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Explicit LDP for a slowed RW driven by a
symmetric exclusion process
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Abstract

We consider a random walk (RW) driven by a simple symmetric exclu-
sion process (SSE). Rescaling the RW and the SSE in such a way that a joint
hydrodynamic limit theorem holds we prove a joint path large deviation prin-
ciple. The corresponding large deviation rate function can be split into two
components, the rate function of the SSE and the one of the RW given the
path of the SSE. These components have different structures (Gaussian and
Poissonian, respectively) and to overcome this difficulty we make use of the
theory of Orlicz spaces. In particular, the component of the rate function
corresponding to the RW is explicit.
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1 Introduction

1.1 Background

Random evolution on a random medium has been the object of intensive research
within the mathematics and physics communities over at least the last forty years.
Although there are plenty of rigorous and non-rigorous results obtained through
a wide range of techniques and methods, it is far from being a closed subject.
Since the works of Solomon [28], Harris [13] and Spitzer [29], random walks in
both static and dynamic random environments have been a prolific way to study
this problem within the context of probability theory (see [31] for a review in the
static case). In the case of dynamic random environments, considerable progress
has been recently achieved (see e.g. [3], [23], [25] and references therein), but a
key ingredient common to all these developments is the availability of good mixing
properties of the environment. More recently, examples of dynamic random en-
vironments with less restrictive mixing properties have been considered [14], but
the general picture is still far from being understood (see [4] for some conjectures
based on simulations).

A very simple way to obtain a family of dynamic random environments with
poor mixing properties is to consider conservative particle systems as dynamic
environments. On the one hand these environment processes are very well under-
stood, in particular their mixing properties are well known, on the other hand the
essential difficulties coming from the poor mixing are encoded into the conserva-
tion laws.

In this article the dynamic environment is given by a simple, symmetric exclu-
sion process, as in [1], [2], [3], [4], [16], [21], [26]. On top of this environment,
we run a simple random walk with jumping rates depending on the portion of the
environment it sees. The exclusion particles do not feel the presence of the ran-
dom walk. We introduce a scaling parameter n ∈N and we speed up the exclusion
particles with respect to the random walk by a factor of n. Although this speeding
up seems to be there in order to give us the necessary mixing properties for the
environment, this is not the case. At least at a formal level what happens is that this
scale is the crossover scale between a regime on which the environment behaves
essentially as frozen from the point of view of the random walker, and a regime on
which the environment mixes fast enough to put us back on the setting of previous
works.

1.2 The model and result at a glance: an example

Let us consider the following problem. For the sake of clarity, we begin by con-
sidering a simple case. In Section 2 we define the general model. Let n ∈ N be a
scaling parameter, which will be sent to +∞ later on. On a discrete circle Tn with
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n points, we run a symmetric, simple exclusion process {ηn
t ; t ∈ [0,T ]},1 speeded

up by n2. We call this process the dynamic environment. Given a realization of the
process {ηn

t ; t ∈ [0,T ]}, we run a simple random walk on Tn with the following
dynamics. The walk waits an exponential time of rate n, at the end of which it
jumps to the left with probability 1

3 , it jumps to the right with probability 1
3 and

with probability 1
3 it looks at the environment ηn

t . Let x be the current position
of the walk. If ηn

t (x) = 1, the walk jumps to the right, and if ηn
t (x) = 0 the walk

jumps to the left. Notice that the particle is speeded up by n. Let us think about
the circle Tn as a discrete approximation of the continuous circle of length 1. The
different speeds of the environment and the walk are taken in such a way that the
environment has a diffusive scaling and the walk has a ballistic (or hyperbolic in
the terminology of hydrodynamic limits) scaling. Let us start the exclusion pro-
cess from a non-equilibrium initial distribution. In order to fix ideas, imagine that
ηn

0 (x) = 1 if |x| ≤ n
4 and ηn

0 (x) = 0 otherwise. This initial distribution of particles
is a discrete approximation of the density profile u0(x) = 1|x|≤1/4. It is precisely
under this diffusive space-time scaling that the limiting density profile has a non-
trivial evolution. This limiting profile u(t,x) turns out to be the solution of the heat
equation on the continuous circle, with initial condition u0. This convergence is
what is known in the literature as the hydrodynamic limit of the exclusion process
(see Chapter 4 of [19] for more details and further references). Now let us describe
the scaling limit of the walk. If the density of particles of the exclusion process
is equal to ρ ∈ [0,1], then a simple guess is that the walk will move with velocity
v(ρ) = 1

3(2ρ − 1), the speed in an averaged medium. In general this guess is not
correct, since the medium observed by the random walk differs from the averaged
medium. However, in this case, due to the hyperbolic scaling of the random walk
and the diffusive scaling of the environment, there is locally strong mixing which
justifies this guess. Therefore, the macroscopic position of the walk should satisfy
the ODE

ϕ̇t = v(u(t,ϕt)).

This heuristic reasoning has been made precise in [1] in the form of a functional
weak law of large numbers for the walk. We obtain in this paper a large deviation
principle associated to this law of large numbers. The form of the rate function
associated to this large deviation principle is given by the variational formula

I(x) = inf
π

{
Irw(x|π)+Iex(π)

}
,

where Irw(x|π) is the rate function of a random walk on a given space-time real-
ization of the environment π and Iex(π) is the rate function of the large deviation
principle associated to the hydrodynamic limit of the exclusion process (see Sec-
tion 3 for more precise definitions). This variational formula is very reminiscent of

1The time window [0,T ] is chosen to be of finite size to avoid some technical topological consid-
erations. Indeed, [0,∞) is not compact and one would have to be more careful in weighting the tails
near infinity.
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the variational formula relating the quenched and averaged large deviation princi-
ples for random walks in random environments [7],[11], see in particular Eq. (9)
of [7]. Notice that in our setting a “quenched" large deviation principle or even a
quenched law of large numbers is out of reach since the exclusion process does not
have an almost sure hydrodynamic limit. Anyway, the interpretation of the varia-
tional formula is the same as the corresponding one for random walks in random
environments. The function Irw(x|π) is the cost of observing a trajectory x when
the environment has a space-time density π , and Iex(π) is the cost of changing the
density of the environment to π .

Our method of proof, however, differs from the one in [7]. In [1], we proved a
joint law of large numbers for the environment and the walk. We show in this article
that the rate function of the corresponding large deviation principle is given by
Irw(x|π)+Iex(π). The desired result follows as an application of the contraction
principle.

1.3 Discussion

There are not many works addressing the question of large deviations for random
walks in dynamic random environment. In [2], the authors show a large deviation
principle (LDP) for the empirical speed on some attractive random environments.
They also show that the rate function in the case of an exclusion process as a ran-
dom environment has a flat piece. This reference is the closest in spirit to our work.
To our knowledge, the earliest reference in this field seems to be [17], then, in a
series of papers, [6], [24], [25], [30] the authors show an LDP for fairly general
dynamic random environments. In [15], the authors gave an LDP for a random
walk driven by a contact process. In all of these results, the environment is Marko-
vian (except fo the more general setting in [24]) and it is assumed to start from
an ergodic equilibrium. One of the differences of our work with respect to these
results is that we consider environments which start from a local equilibrium, see
(5). These environments are more general than ergodic equilibria and they give
rise to a richer phenomenology. Our variational formula for the rate function could
in principle be explicit enough to allow some finer analysis of the behavior of the
walk, but we do not pursue this line of research here.

