
        

Citation for published version:
Barlow, MT & Jarai, A 2018, 'Geometry of uniform spanning forest components in high dimensions', Canadian
Journal of Mathematics. https://doi.org/10.4153/CJM-2017-054-x

DOI:
10.4153/CJM-2017-054-x

Publication date:
2018

Document Version
Peer reviewed version

Link to publication

This is the Author's Accepted Manuscript of an article published by Canadian Mathematical Society and
available in final published form at: http://dx.doi.org/10.4153/CJM-2017-0540-x

University of Bath

Alternative formats
If you require this document in an alternative format, please contact:
openaccess@bath.ac.uk

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Download date: 05. Jul. 2024

https://doi.org/10.4153/CJM-2017-054-x
https://doi.org/10.4153/CJM-2017-054-x
https://researchportal.bath.ac.uk/en/publications/51b416a3-dcec-4de9-a0b5-1fd81a35ac12
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high dimensions
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Abstract

We study the geometry of the component of the origin in the uniform spanning
forest of Zd and give bounds on the size of balls in the intrinsic metric.
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1 Introduction

The uniform spanning tree (UST) on a finite graph G is a random spanning tree of
G, chosen uniformly among all spanning trees of G. Motivated by questions of Lyons,
Pemantle [Pem91] considered the weak limit of the USTs on an increasing sequence of
subgraphs Vn ↑ Z

d, and showed that the limit exists. The limiting random object is a
random spanning forest of Zd, and is called the uniform spanning forest (USF). Implicit
in Pemantle’s work is the result that an alternative choice of boundary condition yields
the same limit. Namely, form the “wired” graph GW

n = (Vn ∪ {rn}, En), by collapsing all
vertices in Z

d \ Vn into rn, and removing self-loops created at rn. Then the weak limit of
the USTs on GW

n coincides with the USF. One of Pemantle’s results was that the USF is
connected a.s. in dimensions 1 ≤ d ≤ 4, but it consists of infinitely many (infinite) trees
a.s. in dimensions d ≥ 5.

A fundamental tool in the study of the UST/USF is Wilson’s algorithm [W, LP], which
allows one to construct the UST/USF from Loop-Erased Random Walks (LERWs). All
the necessary background about the UST/USF, that we do not give in this paper, can be
found in the book [LP].

In the papers [Mas, BM1, BM2] Masson and Barlow studied the geometry of the
LERW and the UST in two dimensions, and compared the sizes and geometry of balls in
the intrinsic metric with Euclidean balls. Combined with resistance estimates, this gave a
detailed understanding of random walk on the UST. In this note we make similar estimates
on the geometry of the LERW and the USF in dimensions d ≥ 5. We are interested in
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properties such as the length of paths and volumes of balls, both with respect to Euclidean
distance and the intrinsic metric of the tree components. As well as its interest from the
point of understanding the USF in high dimensions, our Theorem 5.4 is used in work of
Bhupatiraju, Hanson and Járai [BHJ] on sandpiles.

Let U = UZd be the USF in Z
d, viewed as a random subgraph of the nearest neighbour

integer lattice. Write U(x) for the connected component of U containing x. Let

dU(x, y) := graph distance between x and y in U ,

where, if y 6∈ U(x), we set dU(x, y) = ∞. We denote balls in different metrics as follows:

BE(x, r) = {y ∈ Z
d : |x− y| ≤ r},

Bn = BE(0, n)

Q(x, n) = {y ∈ Z
d : ||x− y||∞ ≤ n},

Qn = Q(0, n),

BU(x, r) = {y ∈ Z
d : dU(x, y) ≤ r},

Our main result is the following.

Theorem 1.1. Let d ≥ 5. There exist constants c, C, depending only on d such that for
n ≥ 1, λ ≥ 1,

P(|BU(0, n)| ≥ λn2) ≤ Ce−cλ, (1.1)

P
(
|BU(0, n)| ≤ λ−1n2

)
≤ Ce−cλ1/5

. (1.2)

An outline of this paper is as follows. Section 2 introduces our notation. In Section
3 we begin by recalling from [La2, Mas, BM1] some basic properties of LERW. We then
obtain estimates on the probability a LERW hits a point (see Lemma 3.9 and (3.22)). In
particular (see Theorem 3.12) we obtain a natural bound on the length of dU(x, y). In
Section 4, using tree-graph inequalities, we use the estimate in Theorem 3.12 to obtain
the upper bound in Theorem 1.1. In Section 5 we prove the lower bound (1.2).

2 Notation

For any of the cases of Zd, or D ⊂ Z
d finite or infinite, we let

dU(x, y) := graph distance between x and y in U ,

where, if y 6∈ U(x), we set dU(x, y) = ∞. The meaning of U will always be clear from
context.

Notation for sets: For A ⊂ Z
d we denote:

∂A = {x ∈ Z
d − A : x ∼ y for some y ∈ A},

∂iA = {x ∈ A : x ∼ y for some y ∈ Ac}.
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Let πi be projection onto the ith coordinate axis, and Hn be the hyperplane

Hn = {x : π1(x) = n}.
Let Rn = {n}× [−n, n]d−1 denote the “right-hand face” of [−n, n]d, in the first coordinate
direction.

Notation for processes. We write Sx = (Sx
k , k ≥ 0) for a simple random walk with

Sx
0 = x, and P

x for its law. We let S = S0, and P = P
0. When we discuss random walks

Sx and Sy with x 6= y, then they will always be independent.
A path γ is a (non-necessarily self avoiding) sequence of adjacent vertices in Z

d – ie
γ = (γ0, γ1, . . . ) with γi−1 ∼ γi. (Sometimes we will write γ(i) for γi.) Paths can be
either finite or infinite. We will often need to consider the beginning or final portions
of paths with respect to the first or last hit on a set. To this end, we define a number
of operations on paths. Let γ = (γ0, γ1, . . . ) be a path. Given a set A ⊂ Z

d define
k1 = min{k ≥ 0 : γk ∈ A}, k2 = max{k ≥ 0 : γk ∈ A}, and set

BF
Aγ = (γk1, γk1+1, . . . , ),

BL
Aγ = (γk2, γk1+1, . . . , ),

EF
Aγ = (γ0, . . . , γk1),

EL
Aγ = (γ0, . . . , γk2),

Θkγ = (γk, . . . ),

Φkγ = (γ0, . . . , γk),

HA(γ) =
∑

i

1(γi∈A).

Thus BF
Aγ is the path γ ‘Beginning’ at the ‘First’ hit on A, and EL

Aγ is the path γ ‘Ended’
at the ‘Last’ hit on A, etc. If γ is a finite path we write |γ| for the length of γ. HA(γ) is
the number of hits by γ on the set A. Let Lγ be the chronological loop erasure of γ – see
[La1, Law99]. If γ = (γ0, . . . , γn) is a finite path let Rγ = (γn, γn−1, . . . , γ0) be the time
reversal of γ.

We define hitting times

τA = inf{j ≥ 0 : Sj 6∈ A},
TA = inf{j ≥ 0 : Sj ∈ A},
T+
A = inf{j ≥ 1 : Sj ∈ A}.

When we need to specify the process we write TA[S] etc.
Given a domain D ⊂ Z

d, we denote the Green functions

GD(x, y) = E
x
( ∑

0≤k<τD

1(Sx
k=y)

)
,

G(x, y) = GZd(x, y).

A note on constants. Throughout this paper, c and C will denote positive finite
constants that only depend on the dimension d, and whose value may change from line
to line, and even within a single string of inequalities.
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3 Properties of the LERW

In this section we derive a number of auxiliary estimates on LERW in dimensions d ≥ 5.
Some of these will be used in Sections 4 and 5, where we give upper and lower bounds on
the volume of balls in the intrinsic metric. Two results of this section that are of interest
in themselves are: (i) Proposition 3.11, that gives a large deviation upper bound on the
lower tail of the number of steps in a LERW up to its exit from a large box; and (ii)
Theorem 3.12, that gives an upper bound on the probability that x, y ∈ Z

d are in the
same component of U and the path between them has length at most n.

The papers [Mas, BM1] give a number of properties of LERW in Z
2, some of which

hold for more general graphs. A fundamental fact about LERWs is the following “Domain
Markov property” — see [La2].

Lemma 3.1. Let D ⊂ Z
d, let γ = (γ0, . . . , γn) be a path from x = γ0 to Dc. Set

α = Φkγ, β = Θkγ. Let Y be a random walk started at γk conditioned on the event
{τD(Y ) < T+

α (Y )}. Then

P
(
L(EF

DcS) = γ|Ψk(L(EF
DcS)) = α

)
= P(L(EF

DcY ) = β). (3.1)

A key result in [Mas] is a ‘separation lemma’ when d = 2 – see [Mas, Theorem 4.7].
Let S, S ′ be independent SRW in Z

d with S0 = S ′
0 = 0, and Tn, T

′
n be the hitting times of

∂Qn. Set

Fn = {S[1, Tn] ∩ S ′[1, T ′
n] = ∅},

Zn = d(S(Tn), S
′[1, T ′

n]) ∨ d(S ′(T ′
n), S[0, Tn]).

