castellón Brussels Zurich Copenhagen 

Mon 79.0 - - - - - - - - - - 42.0 - - - - 

Tues - - - - - - - - - - - - - - - - 

Wed - - - - - - - - - - - - - - - - 

Thur - - - - - - - - - - - - - - - - 

Fri - - - - - - - - - - - - - - - - 

Sat - - - 39.0 - - - - - - - 37.0 - - - - 

Sun 70.0 - - - - - - - 86.0 - - 38.0 - - - - 

 E1-HMMA E2-HMMA 

Bristol Oslo Milan Utrecht Castellón Brussels Zurich Copenhagen Bristol Oslo Milan Utrecht Castellón Brussels Zurich Copenhagen 

Mon 38.1 - - - 18.3 37.1 18.9 18.9 58.2 - - 60.7 57.6 28.9 14.6 29.0 

Tues 37.1 - - - 36.6 17.3 - - - - - 59.9 57.6 14.4 - - 

Wed 36.8 - - 37.9 - 17.1 - - - - - 58.5 - 7.7 - - 

Thur - - - 38.8 - 18.3 - 18.3 - - - 57.8 - 28.8 - - 

Fri 36.8 - <MQL 42.1 - 36.7 - 15.4 47.5 - <MQL 58.4 - 57.7 - 28.9 

Sat 38.6 - - 41.6 - 37.8 18.5 19.1 59.3 - - 59.1 - 58.4 29.0 29.2 

Sun 39.1 - - 40.8 18.3 38.4 18.9 19.1 59.6 - - 62.4 57.7 59.0 29.6 29.3 

 R-(+)-Mephedrone S-(-)-Mephedrone 

Bristol Oslo Milan Utrecht Castellón Brussels Zurich Copenhagen Bristol Oslo Milan Utrecht Castellón Brussels Zurich Copenhagen 

Mon 67.0 - - - - - - - 72.5 - - - - - - - 

Tues 37.0 - - - - - - - 27.5 - - - - - - - 

Wed 38.0 - - - - - - - 38 - - - - - - - 
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Thur 37.0 - - - - - - - 33 - - - - - - - 

Fri 44.5 - - - - - - - 28.5 - - - - - - - 

Sat 105.5 - - - - - - - 86 - - - - - - - 

Sun 90.0 - - - - - - - 57.5 - - - - - - - 

 E1-Norephedrine E2-Norephedrine 

Bristol Oslo Milan Utrecht Castellón Brussels Zurich Copenhagen Bristol Oslo Milan Utrecht Castellón Brussels Zurich Copenhagen 

Mon - 57.0 5.0 - n.a. n.a. n.a. n.a. - 69.0 7.0 - n.a. n.a. n.a. n.a. 

Tues - 53.0 12.0 - n.a. n.a. n.a. n.a. - 42.0 6.0 - n.a. n.a. n.a. n.a. 

Wed - 65.0 10.0 - n.a. n.a. n.a. n.a. 33.0 59.0 11.0 - n.a. n.a. n.a. n.a. 

Thur - 52.0 8.0 - n.a. n.a. n.a. n.a. 11.3 46.0 11.0 - n.a. n.a. n.a. n.a. 

Fri - 39.0 7.0 - n.a. n.a. n.a. n.a. 18.0 44.0 14.0 - n.a. n.a. n.a. n.a. 

Sat - 51.0 12.0 - n.a. n.a. n.a. n.a. 21.3 59.0 11.0 - n.a. n.a. n.a. n.a. 

Sun - 53.0 6.0 - n.a. n.a. n.a. n.a. 16.7 60.0 8.0 - n.a. n.a. n.a. n.a. 

 1R,2S-(-)-Ephedrine 1S,2S-(+)-Pseudoephedrine 

Bristol Oslo Milan Utrecht Castellón Brussels Zurich Copenhagen Bristol Oslo Milan Utrecht Castellón Brussels Zurich Copenhagen 

Mon - 1.0 1.0 n.a. n.a. n.a. n.a. n.a. 569.0 50.0 67.0 n.a. n.a. n.a. n.a. n.a. 

Tues 8.0 - 10.0 n.a. n.a. n.a. n.a. n.a. 352.0 48.0 103.0 n.a. n.a. n.a. n.a. n.a. 

Wed 1.5 - 2.0 n.a. n.a. n.a. n.a. n.a. 438.5 42.0 100.0 n.a. n.a. n.a. n.a. n.a. 

Thur - 3.0 12.0 n.a. n.a. n.a. n.a. n.a. 250.0 39.0 116.0 n.a. n.a. n.a. n.a. n.a. 

Fri 1.5 3.0 - n.a. n.a. n.a. n.a. n.a. 470.5 52.0 83.0 n.a. n.a. n.a. n.a. n.a. 

Sat 5.0 0.0 39.0 n.a. n.a. n.a. n.a. n.a. 358.5 42.0 83.0 n.a. n.a. n.a. n.a. n.a. 

Sun - 3.0 - n.a. n.a. n.a. n.a. n.a. 410.5 40.0 86.0 n.a. n.a. n.a. n.a. n.a. 
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Table S10 Biomarkers of drugs of abuse and precursors (AMP=amphetamine, METH=methamphetamine, MEPH=mephedrone, EPH=ephedrine, 

PSEUDOEPH=pseudoephedrine and NE=norephedrine). The following information are provided: parent compound or metabolite used as a DTR, 

urinary excretion data, CF used for WBE estimates, EF expected in urine after human metabolism (EFurine), EF calculated from illegal synthesis 

of the drug (EFillegal_synth), information derived from the legal use of the drug and consumption estimates calculated from official health statistics 

in relation to the population served by the wastewater treatment plant in the study and from wastewater analysis. 
 

Drug Metaboli

te used as 

DTR 

Excretion 

(%) 

CF EFUrine Illegal Use Legal Use Consumption estimates (mg day-1 

1000 people-1) 

EFillegal_synth Legall

y 

prescr

ibed? 

(Y/N)  

From 

metabolis

m of 

prescribed 

pharmace

uticals 

Amount 

prescribed 

(kg/year) 

Excretion (%) Amount 

excreted as 

metabolite 

(kg/year) 

EFlegal source Health 

national 

system data 

(2015) in 

relation to 

the 

population 

served by 

the WWTP 

Wastewater analysis 

(2015), calculated 

from weekly average 

loads of considered 

DTR 

AMP AMP 30.0% in 

neutral 
condition 

of pH, up 

to 74.0% 
in acidic 

and 1.0% 

in alkaline 
urines 

[39] 

 

3.3 <0.5 as 

enantiosele
ctive 

metabolis

m favours 
S-(+)-AMP 

when (±)-

AMP is 
consumed; 

S-(+)-AMP 

after 
dimethyl-

amphetami

ne intake 
(excretion 

0.65%) [3] 

0.5 (when 

Leuckart 
method) or 

>0.5 (when 

reduction of 
diastereoiso

mers of NE 

and 
norpseudoep

hedrine-less 

common) 

Y 73.4% S-

(+)-AMP 
base from 

dexamphet

amine 
sulfate 

23.67 

kg/year as 
dexamfetam

ine sulfate 

in England 
(or 17.38 

kg/year as 

S-(+)-AMP) 

30.0% in neutral 

condition of pH, 
up to 74.0% in 

acidic and 1.0% in 

alkaline urines 
[39] 

 

