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The electrophilic aromatic substitution of a C-H bond of benzene is one of the archetypal 

transformations of organic chemistry. In contrast, the electron rich -system of benzene is highly 

resistant to reactions with electron rich and negatively charged organic nucleophiles. Here, we 

report that this previously insurmountable electronic repulsion may be overcome though the use 

of sufficiently potent organocalcium nucleophiles. Calcium n-alkyl derivatives, synthesized by 

reaction of ethene, but-1-ene and hex-1-ene with a dimeric calcium hydride, react with protio and 

deutero benzene at 60 C through nucleophilic substitution of an aromatic C-D/H bond. These 

reactions produce the n-alkyl benzenes with regeneration of the calcium hydride. Density 

functional theory calculations implicate an unstabilized Meisenheimer complex in the C-H 

activation transition state. 

 

One Sentence Summary: Aliphatic n-alkyl calcium compounds effect the alkylation of benzene by 

nucleophilic substitution of a single sp2 C-H bond. 

 

The Friedel–Crafts (F-C) reaction has been one of the cornerstones of organic and industrial synthetic 

chemistry for 140 years (1, 2). In its most fundamental manifestation, one of the hydrogen atoms of 

benzene is replaced by the alkyl component of an alkyl halide, RHal (Fig. 1A, Hal = Cl, Br, I). 

Typically, a Lewis acid catalyst such as FeCl3 or AlCl3 binds the halide to transform the alkyl carbon 

into a positively charged carbenium ion, which is a sufficiently electron poor (electrophilic) target for 

the comparatively electron rich (nucleophilic) aromatic -system of benzene to attack (3). This process 
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generates a new C-C bond via a Wheland intermediate in which the resultant positive charge is stabilized 

through its delocalization around the remaining five carbon atoms (4). Substitution is then effected 

through loss of a proton and the generation of the relevant hydrogen halide.  

 Despite its importance, F-C alkylation suffers from some serious limitations. Alkylbenzenes are 

generally more reactive to electrophilic substitution than benzene itself and F-C conditions commonly 

result in over-alkylation (5). Primary carbenium ions are also prone to rearrangement to more stable 

secondary or tertiary carbenium ions such that, for example, F-C alkylation of benzene with n-propyl 

electrophiles provides primarily iso-propylbenzene (cumene) (5, 6). 

 

Fig. 1: Distinct aromatic alkylation mechanisms. (A) electrophilic aromatic substitution: Friedel-

Crafts alkylation of benzene via Wheland intermediate; (B) nucleophilic aromatic substitution of 

electron poor arenes via Meisenheimer or H-adduct intermediates; (C) direct nucleophilic aromatic 

substitution of benzene. 
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These issues may be potentially circumvented through the alternative pathway of nucleophilic aromatic 

substitution. The substitution of a C-H bond in unsubstituted benzene by an organic nucleophile, 

however, is very much more disfavored. The electron rich -system, which renders benzene so 

susceptible to attack by electrophiles, tends to repel approaching nucleophiles while the 6-electron 

system is significantly destabilized through the formal addition of two extra electrons. Although these 

factors may be overcome through the installation of sufficiently powerful electron-withdrawing 

substituents (e.g. nitro, NO2
), whereupon nucleophilic attack provides Meisenheimer or H-adduct 

intermediates (Fig. 1B) (7), the departure of the hydride anion invariably requires the addition of a potent 

external oxidant (8, 9). The direct nucleophilic alkylation of benzene (Fig. 1C) has not been achieved, 

therefore, primarily for the lack of a sufficiently potent alkyl nucleophile. 

 We have a long standing interest in the development and use of highly polar organometallic 

derivatives of the heavier alkaline earth (AE = Ca, Sr, Ba) elements as reagents and catalysts (10, 11). 

The electropositive character of these elements and the resultant polarization of the [AE]-X bonding (X 

= e.g. H, CR3, NR2) provide systems which display a high degree of charge separation (i.e. [AE]+ X) 

and which, as a result, are extremely nucleophilic sources of X. A relevant case in point is provided by 

the reactivity of 1-alkenes with molecular calcium hydrides, a variety of which have now been described 

(12-19). [(BDI)Ca(THF)H]2 (1; BDI = CH[C(CH3)N-Dipp]2, Dipp = 2,6-diisopropylphenyl) (12, 13) 

and [Ca2H2(Me4TACD)2][BAr4]2 (Me4TACD = 1,4,7,10-tetramethyl-1,4,7,10-tetraazacyclododecane; 

Ar = C6H4-4-t-Bu (2) or C6H3-3,5-Me2 (3)) (16) are active catalysts for the hydrogenation of alkenes. 