Our method of proof is very different from what has been done before, and
as mentioned above it relies on a joint LDP for the couple environment-random
walk. The large deviations of the environment and of the walk are very different in
nature, for the environment they are due to fluctuations built up on small, synchro-
nised variations of the behavior of individual particles, while for the walk they are
determined by its Poissonian structure. For this reason the joint LDP proved to be
very difficult to obtain. In particular, we need to deal with non-convex entropy cost
functions

From the point of view of interacting particle systems, the problem addressed
in this work is close in spirit to the problem of the behavior of a tagged particle
in the exclusion process. In fact, we borrowed from [18] the strategy of proof of
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the joint environment-walk law of large numbers, although this strategy can be
traced back to the seminal article [21]. Recently, an LDP for the tagged particle in
one-dimensional, nearest-neighbor symmetric exclusion process has been obtained
[26]. On the one hand, the results in [26] are more demanding, because the motion
of the tagged particle affects the motion of the environment in a sensitive way. On
the other hand, our result is more intricate because of the mixture between Poisso-
nian and Gaussian rate functions. This last point obliges us to use the machinery
of Orlicz spaces in order to show that the variational problem that defines the rate
function is well-posed. In the realm of interacting particle systems, this kind of
problems poses real difficulties in order to obtain an LDP. A family of models
which shares the difficulties found in this work is a conservative dynamics super-
posed to a creation-annihilation mechanism. To our knowledge, the best result so
far is found in [5]. In that article, a creation-annihilation (or Glauber) mechanism
is superposed to the exclusion dynamics with a speeding up of the exclusion pro-
cess in order to make both dynamics relevant in the macroscopic limit. As in our
case, the rate function of the LDP can be written as a combination of the Gaus-
sian rate function of the exclusion process and a Poissonian rate function coming
from the Glauber dynamics. However, they impose an additional condition (see
Assumption (L1) on page 8 of [5]) which makes some key cost functions convex.
This point is very technical but also very delicate, and it is the key to proving that
the upper and lower bounds match. We overcame this problem by using the theory
of Orlicz spaces, see Section 8.3.

1.4 Organization of the article

In Section 2 we describe our model in full generality. We fix some notation and in
particular we introduce the environment as seen by the walker, which will be very
important in order to relate the behaviors of the walk and of the environment. We
also describe the hydrodynamic limits associated to the exclusion process, as well
as to the environment as seen by the walker. This part summarizes the functional
law of large numbers obtained in [1]. In Section 3 we start explaining what we
understand by a large deviation principle for the couple environment-walk. We
put some emphasis on the topologies considered for the process, since they are not
the standard ones. In particular, we look at the random walk as a signed Poisson
point process. The trajectory of the random walk can be easily recovered from
this process and vice-versa, but the topology of signed measures turns out to be
more convenient. We finally state our main result, Theorem 7 on page 14 which
is a large deviation principle for the couple environment-walk. The large deviation
principle for the walk, Theorem 6, follows at once from Theorem 7 via the con-
traction principle. In Section 4 we define some exponential martingales which will
be used to tilt our dynamics, following the usual Donsker-Varadhan (see e.g. [9])
strategy of proof for large deviations of Markov processes. In Section 5 we show
what is called in the literature the superexponential lemma. This lemma allows to
do two things. First, it allows to write the exponential martingales introduced in
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Section 4 as functions of the couple environment-walk plus an error term which is
superexponentially small. This step is the starting point of the upper bound. And
second, it allows to obtain the hydrodynamic limit of suitable perturbations of the
dynamics. The latter is the starting point of the lower bound. In Section 6 we show
an energy estimate. This energy estimate allows to restrict our considerations to the
space of measures with finite energy with respect to the Lebesgue measure. In par-
ticular, all these measures will be absolutely continuous with respect to Lebesgue
measure. This point is crucial, since we need to evaluate this density at the location
of the random walk in order to know its local drift. In Section 7 we prove the large
deviation upper bound and in Section 8 we prove a matching lower bound, which
finishes the proof of the large deviation principle for the couple environment-walk.

2 The model

2.1 The environment

Let n ∈ N be a scaling parameter, Tn =
1
nZ/Z be the discrete circle of size n and

Ωn = {0,1}Tn . We denote by η = {η(x);x∈Tn} the elements of Ωn and we call η

a configuration of particles. The elements x of Tn will be called sites, and we say
that there is a particle at site x ∈ Tn in configuration η if η(x) = 1. Otherwise, we
declare the site x to be empty. We say that x,y ∈ Tn are neighbours if |y− x| = 1

n .
In this case we write x ∼ y. Fix T > 0. The simple, symmetric exclusion process
on Tn is the continuous-time Markov process {ηn

t ; t ∈ [0,T ]} with the following
dynamics. To each pair of neighbours {x,y} on Tn we attach a Poisson clock of
rate n2, independent of the other clocks. Each time the clock associated to the pair
{x,y} rings, we exchange the values of ηn

t (x) and ηn
t (y).

For η ∈Ωn and x,y ∈Tn, we define ηx,y ∈Ωn as

η
x,y(z) =


η(y); z = x,
η(x); z = y,
η(z); z 6= x,y.

The process {ηn
t ; t ∈ [0,T ]} is generated by the operator given by

Lex
n f (η) = n2

∑
x∼y

(
f (ηx,y)− f (η)

)
(1)

for any f : Ωn→R. Notice that if the initial configuration ηn
0 has only one particle,

this particle follows a simple random walk. This fact explains the acceleration n2

in the dynamics, corresponding to a diffusive space-time scaling. We consider the
process defined on a finite time window [0,T ] to avoid uninteresting topological
issues (see the footnote on page 3).

By reversibility and irreducibility, for each k ∈ {0,1, . . . ,n}, the uniform mea-
sure νk,n on

Ωk,n =
{

η ∈Ωn; ∑
x∈Tn

η(x) = k
}
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is invariant and ergodic under the evolution of {ηn
t ; t ∈ [0,T ]}. Equivalently, for

each ρ ∈ [0,1] the product Bernoulli measure νρ on Ωn, defined by

νρ(η) = ∏
x∈Tn

{
ρη(x)+(1−ρ)(1−η(x))

}
is invariant under the evolution of {ηn

t ; t ∈ [0,T ]}.

2.2 Some notation

For x∈Tn, let τx : Ωn→Ωn be the canonical shift, that is, τxη(z)=η(z+x) for any
η ∈Ωn and any z∈Tn. For f : Ωn→Rwe define τx f : Ωn→R as τx f (η)= f (τxη)
for any η ∈Ωn.

We say that a set A⊆Tn is the support of a function f : Ωn→ R if:

i) for any η ,ξ ∈Ωn such that η(x) = ξ (x) for all x ∈ A, f (η) = f (ξ ),

ii) A is the smallest set satisfying i).