Lemma 3.2. (‘Separation lemma’). Let d ≥ 5. There exists c1 > 0 such that

P(Zn ≥ 1
2
n|Fn) ≥ c1.

Proof. Let e1 = (1, 0, . . . , 0). Let X be a SRW started at 2ke1, and Ak = {je1, k ≤ j ≤
2k}. Since d ≥ 5 two independent SRWs intersect with probability less than 1, and thus
there exists k (depending on d) such that

P
0(S hits X ∪Ak) ≤ 1

16
d−2.

Now fix this k, and let

G1 = {Si = −ie1, S
′
i = ie1, 0 ≤ i ≤ k}.

So P(G1) = (2d)−2k. Then writing G2 = {S[1, Tn/2] ∩ S ′[1, T ′
n/2] 6= ∅},

P(G2|G1) ≤ P(S[k + 1, Tn/2] ∩ S ′[1, T ′
n/2] 6= ∅|G1) + P(S[1, Tn/2] ∩ S ′[k, T ′

n/2] 6= ∅|G1)

≤ 1
8
d−2.

Let H± be the left and right faces (in the e1 direction) of the cube Qn/2. We have

P(STn/2
∈ H−|G1) ≥ (2d)−1.
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So if G3 = Gc
2 ∩ {STn/2

∈ H−, S
′
T ′

n/2
∈ H+},

P(G3|G1) ≥ P(STn/2
∈ H−, S

′
T ′

n/2
∈ H+|G1)− P(G2|G1)

≥ (2d)−2 − (8d2)−1 = (8d2)−1.

If G3 occurs then let G4 be the event that S ′ then (i.e. after time T ′
n/2 leaves Qn before

it hits hits H0, and S leaves Qn before it hits H0. By comparison with a one-dimensional
SRW each of these events has probability at least 1/3, so P(G4|G3) ≥ 1/9. On the event
G1∩G3∩G4 the path S[0, Tn] is contained in [−n, 0]× [−n, n]d−1∪Qn/2, and π1(S

′
T ′

n
= n),

so that d(S ′
T ′

n
, S[0, Tn]) ≥ n/2. The same bound holds if we interchange S ′ and S, and so

we deduce that

P(Zn ≥ 1
2
n|Fn) ≥ P({Zn ≥ 1

2
n} ∩ Fn) ≥ P(G1 ∩G3 ∩G4) ≥ (2d)−2k(8d2)−19−1.

�

Remark. The result in d ≥ 5 is much easier than d = 2, since with high probability S
and S ′ do not interesect. The proof for d = 2 uses the fact that if the two processes get
too close, then by the Beurling estimate they hit with high probability.

In the remainder of this section we give some estimates on the length of LERW paths
in Z

d with d ≥ 5. We fix D ⊂ Z
d and N ≥ 1 such that QN = Q(0, N) ⊂ D. We will be

interested in the number of steps the LERW from 0 to ∂D takes up to its first exit from
QN . Let S be SRW on Z

d with S0 = 0. Let

L = L(EF
Dc(S)).

In words, L is the loop erasure of S up to its first hit on the boundary of D.
Our estimate will be broken down into studying L in ‘shells’ Qn+m \Qn. Fix n,m such

that 16 ≤ n < n +m ≤ N , with m ≤ n/8. Let

α = EF
∂iQn

L, L′ = BF
∂iQn

L.

So α is the path L up to its first hit on ∂iQ(0, n), and L′ is the path of L from this time
on – see Figure 1. Let us condition on α, and write x0 ∈ ∂iQn for the endpoint of α.
When x0 ∈ Hn, we let x1 = x0 + (m/2)e1 and set

A = A(x0) = Q(x1, m/4), A∗ = Q(x1, 3m/8).

When x0 lies on one of the other faces of Qn, we replace e1 by the unit vector pointing
towards that faces to define x1 and A(x0).

Set
β = EF

∂iQ(x0,m)L
′;

thus β is the path L′ run until its first exit from the cube Q(x0, m). Let X̃z be Sz

conditioned on {τD < T+
α }. Note that while the law of the process X̃z depends on α, our
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n n +m

x0

A(x0)

N

α

Q(x0, m)

β

x1

A∗

Figure 1: Setup and notation for the piece of the LERW in the shell Qn+m \Qn.
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notation does not emphasize this point. Write X̃ for X̃x0 , and G̃D(x, y) for the Green

function for X̃x. By the domain Markov property, Lemma 3.1, we have (conditional on
α) that

L′ (d)
= L(EF

∂DX̃). (3.2)

That is, L′ is distributed as the loop-erasure of X̃ ended on the first hit of ∂D. We write
T̃ , τ̃ , etc. for hitting and exit times by X̃ . Set

h(x) = P
x(τD < Tα).

Then

G̃D(x, y) =
h(y)

h(x)
GD(x, y), x, y ∈ D − α. (3.3)

The standard Harnack inequality (see [La2]) gives

h(y) ≍ h(x1), y ∈ A∗, (3.4)

and thus
G̃D(x, y) ≍ GD(x, y), x, y ∈ A∗. (3.5)

Lemma 3.3. Let d ≥ 3. For any α and y ∈ A we have

P(y ∈ β|α) ≤ c1m
2−d, (3.6)

E(HA(β)|α) ≤ c1m
2, (3.7)

E(HA(β)
2|α) ≤ c1m

4. (3.8)

Proof. This is a standard computation with Green functions. Let B = Q(x0, m). Then,

since β is a subset of the path of X̃, we have

HA(β) ≤
τ̃B∑

k=0

1(X̃k∈A) = HA(EF
∂iB

X̃) =: H̃.

Then for p = 1, 2,

E
x0(H̃p|α) = E

x0

(
1(T̃A∗<τ̃B)E

X̃
T̃A∗ (H̃p)

)
≤ max

z∈∂iA∗

E
zH̃p.

Let z ∈ ∂iA
∗. Then using (3.5)

E
z(H̃|α) =

∑

y∈A

G̃B(z, y) ≤ c|A|max
y∈A

GB(z, y) ≤ c′mdm2−d = c′m2. (3.9)

Also since on A∗ we have G̃B ≍ GB ≤ G,

E
z(H̃2|α) ≤ 2

∞∑

k=0

∞∑

k=j

1(k≤τ̃B)1(j≤τ̃B)1(X̃k∈A)1(X̃j∈A)

≤ 2
∑

x∈A

∑

y∈A

G̃B(z, x)G̃B(x, y)

≤ c|A|m2−dmax
x∈A

∑

y∈A

G̃(x, y) ≤ c′m4.
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This proves (3.7)-(3.8); (3.6) follows easily from (3.9) by just considering hits on y. �

Remark 3.4. The same argument works if we consider E(HQ(x1,λm)(β)
p|α), p = 1, 2, for

any λ ∈ (0, 1
2
). Likewise for a rectangular box A′′ whose boundary is at distance ≥ cm

from the boundary of Qn+m \ Qn. This minor extension will be needed in Section 5: see
Figure 4 for a picture of the set A′′ we will need.

We now turn to the harder problem of obtaining a lower bound on EHA(β), and
begin with an inequality, similar to a boundary Harnack principle, which extends [Mas,
Proposition 3.5] to higher dimensions. In what follows Rm = Hm ∩Qm is the ‘right hand
face’ of Qm.

Lemma 3.5. Assume d ≥ 1. Let K be an arbitrary nonempty subset of [−m + 1, 0] ×
[−m+ 1, m− 1]d−1. For all m ≥ 1 and all K we have

P
0
(
S(τQ(0,m−1)) ∈ Rm

∣∣ τQ(0,m−1) < T+
K

)
≥ (2d)−1. (3.10)

Proof. Let h(z) = P
z
(
SτQ(0,m−1)

∈ Rm

)
, z ∈ Q(0, m − 1). By symmetry we have

h(0) = 1/2d. We first show that

h(z) ≤ h(0) for all z ∈ ([−m+ 1, 0]× [−m+ 1, m− 1]d−1) ∩ Z
d. (3.11)

Let z′ = (0, z2, . . . , zd). Let Xz and Xz′ be simple random walks with starting points
z and z′ respectively; we have h(z) = P(Xz

τA
∈ Rn), with a similar expression for h(z′).

We couple these random walks by taking Xz = z + S, Xz′ = z′ + S, where S is a SRW
with S0 = 0. Then {Xz

τA
∈ Rn} ⊂ {Xz′

τA
∈ Rn}, and so h(z) ≤ h(z′).

To prove that h(z′) ≤ h(0) we use a coupling of continuous time random walks Y , Y ′

with Y0 = 0, Y ′
0 = z′; these have the same exit distribution as the discrete time walk S.

Recall that πj is the projection onto the jth coordinate axis, so that πj(Yt) gives the jth
coordinate of Yt; each coordinate is a continuous time simple random walk (run at rate
1/d) on Z.