The catalysis by 1, however, was restricted to substrates with more activated terminal C=C multiple 

bonds, while its stoichiometric reactivity with alkenes was limited to 1,1-diphenylethene. The resultant 

1,1-diphenylethyl derivative, [(BDI)CaC(CH3)Ph2(THF)] (4) was indefinitely stable in arene solvents 

(14). In contrast, the cationic hydridocalcium derivatives, 2 and 3, catalyzed the hydrogenation of even 

1-hexene and 1-octene (16). In neither case, however, could the implied n-alkylcalcium intermediates 

be observed. These latter compounds were, thus, deduced to be unstable toward -hydride elimination 

and the regeneration of the cationic hydrides. In this contribution, we show that use of a THF-free 

version of compound 1 also facilitates reactions with non-activated (n-aliphatic) terminal alkenes. The 
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resultant calcium primary n-alkyls are stable and are able to effect the direct nucleophilic substitution 

of benzene at moderately elevated temperatures. 

 

Fig. 2:  Synthesis of compounds 6 – 9. 

 

The reaction of [(BDI)CaN(SiMe3)2] (5) (20) with phenylsilane has very recently been reported to result 

in inevitable dismutation of [(BDI)CaH]2 (6) to [(BDI)2Ca] and a fine insoluble white powder which 

was presumed to be CaH2
 (15). In our hands, room temperature reaction of a threefold excess of PhSiH3 

with compound 5 performed in hexane provides good yields (>70%) of compound 6, which crystallizes 

readily from a saturated toluene solution at 35 °C (Fig. 2). Analysis of compound 6 by NMR 

spectroscopy provided data indicative of a single BDI ligand environment and a singlet resonance 

observed in the 1H NMR spectrum at  4.27 ppm, which was assigned to the hydridic Ca-H proton (Fig. 

S1). This latter chemical shift  resembles the analogous hydride resonances arising from compound 1 ( 

4.45 ppm) (12) and other previously reported bridged calcium hydrides (15-19). These data suggest that 

6 adopts a comparable bridged dimeric structure in solution, a supposition which was subsequently 

confirmed in the solid state by a single crystal x-ray diffraction analysis (Fig. 3A).  

 Although there have been recent notable advances in the synthesis of calcium aryl derivatives 

(21-23), the successful isolation of well-defined calcium alkyls has been historically dependent upon 

the use of highly sterically demanding and kinetically stabilizing organic anions (24–32). The synthesis 

of compound 6 prompted us to study its reactivity with less bulky terminal alkenes in an attempt to 

synthesize the corresponding calcium n-alkyl derivatives. Compound 6 was, thus, treated with 1 

atmosphere of the gaseous alkenes ethene and but-1-ene and with three molar equivalents of hex-1-ene 

at room temperature in d6-benzene to provide the respective ethyl (7), n-butyl (8) and n-hexyl (9) calcium 

compounds (Fig. 2). Monitoring by 1H NMR spectroscopy indicated that the reaction to generate the 
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ethyl derivative (6) appeared to be less discriminating than those of its longer chain homologs and 

resulted in the production of additional reaction products (vide infra). Although this onward reactivity 

precluded the isolation of a pure bulk sample of compound 7, all three reactions resulted in the 

disappearance of the 1H NMR hydride resonance of compound 6 over a period of 48 hours at room 

temperature. In each case, the simultaneous generation of -diketiminato calcium ethyl (7), n-butyl (8) 

and n-hexyl (9) derivatives was clearly evidenced through the appearance of upfield ( 0.7 to 0.8 

ppm) -methylene 1H NMR resonances as quartet (7) and triplet (8, 9) signals, respectively. In each 

case, a similar resonance was also observed to persist at ca. 0.3 ppm higher field throughout the course 

of the reactions but to disappear on complete consumption of the hydride starting material (vide infra). 

The solid-state constitutions of compounds 7 – 9 were confirmed by x-ray diffraction analysis (Figs. 3B 

(7), S20 (8) and S29 (9)), which demonstrated that each compound crystallizes as a centrosymmetric 

dimer. Although initial attempts to synthesize calcium analogs of magnesium Grignard reagents were 

described more than 100 years ago (33, 34), and the structures of a number of -bonded aryl (21-23), 

benzyl (35-39) and trimethylsilylmethyl (21-32) derivatives have been described, aliphatic n-

alkylcalcium compounds have not been previously crystallographically characterized. All three 

compounds display asymmetric calcium-to--methylene bond lengths (ca. 2.49, 2.58 Å), allowing 

discrimination between the formal intra- and intermolecular Ca-C bonds. Despite the bridging nature of 

these interactions, the shorter distance is, in each case, closely comparable to the terminal Ca-C 

interactions observed in several trimethylsilyl-substituted calcium methyl derivatives, for example 