5.21 kg in 

neutral urine 
pH in 

England (or 

12.86 kg in 
case of acidic 

urine or 0.17 

kg in case of 
alkaline 

urine)  

In general 

0.5 and >0.5 
[17]; >0.5 as 

dexampheta

mine sulfate 

0.32 as S-

(+)-AMP in 
Bristol 

272.7 as (±)-AMP, of 

which 120.1 as S-(+)-
AMP in Bristol; 213.7 

as NE in Bristol 

NE 2.0% in 

neutral 

condition 
of pH 

[39] 

44.7   Amphetami

nil 

No in 

England 

Low in urine [40], 

3.3% [20] 

    

      Benzpheta
mine 

No in 
England 

Minor [41], 7% 
under acidic 

conditions, 2% in 

alkaline [19] only 

S-(+)-enantiomer 

 >0.5   

       Clobenzore

x 

No in 

England 

5% of (±)-AMP 

[17] 

    

       Ethylamph

etamine 

No in 

England 

10.7±1.3% of S-

(+)-AMP (n=2), 

4.8±0.6% of R-(-)-
AMP (n=2) [42] 

 <0.5   

       Famprofaz

one 

No in 

England 

(±)-AMP at the 

beginning of the 

 0.5 at the 

beginning of 
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administration and 
then R-(-)-

enantiomer 

increases [43] 

the 
administrati

on, then 

<0.5  
       Fencamine No in 

England 

(±)-AMPH [18]  0.5   

       Fenethyllin
e 

No in 
England 

24.5 % [44],26.7% 
[45] of (±)-AMP 

[17] 

 0.5   

       Fenpropore
x 

No in 
England 

27-34% (±)-AMP 
[46] 

 0.5   

       Furfenorex No in 

England 

4.1% AMP [20]     

       Lisdexamfe

tamine 

68.35 

kg/year as 

lisdexamfeta
mine 

dimesylate 

in England 
(or 20.30 

kg/year as 

S-(+)-AMP) 

41.5% S-(+)-AMP 

[47] 

8.42 kg in 

England  

>0.5 1.26 as S-

(+)-AMP in 

Bristol 

272.7 as (±)-AMP, of 

which 120.1 as S-(+)-

AMPH in Bristol; 
213.7 as NE in Bristol 

       Mefenorex No in 

England 

5.5% after 40 mg 

and 10.4% after 80 

mg [48] 

    

       Mesocarb No in 

England 

4%     

       Prenylamin

e 

No in 

England 

higher amounts of 

S-(+)-AMP 

initially [17] 

 >0.5   

       Selegiline 9.72 kg/year 

in England 

3.06±1.10 (n=4) as 

R-(-)-AMP [49], 

13.5% [20] 

1.31 kg as R-

(-)-AMP in 

England 
(using 13.5% 

as E) 

<0.5 0.10 as R-(-

)-AMP in 

Bristol 

272.7 as (±)-AMP, of 

which 152.6 as R-(-)-

AMP in Bristol; 213.7 
as NE in Bristol 

METH METH 43.0% at 

pH range 
between 6 

and 8, up 

to 76.0% 

in acidic 

and 2.0% 

in alkaline 
urines 

[39] 

2.3 <0.5 

(because 
metabolis

m favours 

S-(+)-

enantiomer

) when (±)-

METH is 
consumed 

[14]; S-(+)- 

METH 
after 

dimethyl-

amphetami

0.5 (when 

Leuckart 
route and 

reductive 

amination) or 

>0.5 (when 

(1R,2S)-(-)-

EPH or 
(1S,2S)-(+)-

PSEUDOEP

H) 

Y METH No in 

England 

  >0.5 as the 

form of all 
pharmaceuti

cal METH 

is the S-(+)-

enantiomer 

[17] 
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ne intake 
(excretion 

7.5%) [3]  

AMP 4.0-7.0% 
at pH 

range 

between 6 
and 8 

[39] 

20.1    Benzpheta
mine 

No in 
England 

Minor [41], ~2% 
[19] only S-(+)--

enantiomer 

 >0.5   

NE 5% [33] 19.7 (1R,2S)-(-
)-NE 

derived 

from S-(+)-
AMP of 

the METH 

metabolis
m [34] 

  Famprofaz
one 

No in 
England 

30% S-(+)-METH 
and 70% R-(-)-

enantiomer [45] 

 <0.5   

      Fencamine No in 

England 

(±)-METH [18]  0.5   

      Furfenorex No in 

England 

3.7% METH [20]     

      Mefenorex No in 
England 

(±)-METH  0.5   

      Selegiline 9.72 kg/year 

in England 

36.96±8.17 (n=4) 

as R-(-)-METH 
[49]; 27.5% [20] 

2.67 kg as R-

(-)-METH in 
England 

<0.5 0.18 as R-(-

)-METH in 
Bristol 

2.7 as (±)-METH, of 

which 1.8 as R-(-)-
METH in Bristol; 

1661.1 as (±)-AMP 

and 94.2 as NE in 
Bristol 

MEPH MEPH 15.4±8.4 

%(n=6, 

dose=150 

mg 

MEPH) 
[50] 

6.5  0.5 [32] N       166.4 as (±)-MEPH in 

Bristol 

MDA MDA Unchange

d 
(overdose 

case) 

n.a. <0.5 

(because 
metabolis

m favours 

0.5 N       No CF available 
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[39] S-(+)-
MDA) 

MDMA MDMA 65% [51], 

15.0% 

[52] 

1.5 

(6.7 

whe
n 

15% 

was 
appl

ied) 

<0.5 

(because 

metabolis
m favours 

S-(+)-

MDMA, 
also faster 

eliminated 

[24, 25]) 

0.5 (when 

Leuckart 

method or 
reductive 

amination 

reactions) 
[22, 23] 

N       As (±)-MDMA: 56.5 

in Oslo, 79.7 in 

Bristol, 48.1 in 
Lyngby, 93.0 in 

Utrecht, 32.9 in 

Brussels, 65.2 in 
Zurich, 10.3 in Milan 

and 3.5 in Castellon 

MDA 1.5% [52] 71.9 >0.5 after 

(±)-

MDMA 
intake [23-

25] 

        As (±)-MDA: 36.0 in 

Oslo, 140.7 in Bristol, 

9.2 in Lyngby, 232.1 
in Utrecht, 11.3 in 

Brussels, 0.0 in Zurich, 

Milan and Castellon 
HMMA 20.0% 

[52] 

5.0 >0.5, <0.5 

as HMMA 

sulphate 

        As (±)-HMMA: 0.0 in 

Oslo, 77.3 in Bristol, 

39.6 in Lyngby, 68.8 
in Utrecht, 83.0 in 

Brussels, 47.4 in 

Zurich, 0.0 in Milan 
and 37.6 in Castellon 

HMA 1.0% [52] 106.
6 

         As (±)-HMA: 0.0 in 
Oslo, 785.8 in Bristol, 

0.0 in Lyngby, 365.5 

in Utrecht, 0.0 in 
Brussels, Zurich, 

Milan and Castellon 

MDEA MDEA 19.0%±2.