The coupling is as follows. If at time t we have πj(Yt) = πj(Y
′
t ) then we run the two

jth coordinate processes together, so πj(Yt+s) = πj(Y
′
t+s) for all s ≥ 0

Note that we have |πj(Yt)| ≤ |πj(Y
′
t )| when t = 0; the coupling will preserve this

inequality for all t ≥ 0. If |πj(Yt) − πj(Y
′
t )| ≥ 2 then we use reflection coupling, so that

πj(Yt) and πj(Y
′
t ) jump at the same time, and in opposite directions. Finally, suppose

that |πj(Yt)− πj(Y
′
t )| = 1, and let a = πj(Yt), a+1 = πj(Y

′
t ). We take three independent

Poisson processes on R+, P1,P2,P3; each with rate 1/2d, and make the first jump of
either πj(Y ) or πj(Y

′) after time t to be at time t + T , where T is the first point in
P1 ∪P2 ∪P3. If T ∈ P1 we set πj(Yt+T ) = a− 1, πj(Y

′
t+T ) = a+ 2. If T ∈ P2 then we set

πj(Yt+T ) = a+1, πj(Y
′
t+T ) = a+1, and if T ∈ P3 then πj(Yt+T ) = a, πj(Y

′
t+T ) = a. With

this coupling we have {Y ′
τA(Y ′) ∈ Rn} ⊂ {YτA(Y ) ∈ Rn}, and so h(z′) ≤ h(0).

Stopping the bounded martingale h(S(k)) at τQ(0,m−1) ∧ TK, and using (3.11) we get

h(0) =
∑

y∈K

h(y)P0
(
S(τQ(0,m−1) ∧ T+

K ) = y
)
+ P

0
(
τQ(0,m−1) < T+

K , S(τQ(0,m−1)) ∈ Rm

)

≤ h(0)P
(
τQ(0,m−1) > T+

K ) + P(τQ(0,m−1) < T+
K , S(τQ(0,m−1)) ∈ Rm

)
.

8

Author’s Draft: To be published in the Canadian Journal of Mathematics http://dx.doi.org/10.4153/CJM-2017-054-x

Copyright (c) 2017 Canadian Mathematical Society. All rights reserved.



Rearranging gives the statement of the lemma. �

We will need a more general conditioning than is given in Lemma 3.5. First we give a
preliminary estimate.

Lemma 3.6. Assume d ≥ 3. Let N ≥ 1 and Q4N ⊂ D ⊂ Z
d. Let 8 ≤ m ≤ N/2 and

n ≤ N . Suppose that K is an arbitrary nonempty subset of Qn, and x0 ∈ K ∩ Hn. Let
z0 = x0 +me1. There exists a constant c = c(d) > 0 such that

P
z0(TQ(x0,m/2) > τD | TK > τD) ≥ c. (3.12)

Proof. It is easy to see that the statement holds when m ≥ n/8, since then P
z0(TQn+m/2

>
τD) ≥ P

z0(TQn+m/2
= ∞) ≥ c. Henceforth we assume that m < n/8.

Let f(z) = P
z(TK > τD) and g(z) = P

z(TK ∧TQ(x0,m/2) > τD), so that we have to prove
f(z0) ≤ Cg(z0). Let z1 = x0 + 8me1. Due to the Harnack inequality, it is sufficient to
show that f(z1) ≤ Cg(z1).

We first show that for all y ∈ ∂Q(x0, 8m) we have g(y) ≤ Cg(z1). Let us write H for
the hyperplane Hn+4m, and H

′ for the hyperplane Hn+2m. Observe that H and H
′ are

both disjoint from K ∪Q(x0, m/2), and they both separate K ∪Q(x0, m/2) from z1.
If y ∈ ∂Q(x0, 8m) lies on the same side of H′ as z1, then y is at least distance m from

K∪Q(x0, m/2), and this is comparable to the distance between y and z1. Hence for such
y, the Harnack inequality implies g(y) ≤ Cg(z1).

Suppose now that H
′ separates y from z1. Let Q(1) and Q(2) be cubes that are both

translates of Q2N , such that:
(i) the right hand face of Q(1) and the left hand face of Q(2) coincide;
(ii) the common set R = Q(1) ∩Q(2), is contained in H;
(iii) the center of R (viewed as a (d− 1)-dimensional cube), is the point x0 + 4me1.
Write τi = τQ(i).

Since g(Sn∧τ1) is a submartingale under Py, we have

g(y) ≤ E
y(g(Sτ1)) =

∑

w∈∂Q(1)\R

g(w)Py(Sτ1 = w) +
∑

u∈R

g(u)Py(Sτ1 = u). (3.13)

Since g(Sn∧τ2) is a martingale under Pz1, we also have

g(z1) = E
z1(g(Sτ2)) =

∑

w′∈∂Q(2)\R

g(w′)Pz1(Sτ1 = w) +
∑

u∈R

g(u)Pz1(Sτ1 = u). (3.14)

The reflection symmetry between Q(1) and Q(2), as well as the Harnack inequality implies
that

P
y(S(τQ(1)) = u) ≤ CP

z1(S(τQ(2)) = u)

P
y(S(τQ(1)) = w) ≤ CP

z1(S(τQ(2)) = w′),

where w′ is the mirror image of w ∈ ∂Q(1) \ R in the hyperplane H. We also have
g(w) ≤ 1, w ∈ ∂Q(1) \ R, and g(w′) ≥ c, w′ ∈ ∂Q(2). These observations and (3.13) and
(3.14) together imply g(y) ≤ Cg(z1).
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We now show the desired inequality f(z1) ≤ Cg(z1). Let 1 ≤ R < ∞ denote the
random variable that counts the number of times Sz1 makes a crossing from ∂Q(x0, 8m)
to Q(x0, m/2) before TK ∧ τD. We have

P
z1(R ≥ ℓ) ≤

(
max

y∈∂Q(x0,8m)
P
y(TQ(x0,m/2) < ∞)

)ℓ

≤ pℓ

with some p = p(d) ∈ (0, 1).
Using the strong Markov property at the time when the ℓ-th crossing has occurred, we

can write

f(z1) =
∞∑

ℓ=0

P
z1(R = ℓ, TK > τD) = g(z1) +

∞∑

ℓ=1

P
z1(R = ℓ, TK > τD)

≤ g(z1) +
∞∑

ℓ=1

P
z1(R ≥ ℓ) max

z∈Q(x0,m/2)
P
z((TQ(x0,m/2) ∧ TK) ◦ΘτQ(x0,8m)

> τD)

≤ g(z1) +

∞∑

ℓ=1

γℓ max
y∈∂Q(x0,8m)

g(y)

≤ g(z1) + Cg(z1).

This completes the proof of the Lemma. �

Lemma 3.7. Assume d ≥ 3. Let N ≥ 1 and Q4N ⊂ D ⊂ Z
d. Let 8 ≤ m ≤ N/2 and

n ≤ N . Suppose that K is an arbitrary nonempty subset of Qn, and x0 ∈ K ∩ Hn. Let
Rn,m denote the right hand face of Q(x0, m). There exists a constant c = c(d) > 0 such
that

P
x0
(
S(τQ(x0,m)) ∈ Rn,m

∣∣T+
K > τD

)
≥ c. (3.15)

Proof. Let K0 = K ∩ Q(x0, 2m) and K1 = K \ K0 = K \ Q(x0, 2m). Due to Lemma 3.5
we have

P
x0
(
S(τQ(x0,m)) ∈ Rn,m

∣∣T+
K > τQ(x0,m)

)
≥ (2d)−1. (3.16)

Let Z denote the process that is S conditioned on TK1 > τD. Then (3.16) and an appli-
cation of the Harnack inequality implies that

P
x0
(
Z(τQ(x0,m)) ∈ Rn,m

∣∣T+
K [Z] > τQ(x0,m)[Z]

)
≥ c. (3.17)

This in turn implies that

P
x0
(
S(τQ(x0,m)) ∈ Rn,m, T

+
K > τQ(x0,m), TK1 > τD

)

≥ cPx0
(
T+
K > τQ(x0,m), TK1 > τD

)

≥ cPx0
(
T+
K > τD

)
.

(3.18)

Let z0 = x0 + 4me1. Using the Harnack inequality, the left hand side of (3.18) can be
bounded from above by

P
x0
(
S(τQ(x0,m)) ∈ Rn,m, T

+
K > τQ(x0,m)

)
max

z∈Rn,m

P
z
(
TK1 > τD

)

≤ C P
x0
(
S(τQ(x0,m)) ∈ Rn,m, T

+
K > τQ(x0,m)

)
P
z0
(
TK1 > τD

)
.

(3.19)
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An application of Lemma 3.6 (with 2m playing the role of m/2) shows that

P
z0
(
TK1 > τD

)
≤ C P

z0
(
TK1∪Q(x0,2m) > τD

)
≤ C P

z0
(
TK > τD

)
.