[Ca{CH(SiMe3)2}2(THF)2] (2.4930(18) Å) (26), and are significantly shorter than the Ca-C bonds 

typically observed in the various benzylcalcium compounds that have been reported (ca. 2.58 Å) (35-

39). The structures of 7 - 9 also display close contacts (ca. 2.8 Å) between the calcium centers and the 

carbons of the methyl (7) or -methylene (8, 9) units of each n-alkyl chain.  
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Fig. 3: ORTEP representations (25% probability ellipsoids) of (A) compound 6; (B) compound 7; In 

each case, hydrogen atoms, except for H1 and H1' (6), those attached to C30 and C31 (7), iso-propyl 

methyl groups and co-crystallized solvent molecules have been omitted for clarity. Selected bond 

lengths (Å) and angles (°): (6) Ca1-N1 2.3097(12), Ca1-N2 2.3222(12), N1-Ca1-N2 79.24(4); (7) Ca1-

Ca1' 3.3401(6), Ca1-N1 2.3432(12), Ca1-N2 2.3336(13), Ca1 C30' 2.4847(19), Ca1-C30 2.5733(19), 

Ca-C31 2.840(2); N1-Ca1-Ca1' 136.97(3), N1-Ca1-C30 122.64(6), N1-Ca1-C30' 115.09(6), N1-Ca1-

C31' 101.84(6). Symmetry operations to generate equivalent atoms (6) ' x, 1y, 1z; (7) ' 1-x, 1-y, -z. 

 

The formation of compound 9 was studied by density functional theory (DFT, B3PW91) calculations. 

This analysis (Fig. S55) indicated that the exothermic (H = 18.4 kcal mol-1) reaction takes place with 

the retention of the dimeric structure of compound 6. The rate determining step is a classical highly 

polarized Ca-H/C=C insertion, which, consistent with the necessary room temperature conditions, 

occurs via an accessible barrier of 19.6 kcal mol-1. The  component of the C=C bond is almost fully 

broken during the assembly of the highly polarized transition state (TSBC in Fig. S55), which induces 

partial charges of 0.6 and 0.2 on the C1 and C2 carbon atoms of the hexene molecule, respectively. 

Hex-1-ene insertion into the dimeric calcium hydride was also found to take place sequentially via the 

formation of a dicalcium alkyl-hydrido complex (Fig. S55, C). On this basis, we suggest that the higher 

field methylene 1H NMR resonances observed during the formation of compounds 7 – 9 arise from the 

intermediacy of the relevant ethyl-, n-butyl- and n-hexylhydrido-dicalcium intermediates. 
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In an attempt to optimize the synthesis of compound 7, the reaction of ethene with compound 6 

was repeated in d12-cyclohexane. Although this procedure resulted in a similar rate and level of 

consumption of the calcium hydride, monitoring of the solution by 1H NMR spectroscopy revealed that 

compound 7 displayed significantly enhanced stability in the aliphatic solvent. Comparison with the 

corresponding spectrum of the reaction performed in d6-benzene highlighted that the generation and 

subsequent disappearance of compound 7 was accompanied by the formation of a further predominant 

compound, which was characterized by the appearance of a quartet signal at  2.45 ppm. Subsequent 

trap-to-trap distillation and analysis of the volatiles by NMR spectroscopy identified this compound as 

d5-ethylbenzene (Figs. S30 – S33). This observation prompted us to study the stability of the isolable 

longer chain analogues, compounds 8 and 9, in d6-benzene, which revealed that these n-alkylcalcium 

complexes display a remarkable capacity to effect the nucleophilic alkylation of benzene (Fig. 4A).  

 

Fig. 4: (A) Nucleophilic C-D activation of C6D6 by 7 – 9 to provide the alkylated d5-benzene products 

and 6-d. (B) Stacked 1H NMR spectra of a 30 mg sample of compound 9 in 0.55 mL of C6D6 heated to 

60 C after 0, 300, 600 and 900 minutes. The signal at 4.79 ppm corresponds to the BDI methine of 6-

d. As the reaction proceeds an intermediate proposed to be [{(BDI)Ca}2(D)n-hexyl] displays resonances 
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at  4.74 and –1.08 ppm. This compound appears and maintains a steady state concentration until 

completion of the reaction. The methine at  4.69 ppm and multiplet at  0.72 ppm correspond to 

compound 9. Concurrent formation of d5-n-hexylbenzene is indicated by the increase in intensity of the 

multiplet at 2.50 ppm arising from the -CH2 of n-hexylbenzene.  This latter resonance displays a 2:1 

ratio by relative integration with the methine signal at  4.69 ppm at the completion of the reaction. 