55 [53]  

5.3 <0.5 

(because 
metabolis

m favours 

S-(+)-
MDEA) 

[54] 

0.5 N       Not found 

MDA 28.0% 
[39] 

4.1 >0.5 after 
(±)-MDEA 

intake 

         

PMA PMA 15% [55] 6.7  0.5 (Leuckart 
method) [56] 

N       Not found 

EPH  EPH  70.0-

80.0% 

[39] 

1.3   Y, in 

the 

form 
of 

1R,2S-

EPH 0.83 kg/year 

as EPH 

hydrochlori
de in 

England (or 

75% used as 

average 

0.46 kg in 

England  

 0.03 as EPH 

in Bristol 

0.8 in Bristol, 0.9 in 

Oslo, 4.4 in Italy as 

1R,2S-(−)-EPH 
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(−)-
EPH 

0.62 kg/year 
as EPH) 

NE  4.0% [39] 

8-20% as 
NE, of 

which 4% 

is further 
metabolis

ed to 4-

hydroxy-
NE and 

hippuric 

acid [57] 

27.3    Famprofaz

one 

No in 

England 

Higher (-)-EPH 

[49] 

   93.2 in Bristol, 1391.1 

in Oslo, 193.8 in Italy 
as (±)-NE 

     Selegiline 9.72 kg/year 

in England 

0.62±0.29 (n=4) as 

(1S,2R)-(+)-EPH 
[49] 

0.06 kg as 

(1S,2R)-(+)-
EPH in 

England 

 0.004 as 

(1S,2R)-(+)-
EPH in 

Bristol 

 

PSEUD
OEPH 

PSEUDO
EPH  

88.0% 
[39] 

1.1   Y in 
the 

form 

of 
1S,2S-

(+)-

PSEU
DOEP

H 

Famprofaz
one 

No in 
England 

Higher (-)-
PSEUDOEPH  

   106.0 in Bristol, 23.3 
in Oslo, 39.3 in Italy as 

1S,2S-(+)-

PSEUDOEPH 
      PSEUDOE

PH 

253.54 

kg/year as 

PSEUDOEP
H 

hydrochlori

de in 
England (or 

223.12 
kg/year as 

1S,2S-(+)-

PSEUDOEP
H) 

88.0% [39] 196.34 kg as 

1S,2S-(+)-

PSEUDOEP
H in England 

 10.61 as 

1S,2S-(+)-

PSEUDOEP
H in Bristol 

 

       Selegiline 9.72 kg/year 

in England 

0.04±0.03 (n=4) as 

(1R,2R)-(-)-
PSEUDOEPH 

[49] 

0.004 kg as 

(1R,2R)-(-)-
PSEUDOEP

H in England 

 0.0002 as 

(1R,2R)-(-)-
PSEUDOEP

H in Bristol 

 

NE NE 86.3%[58

] 

1.2   Y as 

oral 
decon

gestan

t [59] 

Dexamfeta

mine 

23.67 

kg/year as 
dexamfetam

ine sulfate 

in England 

2.0% in neutral 

condition of urine 
pH 

[39] 

 

0.35 kg in 

neutral urine 
pH in 

England 

 0.02 as NE 

in Bristol 

4.1 in Bristol, 61.2 in 

Oslo, 8.5 in Italy as 
(±)-NE 

      EPH 0.83 kg/year 

as EPH 

hydrochlori
de in 

England  

4.0% [39] 0.02 kg in 

England  

 0.0015 as 

NE in 

Bristol 

 

       Famprofaz
one 

No in 
England 

Higher (-)-NE [60]     

       Selegiline 9.72 kg/year 

in England 

0.12±0.05 (n=4) as 

(1S,2R)-NE [49] 

0.011 kg as 

(1S,2R)-NE 
in England 

 0.0008 as 

(1S,2R)-NE 
in Bristol 
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S1. Amphetamine 

Amphetamine has one chiral centre and exists in two enantiomeric forms [1]. Racemic 

amphetamine undergoes enantioselective metabolism by favouring S-(+)-enantiomer [2] and 

leading to enrichment of the R-(-)-amphetamine when excreted in urine (EFurine<0.5). However, 

in the case of S-(+)-dimethyl-amphetamine consumption, EFurine will be >0.5 as only S-(+)-

amphetamine is produced [3]. Synthesis of (±)-amphetamine is commonly performed via 

Leuckart method, which uses 1-phenyl-2-propanone, formic acid, ammonium formate or 

formamide as reagents [4]. A stereoselective method, which involves the reduction of 

appropriate diastereoisomers of norephedrine or norpseudoephedrine [5], is much less common 

[6]. Therefore, expected EFsillegal_synth are 0.5 and >0.5, respectively, depending on the synthesis 

route. In Europe, licit amphetamine is prescribed as enantiopure S-(+)-amphetamine (e.g. 

dexamfetamine sulphate known as Dexamed in the UK and in Denmark, Attentin in Norway, 

Amfexa in Spain and Tentin in the Netherlands [7]) and as racemate in other prescription drugs 

only under the Medicines Act. The prodrug lisdexamfetamine (as dimesylate salt) is completely 

metabolised to S-(+)-amphetamine and it is also available in the European market [8, 9] (e.g. 

trade name Elvanse in the UK and in Denmark and authorised in Spain [10]). Pharmaceuticals, 

such as fenproporex [11] and clobenzorex [12], are metabolised to (±)-amphetamine (Table 

S9). If excreted as a metabolite of R-(-)-selegiline it is enriched in the R-(-)-amphetamine along 

with R-(-)-methamphetamine [13]. 

S2. Methamphetamine 

Similarly to amphetamine, methamphetamine undergoes stereoselective metabolism in humans 

by favouring the S-(+)-enantiomer [14] and leading to the enrichment of R-(-)-enantiomer in 

urine with a changing enantiomeric ratio over the time, resulting in EFurine<0.5. Illicit 

methamphetamine is synthesised by two major routes. The first starts from the reactions of 

phenylacetone (i.e. the Leuckart route and reductive amination) leading to racemic 

methamphetamine, whilst the other starts from (1R,2S)-(-)-ephedrine [or (1S,2S)-(+)-

pseudoephedrine] that is reduced with red phosphorus and hydroiodic acid stereoselectively 

synthesising the more potent S-(+)-isomer. As a consequence, the expected EFsillegal_synth are 0.5 

and >0.5, respectively.  

The EMCDDA reports indicate that the production of enantio-enriched methamphetamine from 

ephedrine and pseudoephedrine is commonly used in Central Europe, whilst the synthesis with 

phenylacetone as the precursor is preferred in Lithuania [15, 16]. Both synthetic routes have 

been confirmed to be used in clandestine laboratories in the Netherlands [16]. As the form of 

all pharmaceutical methamphetamine is the S-(+)-enantiomer [17], EFlegal source is >0.5 in the 

case of disposal. Controlled pharmaceuticals, such as mefenorex and fencamine [18], produce 

(±)-methamphetamine as a metabolite, whilst others, such as famprofazone, are converted to 

30% S-(+)-methamphetamine and 70% R-(-)-enantiomer [14]. The metabolism of 

benzphetamine leads to only ~2% of S-(+)-methamphetamine [19], whilst the metabolism of 

selegiline results in 28% of R-(-)-methamphetamine [20]. Therefore, if (±)-methamphetamine 

is consumed, it will be found in urine enriched with the R-(-)-enantiomer and, additionally, 

generated amphetamine will be enriched with the S-(+)-enantiomer. If enantiopure S-(+)-

methamphetamine is consumed, it will be excreted in urine as enantiopure S-(+)-

methamphetamine and S-(+)-amphetamine. This is because chiral inversion does not take place 

during human metabolism.  
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a) b)    c) d) 

 

  
 

e)                        f)                               g)  

  

 