Substituting this into (3.19), and using the Harnack inequality again, we get that the
right hand side of (3.19) is bounded above by

C P
x0
(
S(τQ(x0,m)) ∈ Rn,m, T

+
K > τQ(x0,m)

)
P
z0
(
TK > τD

)

≤ C P
x0
(
S(τQ(x0,m)) ∈ Rn,m, T

+
K > τQ(x0,m)

)
min

z∈Rn,m

P
z
(
TK > τD

)

≤ C P
x0
(
S(τQ(x0,m)) ∈ Rn,m, T

+
K > τD

)
.

(3.20)

The inequalities (3.18), (3.19) and (3.20) together imply the claim of the Lemma. �

We now return to the task of giving a lower bound for E(HA(β)), the expected number
of points of β in A.

Lemma 3.8. Assume d ≥ 3. Let z ∈ A. Then

G̃D(x0, z) ≥ cm2−d.

Proof. This uses Lemma 3.7. Let Vz be the number of hits on z by X̃ before τ̃D. Let
T̃ = T̃∂iQ(x0,m/8). Note that Q(x0, m/8) and A∗ intersect on one of the faces of Q(x0, m/8).

Then since T̃ < τ̃D,

G̃D(x0, z) = E
x0Vz = E

x0

(
E
X̃

T̃Vz

)
≥ E

x0

(
1(X̃

T̃
∈A∗) min

y∈∂iA∗

E
yVz

)

= P
x0(X̃T̃ ∈ A∗) min

y∈∂iA∗

G̃D(y, z).

Using (3.3) and (3.4) we have G̃D(y, z) ≍ GD(y, z) ≍ m2−d if y ∈ ∂iA
∗. Let T =

T∂iQ(xo,m/8) (for S). Lemma 3.7 implies

P
x0(X̃T̃ ∈ A∗) = P

x0(ST ∈ A∗|T+
α > τD) ≥ c,

and the Lemma follows. �

The key estimate for the lower bound is the following.

Lemma 3.9. Assume d ≥ 5. Then

E(HA(β)|α) ≥ cm2. (3.21)

Proof. It is enough to prove that if z ∈ A then

P(z ∈ β|α) ≥ cm2−d. (3.22)
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Let Y be X̃ conditioned to hit z before T̃+
α ∧ τ̃D, and let X̃z be independent of Y . Let

Y ′ = EL
z (EF

∂D(Y )),

so Y ′ is the path of Y up to its last hit on z before its first exit from D. Let also
X ′ = Θ1EF

∂DX̃
z. (We need to apply Θ1 since the last point of Y

′ and the first point of X̃z

are both z.) Then as in Lemma 6.1 of [BM1] we have

P(z ∈ β|α) = G̃D(x0, z)P
(
LY ′ ∩X ′ = ∅,LY ′ ⊂ Q(x0, m)

)
. (3.23)

Due to Lemma 3.8, it remains to show that the probability on the right hand side is
bounded away from 0. We will in fact prove the stronger statement:

P
(
Y ′ ∩X ′ = ∅, Y ′ ⊂ Q(x0, m)

)
≥ c > 0. (3.24)

This result is not surprising, since two independent SRW in Z
d (with d ≥ 5) intersect

with probability strictly less than 1.
Let us denote Az = Q(z,m/16), B = Q(x0, m) and B′ = Q(x0, m/16). Note that Y ′

starts at x0 and ends at z. We decompose Y ′ into four subpaths, defined below, and give
separate estimates for these subpaths that together will imply the lower bound on the
probability in (3.24). We define:

Y ′
1 = EF

∂B′(Y ′) Y ′
2 = EL

∂Az
(BF

∂B′(Y ′)) Y ′
3 = BL

∂Az
(Y ′).

That is, Y ′
1 ends at the first exit from B′, Y ′

3 begins at the last entrance to Az and Y ′
2

is the portion in between. We let y1 = Y ′
1(|Y ′

1 |) = Y ′
2(0) and y2 = Y ′

2(|Y ′
2 |) = Y ′

3(0). We
further decompose Y ′

2 into the pieces:

Y ′
2,1 = EF

y2(Y
′
2) Y ′

2,2 = BF
y2(Y

′
2).

That is, Y ′
2,1 is the piece from y1 to the first hit on y2, and Y ′

2,2 is the remaining loop at
y2. Observe that conditional on y1 and y2, the paths Y

′
1 , Y

′
2,1, Y

′
2,2, Y

′
3 are independent. We

now state our estimates for each piece. Our notation will assume that x0 ∈ Hn; trivial
modification can be made when this is not the case.

Claim 1. There is constant probability that Y ′
1 exits B′ on the right hand face. That is,

we have P(y1 ∈ Rn,m/16) ≥ c > 0, where Rn,m/16 = Hn+m/16 ∩Q(x0, m/16).

Proof of Claim 1. Using Lemma 3.7 we have

P(y1 ∈ Rn,m/16) =
P
x0(X̃(τ̃B′) ∈ Rn,m/16, T̃z < τ̃D)

Px0(T̃z < τ̃D)

≥ G̃D(z, z)

G̃D(x0, z)
P
x0(X̃(τ̃B′) ∈ Rn,m/16) min

w∈Rn,m/16

P
w(T̃z < τD)

≥ c min
w∈Rn,m/16

G̃D(w, z)

G̃D(x0, z)
≥ c.

In the next three claims we will use the notation B′′ = x0 + ([0, z1 + m/32] ×
[−m,m]d−1) ∩ Z

d.

12

Author’s Draft: To be published in the Canadian Journal of Mathematics http://dx.doi.org/10.4153/CJM-2017-054-x

Copyright (c) 2017 Canadian Mathematical Society. All rights reserved.



Claim 2. There is constant probability that the following six events occur:
(i) Y ′

3 starts on the left hand face of Az;
(ii) Y ′

3 ⊂ z + ([−m/16, m/32]× [−m/16, m/16]d−1) ∩ Z
d;

(iii) X ′ exits Az on the right hand face;
(iv) X ′ ∩ Az ⊂ z + ([−m/32, m/16]× [−m/16, m/16]d−1) ∩ Z

d;
(v) Y ′

3 ∩ (X ′ ∩ Az) = ∅;
(vi) BF

∂Az
(X ′) is disjoint from B′′, that is, X ′ does not visit B′′ after its first hit on ∂Az .

Proof of Claim 2. Let S̃z be the process defined as Sz conditioned to hit on x0 before
Tα\{x0} ∧ τD. The time-reversal of Y ′ has the law of S̃z. Therefore, the time-reversal of

Y ′
3 has the law of EF

∂Az
(S̃z). The proof of Lemma 3.2 (Separation Lemma), shows that

for independent simple random walks Sz and S ′z there is probability ≥ c > 0 that the
analogues of the events (i)–(v) all hold. An application of the Harnack inequality then
shows that in fact (i)–(v) hold with constant probability.

It is left to show that conditionally on (i)–(v), we also have (vi) with constant prob-
ability. Since X ′ is S conditioned on Tα > τD, this can be proved in the same way as
Lemma 3.6. For this we merely have to replace Q(x0, m/2) in that lemma by B′′, and
make straightforward adjustments. Hence Claim 2 follows.

Claim 3. Conditional on y1 being in the right hand face of B′ and y2 being in the left
hand face of Az, there is constant probability that Y ′

2,1 ⊂ B′′.

Proof of Claim 3. Condition on y1 and y2. Then Y ′
2,1 has the law of Sy1 conditioned to

hit on y2 before Tα ∧ τD (stopped at the first hit on y2). Since y1 and y2 are at least
distance cm from the boundary of B′′, such a path has constant probability to stay inside
B′′. (One way to see this is to use an argument similar to that of Lemma 3.6, where we
let R count the number of crossings by the walk from Q(z,m/64) to ∂B′′ before time
Tz ∧ Tα ∧ τD.) Hence the claim follows.

Claim 4. Conditional on y2 being in the left hand face of Az, there is constant probability
that Y ′

2,2 ⊂ B′′.

Proof of Claim 4. Condition on y2. The probability that Y ′
2,2 consists of a single point is

GD\α(y2, y2)
−1 ≥ G(y2, y2)

−1 ≥ c > 0.

When all the events in Claims 1–4 occur, the event in (3.24) occurs. Hence the Lemma
follows. �

An application of Lemmas 3.3 and 3.9 and the one-sided Chebyshev inequality give the
following corollary.

Corollary 3.10. When d ≥ 5, there exists a constant c0 > 0 such that

P(HA(β) ≥ c0m
2|α) ≥ c0.

Proposition 3.11. Assume d ≥ 5. Let N ≥ 1 and Q4N ⊂ D ⊂ Z
d. Let L = LEF

∂DS be a
loop erased walk from 0 to ∂D, and MN = |EF

∂iQN
L| be the number of steps in L until its

first hit on ∂iQN . Then for all λ > 0 we have

P(MN < λN2) ≤ C exp(−cλ−1). (3.25)
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Proof. Suppose k ≥ 1 and m ≥ 4 such that N/2 ≤ km < N −m. For j = 1, . . . , k let

αj = EF
∂iQ(0,jm)L, Fj = σ(αj).