 

Samples of compounds 8 and 9 were heated in C6D6 at 60 C and monitored over a 16 hour period by 

1H NMR spectroscopy. These reactions resulted in the respective stoichiometric production of d5-n-

butylbenzene (Fig. S41) and d5-n-hexylbenzene (Fig. 4B), which were identified by 2D NMR 

spectroscopy and mass spectrometry as the sole organic products of the reactions (Figs. S34 – S42 and 

Figs S43 – S50). During both reactions, the 1H NMR resonances associated with compounds 8 and 9 

were observed to decrease in intensity concurrently with the generation of the alkylated benzenes and 

to be replaced by a single BDI-containing calcium product. Although the BDI ligand resonances 

associated with this latter compound were identical to those of 6, no Ca-H signal could be observed in 

the 1H NMR spectra. Rather, a resonance at  4.30 ppm, which was detected in the corresponding 2H 

NMR spectra, led to its identification as [(BDI)CaD]2 (6-d), a supposition which was subsequently 

confirmed through a further x-ray diffraction analysis performed on single crystals (see fig S54) isolated 

from a typical reaction performed with compound 9. Monitoring of the transformation of 9 at 60 °C 

suggested that this reaction was half order in [9] (Fig. S51). Further NMR scale reactions performed in 

protio-benzene with a minimum amount of C6D6 as an internal locking source demonstrated that this 

reactivity could be extended to the synthesis of the non-deuterated alkylbenzenes, which were formed 

through the activation of a single C(sp2)-H bond and the generation of compound 6 (Figs. S52, S53). 

   To provide further insight into the nature of these processes, the reaction of compound 9 with 

benzene was assessed by DFT (B3PW91) calculations (Fig. 5). Consistent with the half order 

dependence of the reaction on [9], the dimeric calcium alkyl must first dissociate to a monomeric form 

(G). As implied by the reaction temperature (60 °C), this process is substantially endothermic (H = 

+23.2 kcal mol-1). The resultant coordinatively unsaturated calcium center interacts via an 6 contact 
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with the aromatic electron density of a molecule of benzene (H). The subsequent barrier toward the 

nucleophilic attack of the n-hexyl -methylene carbon on a benzene C(sp2)-H bond via TSHI is 

negligible. At this transition state, the n-hexyl group acts as a charge-separated external nucleophile and 

attacks the benzene molecule at a C-H bond from the opposite face to that engaged with the calcium 

center. This process enforces an interaction between calcium and the hydrogen bonded to the now four-

coordinate carbon, such that the negative charge (0.9) is relocalized on the remaining five carbon atoms 

of the benzene ring, in a manner which is analogous to a non-stabilized Meisenheimer complex. While 

the maximum negative charges are located at the ortho, ortho' and para positions, a positive charge is 

found on the newly four-coordinate carbon (+1.2), and the reactive hydrogen accumulates a charge 

(0.3) consistent with incipient hydridic character prior to the C-H bond breaking process. The overall 

reaction, therefore, is not a classical sigma bond metathesis in which both Ca-C bond breaking and Ca-

H bond formation ensue simultaneously, but is best described as an effective nucleophilic (SN2) 

displacement of hydride from the benzene C-H bond (40). The breaking of the benzene C-H bond results 

in the generation of a further  complex of the as-formed calcium hydride and n-hexylbenzene (I), while 

arene dissociation and dimerization of the monomeric hydride ensures the overall exothermicity of the 

reaction (H = 30.1 kcal mol-1). The reaction is, thus, heavily dependent upon a sequence of monomer-

dimer equilibria of both the initial calcium n-hexyl and ultimate calcium hydride species. In support of 

this latter hypothesis further examination of the in situ 1H NMR spectra recorded during the experimental 

monitoring of the reactions between compounds 8 and 9 and C6D6 revealed an additional upfield triplet 

resonance at ca.  1.1 ppm which persisted in low but steady state concentrations until the complete 

consumption of the calcium n-alkyl derivatives and which we ascribe to the presence of dimeric 

hydrido(n-alkyl)dicalcium derivative analogous to species C shown in Fig. S55. 
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Fig. 5: Computed (DFT, B3PW91) energy profile for the reaction between compound 9 and benzene. 

 

The reactions of compounds 7 – 9 with benzene show that nucleophilic alkylation of benzene may be 

achieved through the use of sufficiently potent alkylcalcium nucleophiles. This reactivity also achieves 
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the net hydroarylation of terminal alkenes. The simultaneous re-formation of the calcium hydride (6), 

therefore, indicates that this chemistry holds the potential for elaboration to catalysis. 
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