Figure S2 Average population-normalised mass loads and average enantiomeric fraction values 

in a week monitoring campaign. For HMMA: EF values are reported assuming that the first-

eluting enantiomer is R-(-)-HMMA and the second one is S-(+)-HMMA. Due to high standard 

deviation values for amphetamine in Milan, an average EF value is not displayed. 
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Table S11 Amphetamine loads. LOADS are population-normalised mass loads, expressed as mg/1000 people/day, and CONS is estimated 

consumption. 
R-(-)-Amphetamine 

  Bristol Oslo Milan Utrecht Castellón Brussels Zurich Copenhagen 

  LOADS CONS LOADS CONS LOADS CONS LOADS CONS LOADS CONS LOADS CONS LOADS CONS LOADS CONS 

Mon 46.2 152.5 70.6 233.0 1.1 3.6 8.8 29.1 - - 39.6 130.7 14.3 47.3 40.5 133.6 

Tues 48.1 158.7 56.4 186.0 - - 30.6 100.9 - - 29.4 97.0 12.7 41.8 41.4 136.7 

Wed 45.3 149.6 76.3 251.7 - - 27.4 90.4 - - 27.6 91.2 13.3 44.0 39.3 129.8 

Thur 42.4 140.0 75.0 247.6 0.7 2.5 16.5 54.3 - - 29.3 96.6 13.2 43.7 46.8 154.3 

Fri 46.6 153.8 76.3 251.9 - - 22.1 73.1 - - 33.8 111.4 14.7 48.6 45.8 151.1 

Sat 50.4 166.3 76.4 252.3 - - 26.6 87.8 - - 36.5 120.5 15.8 52.0 46.4 153.3 

Sun 44.6 147.0 46.8 154.4 1.0 3.2 7.9 25.9 - - 44.1 145.4 19.9 65.5 46.7 154.0 

AV 46.2 152.6 68.3 225.3 0.9 3.1 20.0 65.9 - - 34.3 113.3 14.8 49.0 43.8 144.7 

SD 2.5 8.4 11.9 39.3 0.2 0.6 9.1 30.1 - - 6.1 20.1 2.4 8.1 3.3 10.8 

CV 0.06 0.06 0.17 0.17 0.18 0.18 0.46 0.46 - - 0.18 0.18 0.16 0.16 0.07 0.07 

S-(+)-Amphetamine 

  Bristol Oslo Milan Utrecht Castellón Brussels Zurich Copenhagen 

  LOADS CONS LOADS CONS LOADS CONS LOADS CONS LOADS CONS LOADS CONS LOADS CONS LOADS CONS 

Mon 34.1 112.5 60.7 200.4 3.5 11.7 7.4 24.4 - - 27.6 91.0 16.5 54.3 32.5 107.2 

Tue 39.3 129.8 32.2 106.3 - - 24.5 81.0 - - 20.5 67.6 12.7 42.0 33.1 109.4 

Wed 38.3 126.2 60.7 200.3 - - 22.0 72.8 - - 19.5 64.3 12.8 42.4 28.4 93.7 

Thur 32.7 108.1 54.0 178.1 1.1 3.7 13.7 45.2 - - 20.1 66.5 12.6 41.7 34.7 114.5 

Fri 39.2 129.3 60.3 199.1 - - 18.3 60.5 - - 22.3 73.6 9.1 29.9 31.8 104.9 

Sat 39.2 129.4 65.7 216.9 - - 22.4 73.9 - - 25.8 85.0 17.5 57.6 33.7 111.2 

Sun 32.0 105.7 44.6 147.3 1.2 3.8 6.7 22.2 - - 31.9 105.3 19.7 64.9 34.5 113.9 

AV 36.4 120.1 54.0 178.3 1.9 6.4 16.5 54.3 - - 24.0 79.0 14.4 47.5 32.7 107.8 

SD 3.3 10.9 11.8 38.8 1.4 4.6 7.3 24.1 - - 4.6 15.3 3.6 11.9 2.2 7.1 

CV 0.09 0.09 0.22 0.22 0.71 0.71 0.44 0.44 - - 0.19 0.19 0.25 0.25 0.07 0.07 

(±)-Amphetamine 
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  Bristol Oslo Milan Utrecht Castellón Brussels Zurich Copenhagen 

  LOADS CONS LOADS CONS LOADS CONS LOADS CONS LOADS CONS LOADS CONS LOADS CONS LOADS CONS 

Mon 80.3 265.0 131.3 433.3 4.6 15.2 16.2 53.6 - - 67.2 221.8 30.8 101.7 73.0 240.9 

Tue 87.4 288.5 88.6 292.3 - - 55.1 181.9 - - 49.9 164.5 25.4 83.8 74.6 246.0 

Wed 83.6 275.8 137.0 452.0 - - 49.4 163.1 - - 47.1 155.5 26.2 86.4 67.7 223.4 

Thur 75.2 248.1 129.0 425.8 1.9 6.2 30.2 99.5 - - 49.4 163.1 25.9 85.4 81.4 268.8 

Fri 85.8 283.1 136.7 451.0 - - 40.5 133.6 - - 56.1 185.1 23.8 78.5 77.6 256.0 

Sat 89.6 295.7 142.2 469.2 - - 49.0 161.8 - - 62.3 205.5 33.2 109.6 80.1 264.4 

Sun 76.6 252.7 91.4 301.7 2.1 7.0 14.6 48.1 - - 76.0 250.7 39.5 130.5 81.2 267.9 

AV 82.6 272.7 122.3 403.6 2.9 9.5 36.4 120.2 - - 58.3 192.3 29.3 96.5 76.5 252.5 

SD 5.5 18.1 22.5 74.2 1.5 5.0 16.4 54.2 - - 10.7 35.3 5.6 18.6 5.1 16.7 

CV 0.07 0.07 0.18 0.18 0.53 0.53 0.45 0.45 - - 0.18 0.18 0.19 0.19 0.07 0.07 
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Table S12 Methamphetamine loads. LOADS are population-normalised mass loads, expressed as mg/1000 people/day, and CONS is estimated 

consumption. 

 
R-(-)-Methamphetamine 

  Bristol Oslo Milan Utrecht Castellón Brussels Zurich Copenhagen 

  LOADS CONS LOADS CONS LOADS CONS LOADS CONS LOADS CONS LOADS CONS LOADS CONS LOADS CONS 

Mon 0.4 1.0 172.3 396.2 0.0 0.0 - - - - - - - - - - 

Tue 0.7 1.6 113.0 259.8 0.7 1.6 - - - - - - - - - - 

Wed 0.8 1.8 61.4 141.3 0.9 2.0 - - - - - - - - - - 

Thur 0.7 1.5 91.9 211.3 1.4 3.2 - - - - - - - - - - 

Fri 0.0 0.0 60.4 139.0 0.0 0.0 - - - - - - - - - - 

Sat 2.1 4.9 96.1 220.9 0.0 0.0 - - - - - - - - - - 

Sun 0.8 1.8 56.1 129.1 0.0 0.0 - - - - - - - - - - 

AV 0.8 1.8 93.0 214.0 0.4 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

SD 0.6 1.5 41.0 94.4 0.6 1.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

CV 0.83 0.83 0.44 0.44 1.34 1.34 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