We denote this by A = supp( f ).
Let Π : Z→ Tn be the unique map from Z to Tn such that Π(0) = 0 and

Π(x+1)−Π(x) = 1
n (mod 1) for any x ∈Z, that is, Π is the canonical covering of

Tn by Z. Consider Ω = {0,1}Z. We say that a function f : Ω→ R is local if there
exists a finite A ⊆ Z such that for any η ,ξ ∈ Ω with η(x) = ξ (x) for all x ∈ A,
f (η) = f (ξ ). For a local function f : Ω→ R, we can define supp( f ) as above.
We can identify Ωn with the set {0,1}{b− n

2+1c,...,b n
2 c}. Using this identification, any

local function f : Ω→ R can be lifted to a function (which we still denote by f )
from Ωn to R, for any n large enough. Moreover, under this convention, the lifting
is unique. We will use the following notation. A local function f : Ωn → R is
actually a family of functions { fn : Ωn→ R;n≥ n0}, all of them lifted to Ωn from
a common function f : Ω→ R, which we assume to be local. For a local function
f : Ωn→ R, supp( f ) will denote either the support of f on Z or the support of fn

on Tn, which is equal to Π(supp( f )).

2.3 The random walk

We wish to define a random walk driven by an environment. Informally, given an
environment {ηt : t ∈ [0,T ]} the jump rates of the random walk xt to the right/left
are given by c±(ηt ;xt). An archetypical example is

c+(η ;x) = α +(β −α)η(x), c−(η ;x) = β +(α−β )η(x), for some α,β > 0.

As we consider the family of graphs Tn, we have to be a bit more precise in the
way we define this. Let c : Ω×{+,−}→ [0,∞) be a local function, and let cn be
the lifted version on Ωn. Define c±n : Ωn×Tn via the cocycle property: c±n (η ;x) =
cn(τxη ,±) for any η ∈ Ωn and any x ∈ Tn. As the dependence on n is clear from
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context we simply write c±. Without loss of generality we only consider n large
enough so that the lifting of c exists. We call c a jump rate.

The random walk in dynamic random environment {ηn
t ; t ∈ [0,T ]} with jump

rate c is the continuous-time Markov process {xn
t ; t ∈ [0,T ]} with values inTn with

the following dynamics. For simplicity, assume that c++c−≡ 1, the reader can see
that this assumption is not relevant. We attach to a random walker a Poisson clock
of rate n, independent of the process {ηn

t ; t ∈ [0,T ]}. Each time the clock rings, the
particle jumps to the right with probability c+(ηn

t ;xn
t−), and to the left with comple-

mentary probability c−(ηn
t ;xn

t−). We remark that the process {xn
t ; t ∈ [0,T ]} itself

is not Markovian; if we consider a fixed realization of the random environment
{ηn

t ; t ∈ [0,T ]}, then we recover the Markov property for {xn
t ; t ∈ [0,T ]}, but the

resulting evolution is not homogeneous in time. The pair {(ηn
t ;xn

t ); t ∈ [0,T ]} turns
out to be an homogeneous Markov process, with values in Ωn×Tn and generated
by the operator given by

Ln f (η ;x) = n2
∑
y∼z

(
f (ηy,z;x)− f (η ;x)

)
+n ∑

z=±1
cz(η ;x)

(
f (η ;x+ z

n)− f (η ;x)
)
(2)

for any function f : Ωn×Tn → R. At this point, two remarks are in place. No-
tice that for functions which depend only on η , this expression coincides with the
definition of the generator of the process {ηn

t ; t ∈ [0,T ]}, explaining the use of the
same notation for both objects. Notice as well that the dynamics of the random
walk is speeded-up by n. We expect the walk to move with some velocity, in which
case it needs to make n jumps in order to cross a region of order 1.

From now on and up to the end of the article, we assume that the random walk
starts at 0: xn

0 = 0 for any n ∈N.

2.4 The environment as seen by the walker

Let {ξ n
t ; t ∈ [0,T ]} be the process with values in Ωn defined by ξ n

t (z) = ηn
t (x

n
t + z)

for any z∈Tn (in other words, ξ n
t = τxn

t ηn
t ) and any t ∈ [0,T ]. The process {ξ n

t ; t ∈
[0,T ]} turns out to be a Markov process and its corresponding generator is given
by

Ln f (ξ ) = n2
∑
x∼y

(
f (ξ x,y)− f (ξ )

)
+n ∑

z=±1
cz(ξ ;0)

(
f (τ z

n
ξ )− f (ξ )

)
(3)

for any function f : Ωn→ R. The value of xn
t can be recovered from the trajectory

{ξ n
s ;s ∈ [0, t]} in the following way. First suppose that ξ n has at least 2 particles

and two empty sites. Let {Nn,±
t ; t ∈ [0,T ]} be the number of shifts to the right (+)

and to the left (−) up to time t. Then,

xn
t = Π

(
Nn,+

t −Nn,−
t
)
.

If there is only one particle or one empty site, Nn,±
t are similar, but each right (left)

shift of ξ n
t is discarded with probability n/(n + c−(ξ n

t ;0)) (n/(n + c+(ξ n
t ;0))),
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which is the probability that the observed shift came from the movement of the
single particle/empty site. If there are no particles/empty sites, Nn,±

t are Poisson
processes with rate nc±(0;0) or nc±(1;0), where 0 and 1 are the empty and full
configurations.

This point of view, the environment as seen by the walker, introduced by
Kipnis-Varadhan [21], has shown to be very fruitful (see [1] for an application
in this context).

2.5 The empirical measures

Let T = R/Z andM+(T) be the space of positive Radon measures on T. For µ

and {µn;n ∈N} inM+(T), we say that µn→ µ if
∫

f dµn→
∫

f dµ for any con-
tinuous function f :T→R. The topology induced onM+(T) by this convergence
is known as the weak topology, andM+(T) turns out to be a Polish space under
this topology. That is,M+(T) is completely metrizable and separable under this
topology. A possible metric is the following. Let { fN ;N ∈Z} be a dense subset in
the set C(T) of continuous functions on T. Then, d :M+(T)×M+(T)→ [0,∞)
given by

d(µ,ν) = ∑
N∈Z

1
2|N|

min
{∣∣∣∫ fNd(µ−ν)

∣∣∣,1}
is the required metric.

For x ∈Tn, let δ n
x : T→ R be defined as

δ
n
x (y) =

(
1−n|y− x|

)+
, (4)

where (·)+ denotes positive part. Sometimes the functions {δ n
x ;x ∈ Tn} are called

finite elements. The empirical density of particles is defined as theM+(T)-valued
process {πn

t ; t ∈ [0,T ]} given by

π
n
t (dy) = ∑

x∈Tn

η
n
t (x)δ

n
x (y)dy.

Notice that πn
t is absolutely continuous with respect to Lebesgue measure on T.

We will make the following abuse of notation. We will use πn
t to designate indis-

tinctly the measure πn
t (dx) or its density function πn

t (·) with respect to Lebesgue
measure. We denote by πn

t (H) the integral of a function H with respect to the mea-
sure πn

t (dx). At this point, some comments about this definition are in place. It is
customary in the literature of interacting particle systems to use 1

n δx in place of δ n
x ,

where δx is the δ of Dirac at x ∈T (see Chapter 4 of [19]). We will be interested in
scaling limits of the process {πn

t ; t ∈ [0,T ]}. Since the number of particles per site
is bounded by 1 by definition, any limit point of πn

t (dx) must be a measure which
is absolutely continuous with respect to Lebesgue measure on T, and moreover
with Radon-Nikodym derivative bounded above by 1. Therefore, it is natural to
modify the customary definition of the empirical measure πn

t in such a way that it
satisfies this property for any fixed n. This is usually accomplished by choosing
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δ n
x (y) = 1(|y− x| ≤ 1

2n) (see, e.g., [20]). In our case we make the choice of (4).
For topological considerations which will become more transparent later on, it will
be convenient to have πn

t (·) a.s. continuous, since on one hand we will need this
property later on, and on the other hand we will prove that this property is shared
by the possible limits of πn

t . It is clear that at the level of a law of large numbers,
all these definitions of empirical measures are equivalent; this is also the case at the
level of large deviation principles, and we adopt this definition in order to simplify
the already very technical exposition.