Let Yj = αj(|αj|) be the last point in αj , and

βj = EF
∂iQ(Yj ,m)(BF

∂iQ(0,jm)L)

be the path L between Yj and its first hit after Yj on ∂i(Yj, m). We have

MN ≥
k∑

i=1

|βj |,

Let Gj = {|βj| < c0m
2}; then by Corollary 3.10

P(Gj|Fj) ≤ 1− c0.

Therefore, MN stochastically dominates a sum of k independent random variables that
take the values c0m

2 and 0 with probabilities c0 and 1− c0, respectively. Hence

P(MN ≤ (1/2)kc20m
2) ≤ C exp(−ck).

We now take k ≍ λ−1 and m ≍ λN and we obtain (3.25). �

In the following theorem, we obtain a lower bound on the length of paths in the USF.
We define the event:

F (y, x, n) =
{
Tx[S

y] < ∞ and |LEF
x (S

y)| ≤ n
}
; (3.26)

note that on the event {Tx[S
y] < ∞} the path LEF

x (S
y) is the loop erasure of a SRW

path started at y and ending at x

Theorem 3.12. For every x, y ∈ Z
d we have

P(F (y, x, n)) ≤ C(1 + |x− y|)2−d exp

[
−c

|x− y|2
n

]
. (3.27)

Proof. Using translation invariance we can assume that y = 0. If |x|2/n ≤ 1 then the
term in the exponential in (3.27) is of order 1, so

P(F (0, x, n)) ≤ P(Tx < ∞) ≤ (1 + |x|)2−d ≤ ec(1 + |x|)2−de−c|x|2/n.

Now assume |x|2 > n, and let N = ||x||∞/4, and Q = Q(0, N). LetX ′ be S conditioned
on {Tx < ∞}. Then if h(z) = P

z(Tx[S] < ∞), we have h(z) ≍ N2−d on Q(0, N), and
thus the processes S and X ′ have comparable laws inside Q(0, N). The explicit law of
a section of the loop erased random path given in [Law99] (see also (5) in [Mas]) then
implies that the loop erasures of S and X ′ also have comparable laws inside Q.
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Let
F1(x, n) =

{
|EF

∂iQ
(LEF

x S)| ≤ n, Tx(S) < ∞
}
. (3.28)

Thus F (0, x, n) ⊂ F1(x, n). Then

P(F (0, x, n)) ≤ P(F1(x, n))

= P(|EF
∂iQ

L(EF
x S)| ≤ n|Tx < ∞)P(Tx < ∞)

≤ C|x|2−d
P(|EF

∂iQ
L(EF

x X
′)| ≤ n)

≤ C|x|2−d
P(|EF

∂iQ
L(EF

x S)| ≤ n).

Taking n = λN2, so that λ−1 ≥ c|x|2n−1, and using Proposition 3.11 completes the proof.
�

4 Upper bound on |BU(0, n)|
Recall that U(x) is the component of the USF containing x ∈ Z

d. It is well-known [Pem91,
Theorem 4.2] that for d ≥ 5 and x 6= y ∈ Z

d we have

c|x− y|4−d ≤ P(y ∈ U(x)) ≤ C|x− y|4−d. (4.1)

A corollary of this bound is that the volume of U0 ∩ B(r) grows as r4 in expectation.
Our main result in the previous section, Theorem 3.12, is a variant of the upper bound in
(4.1) that gives control over the length of the path connecting x and y. Since that bound
was formulated in terms of a single LERW, the exponent 4 − d changes to 2− d. In this
section we extend Theorem 3.12 to control the volume of balls in the intrinsic metric.

Theorem 4.1. Assume d ≥ 5, and let U = UZd. There exists a constant C1 such that for
all k ≥ 0 we have

E
(
|BU(0, n)|k

)
≤ Ck

1k!n
2k. (4.2)

Hence there are constants c1 > 0 and C2 such that

P(|BU(0, n)| ≥ λn2) ≤ C2e
−c1λ, λ > 0, n ≥ 1. (4.3)

Proof. The bound (4.3) follows easily from (4.2) using Markov’s inequality and the power
series for ex.

We prove (4.2) by induction on k. The case k = 0 holds trivially. We fix k ≥ 1 and
y1, . . . , yk ∈ Z

d, and estimate the probability

P
(
y1, . . . , yk ∈ BU(0, n)

)
.

This can be done similarly to the “tree-graph inequalities” known in percolation [AN].
To facilitate notation, we write y0 = 0. On the event y1, . . . , yk ∈ U0 consider the minimal
subtree T (y0, . . . , yk) ⊂ U0 that contains the vertices y0, . . . , yk. This tree is finite. Since
U0 has one end [BLPS], [LP], there is a unique infinite path in U0, whose only vertex in
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y0 = 0y0 = 0

y0 = 0y0 = 0y0 = 0

y1y1

y1y1y1

y2y2

y2

y2

y2

y3

y3

∞∞

∞∞∞

z1z1

z1z1z1

z2z2

z2z2

z2

z3

z3

Figure 2: All three labelled tree graphs with k = 2, and two of the five possible labelled
tree graphs with k = 3.

T (y0, . . . , yk) is its starting vertex. Let us write T (y0, . . . , yk,∞) for the infinite subtree
of U0 obtained by adding this infinite path to T (y0, . . . , yk).

Now let us consider the “topology” of T (y0, . . . , yk,∞). In the case k = 1, it is easy
to see that there exists a vertex z1 ∈ T (y0, y1,∞) such that the paths T (y0, z1), T (y1, z1)
and T (z1,∞) (some of which may degenerate to a single vertex) are edge-disjoint. In
the general case k ≥ 1, we have k “branch points” z1, . . . , zk. We use a fixed rule for
indexing the zi’s, in requiring that for every i ≥ 1 the path T (yi, zi) is edge-disjoint from
T (y0, . . . , yi−1,∞). See Figure 2.

We can formalize the construction via the following recursive procedure. Let T (0)
denote the set containing the unique tree with vertex set {0,∞}. Assume that the
collection T (k − 1) of trees with vertex set {0, . . . , k − 1} ∪ {∞} ∪ {1̄, . . . , k − 1} has
been defined for some k ≥ 1. Let T (k) denote the collection of trees with vertex set
{0, . . . , k} ∪ {∞} ∪ {1̄, . . . , k̄} that can be obtained in the following way. Pick some
τ ′ ∈ T (k − 1), and pick one of the edges of τ ′. Split this edge into two by introducing a
new vertex k̄ on the edge, and add the new edge {k, k̄} to τ ′. It is easy to see that any
τ ∈ T (k) has the following properties (see Figure 2):

(i) degτ (∞) = 1 = degτ (yi), i = 0, . . . , k.

(ii) degτ (̄i) = 3, i = 1, . . . , k.

With the above definitions, the event {y1, . . . , yk ∈ U0} implies that there exist
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z1, . . . , zk ∈ T (y0, . . . , yk,∞) and τ ∈ T (k) such that T (y0, . . . , yk,∞) is the edge-disjoint
union of paths T (ϕ(r), ϕ(s)), where {r, s} ∈ E(τ), and ϕ : V (τ) → Z

d ∪ {∞} is defined
by 




ϕ(i) = yi i = 0, . . . , k;

ϕ(∞) = ∞;

ϕ(̄i) = zi i = 1, . . . , k.

(4.4)

Note that the choice of τ is not unique, due to possible coincidences between the vertices
y0, . . . , yk, z1, . . . , zk. We neglect the overcounting resulting from this, for an upper bound.

If the additional restriction dU(0, yi) ≤ n, i = 1, . . . , k is in place, we must also have
dU(ϕ(r), ϕ(s)) ≤ n for all {r, s} ∈ E(τ) such that r, s 6= ∞. We define the event

E(y1, . . . , yk, z1, . . . , zk, τ, n)

=





T (y0, . . . , yk,∞) = ∪{r,s}∈E(τ)T (ϕ(r), ϕ(s)) as
an edge-disjoint union and dU(ϕ(r), ϕ(s)) ≤ n
for all {r, s} ∈ E(τ) such that r, s 6= ∞



 .

Considering all possible choices of τ and z1, . . . , zk, we get

E
(
|BU(0, n)|k

)
=

∑

y1,...,yk∈Zd

P
(
y1, . . . , yk ∈ BU(0, n)

)

≤
∑

τ∈T (k)

∑

y1,...,yk∈Zd

∑

z1,...,zk∈Zd

P
(
E(y1, . . . , yk, z1, . . . , zk, τ, n)

)
.

We use Wilson’s algorithm [W, LP] to replace the complicated event E(y1, . . . ) by a
slightly larger event that is easier to handle. For this, enumerate the edges of τ as

{r0, s0}, {r1, s1}, . . . , {r2k, s2k},
where the labelling is chosen in such a way that the following two properties are satisfied
(see Figure 3(a)):

(a) s0 = ∞.