S-(+)-Methamphetamine 

  Bristol Oslo Milan Utrecht Castellón Brussels Zurich Copenhagen 

  LOADS CONS LOAD CONS LOADS CONS LOADS CONS LOADS CONS LOADS CONS LOADS CONS LOADS CONS 

Mon 0.4 1.0 146.3 336.4 8.6 19.9 - - - - 4.0 9.2 21.6 49.6 7.7 17.8 

Tue 0.3 0.8 94.7 217.7 11.9 27.3 - - - - 3.1 7.2 18.1 41.6 6.4 14.7 

Wed 0.4 1.0 53.1 122.2 8.7 20.0 - - - - 3.9 8.9 18.0 41.5 6.7 15.3 

Thur 0.4 1.0 86.8 199.6 8.3 19.0 - - - - 3.3 7.7 15.8 36.4 5.1 11.7 

Fri 0.0 0.0 51.1 117.6 9.5 21.8 - - - - 3.9 9.1 18.3 42.2 5.5 12.7 

Sat 0.6 1.4 79.1 181.8 10.4 23.9 - - - - 3.8 8.7 23.0 52.8 8.1 18.7 

Sun 0.4 1.0 44.3 102.0 11.6 26.6 - - - - 3.6 8.3 26.5 60.9 6.6 15.3 

AV 0.4 0.9 79.3 182.5 9.8 22.6 0.0 0.0 0.0 0.0 3.7 8.4 20.2 46.4 6.6 15.2 

SD 0.2 0.4 35.3 81.2 1.5 3.4 0.0 0.0 0.0 0.0 0.3 0.7 3.7 8.4 1.1 2.5 

CV 0.49 0.49 0.44 0.44 0.15 0.15 0.0 0.0 0.0 0.0 0.09 0.09 0.18 0.18 0.17 0.17 
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(±)-Methamphetamine 

  Bristol Oslo Milan Utrecht Castellón Brussels Zurich Copenhagen 

  LOADS CONS LOADS CONS LOADS CONS LOADS CONS LOADS CONS LOADS CONS LOADS CONS LOADS CONS 

Mon 0.9 2.0 318.5 732.6 8.6 19.9 - - - - 4.0 9.2 21.6 49.6 7.7 17.8 

Tue 1.0 2.4 207.6 477.5 12.6 28.9 - - - - 3.1 7.2 18.1 41.6 6.4 14.7 

Wed 1.2 2.8 114.6 263.5 9.5 22.0 - - - - 3.9 8.9 18.0 41.5 6.7 15.3 

Thur 1.1 2.6 178.7 410.9 9.6 22.2 - - - - 3.3 7.7 15.8 36.4 5.1 11.7 

Fri 0.0 0.0 111.6 256.6 9.5 21.8 - - - - 3.9 9.1 18.3 42.2 5.5 12.7 

Sat 2.7 6.3 175.1 402.8 10.4 23.9 - - - - 3.8 8.7 23.0 52.8 8.1 18.7 

Sun 1.2 2.8 100.5 231.1 11.6 26.6 - - - - 3.6 8.3 26.5 60.9 6.6 15.3 

AV 1.2 2.7 172.4 396.4 10.3 23.6 0.0 0.0 0.0 0.0 3.7 8.4 20.2 46.4 6.6 15.2 

SD 0.8 1.9 76.2 175.3 1.4 3.2 0.0 0.0 0.0 0.0 0.3 0.7 3.7 8.4 1.1 2.5 

CV 0.69 0.69 0.44 0.44 0.13 0.13 0.0 0.0 0.0 0.0 0.09 0.09 0.18 0.18 0.17 0.17 
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Figure S3 Expected EF values in wastewater for MDMA consumption using the analytical conditions described in Castrignanò et al. DHMA, 

DHMA sulphate, HMMA glucuronide and HMMA sulphate were never detected in wastewater. The hypothesis is that HMMA glucuronide is 

hydrolysed by bacteria, giving HMMA enriched of the S-enantiomer.  
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S3. MDMA 

MDMA has one chiral centre and as a result it exists in two enantiomeric forms [21]. Synthesis 

of MDMA utilises non-stereoselective synthetic pathways [22] [23]. MDMA is therefore 

illegally distributed as racemate (EFillegal_synth=0.5). Consequently, if directly disposed of, it will 

be quantified as a racemate in wastewater. Furthermore, MDMA is stereoselectively 

metabolised with preferential metabolism of S-(+)-MDMA (EFurine=0.43 after a fatal poisoning 

[24]; EFurine=0.30±0.00 from urinary recovery of MDMA enantiomers after oral administration 

of (±)-MDMA between 0-24 h in n=8 [25]), which is also eliminated faster than R-(-)-MDMA 

[24], and formation of MDA enriched with S-(+)-enantiomer (EFurine=0.69 after a fatal 

poisoning [54]; EFurine=0.58±0.02 from urinary recovery of MDA enantiomers after oral 

administration of (±)-MDMA [25]) [23]. Hence, if found in wastewater after consumption, 

MDMA will be enriched with R-(-)-enantiomer. 
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Table S13 MDMA loads. LOADS are population-normalised mass loads, expressed as mg/1000 people/day, and CONS is estimated 

consumption. 

 
R-(-)-MDMA 

  Bristol Oslo Milan Utrecht Castellón Brussels Zurich Copenhagen 

  LOADS CONS LOADS CONS LOADS CONS LOADS CONS LOADS CONS LOADS CONS LOADS CONS LOADS CONS 

Mon 36.3 54.5 40.3 60.5 4.9 7.3 29.0 43.5 2.3 3.4 19.1 28.6 41.5 62.2 22.4 33.6 

Tue 17.6 26.5 19.0 28.5 0.0 0.0 56.5 84.8 1.8 2.7 7.6 11.3 14.9 22.4 11.9 17.9 

Wed 14.1 21.2 14.1 21.2 1.8 2.7 34.2 51.3 0.0 0.0 6.3 9.5 7.7 11.5 7.2 10.8 

Thur 9.9 14.9 22.7 34.0 0.7 1.1 11.2 16.8 0.0 0.0 5.6 8.5 5.5 8.2 7.6 11.5 

Fri 20.2 30.4 11.3 16.9 2.3 3.5 37.3 56.0 2.0 3.0 6.6 10.0 8.7 13.0 9.0 13.5 

Sat 66.0 98.9 26.8 40.2 7.8 11.7 54.3 81.4 1.5 2.3 15.6 23.4 27.8 41.7 31.1 46.7 

Sun 69.3 103.9 30.7 46.0 13.1 19.7 43.5 65.2 2.4 3.7 35.9 53.8 91.9 137.8 45.2 67.8 