Let us denote byM+
0,1(T) the subset ofM+(T) formed by measures µ abso-

lutely continuous with respect to Lebesgue measure onT, such that 0≤ dµ

dx ≤ 1. On
M+

0,1(T) we consider the weak topology defined above. Notice thatM+
0,1(T) is a

compact subset ofM+(T), and {πn
t ; t ∈ [0,T ]} as defined above is anM+

0,1(T)-
valued process.

In a similar way, the empirical measure associated to the process {ξ n
t ; t ∈ [0,T ]}

is defined as theM+
0,1(T)-valued process {π̂n

t ; t ∈ [0,T ]} given by

π̂
n
t (dy) = ∑

x∈Tn

ξ
n
t (x)δ

n
x (y)dy.

2.6 Hydrodynamic limits

Let u0 : T→ [0,1] be a given function. We say that a sequence {µn;n ∈ N} of
probability measures on Ωn is associated to u0 if for any f ∈ C(T),

lim
n→∞

∫
∑

x∈Tn

η(x)δ n
x (y) f (y)dy =

∫
u0(y) f (y)dy,

in distribution with respect to {µn;n ∈N}. In other words, {µn;n ∈N} is associ-
ated to u0 if the empirical measure of particles converges to u0(y)dy, in distribution
with respect to {µn;n ∈N} and in the weak topology onM+(T). Notice that for
any function u0 :T→ [0,1] there is a sequence of measures associated to it. Indeed,
define for n ∈N and x ∈Tn,

ρ
n
x = n

∫
|y−x|≤ 1

2n

u0(y)dy.

Then the product measure νn
u0

given by

ν
n
u0
(η) = ∏

x∈Tn

{
ρ

n
x η(x)+(1−ρ

n
x )(1−η(x))

}
(5)

is associated to u0. These measures will play a role in the derivation of a large
deviation principle later on.

For a given Polish space E , let D([0,T ];E) denote the space of càdlàg tra-
jectories from [0,T ] to E . We consider on D([0,T ];E) the J1-Skorohod topol-
ogy. Let u0 be fixed. We denote by Pn the distribution of {(ηn

t ;xn
t ); t ∈ [0,T ]}

in D([0,T ];Ωn×Tn) with initial distribution νn
u0
⊗ δ0, and we denote by En the

expectation with respect to Pn. The following proposition is classical:

10



Proposition 1. Fix u0 :T→ [0,1] and let {νn
u0

;n∈N} be the sequence of measures
in (5) associated to u0. With respect to Pn,

lim
n→∞

π
n
t (dx) = u(t,x)dx

in distribution with respect to the J1-Skorohod topology on D([0,T ];M+(T)),
where the density {u(t,x); t ∈ [0,T ],x ∈T} is the solution of the heat equation{

∂tu(t,x) = ∆u(t,x)
u(0, ·) = u0(·).

This proposition is what is known in the literature as the hydrodynamic limit
of the process {ηn

t ; t ∈ [0,T ]}. A proof of this proposition which is close in spirit
to the exposition here can be found in Chapter 4 of [19]. A similar result was
obtained in [1] for the process {ξ n

t ; t ∈ [0,T ]}, but before stating this result, we
need some notation. Recall that νρ denotes the Bernoulli product measure with
density ρ ∈ [0,1]. Let us define v± : [0,1]→ R as

v±(ρ) =
∫

c±(η ;x)νρ(dη).

Notice that v± do not depend on x. Since we have assumed that c is local, v± do not
depend on n either. Define then v(ρ) = v+(ρ)− v−(ρ). The value of v(ρ) can be
interpreted as the “mean-field” speed of the walk {xn

t ; t ∈ [0,T ]} in an environment
of density ρ , but we point out that this far from clear under which conditions we
can assume that this mean-field speed is a good approximation for the real speed
of the walk. The following propositions are the main results in [1].

Proposition 2. With respect to Pn,

lim
n→∞

π̂
n
t (dx) = û(t,x)dx

in law with respect to the J1-Skorohod topology of D([0,T ],M+(T)), where the
density {û(t,x); t ∈ [0,T ],x ∈T} is the solution of the equation{

∂t û(t,x) = ∆û(t,x)+ v(û(t,0))∂xû(t,x)
û(0, ·) = u0(·).

Let { f (t); t ∈ [0,T ]} be the solution of the differential equation{
f ′(t) = v(u(t, f (t))) = v(û(t,0))
f (0) = 0,

with u from Proposition 1. The densities u and û are related by the identity û(t,x) =
u(t, f (t)+ x) for any t ∈ [0,T ] and any x ∈ T. In fact, we have the following law
of large numbers for {xn

t ; t ∈ [0,T ]}.
Proposition 3. With respect to Pn,

lim
n→∞

xn
t = f (t)

in distribution with respect to the J1-Skorohod topology on D([0,T ];T).
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3 Main results: large deviations

Propositions 1 and 3 can be understood as a functional law of large numbers for
the pair of processes {(πn

t ,x
n
t ); t ∈ [0,T ]}. Our aim is to establish a large deviation

principle for the process {xn
t ; t ∈ [0,T ]}, Theorem 6 below.

3.1 Topological considerations

Let us notice that the J1-Skorohod topology coincides with the uniform topology
when restricted to the space of continuous functions. This topology is not the only
one with this property. Indeed, in the original work of Skorohod [27], four different
topologies are introduced on the spaceD([0,T ];E) with this property, and such that
the space D([0,T ];E) is Polish with respect to these topologies. Let us recall the
decomposition xn

t = Π(Nn,+
t −Nn,−

t ). Since Nn,+
t +Nn,−

t is just a standard Poisson
process speeded-up by n, an immediate corollary of Proposition 3 is that

lim
n→∞

Nn,±
t

n
=

t± f̂ (t)
2

in distribution with respect to the J1-Skorohod topology on D([0,T ];R), where
{ f̂ (t); t ∈ [0,T ]} is the canonical lifting of { f (t); t ∈ [0,T ]} from T to R. In
fact, the convergences of the processes {xn

t ; t ∈ [0,T ]} and {1
n Nn,+

t ; t ∈ [0,T ]} are
equivalent, once we have the law of large numbers for the standard Poisson pro-
cess. Notice that the process {Nn,+

t ; t ∈ [0,T ]} is increasing. Therefore, maybe
the J1-Skorohod topology is not the most suitable one. It turns out that in or-
der to exploit the fact that {Nn,+

t ; t ∈ [0,T ]} is increasing, we can use the weak
topology in the following way. Let us denote by ωn

±(dt) the measure on [0,T ] de-
fined by ωn

±((s, t]) =
1
n(N

n,±
t −Nn,±

s ) for any s < t ∈ [0,T ]. Then, convergence of
{1

n Nn,±
t ; t ∈ [0,T ]} to {1

2(t± f̂ (t)); t ∈ [0,T ]} is equivalent to convergence of the
sequence of positive Radon measures {ωn

±;n ∈ N} to the measure 1
2(1± f̂ ′(t))dt,

with respect to the weak topology of M+([0,T ]). We will adopt this last point
of view. Notice that in order to recover the process {xn

t ; t ∈ [0,T ]}, we need both
processes {Nn,±

t ; t ∈ [0,T ]}, or equivalently, both measures {ωn
±}. Therefore, if

needed, we can consider the process {xn
t ; t ∈ [0,T ]} as an element of the space

M+([0,T ])×M+([0,T ]) equipped with the weak topology. The main advan-
tage of this point of view is the characterization of compact sets, which is very
simple onM+([0,T ]): a set K ⊆M+([0,T ]) is relatively compact if and only if
supµ∈K µ([0,T ]) < +∞. Further topological considerations will be introduced at
the occurrence in the proof of the large deviation principle.