(b) For every j = 1, . . . , 2k, the set of edges {{rℓ, sℓ} : ℓ = 0, . . . , j − 1} spans a subtree
of τ , and sj is a vertex of this subtree.

Using Wilson’s method with random walks started at ϕ(r0), . . . , ϕ(r2k), we see that

E(y1, . . . , yk, z1, . . . , zk, τ, n) ⊂
2k⋂

j=1

F (ϕ(sj), ϕ(rj), n). (4.5)

Here F (·, ·, n) are the events defined in (3.26). Importantly, the events on the right hand
side are independent. Theorem 3.12 and the inclusion (4.5) imply that

P
(
E(y1, . . . , yk, z1, . . . , zk, τ, n)

)

≤
2k∏

j=1

C(1 + |ϕ(sj)− ϕ(rj)|)2−d exp

[
−c

|ϕ(sj)− ϕ(rj)|2
n

]
.

(4.6)
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s0 = ∞

r0 = s1 = s3

r1 = s2 = s6

r2 = 0

r3 = s4 = s5

r4

r5

r6

s′0 = ∞
s′1

s′2

s′3 = r′1 = r′2s′4 = r′0 = r′3

s′5

s′6 = r′4 = r′5

r′6 = 0

(a) (b)

Figure 3: (a) A possible enumeration of edges for the application of Wilson’s method. (b)
A possible enumeration of edges for performing the summations using (4.8) in the order
j = 1, 2, . . . , 2k. Summing over the spatial location ϕ(s′1) eliminates the factor involving
the edge {s′1, r′1}. Following this, it is possible to sum over ϕ(s′2), etc.

It remains to estimate the sum of the right hand side of (4.6) over all choices of the yi’s
and zi’s. For this it will be convenient to use a different enumeration of E(τ). Suppose
that

{r′0, s′0}, {r′1, s′1}, . . . , {r′2k, s′2k}
satisfies the following properties (see Figure 3(b)).

(a′) s′0 = ∞ and r′2k = 0.

(b′) For every j = 1, . . . , 2k the set {{r′ℓ, s′ℓ} : ℓ = j, . . . , 2k} induces a connected subtree
of τ , and s′j is a leaf of this subtree.

For ease of notation, let us write uj = ϕ(r′j) and wj = ϕ(s′j). With the new enumeration
the right hand side of (4.6) takes the following form:

P
(
E(y1, . . . , yk, z1, . . . , zk, τ, n)

)

≤
2k∏

j=1

C(1 + |wj − uj|)2−d exp

[
−c

|wj − uj|2
n

]
.

(4.7)

Note again that the wj’s and uj’s are zi’s and yi’s, determined implicitly by τ . Importantly,
property (b′) of the enumeration implies that if wj = ϕ(s′j) = zi for some i, j, then the
variable zi does not occur in the product

2k∏

ℓ=j+1

C(1 + |wj − uj|)2−d exp

[
−c

|wj − uj |2
n

]
.

Similar considerations apply if wj = ϕ(s′j) = yi for some i, j. The summation over
y1, . . . , yk and z1, . . . , zk can be accomplished using the following elementary lemma.

Lemma 4.2. For any u ∈ Z
d, we have

∑

w∈Zd

(1 + |w − u|)2−d exp

[
−c

|w − u|2
n

]
≤ Cn. (4.8)
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We apply Lemma 4.2 successively to the factors with j = 1, . . . , 2k on the right hand
side of (4.7). See Figure 3(b) for an example of how the edges of τ are successively
removed by the summations. We obtain

E
(
|BU(0, n)|k

)
≤

∑

τ∈T (k)

(Cn)2k. (4.9)

Since the number of trees in T (k) is 1 · 3 · · · · (2k − 1) ≤ 2kk!, this proves (4.2). �

Remark 4.3. The statements of Theorem 4.1 still hold, with essentially the same proof,
when U is replaced by UD, the USF on a subset D ⊂ Z

d. Note that U0 still has one end.
This follows from [LMS, Proposition 3.1], and the fact that the component of 0 under
the measure WSFo in the domain D is stochastically smaller then it is in Z

d. Therefore,
a decomposition into events E(y1, . . . , yk, z1, . . . , zk, n) still holds (with U = UD), where
now all vertices are in D. The inclusion (4.5) still holds, with the events F having the
same meaning as before. This allows to bound the summations in exactly the same way
as in Z

d.

5 Lower bounds on volumes

In this section we return to the setup of Section 3, in order to give a lower bound on the
volume of U0. We first estimate the number of vertices of U0 in shells Qn+m \Qn. Recall
that QN ⊂ D ⊂ Z

d, and n,m satisfy 16 ≤ n < n + m ≤ N , with m ≤ n/8. We have
L = L(EF

Dc(S)), a loop-erased walk from 0 to ∂D. We denote by α = EF
∂iQn

L the portion
of L ended when it reaches the interior boundary of Qn, and x0 ∈ ∂iQn is the endpoint of
α. The remaining piece of L is L′ = BF

∂iQn
L, and β = EF

∂iQ(x0,m)L
′ is the part of L′ until

the first exit from the box of radius m centred at x0. See Figure 4.
Recall that when x0 ∈ Hn, we define A = A(x0) = Q(x0 + (m/2)e1, m/4) and x1 =

x0 + (m/2)e1, with appropriate rotations applied if x0 is on a different face of Qn. We
will now also need a point x2 ∈ Qn+m \ Qn of order m away from A, and further boxes
contained in Qn+m \ Qn that we define as follows. If x0 ∈ Hn and the second coordinate
of x0 is negative, let

x2 = x1 +me2

A′ = A′(x0) = Q(x1 + 2me2, m/4)

A′′ = A′′(x0) = x1 + [−3m/8, 3m/8]× [−m, 3m]× [−m,m]d−2 ∩ Z
d.

(5.1)

If x0 ∈ Hn and the second coordinate of x0 is positive, we replace e2 by −e2 and [−m, 3m]
by [−3m,m]. If x0 is on a different face of Qn, we replace e1 and e2 by two other suitable
unit vectors.

The key technical estimate is to show that β ∩ A has capacity of order m2 with prob-
ability bounded away from 0, which we do in the next section.
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n

n+m

x0

AA′A′′

α

β

x1

A∗

x2

Figure 4: Boxes for the cycle popping argument.

5.1 A capacity estimate

Let Sx2 be a random walk with Sx2(0) = x2, independent of S, X̃ , etc.

Proposition 5.1. Assume N ≥ 1, Q4N ⊂ D ⊂ Z
d, and the setup of Section 3.

(a) There exists c1 = c1(d) > 0 such that

m2−d
ECap(A ∩ β|α) ≥ cP

(
Sx2 hits (A ∩ β)

∣∣α
)
≥ c1m

4−d. (5.2)

(b) We have
P
(
c1m

2 ≤ Cap(A ∩ β) ≤ C1m
2
∣∣α

)
≥ c > 0. (5.3)

Proof. (a) For ease of notation, we omit the conditioning on α. The first inequality in
(5.2) is clear since G(x2, ·) ≍ m2−d on A. To prove the second inequality let

U :=
∑

z∈A

I[z ∈ β]I[Sx2 hits z],

so that
P
(
Sx2 hits (A ∩ β)

)
= P(U > 0).

Using Lemma 3.9, we have

E(U) =
∑

z∈A

P(z ∈ β)P
(
Tz[S

x2] < ∞
)
≥ cmdm2−dm2−d = cm4−d.

On the other hand,

E
(
U2

)
=

∑

x,y∈A

P(x, y ∈ β)P
(
Tx[S

x2] < ∞, Ty[S
x2] < ∞

)
. (5.4)
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Since the process X̃ generating L′ must pass through ∂A∗ in order for the event x, y ∈ β
to occur, we have

P(x, y ∈ β) ≤ max
z∈∂A∗

[G̃D(z, x)G̃D(x, y) + G̃D(z, y)G̃D(y, x)]

≤ Cm2−dG(x, y).

For the other term in the right hand side of (5.4) we have

P
(
Tx[S

x2] < ∞, Ty[S
x2] < ∞

)
≤ [G(x2, x)G(x, y) +G(x2, y)G(y, x)]

≤ Cm2−dG(x, y).

Since d ≥ 5, we have
∑

x,y∈A G(x, y)2 ≤ Cmd, which gives E
(
U2

)
≤ Cm4−d.

The Paley-Zygmund inequality then gives

P
(
Sx2 hits (A ∩ β)

)
= P(U > 0) ≥ E(U)2

E
(
U2

) ≥ cm4−d.