AV 33.4 50.0 23.6 35.3 4.4 6.6 38.0 57.0 2.0 2.2 13.8 20.7 28.3 42.4 19.2 28.8 

SD 24.8 37.3 10.0 15.0 4.7 7.0 15.6 23.3 0.4 1.5 11.0 16.6 30.9 46.3 14.5 21.8 

CV 0.7 0.7 0.43 0.43 1.07 1.07 0.41 0.41 0.18 0.71 0.80 0.80 1.1 1.1 0.8 0.8 

S-(+)-MDMA 

  Bristol Oslo Milan Utrecht Castellón Brussels Zurich Copenhagen 

  LOADS CONS LOADS CONS LOADS CONS LOADS CONS LOADS CONS LOADS CONS LOADS CONS LOADS CONS 

Mon 14.4 21.6 29.0 43.5 2.4 3.6 15.6 23.4 1.0 1.6 8.5 12.8 16.0 24.0 10.4 15.5 

Tue 7.7 11.6 10.6 15.9 2.8 4.3 30.3 45.4 1.0 1.6 3.3 4.9 5.1 7.7 6.3 9.4 

Wed 8.8 13.1 10.6 15.9 1.2 1.8 17.1 25.6 0.0 0.0 3.3 5.0 2.7 4.0 4.4 6.7 

Thur 6.3 9.5 7.6 11.3 0.7 1.1 8.2 12.3 0.0 0.0 3.2 4.8 3.1 4.7 4.9 7.4 

Fri 14.7 22.0 6.4 9.6 1.2 1.7 25.5 38.3 1.3 2.0 3.7 5.5 5.5 8.3 6.0 9.0 

Sat 45.8 68.7 19.0 28.5 4.3 6.4 36.9 55.4 1.0 1.5 10.2 15.2 16.6 24.9 25.4 38.1 

Sun 40.6 61.0 15.7 23.5 4.6 6.9 34.6 51.9 1.7 2.5 24.8 37.2 57.5 86.2 32.3 48.5 

AV 19.8 29.6 14.1 21.2 2.5 3.7 24.0 36.0 1.2 1.3 8.1 12.2 15.2 22.8 12.8 19.2 

SD 16.4 24.6 7.9 11.8 1.5 2.3 10.7 16.1 0.3 1.0 7.9 11.8 19.5 29.3 11.3 17.0 

CV 0.8 0.8 0.56 0.56 0.63 0.63 0.45 0.45 0.24 0.73 0.97 0.97 1.3 1.3 0.9 0.9 
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(±)-MDMA 

  Bristol Oslo Milan Utrecht Castellón Brussels Zurich Copenhagen 

  LOADS CONS LOADS CONS LOADS CONS LOADS CONS LOADS CONS LOADS CONS LOADS CONS LOADS CONS 

Mon 50.7 76.0 69.3 103.9 7.3 10.9 44.5 66.8 3.3 5.0 27.6 41.4 57.5 86.2 32.8 49.2 

Tue 25.4 38.1 29.6 44.4 2.8 4.3 86.8 130.2 2.9 4.3 10.8 16.3 20.0 30.0 18.2 27.3 

Wed 22.9 34.3 24.7 37.0 3.0 4.6 51.3 76.9 0.0 0.0 9.7 14.5 10.3 15.5 11.6 17.5 

Thur 16.3 24.4 30.3 45.4 1.4 2.1 19.4 29.1 0.0 0.0 8.8 13.2 8.6 13.0 12.5 18.8 

Fri 34.9 52.4 17.7 26.5 3.5 5.2 62.9 94.3 3.3 4.9 10.3 15.5 14.2 21.3 15.0 22.6 

Sat 111.8 167.6 45.8 68.7 12.0 18.1 91.2 136.8 2.5 3.8 25.7 38.6 44.4 66.6 56.6 84.9 

Sun 109.9 164.9 46.4 69.5 17.7 26.6 78.1 117.1 4.1 6.2 60.7 91.0 149.4 224.0 77.5 116.3 

AV 53.1 79.7 37.7 56.5 6.8 10.3 62.0 93.0 3.2 3.5 21.9 32.9 43.5 65.2 32.0 48.1 

SD 40.9 61.4 17.5 26.2 6.0 9.0 25.7 38.5 0.6 2.5 18.8 28.3 50.2 75.3 25.7 38.5 

CV 0.8 0.8 0.46 0.46 0.88 0.88 0.41 0.41 0.18 0.71 0.86 0.86 1.2 1.2 0.8 0.8 
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Table S14 MDA loads. 

 
R-(-)-MDA 

  POPULATION-NORMALISED MASS LOADS (mg/1000 people/day) 

  Bristol Oslo Milan Utrecht Castellón Brussels Zurich Copenhagen 

Monday 1.5 0.9 - 1.7 - - - - 

Tuesday 1.0 - - 1.8 - - - - 

Wednesday - - - 1.4 - - - - 

Thursday - - - 0.8 - - - 0.6 

Friday 0.6 - - 0.8 - - - - 

Saturday 1.0 - - 1.3 - - - - 

Sunday 2.1 - - 1.7 - - - - 

AV 0.9 0.1 0.0 1.4 0.0 0.0 0.0 0.0 

SD 0.8 0.3 0.0 0.4 0.0 0.0 0.0 0.0 

CV 0.9 2.6 0.0 0.3 0.0 0.0 0.0 0.0 

S-(+)-MDA 

  POPULATION-NORMALISED MASS LOADS (mg/1000 people/day) 

  Bristol Oslo Milan Utrecht Castellón Brussels Zurich Copenhagen 

Monday 1.6 - - 2.4 - - - - 

Tuesday - - - 2.1 - - - - 

Wednesday - - - 0.6 - - - - 

Thursday - - - 0.8 - - - 0.3 

Friday - - - 1.3 - 1.1 - - 

Saturday 3.2 0.4 - 1.9 - - - - 

Sunday 2.5 2.2 - 3.9 - - - - 

AV 1.1 0.4 0.0 1.9 0.0 0.0 0.0 0.0 

SD 1.4 0.8 0.0 1.1 0.0 0.0 0.0 0.0 

CV 1.3 2.2 0.0 0.6 0.0 0.0 0.0 0.0 

(±)-MDA 

 
POPULATION-NORMALISED MASS LOADS (mg/1000 people/day) 

 
Bristol Oslo Milan Utrecht Castellón Brussels Zurich Copenhagen 

Monday 3.2 0.9 - 4.1 - - - - 

Tuesday 1.0 - - 4.0 - - - - 

Wednesday - - - 1.9 - - - - 

Thursday - - - 1.6 - - - 0.9 

Friday 0.6 - - 2.1 - 1.1 - - 

Saturday 4.2 0.4 - 3.2 - - - - 

Sunday 4.7 2.2 - 5.7 - - - - 

AV 1.9 0.5 0.0 3.2 0.0 0.0 0.0 0.0 

SD 2.0 0.8 0.0 1.5 0.0 0.0 0.0 0.0 

CV 1.0 1.6 0.0 0.5 0.0 0.0 0.0 0.0 

  



 

48 

 

Table S15 HMA loads. 

 
E1-HMA 

  POPULATION-NORMALISED MASS LOADS (mg/1000 people/day) 

  Bristol Oslo Milan Utrecht Castellón Brussels Zurich Copenhagen 

Monday 17.6 - - - - - - - 

Tuesday - - - - - - - - 

Wednesday - - - - - - - - 

Thursday - - - - - - - - 

Friday - - - - - - - - 

Saturday - - - 6.0 - - - - 

Sunday 15.3 - - - - - - - 

AV 4.7 0.1 0.0 0.9 0.0 0.0 0.0 0.0 

SD 8.0 0.3 0.0 2.3 0.0 0.0 0.0 0.0 

CV 1.7 2.6 0.0 2.6 0.0 0.0 0.0 0.0 

E2-HMA 
 

POPULATION-NORMALISED MASS LOADS (mg/1000 people/day) 
 

Bristol Oslo Milan Utrecht Castellón Brussels Zurich Copenhagen 

Monday - - - 6.4 - - - - 

Tuesday - - - - - - - - 

Wednesday - - - - - - - - 

Thursday - - - - - - - - 

Friday - - - - - - - - 

Saturday - - - 5.7 - - - - 

Sunday 18.7 - - 5.9 - - - - 

AV 2.7 0.1 0.0 2.6 0.0 0.0 0.0 0.0 

SD 7.1 0.2 0.0 3.2 0.0 0.0 0.0 0.0 

CV 2.6 1.8 0.0 1.3 0.0 0.0 0.0 0.0 

(±)-HMA 

 
POPULATION-NORMALISED MASS LOADS (mg/1000 people/day) 

 
Bristol Oslo Milan Utrecht Castellón Brussels Zurich Copenhagen 

Monday 17.6 - - 6.4 - - - - 

Tuesday - - - - - - - - 

Wednesday - - - - - - - - 

Thursday - - - - - - - - 

Friday - - - - - - - - 

Saturday - - - 11.7 - - - - 

Sunday 34.0 - - 5.9 - - - - 

AV 7.4 0.2 0.0 3.4 0.0 0.0 0.0 0.0 

SD 13.4 0.3 0.0 4.7 0.0 0.0 0.0 0.0 

CV 1.8 1.5 0.0 1.4 0.0 0.0 0.0 0.0 
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Table S16 HMMA loads. 