3.2 Large deviation principle

We start by recalling what a large deviation principle is. Since we are going to
state several large deviation principles, let us define it in full generality. Let E be a
Polish space. Given a function I : E → [0,∞], we call it rate function if it is lower
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semi-continuous, that is, the set {x ∈ E ;I(x) ≤ M} is closed for any M ∈ [0,∞).
We say that the rate function I is good if the sets {x ∈ E ;I(x) ≤M} are compact
for any M ∈ [0,∞). A sequence {Xn;n ∈N} of E-valued random variables defined
in some probability space (E,F ,P) satisfies a large deviation principle with good
rate function I if

i) for any open set A⊆ E ,

lim
n→∞

1
n

logP(Xn ∈ A)≥− inf
x∈A
I(x),

ii) for any closed set C ⊆ E ,

lim
n→∞

1
n

logP(Xn ∈ C)≤− inf
x∈C
I(x).

3.3 The initial distribution of particles

In Section 2.6, we saw that in order to obtain the hydrodynamic limit of the en-
vironment process, the initial distribution of particles must be associated to some
profile u0. It turns out that in order to obtain a large deviation principle for the en-
vironment process, it is necessary (but far from sufficient) to understand the large
deviations of the initial distribution of particles. Let u0 be a given initial profile
which from now on we assume to be continuous. Recall the definition of the mea-
sures {νn

u0
;n∈N} given in Section 2.6. With respect to {νn

u0
;n∈N}, the empirical

measure πn
0 converges in distribution to the measure u0(x)dx, and a large deviation

principle for the sequence {πn
0 ;n ∈ N} is not difficult to obtain. Recall that we

consider πn
0 as an element in M+

0,1(T). Let v0(x)dx be an element of M+
0,1(T).

This imposes the restriction 0≤ v0(x)≤ 1 for any x ∈T. Define

h(v0|u0) :=
∫
T

{
u0(x) log

(
u0(x)
v0(x)

)
+(1−u0(x)) log 1−u0(x)

1−v0(x)

}
dx. (6)

The large deviations of the initial distribution of particles is given by the following
proposition (see e.g. [19], Lemma 5.2, Chapter 10).

Proposition 4. The sequence {πn
0 ;n ∈N} satisfies a large deviation principle with

respect to the weak topology onM+
0,1(T) with rate function h.

3.4 Large deviation principle for the environment

A large deviation principle for the process {πn
t ; t ∈ [0,T ]} has been obtained in

[20]. Let us recall this result. Let Ck,` be the class of functions on [0,T ]×T
which are k (resp. `) times continuously differentiable in time (resp. space). For
H : [0,T ]×T→ R of class C1,2 and {πt ; t ∈ [0,T ]} in D([0,T ];M+

0,1(T)), define

J(H;π) := πT (HT )−π0(H0)−
∫ T

0
πt
(
∂tHt +2∆Ht

)
dt

−
∫ T

0

∫ (
∇Ht(x)

)2
πt(x)

(
1−πt(x)

)
dxdt,

(7)
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and set
Iex(π) := h(π0|u0)+ sup

H∈C1,2
J(H;π).

The following proposition is the main result in [20].

Proposition 5. The process {πn
t ; t ∈ [0,T ]} satisfies a large deviation principle

with good rate function Iex with respect to the J1-Skorohod topology on the path
space D([0,T ];M+

0,1(T)).

3.5 Large deviations for the random walk

For each function x : [0,T ]→T of finite variation with x0 = 0 and each π : [0,T ]→
M+

0,1(T) càdlàg, let us define

Irw(x|π) =
∫ T

0

{
ax,π(t)x′t − ∑

z=±
vz(πt(xt))(ezax,π (t)−1)

}
dt, where (8)

ax,π(t) =



log x′t+
√

(x′t)2+4v+(πt(xt))v−(πt(xt))

2v+(πt(xt))
, v+(πt(xt))v−(πt(xt))> 0,

log |x′t |
v+(πt(xt))

, v+(πt(xt))v−(πt(xt)) = 0, x′t > 0,

− log |x′t |
v−(πt(xt))

, v+(πt(xt))v−(πt(xt)) = 0, x′t < 0,

−∞, v+(πt(xt))v−(πt(xt)) = 0, x′t = 0, v+(πt(xt))> 0,
∞, v+(πt(xt))v−(πt(xt)) = 0, x′t = 0, v+(πt(xt)) = 0,

(9)

if x is absolutely continuous and x 7→ πt(x) is continuous at xt for a.e. t ∈ [0,T ].
Otherwise, or if one of the three integrals∫ T

0
|x′t | log+ |x′t |dt or

∫ T

0
(x′t)

z log+
(
(vz(πt(xt)))

−1) dt, z =±, (10)

is infinite, then Irw(x|π) = ∞, where f+ = max( f ,0) and f− = max(− f ,0) are the
positive and negative part of a function (note that due to a collision of notation, v+

and v− are separate functions, not positive and negative part of some function v).
Our main result is the following.

Theorem 6. The sequence {xn
t ; t ∈ [0,T ]}n∈N satisfies a large deviation principle

with good rate function

I(x) = inf
π

{
Irw(x|π)+Iex(π)

}
.

Actually, this result will be a consequence of a large deviation principle for the
pair {(πn

t ;xn
t ); t ∈ [0,T ]}.

Theorem 7. The sequence {(πn
t ;xn

t ); t ∈ [0,T ]} satisfies a large deviation principle
with good rate function Irw(x|π)+Iex(π).

The rest of the paper is devoted to the proof of Theorems 6 and 7.
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4 Tilting measures and exponential martingales

According to Donsker-Varadhan approach to large deviations [9], in order to show
a large deviation principle, it is necessary to construct a sufficiently rich family of
exponential martingales. The rough idea which will be clear along the proof is that
these exponential martingales will be used to tilt the original distribution of the
system in consideration, in such a way that atypical events become typical under
the tilted distribuion. Let us introduce the family of martingales relevant for our
scope. Recall equation (2) and let F : Ωn×Tn× [0,T ]→ R be differentiable in the
time variable. Then, the process

exp
{

Ft(η
n
t ;xn

t )−F0(η
n
0 ;xn

0)−
∫ t

0
e−Fs(η

n
s ;xn

s )
(
∂s +Ln

)
eFs(η

n
s ;xn

s )ds
}

(11)

is a positive martingale of unit expectation (see e.g. [19], Lemma 5.1 in Appendix
1). Note that throughout the paper we use the notational convention that the time-
parameter of a function is in the index. It turns out that there are two types of
relevant functions for the large deviations problem. Let a : [0,T ]→ R be a con-
tinuously differentiable function. Taking Ft(η ;x) = na(t)x in (11), we see that the
process {Ma,n

t ; t ∈ [0,T ]} given by

1
n

logMa,n
t = a(t)xn

t −a(0)xn
0−

∫ t

0

(
a′(s)xn

s + ∑
z=±1

cz(ηn
s ;xn

s )
(
eza(s)−1

))
ds (12)

is a positive martingale with unit expectation. Notice that by definition, a(0)xn
0 ≡ 0.