(b) Since Cap(A ∩ β) ≤ C|A ∩ β| = CHA(β), by Lemma 3.3 we have for λ ≥ 1 that
P(Cap(A ∩ β) > λcm2) ≤ λ−1. On the other hand, using (3.8) and the lower bound in
(a), the second moment method gives that there exists c1 > 0 such that

P(Cap(A ∩ β) > c1m
2) > c1;

taking λ large enough then gives (5.3). �

Assume now, similarly to Proposition 3.11, that k ≥ 1 and m ≥ 4 such that N/2 ≤
km < N −m. Recall that for j = 1, . . . , k we denote αj = EF

∂iQ(0,jm)L, which is the initial

piece of L ending with the first point at radius jm. Let Yj = αj(|αj|) be the last point
in αj , and βj = EF

∂iQ(Yj ,m)(BF
∂iQ(0,jm)L) be the path L between Yj and its first hit after Yj

on ∂iQ(Yj, m). Let Yj,1 and Yj,2 be the points x1 and x2 defined with respect to x0 = Yj ,
respectively. Define the following event, measurable with respect to L:

G(c1, c2, C1) =





there are at least c2k indices j with 1 ≤ j ≤ k
such that P

(
TA(Yj)∩βj

[SYj,2] < ∞
∣∣L

)
≥ c1m

4−d

and |A′′(Yj) ∩ βj | ≤ C2m
2



 . (5.5)

Proposition 5.1 and an argument similar to that of Proposition 3.11 gives the following
corollary.

Corollary 5.2. Under the assumptions of Proposition 5.1, there exist c1, c2 > 0 and C2

such that we have

P [G(c1, c2, C2)] ≥ 1− exp(−ck). (5.6)

Proof. Let Fj = σ(αj), and let Ij be the indicator

Ij =
[
c1m

2 ≤ Cap(A(Yj) ∩ βj) and HA′′(Yj)(βj) ≤ C2m
2
]
.
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Note that Ij is measurable with respect to Fj+1 ⊂ σ(L). Due to Proposition 5.1 and
Remark 3.4, we have

P[Ij = 1 | Fj] ≥ c > 0. (5.7)

When the path L is such that Ij = 1 holds, then we have

P
(
TA(Yj)∩βj

[SYj,2] < ∞
∣∣L

)
≥ c1m

4−d,

and |A′′(Yj) ∩ βj | ≤ C2m
2. Therefore, we have G(c1, c2, C2) ⊃ {∑k

j=1 Ij ≥ c2k}, and the
claim follows from (5.7).

Remark 5.3. We note the following minor extension of Corollary 5.2. Assuming still that
Q4N ⊂ D, let w ∈ ∂D be fixed, condition S to exit D at w, and let L′ = L(EF

DcS) be its
loop-erasure. Masson [Mas] proves that the law of EF

Qc
N
L′ is comparable, up to constants

factors, to the law of EF
Qc

N
L. Since the event G(c1, c2, C2) is measurable with respect to

EF
Qc

N
L, the statement of the corollary follows also for L′.

5.2 Lower bound on |QN ∩ U0|
We continue with the setup of the previous section. Our argument will use the cycle
popping idea of Wilson [W]; see also [LP]. The main result of this section is the following
lower bound on U0.

Theorem 5.4. Assume N ≥ 1, Q4N ⊂ D ⊂ Z
d, and let U = UD. There exist constants

C, c, such that
P
(
|QN ∩ U0| ≤ λN4

)
≤ C exp(−cλ−1/3).

Proof. Condition on L, and assume that the event (5.5) occurs. Let J = J(ω) be the set
of indices 1 ≤ j ≤ k (a σ(L)-measurable random set) satisfying the requirements in this
event. For each j ∈ J , let

A′(j) = A′(Yj) A′′(j) = A′′(Yj).

The definitions of A′ and A′′ made in (5.1) ensure that A′′(j), j ∈ J are disjoint.
We now define stacks as in [W]. For each z ∈ Z

d−L we define i.i.d. stack r.v. (ηz,i, i ≥ 0)
taking values uniformly on the vertices z′ ∈ Z

d with z′ ∼ z. For j ∈ J and z ∈ (L− βj)∩
A′′(j) we define additional stack r.v. (η′z,i, i ≥ 0), again taking values uniformly on the
neighbours of z. We call Stacks I the stack r.v. given by the η.,., and Stacks II the stack
r.v. given by the Stack I r.v. and the additional stack r.v. η′.,..

Assume that j ∈ J . Working with either Stacks I or Stacks II, we consider the effect of
popping all cycles that are entirely contained in A′′(j). That is, if a cycle starts in A′′(j),
but part of it lies outside A′′(j), we do not pop it. It is important to note that the order
of popping cycles does not affect the final configuration on the top of the stacks.

For each j ∈ J , let

V I
j =

{
y ∈ A′(j) :

cycle popping using Stacks I

reveals a path from y to L

}
,

V II
j =

{
y ∈ A′(j) :

cycle popping using Stacks II

reveals a path from y to A′′(j)∩ βj

}
.
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Lemma 5.5. We have V I
j ⊃ V II

j for all j ∈ J .

Proof. Let y ∈ V II
j , and consider Stacks II. Starting from y, follow the arrows in Stacks II,

until A′′(j) ∩ βj is hit. Removing cycles chronologically from this path pops some cycles
entirely contained in A′′(j), and reveals a path from y to A′′(j) ∩ βj . Now if we follow
the arrows in Stacks I instead, then the same arrows are used until the first time L is hit.
This guarantees that a path from y to L is revealed, that does not leave A′′(j), and hence
y ∈ V I

j . �

Lemma 5.6. Assume d ≥ 5. For some c3 > 0 we have

P
(
|V II

j | ≥ c3m
4
∣∣L

)
≥ c > 0 on the event {j ∈ J}.

Proof. Set Nj = |V II
j |; we estimate the first and second moments of Nj .

Fix y ∈ A′(j). Following the arrows from y in Stacks II we perform a random walk
until either we exit A′′(j), or we hit A′′(j)∩ βj . Therefore, on the event {j ∈ J}, we have

P
(
y ∈ V II

j

∣∣L
)
= P

(
TA′′(j)∩βj

[Sy] < τA′′(j)[S
y]
∣∣L

)

≥ P
(
TA(j)∩βj

[Sy] < τA′′(j)[S
y]
∣∣L

)

≥ cP
(
TA(j)∩βj

[Sy] < ∞
∣∣L

)
. (5.8)

The final inequality is proved by an argument similar to that of Lemma 3.6, where we
let R count the number of crossings by the walk from a box A∗∗ ⊂ A′′(j) to ∂A′′(j) before
hitting βj∩A(j), where each face of ∂A∗∗ is at distance m/16 away from the corresponding
face of ∂A′′(j).

Summing over y in (5.8), the Harnack inequality and Proposition 5.1 give that on the
event {j ∈ J} we have

E
(
Nj

∣∣L
)
≥ cc1m

dm4−d = cm4.

We also have, on the event {j ∈ J}, that
P
(
y ∈ V II

j

∣∣L
)
≤ P

(
TA′′(j)∩βj

[Sy] < ∞
∣∣L

)

≤ cm2−dCap(A′′(j) ∩ βj) (5.9)

≤ cm2−d|A′′(j) ∩ βj| (5.10)

≤ cm2−dm2 = cm4−d, (5.11)

so that summing over y ∈ V II
j we obtain

E
(
Nj

∣∣L
)
≤ cm4, on {j ∈ J}.

We now bound the second moment of Nj. For x ∈ V II
j write γj(x) for the path from x

to βj. Given x, y ∈ A′(j) with x, y ∈ V II
j , let Fxy be the event that the paths γj(x) and

γj(y) intersect. Then

E
(
N2

j

∣∣L
)
=

∑

x∈A′(j)

∑

y∈A′(j)

P
(
x ∈ V II

j , y ∈ V II
j , F c

xy

∣∣L
)

(5.12)

+
∑

x∈A′(j)

∑

y∈A′(j)

P
(
x ∈ V II

j , y ∈ V II
j , Fxy

∣∣L
)
. (5.13)
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Note that as
P
(
y ∈ V II

j , F c
xy

∣∣x ∈ V II
j , L

)
≤ P

(
y ∈ V II

j

∣∣L
)
,

the first sum above is bounded by E
(
Nj

∣∣L
)2
, which is in turn dominated by cm8 on the

event {j ∈ J}.
It remains to bound the sum in (5.13). If x, y ∈ V II

j and Fxy occur, then there exists a
unique w ∈ A′′(j) with the property that cycle popping reveals three edge-disjoint paths:
one from w to A′′(j) ∩ βj , a second from x to w and a third from y to w. (We allow to
have x = w or y = w or both.) When this event happens with a fixed w, we can reveal the
paths by first following the arrows starting from w until A′′(j) ∩ βj is hit, then following
the arrows starting from x until w is hit, then following the arrows starting from y until
w is hit. This shows that

P
(
x, y ∈ V II

j

∣∣L
)

≤
∑

w∈A′′(j)

P
(
TA′′(j)∩βj

[Sw] < ∞
∣∣L

)
P
(
Tw[S

x] < ∞
)
P
(
Tw[S

y] < ∞
)
. (5.14)

Let Ã(j) = Q(Yj,1, (3m/2)), and note that ∂Ã(j) has distance at least cm from A′′(j)∩βj,
and also distance at least cm from A′(j). We estimate separately the cases:
(a) w ∈ A′′(j) \ Ã(j); and
(b) w ∈ A′′(j) ∩ Ã(j).
On the event {j ∈ J}, the sum of the terms in the right hand side of (5.14) corresponding
to case (a) is at most:

Cm2−dCap(A′′(j) ∩ βj)
∑

w∈A′′(j)\Ã(j)

∑

x,y∈A′(j)

G(x, w)G(y, w)

≤ Cm2−dm2m2m2md = Cm8.