 
E1-HMMA 

 
POPULATION-NORMALISED MASS LOADS (mg/1000 people/day) 

 
Bristol Oslo Milan Utrecht Castellón Brussels Zurich Copenhagen 

Monday 8.5 - - - 3.8 9.1 8.2 5.3 

Tuesday 8.6 - - - 8.2 6.5 - - 

Wednesday 8.3 - - 6.0 - 4.2 - - 

Thursday - - - 5.8 - 4.5 - 5.0 

Friday 10.5 - - 7.0 - 9.0 - 4.2 

Saturday 9.6 - - 6.4 - 9.2 9.0 4.9 

Sunday 8.5 - - 6.4 3.8 9.3 11.2 4.9 

AV 7.7 0.1 0.0 4.5 2.3 7.4 4.1 3.5 

SD 3.5 0.3 0.0 3.1 3.2 2.3 5.1 2.4 

CV 0.5 2.6 0.0 0.7 1.4 0.3 1.3 0.7 

E2-HMMA 
 

POPULATION-NORMALISED MASS LOADS (mg/1000 people/day) 
 

Bristol Oslo Milan Utrecht Castellón Brussels Zurich Copenhagen 

Monday 13.0 - - 9.3 12.0 7.1 6.3 8.1 

Tuesday - - - 8.9 12.9 5.4 - - 

Wednesday - - - 9.3 - 1.9 - - 

Thursday - - - 8.7 - 7.1 - - 

Friday 13.5 - - 9.6 - 14.2 - 7.9 

Saturday 14.8 - - 9.1 - 14.3 14.2 7.6 

Sunday 13.0 - - 9.8 11.9 14.2 17.5 7.6 

AV 7.8 0.1 0.0 9.2 5.3 9.2 5.4 4.4 

SD 7.3 0.2 0.0 0.4 6.6 5.0 7.5 4.2 

CV 0.9 1.8 0.0 0.0 1.2 0.5 1.4 0.9 

(±)-HMMA 

 
POPULATION-NORMALISED MASS LOADS (mg/1000 people/day) 

 
Bristol Oslo Milan Utrecht Castellón Brussels Zurich Copenhagen 

Monday 21.4 - - 9.3 15.8 16.3 14.5 13.4 

Tuesday 8.6 - - 8.9 21.1 12.0 - - 

Wednesday 8.3 - - 15.4 - 6.1 - - 

Thursday - - - 14.5 - 11.6 - 5.0 

Friday 24.0 - - 16.6 - 23.2 - 12.1 

Saturday 24.4 - - 15.5 - 23.5 23.2 12.5 

Sunday 21.5 - - 16.1 15.7 23.5 28.7 12.5 

AV 15.5 0.2 0.0 13.8 7.5 16.6 9.5 7.9 

SD 9.7 0.3 0.0 3.2 9.5 7.0 12.5 6.1 

CV 0.6 1.5 0.0 0.2 1.3 0.4 1.3 0.8 
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Table S17 Mephedrone loads. 

R-(+)-Mephedrone 

  POPULATION-NORMALISED MASS LOADS (mg/1000 people/day) 
ESTIMATED 

CONSUMPTION 

  Bristol Oslo Milan Utrecht Castellón Brussels Zurich Copenhagen UK (Bristol) 

Monday 14.9 - - - - - - - 96.9 

Tuesday 8.5 - - - - - - - 55.3 

Wednesda

y 
8.5 - - - - - - - 55.3 

Thursday 8.2 - - - - - - - 53.3 

Friday 12.7 - - - - - - - 82.6 

Saturday 26.3 - - - - - - - 171.0 

Sunday 19.6 - - - - - - - 127.4 

AV 14.1 0 0 0 0 0 0 0 91.7 

SD 6.8 0 0 0 0 0 0 0 44.3 

CV 0.5 0 0 0 0 0 0 0 48.4 

S-(-)-Mephedrone 

  POPULATION-NORMALISED MASS LOADS (mg/1000 people/day) 
ESTIMATED 

CONSUMPTION  

  Bristol Oslo Milan Utrecht Castellón Brussels Zurich Copenhagen UK (Bristol) 

Monday 16.1 - - - - - - - 104.7 

Tuesday 6.3 - - - - - - - 41.0 

Wednesda
y 

8.5 - - - - - - - 55.3 

Thursday 7.4 - - - - - - - 48.1 

Friday 8.1 - - - - - - - 52.7 

Saturday 21.4 - - - - - - - 139.1 

Sunday 12.5 - - - - - - - 81.3 

AV 11.5 0 0 0 0 0 0 0 74.8 

SD 5.6 0 0 0 0 0 0 0 36.1 

CV 0.5 0 0 0 0 0 0 0 48.2 

(±)-Mephedrone 

  POPULATION-NORMALISED MASS LOADS (mg/1000 people/day) 
ESTIMATED 

CONSUMPTION  

  Bristol Oslo Milan Utrecht Castellón Brussels Zurich Copenhagen UK (Bristol) 

Monday 31.1 - - - - - - - 202.2 

Tuesday 14.9 - - - - - - - 96.9 

Wednesda
y 

17.1 - - - - - - - 111.2 

Thursday 15.6 - - - - - - - 101.4 

Friday 20.8 - - - - - - - 135.2 

Saturday 47.7 - - - - - - - 310.1 

Sunday 32.1 - - - - - - - 208.7 

AV 25.6 0 0 0 0 0 0 0 166.4 

SD 12 0 0 0 0 0 0 0 78.3 

CV 0.5 0 0 0 0 0 0 0 47.1 
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S4. Mephedrone 

Synthesised in 1929, mephedrone is a stimulant synthetic derivative of cathinone, whose 

recreational use was documented only in 2007 [26]. Its abuse and associated deaths were 

reported in several European countries, such as the UK [27] [28]. For these reasons, several 

modified cathinones were included in the UK Misuse of Drugs Act (class B) in April 2010. 

EMCDDA (EU Early Warning System) reported that an increased usage of mephedrone was 

found in the UK in 2014 [29]. 

Mephedrone is a chiral compound containing one chiral carbon and two enantiomers that differ 

in potency[30]. Synthetic routes of mephedrone can be via non- and stereoselective methods, 

even though according to EMCDDA [31], and confirmed by Castrignanò et al. [32], where 

‘street mephedrone’ was found distributed as a racemate, the non-stereoselective route seems 

preferred (EFillegal_synth=0.5). Also, stereoselective metabolism was found to favour R-(+)-

enantiomer in pooled human liver microsomes with EFs changing from 0.50±0.00 to 0.57±0.01 

throughout 60 minutes of (±)-mephedrone incubation. Stereoselective metabolism was also 

evidenced in pooled human urine samples (EFurine=0.59±0.05) [32]. 