Notice as well that integrating by parts, we see that

a(T )xn
T −

∫ T

0
a′(t)xn

t dt =
∫ T

0
a(t)ωn(dt),

with ωn = ωn
+−ωn

−. Therefore, in a sense, knowingMa,n
T for every a, we know

{xn
t ; t ∈ [0,T ]}.

The second type of function that plays a role in the derivation of a large devi-
ation principle is the following. Let H : [0,T ]×T→ R of class C1,2, that is, once
continuously differentiable in time and twice continuously differentiable in space.
Let us define

∇
n
x,yHt := n2

∫ (
δ

n
y (z)−δ

n
x (z)

)
Ht(z)dz,

∆nHt(x) := n ∑
y∈Tn
y∼x

∇
n
x,yHt .

It is not difficult to check that for x∈Tn, y = x+ 1
n , the function ∇n

x,yHt is a discrete
approximation of the gradient ∇Ht(x), and that ∆nHt(x) is a discrete approxima-
tion of the Laplacian ∆Ht(x). We extend the definition of ∆nHt to T by taking
linear interpolations. Taking Ft(η ;x) = nπn

t (Ht) in (11), we see that the process
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{MH,n
t ; t ∈ [0,T ]} given by

1
n

logMH,n
t = π

n
t (Ht)−π

n
0 (H0)−

∫ t

0

{
π

n
s (∂sHs)+

2
n ∑

x∈Tn

η
n
s (x)∆nHs(x)

}
ds−Qn

t (H),

(13)
where

Qn
t (H) =

∫ t

0
n ∑

x,y∈Tn

η
n
s (x)

(
1−η

n
s (y)

)
ψ

(1
n

∇
n
x,yHs

)
ds (14)

and ψ(u) = eu− u− 1, is a positive martingale with unit expectation2. Since we
are assuming that H is of class C1,2 we can write

1
n ∑

x∈Tn

η
n
s (x)∆nHs(x) = π

n
s (∆Hs)+Rn

s (H),

where the error term Rn
s (H) is bounded by a function of the form rn(H), depend-

ing only on the modulus of continuity of ∆H in T× [0,T ] and converging to 0
as n tends to ∞. Since the jumps of the environment and the particle are a.s. dis-
joint, the martingales {Ma,n

t ; t ∈ [0,T ]}, {MH,n
t ; t ∈ [0,T ]} are orthogonal, in the

sense that the process {Ma,n
t M

H,n
t ; t ∈ [0,T ]} is also a positive martingale with

unit expectation.

5 The superexponential estimate

One of the main challenges in order to prove a large deviation principle in the
context of interacting particle systems, is to show that local functions of the dy-
namics, when averaged over space and time, can be expressed as functions of the
empirical measure plus an error which is superexponentially small. Let us explain
what the superexponential estimate is in the case of the simple exclusion process
(that is, our environment process). In order to do this, we need some notation.
Let f : Ω→ R be a local function. Recall the convention about how to project f
into Ωn. Define f̄ (ρ) =

∫
f dνρ for ρ ∈ [0,1]. For ε ∈ (0, 1

2) and x ∈ T, let us
define ιε(x) = 1

ε
1((x,x+ ε])). When x = 0, we just write ιε instead of ιε(0). The

following lemma is stated in [20], Theorem 2.1.

Lemma 8 (Superexponential estimate). Let H : [0,T ]×T→ R be a continuous
function. Let us define

Rn,ε
t (H) =

∫ t

0

1
n ∑

x∈Tn

{
τx f (ηn

s )− f̄
(
π

n
s (ιε(x))

)}
Hs(x)ds.

Then, for any δ > 0, and any t ∈ [0,T ],

lim
ε→0

lim
n→∞

1
n

logPn
(∣∣Rn,ε

t (H)
∣∣> δ

)
=−∞.

2Notice that we are making an abuse of notation, using the same superscript structure for Ma,n
t

and MH,n
t . Later on we will introduce some more efficient way to handle multiple indices.
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This superexponential estimate is used in [20] with two purposes. First, to
express Qn

t (H) (recall the definition of the martingale {MH,n
t ; t ∈ [0,T ]}in (13))

as a function of {πn
t ; t ∈ [0,T ]} plus an error that is superexponentially small. And

second, in order to obtain the hydrodynamic limit of suitable perturbations of the
exclusion dynamics. Notice that, as a consequence, we can expressMH,n

t (more
precisely, 1

n logMH,n
t ) as a function of {πn

t ; t ∈ [0,T ]} plus a superexponentially
small error. Recalling (12), we see that in order to expressMa,n

t as a function of
{(πn

t ,x
n
t ); t ∈ [0,T ]}, we need to express∫ t

0
c±(ηn

s ;xn
s )
(
e±a(s)−1

)
ds

as a function of these two processes. The superexponential estimate does not apply
for two reasons. First, there is no spatial average. Second, the position at which we
measure the local function c± changes with time (since it follows the location of
the random walk). In [18] and in the context of the tagged particle problem, both
problems were overcome by considering the environment as seen from the walk,
{ξ n

t ; t ∈ [0,T ]}. Notice that in terms of the process {ξ n
t ; t ∈ [0,T ]}, the integral in

question is given by ∫ t

0
c±(ξ n

s )
(
e±a(s)−1

)
ds.

In this section, our objective will be to show the following superexponential
estimate.

Lemma 9 (Local superexponential estimate). Let f : Ωn→ R be a local function.
Then,

lim
ε→0

lim
n→∞

1
n

logPn

(∣∣∣∫ t

0

{
f (ξ n

s )− f̄
(
π̂

n
s (ιε)

)}
ds
∣∣∣> δ

)
=−∞ (15)

for any δ > 0 and any t ∈ [0,T ].

To make the exposition clear, the proof will be divided in various steps. Before
starting the proof, we introduce some notations and conventions. Let us write

W`
f (ξ ) = f (ξ )− f̄

(1
`

`

∑
x=1

ξ (x)
)
. (16)

With this notation, the integral in the local superexponential lemma is equal to∫ t

0
Wεn

f (ξ n
s )ds (17)

plus a boundary term which is uniformly bounded by c
εn for some constant c de-

pending only on f . For simplicity, we assume that the support of f is contained on
{1, . . . , `0} for some `0 ∈ N. In that case, supp(W`

f ) = {1, . . . , `} for any ` ≥ `0.
We will indistinctly denote by Λ` the sets {1, . . . , `} ⊆ Z and {1

n , . . . ,
`
n} ⊆Tn.
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5.1 Reduction to a variational problem

In this section we reduce the proof of the superexponential estimate to a variational
problem involving the generator of the dynamics. Let us start by introducing an
elementary estimate, whose check is left to the reader, which will be used several
times.