The sum for case (b) is at most:

Cm2−dm2−dmdmd
∑

w∈A′′(j)∩Ã(j)

P
(
TA′′(j)∩βj

[Sw] < ∞
)

≤ Cm4
∑

w∈Ã(j)

P
(
TA′′(j)∩βj

[Sw] < τÃ(j)

)

≤ Cm4m2Cap(A′′(j) ∩ βj) ≤ Cm8.

Here the last line follows from j ∈ J and Proposition 5.1.
The moment estimates for |V II

j | and the one-sided Chebyshev inequality yield:

P
(
|V II

j | ≥ cm4
∣∣L

)
≥ c > 0 on the event {j ∈ J}.

This completes the proof of the Lemma. �

24

Author’s Draft: To be published in the Canadian Journal of Mathematics http://dx.doi.org/10.4153/CJM-2017-054-x

Copyright (c) 2017 Canadian Mathematical Society. All rights reserved.



We can now complete the proof of Theorem 5.4. Choose k ≍ λ−1/3 so that λN4 ≍ km4.
Then using Corollary 5.2, the conditional independence of (V II

j )j∈J , and Lemma 5.5, for
a suitably small c4 > 0 we have

P
(
|QN ∩ U0| ≤ λN4

)
≤ C exp(−ck) + E

(
P

(
V II
j ≥ c3m

4 for less
than c4k indices j ∈ J

∣∣∣∣L
)
I[G(c1, c2, C2)]

)

≤ C exp(−cλ−1/3).

This completes the proof of the Theorem.

Theorem 5.7. Assume d ≥ 5 and let U = UZd . There exist c > 0 and C such that for
all λ > 0 we have

P
(
|BU(0, n)| ≤ λn2

)
≤ C exp(−cλ−1/5).

For the proof of this theorem, we assume the setting of Proposition 3.11, with D = Z
d.

Recall that MN = |EF
∂iQN

L|, that is the number of steps of L until it reaches the boundary
of QN .

Lemma 5.8. We have
E
(
Mk

N

)
≤ Ck

2k!N
2k.

Consequently, there exist c > 0 and C such that for all λ > 0 we have

P
(
MN ≥ λN2

)
≤ C exp(−cλ). (5.15)

Remark 5.9. If MS
N is the length of a simple random walk path run until its first exit

from QN then it is well known that MS
N/N

2 has an exponential tail. However we do not
have MN ≤ MS

N , so we need an alternative argument to obtain the bound (5.15).

Proof. We have

E
(
Mk

N

)
≤ E

(
|S[0,∞) ∩QN |k

)

= k!
∑

x1,...,xk∈QN

G(0, x1)G(x1, x2) . . .G(xk−1, xk)

≤ k!
( ∑

z∈Q2N

G(0, z)
)k

= Ck
2k!N

2k.

To see the second statement:

P
(
MN ≥ λN2

)
≤ exp(−λtN2)E

(
etMN

)
≤ exp(−λtN2)

1

1− C2tN2
.

Choosing t = 1/(2C2N
2) completes the proof of the Lemma. �

Proof of Theorem 5.7. It is sufficient to prove the statement for 0 < λ < λ0 for some fixed
λ0. Let us choose N = λα

√
n with some exponent α > 0, that we will optimize over at

the end of the proof. We have

P(MN ≥ n/2) ≤ C exp
(
− c

n

2N2

)
= C exp(−cλ−2α).
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Condition on L, as in the proof of Theorem 5.4, and assume the event

G̃ = G(c1, c2, C1) ∩ {MN < n/2}.

We set
λn2 = c3km

4 ≍ Nm3,

which means we pick m to be
m ≍

√
nλ(1−α)/3.

Hence N/m ≍ k ≍ λ(4α−1)/3. Note that this implies that

P
(
G(c1, c2, C1)

c
)
≤ C exp(−c(N/m)) = C exp(−cλ(4α−1)/3).

Since we want N/m ≫ 1, we impose the condition 0 < α < 1/4 on α.
For each j ∈ J , let

Ṽ I
j =

{
y ∈ A′(j) :

cycle popping using Stacks I reveals
a path from y to L of length ≤ n/2

}
,

Ṽ II
j =

{
y ∈ A′(j) :

cycle popping using Stacks II reveals a
path from y to A′′(j)∩βj of length ≤ n/2

}
.

As in Lemma 5.5 we have Ṽ I
j ⊃ Ṽ II

j for all j ∈ J .

In estimating E
(
Ṽ II

)
from below, we write

P
(
y ∈ Ṽ II

j

∣∣L
)
≥ P

(
TA′′(j)∩βj

[Sy] < τA′′(j)[S
y]
∣∣L

)

− P
(
|EF

∂A′′(j)(S
y)| > n/2, TA′′(j)∩βj

[Sy] ◦Θn/2 < ∞
)
.

(5.16)

On the event {j ∈ J}, the first term on the right hand side is ≥ cm4−d due to (5.8). We
now show that the subtracted term is ≤ C exp(−cn/m2)m4−d.

Note that we may restrict to n/2 > 2m2 for convenience (although not needed for the
claim), since our choice of m implies that n ≍ m2λ−2(1−α)/3, and we are considering small
λ. Using the Markov property at time n/2−m2, the second term in the right hand side
of (5.16) is at most

P
y
(
τA′′(j) > n/2−m2

) ∑

z∈A′′(j)

P
z
(
TA′′(j)∩βj

< ∞
)
P
y
(
S(n/2) = z

∣∣ τA′′(j) > n/2−m2).

The first probability can be bounded by C exp(−cn/m2), by considering stretches of the
walk of length m2, in each of which there is probability ≥ c > 0 of exiting from A′′(j).
The conditional distribution of S(n/2) is bounded above by cm−d, due to the local CLT
applied to S(n/2−m2), . . . , S(n/2). Hence it remains to show that

∑

z∈A′′(j)

P
z
(
TA′′(j)∩βj

< ∞
)
≤ m4.
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Let us write β̃j = A′′(j) ∩ βj , and h(z) = P
z(Tβ̃j

< ∞). By a last exit decomposition

h(z) =
∑

u∈β̃j
G(z, u)eβ̃j

(u), where eβ̃j
(u) = P

u(T+

β̃j
= ∞). Therefore, we have

∑

z∈A′′(j)

h(z) = |β̃j|+
∑

z∈A′′(j)\β̃j

h(z) ≤ Cm2 +
∑

u∈β̃j

∑

z∈A′′(j)

G(z, u)eβ̃j
(u)

≤ Cm2 + Cm2
∑

u∈β̃j

eβ̃j
(u) = Cm2 + Cm2Cap(β̃j) ≤ Cm4;

here we used the fact that when j ∈ J then |β̃j| ∨ Cap(β̃j) ≤ Cm2.
Hence we obtain that there exists λ0 = λ0(d) > 0, such that when 0 < λ ≤ λ0, the

right hand side of (5.16) is at least

cm4−d − C exp(−cn/m2)m4−d ≥ cm4−d − C exp(−cλ−2(1−α)/3)m4−d ≥ cm4−d.

It follows that E
(
|Ṽ II

j |
∣∣L

)
≥ cm4 on the event {j ∈ J}.

For the second moment, we simply estimate

E
( ∣∣∣Ṽ II

j

∣∣∣
2 ∣∣L

)
≤ E

( ∣∣V II
j

∣∣2 ∣∣L
)
≤ Cm8 on the event {j ∈ J}.

The one-sided Chebyshev inequality yields that for some c4 = c4(d) > 0 we have

P
( ∣∣∣Ṽ II

j

∣∣∣ ≥ c4m
4
∣∣L

)
≥ c > 0 on {j ∈ J}.

Therefore

P
(
|BU(0, n)| ≤ λn2

)

≤ P
(
G̃c

)
+ P

(
G̃,

∑

j∈J

Ṽ I
j ≤ λn2

)

≤ P(MN > n/2) + P
(
G(c1, c2, C1)

c
)
+ E

(
P

(∑

j∈J

Ṽ II
j < c3km

4
∣∣∣L

)
; G̃

)

≤ C exp(−cλ−2α) + C exp(−cλ(4α−1)/3) + exp(−cλ(4α−1)/3).

We choose α, so that −2α = (4α − 1)/3, so α = 1/10. This completes the proof of the
Theorem. �

Remark 5.10. We note the following minor extension of Theorem 5.4, that is needed
in [BHJ]. Similarly to Remark 5.3, since the arguments of Theorem 5.4 only rely on
properties of EF

Qc
N
L, the result extends to the case when the component of the origin is

connected to a fixed vertex w ∈ ∂D.
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