 

S5. Ephedrines 

(±)-Norephedrine contains two chiral centres and exists as 1S,2R-(+)- and 1R,2S-(-)-

norephedrine. Racemic norephedrine is known as phenylpropanolamine. It is used as a 

decongestant drug [5]. The other two diastereoisomers are 1R,2R-(-)- and 1S,2S-(+)-

norpseudoephedrine (the latter compound, also known as cathine, is controlled). (±)-

Norephedrine can be used as a precursor to produce amphetamine and, less commonly, 4-

methylaminorex [5]. Furthermore, an alternative metabolic pathway of amphetamine produces 

norephedrine, whose content could vary in acid/alkaline urine conditions [19]. Additionally, 

5% 1R,2S-(-)-norephedrine [33] can be produced  as derived product of S-(+)-amphetamine 

from methamphetamine metabolism [34]. 

 

(±)-Ephedrine contains two chiral centres. The isomers present in nature (e.g. ephedra) are 

(1R,2S)-(-)-ephedrine and (1S,2S)-(+)-pseudoephedrine [35]. 1R,2S-(-)-ephedrine and 1S,2S-

(+)-pseudoephedrine are a bronchodilator and a decongestant respectively, whilst their 

enantiomers have no medical use. 1R,2S-(-)-ephedrine and 1S,2S-(+)-pseudoephedrine are 

prescription drugs and they are contained also in over-the-counter (OTC) medications. The risk 

of misuse of nasal decongestants containing such active ingredients brought to a monitoring 

action of the OTC sale and the scale of methylamphetamine misuse in the UK in 2009 [36] and 

restrictions on the sale of pseudoephedrine in the USA [37] in order to control the illegal 

manufacture of methamphetamine. 
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Table S18 Norephedrine loads. 

E1-Norephedrine 

  POPULATION-NORMALISED MASS 

LOADS (mg/1000 people/day) 

ESTIMATED CONSUMPTION  (mg/1000 

people/day) 

  Bristol Oslo Milan Utrecht Bristol Oslo Milan Utrecht 

Monday - 25.0 2.7 - 0.0 30.0 3.2 0.0 

Tuesday - 23.1 4.6 -- 0.0 27.7 5.5 0.0 

Wednesday - 37.3 3.7 -- 0.0 44.8 4.4 0.0 

Thursday - 27.6 3 -- 0.0 33.1 3.6 0.0 

Friday - 18.6 2.6 -- 0.0 22.3 3.1 0.0 

Saturday - 22.6 4.4 -- 0.0 27.1 5.3 0.0 

Sunday - 22.9 2.3 -- 0.0 27.5 2.8 0.0 

AV 0 25.3 3.3 0 0.0 30.4 4.0 0.0 

SD 0 6 0.9 0 0.0 7.1 1.1 0.0 

CV 0 0.2 0.3 0 0.0 23.5 27.6 0.0 

E2-Norephedrine 

  
POPULATION-NORMALISED MASS 

LOADS (mg/1000 people/day) 

ESTIMATED CONSUMPTION  (mg/1000 

people/day) 

  Bristol Oslo Milan Utrecht Bristol Oslo Milan Utrecht 

Monday - 30.3 3.8 - 0.0 36.4 4.6 0.0 

Tuesday - 18.3 2.3 - 0.0 22.0 2.8 0.0 

Wednesday 7.4 33.9 4 - 8.9 40.7 4.8 0.0 

Thursday 2.5 24.4 4.1 - 3.0 29.3 4.9 0.0 

Friday 5.1 21 5.1 - 6.6 25.2 6.1 0.0 

Saturday 5.3 26.1 4 - 6.9 31.3 4.8 0.0 

Sunday 3.6 25.9 3.1 - 4.7 31.1 3.7 0.0 

AV 3.4 25.7 3.8 0 4.1 30.8 4.6 0.0 

SD 2.8 5.3 0.9 0 3.5 6.3 1.1 0.0 

CV 0.8 0.2 0.2 0 84.9 20.5 23.0 0.0 

(±)-Norephedrine 

  
POPULATION-NORMALISED MASS 

LOADS (mg/1000 people/day) 

ESTIMATED CONSUMPTION  (mg/1000 

people/day) 

  Bristol Oslo Milan Utrecht Bristol Oslo Milan Utrecht 

Monday - 55.2 6.5 - 0.0 66.2 7.8 0.0 

Tuesday - 41.3 6.9 - 0.0 49.6 8.3 0.0 

Wednesday 7.4 71.2 7.7 - 8.9 85.4 9.2 0.0 

Thursday 2.5 52 7.1 - 3.0 62.4 8.5 0.0 

Friday 5.1 39.7 7.7 - 6.6 47.6 9.2 0.0 

Saturday 5.3 48.6 8.4 - 6.9 58.3 10.1 0.0 

Sunday 3.6 48.7 5.4 - 4.7 58.4 6.5 0.0 

AV 3.4 51 7.1 0 4.1 61.2 8.5 0.0 

SD 2.8 10.5 1 0 3.5 12.6 1.2 0.0 

CV 0.8 0.2 0.1 0 84.9 20.6 13.7 0.0 
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Table S19 Ephedrine and pseudoephedrine loads and estimates in wastewater. 

1R,2S-(-)-Ephedrine 

  POPULATION-NORMALISED 

MASS LOADS (mg/1000 

people/day) 

ESTIMATED CONSUMPTION  

(mg/1000 people/day) 

  Bristol Oslo Milan Bristol Oslo Milan 

Monday - 0.4 0.5 0.0 0.5 0.7 

Tuesday 1.8 - 3.8 2.3 0.0 4.9 

Wednesday 0.3 - 0.7 0.4 0.0 0.9 

Thursday - 1.6 4.5 0.0 2.1 5.9 

Friday 0.4 1.4 - 0.5 1.8 0.0 

Saturday 1.2 0 14.3 1.6 0.0 18.6 

Sunday - 1.3 - 0.0 1.7 0.0 

AV 0.6 0.7 3.4 0.8 0.9 4.4 

SD 0.7 0.7 5.1 0.9 1.0 6.7 

CV 1.3 1.1 1.5 117.3 104.6 151.4 

1S,2S-(+)-Pseudoephedrine 

  POPULATION-NORMALISED 

MASS LOADS (mg/1000 

people/day) 

ESTIMATED CONSUMPTION  

(mg/1000 people/day) 

  Bristol Oslo Milan Bristol Oslo Milan 

Monday 126.7 21.9 36.4 139.4 24.1 40.0 

Tuesday 81.2 20.9 39.6 89.3 23.0 43.6 

Wednesday 98.4 24.1 36.7 108.2 26.5 40.4 

Thursday 55.7 20.7 43.5 61.3 22.8 47.9 

Friday 134.1 24.8 30.4 147.5 27.3 33.4 

Saturday 89.2 18.6 30.4 98.1 20.5 33.4 

Sunday 89.4 17.2 33 98.3 18.9 36.3 

AV 96.4 21.2 35.7 106.0 23.3 39.3 

SD 26.9 2.7 4.8 29.6 3.0 5.3 

CV 0.3 0.1 0.1 27.9 12.9 13.6 
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