Lemma 10. For any positive numbers a1, . . . ,a`,

log{a1 + · · ·+a`} ≤ max
1≤ j≤`

loga j + log`.

Using this lemma, we see that for any random variable X ,

logP(|X |> δ )≤ log{P(X > δ )+P(X <−δ )}
≤max{logP(X > δ ), logP(−X > δ )}+ log2.

Therefore, in order to show (15), it is enough to show that

lim
ε→0

lim
n→∞

1
n

logPn

(
±
∫ t

0
Wεn

f (ξ n
s )ds > δ

)
=−∞. (18)

Therefore, we get rid of the absolute value in (15). This has several advantages as
it will be clear soon. By the exponential Chebyshev’s inequality, for any random
variable X and any γ > 0 we have that

1
n

logP(±X > δ )≤ 1
n

log
E[e±γnX ]

eγnδ
=

1
n

logE[e±γnX ]− γδ .

Therefore, it is enough to show that

sup
γ

lim
ε→0

lim
n→∞

1
n

logEn

[
exp
{
± γn

∫ t

0
Wεn

f (ξ n
s )ds

}]
<+∞, (19)

since in that case, calling this supremum κ ,

lim
ε→0

lim
n→∞

1
n

logPn

(
±
∫ t

0
Wεn

f (ξ n
s )ds > δ

)
≤ κ− γδ

for any γ > 0 and sending γ to infinity, (18) follows. Since −Wεn
f =Wεn

− f , from
now on we omit the ± in (19).

The next step is to put the process in near-equilibrium distribution. Fix ρ ∈
(0,1) and let us denote by Pρ

n the distribution of the process {ξ n
t ; t ∈ [0,T ]} with

initial distribution νρ (or equivalently, the process {(ηn
t ,x

n
t ); t ∈ [0,T ]} with initial

distribution νρ ⊗δ0), and let Eρ
n be the expectation with respect to Pρ

n . The actual
value of ρ will not be very important. Notice that νρ is not stationary under the
evolution of {ξ n

t ; t ∈ [0,T ]}, but it is indeed close to stationarity in a sense to be

specified below. By the Markov property, dPn
dPρ

n
=

dνn
u0

dνρ
. Moreover, since νρ(η) ≥

min{ρ,1−ρ} for any η ∈Ωn (in fact, the worst configurations are η(x)≡ 0 or 1),
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we conclude that there exists a constant K0 = K0(ρ) such that ‖dνn
u0

dνρ
‖∞ ≤ Kn

0 for
any n ∈N. In particular, for any function F ≥ 0,

En[F ] = Eρ
n
[ dνn

dνρ
F
]
≤ Kn

0E
ρ
n [F ].

Therefore, from (19), we get

1
n

logEn

[
exp
{

γn
∫ t

0
Wεn

f (ξ n
s )ds

}]
≤ 1

n
logEρ

n

[
exp
{

γn
∫ t

0
Wεn

f (ξ n
s )ds

}]
+K0,

(20)
and it is enough to consider νρ . The nowadays classical argument of Varadhan (see
Lemma A1.7.2 on page 336 of [19]) to estimate exponential expectations as in the
l.h.s. of (19), combines Feynman-Kac’s formula with the variational formula for
the largest eigenvalue of the operator Ln +Wεn

f , to get the bound

1
n

logEρ
n

[
exp
{

γn
∫ t

0
Wεn

f (ξ n
s )ds

}]
≤ t sup

g

{
γ〈Wεn

f ,g2〉+ 1
n〈g,Lng〉

}
, (21)

where 〈·, ·〉 denotes the inner product in L2(νρ), the supremum runs over functions
g : Ωn→R such that 〈g,g〉= 1 andLn is the generator of the process {ξ n

t ; t ∈ [0,T ]}
in equation (3). This variational problem will be the starting point of the next step
of the proof.

5.2 Some properties of 〈g,Lng〉

Define, for g : Ωn→ R and x,y ∈Tn,

Dx,y(g) =
1
2

∫ (
g(ηx,y)−g(η)

)2dνρ ,

and define D(g) = ∑x∼yDx,y(g). Notice that 〈g,−Lex
n g〉= n2D(g), that is, n2D(g)

is the Dirichlet form associated to the exclusion process {ηn
t ; t ∈ [0,T ]} identified

by the generator in equation (1). The following proposition was proved in [1], see
Lemma 2.2 therein.

Proposition 11. There exists a constant 3K1 such that 〈g,Lng〉 ≤ −n2D(g)+K1n
for any function g : Ωn→ R such that 〈g,g〉= 1.

The intuition behind this proposition is the following. The quantity 〈g,Lng〉
measures the entropy production rate, and if νρ were invariant, it should be neg-
ative. Since νρ is invariant under the dynamics of the environment, entropy can
grow only due to the motion of the random walk. Since the random walk jumps
about n times on a fixed time interval, the entropy of the distribution of the process
with respect to νρ should grow with time at most linearly in n.

The following simple observation, which we state as a proposition, will be
useful in what follows.

3Note that under the assumption c++ c− ≡ 1, one can take K1 = 1.
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Proposition 12. For any x,y ∈Tn, the function

g 7→
∫ (√

g(ηx,y)−
√

g(η)
)2

νρ(dη), g≥ 0,

is convex. In particular, g 7→ D(√g) is convex.

5.3 The one-block estimate

In the previous section, we have reduced the proof of (15) to the variational prob-
lem

sup
γ

lim
ε→0

lim
n→∞

sup
g

{
γ〈Wεn

f ,g2〉+ 1
n〈g,Lng〉

}
<+∞.

Following the original idea of Guo, Papanicolaou and Varadhan [12], [9], [20], it is
convenient to break this variational problem into two pieces. The first one is what
is known as the one-block estimate. In this estimate, the macroscopically small box
of size εn is replaced by a microscopically large box of size `, and it corresponds
to the following lemma:

Lemma 13 (One-block estimate).

sup
γ

lim
`→∞

lim
n→∞

sup
g

{
γ〈W`

f ,g
2〉+ 1

n
〈g,Lng〉

}
<+∞.

Proof of Lemma 13. By Proposition 11,

sup
g

{
γ〈W`

f ,g
2〉+ 1

n
〈g,Lng〉

}
≤ K1 + sup

g

{
γ〈W`

f ,g
2〉−nD(g)

}
.

For readers acquainted with the theory of hydrodynamic limits well, the supremum
on the right-hand side of this inequality is basically the one appearing in Eq. 5.4.1
of [19], and the proof there applies to our situation with essentially no changes. For
the ones who are not familiar with hydrodynamic limits, we include a somehow
simpler proof. Let us define F` = σ{ξ (x);x ∈ Λ`}, where the set Λ` = {1

n , . . . ,
`
n}

was defined above. Notice that for any function g, D(|g|)≤D(g), while g2 = |g|2.
Therefore, we can restrict the supremum above to non-negative functions g : Ωn→
R such that 〈g,g〉= 1. Let us define

D`(g) = ∑
x,y∈Λ`

x∼y

Dx,y(g).

For a given non-negative function g with 〈g,g〉= 1, let us define g` = Eνρ
[g2|F`]

1
2 .

By definition, 〈W`
f ,g

2
`〉 = 〈W`

f ,g
2〉, while by convexity, D`(g`) ≤ D`(g) ≤ D(g).

Therefore,
γ〈W`

f ,g
2〉−nD(g)≤ γ〈W`

f ,g
2
`〉−nD`(g`)

and it is enough to show that

sup
γ

lim
`→∞

lim
n→∞

sup
g

{
γ〈W`

f ,g
2〉−nD`(g)

}
<+∞,
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where now the supremum runs over non-negative functions g : Ωn→ R such that
〈g,g〉 = 1 and such that supp(g) ⊆ Λ`. Notice that on the supremum above, the
only dependence on n is on the constant in front of D`(g). Moreover, the varia-
tional problem is a finite-dimensional one (2`-dimensional). In particular, g lives
in a compact space (topology does not matter here, because all the metrics are
equivalent in finite-dimensional spaces). Therefore, for each n, there exists a func-
tion gn for which the supremum is attained. For g ≡ 1, γ〈W`

f ,g
2〉− nD`(g) = 0.

Therefore, the supremum is greater or equal than 0. Therefore, D`(gn) ≤ γ

n‖ f‖∞,
and in particular D`(gn) tends to 0 as n tends to ∞. Let n′ be a subsequence such
that gn converges to some limit g∞. Since g 7→ D`(g) is convex, it is also lower
semi-continuous. Therefore, we have that D`(g∞) ≤ limn′D`(gn′) = 0. We have
just showed that

lim
n→∞

sup
g

{
γ〈W`

f ,g
2〉−nD`(g)

}
= γ〈W`

f , ĝ
2〉

for some function ĝ : Ωn→ R satisfying 〈g,g〉 = 1, supp(g) ⊆ Λ` and D`(g) = 0.
Let us identify {0,1}Λ` with Ω`, where we forget about the periodic boundary
condition. Recall the definition of the spaces Ωk,` given in Section 2.1. By the
irreducibility of the exclusion process,D`(ĝ) = 0 implies that ĝ is constant on each
of the spaces Ωk,`, k = 0,1, . . . , `. On the set Ωk,`,

W`
f (η) = f (η)− f̄

( k
`

)
.

Therefore, there exists a sequence of positive numbers {p(0), . . . , p(`)} such that
∑k p(k) = 1 and

〈W`
f , ĝ

2〉=
`

∑
k=0

p(k)
{

f̄ (k;`)− f̄
( k
`

)}
,

where f̄ (k;`) =
∫

f dνk,`. We have thus reduced the proof of the one-block estimate
to proving that

lim
`→∞

sup
1≤k≤`

∣∣ f̄ (k;`)− f̄
( k
`

)∣∣= 0.

This limit is equal to 0 in view of Prop. 3.1 in [10], known in the literature as the
equivalence of ensembles. This finishes the proof of Lemma 13.

5.4 The two-blocks estimate

In view of Lemma 13, in order to complete the proof of Lemma 9, it is enough to
show the following.

Lemma 14 (Two-blocks estimate).

sup
γ

lim
`→∞

lim
ε→0

lim
n→∞

sup
g

{
γ〈W`

f −Wεn
f ,g2〉+ 1

n
〈g,Lng〉

}
<+∞.
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In order to prove this lemma, let us first define, for ξ ∈Ωn, x ∈Tn and `≤ n,

ξ
`(x) =

1
` ∑

y∈Λ`

ξ (x+ y).

This notation will not enter in conflict with ξ n
t , since we will only use it in this

section, where no reference to the evolution is made. Notice that W`
f −Wεn

f =

f̄ (ξ `(0))− f̄ (ξ εn(0)). Since the function f is local, the function f̄ is a polynomial,
and in particular it is uniformly Lipschitz on [0,1]. Let K f be the corresponding
Lipschitz constant. Let us assume that εn is an integer multiple of `. The modifi-
cations needed if this is not the case will be evident. We have that∣∣W`

f −Wεn
f

∣∣≤ K f
∣∣ξ `(0)−ξ

εn(0)
∣∣≤ K f

`

εn ∑
y

∣∣ξ `(0)−ξ
`(y)
∣∣,

where the sum is over sites y ∈ Λεn which are multiple integers of `
n . The two

blocks on the name of Lemma 14 are the two blocks of size ` on the right-hand
side of this inequality. Using Proposition 11 and the inequality above, we see that
to prove Lemma 14, it is enough to show that

sup
γ

lim
`→∞

lim
ε→0

lim
n→∞

sup
y

sup
g

{
γ〈
∣∣ξ `(0)−ξ

`(y)
∣∣,g2〉−nD(g)

}
<+∞. (22)

The proof of this inequality is very similar to the proof of the one-block estimate,
therefore we will not give the full details in the derivation of those steps which are
also present in the proof of Lemma 13. Let F y

` = σ{ξ (x),ξ (x+ y);x ∈ Λ`}. We
can restrict the supremum to non-negative functions g with 〈g,g〉= 1. For a given
non-negative g, define g`,y = Eνρ

[g2|F y
` ]

1
2 . Define

Dy
`(g) = ∑

x,z∈Λ`
x∼z

{
Dx,z(g)+Dx+y,z+y(g)

}
.

By Proposition 12, Dy
`(g`,y) ≤ D(g). The main difference between the one-block

and two-block estimates is the following. The dynamics corresponding to the
Dirichlet for Dy

`(·) corresponds to two exclusion processes evolving in the two
blocks separately. Therefore, a term connecting these two dynamics is needed. Let
us define Dy

`,∗(g) = D
y
`(g)+D

1
n ,y+

1
n (g). This new Dirichlet form connects what

happens in the two boxes, through exchanges of particles between the first site of
each box. The following path lemma tells us how to estimate Dy

`,∗(g) in terms of
D(g).

Lemma 15 (Path lemma). For any g : Ωn→ R and any y ∈Tn,

D
1
n ,y+

1
n (g)≤ 4|y|nD(g).
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Proof of Lemma 15. To simplify the notation, we switch to Ω = {0,1}Z and we
consider y = `−1, ` ∈N. For any permutation σ : Λ`→ Λ` and any ξ ∈Ω, let us
define ξ σ ∈Ω as

ξ
σ (x) =

{
ξ (σx), x ∈ Λ`

ξ (x), otherwise.

According to this notation,

D1,`(g) =
1
2

∫ (
g(ξ (1`))−g(ξ )

)2
νρ(dξ ).

Notice that (1 `) = (1 2) . . .(`−1 `)(`−2 `−1) . . .(1 2), that is, the transposition
(1 `) is the product of 2`− 3 transpositions between neighbors. Let us denote by
σ j the product of the first j transpositions. Since the measure νρ is exchangeable,
for any two permutations σ , τ ,∫ (

g(ξ στ)−g(ξ τ)
)2

νρ(dξ ) =
∫ (

g(ξ σ )−g(ξ )
)2

νρ(dξ ).

Let us write g(ξ (1 `))−g(ξ ) as a telescopic sum:

g(ξ (1 `))−g(ξ ) =
2`−3

∑
j=1

(
g(ξ σ j)−g(ξ σ j−1)

)
=

2`−3

∑
j=1

(
g(ξ σ j)−g(ξ σ j−1)

)
·1.

By Cauchy-Schwarz inequality,

1
2

∫ (
g(ξ (1 `))−g(ξ )

)2
νρ(dξ )≤ 2`−3

2

2`−3

∑
j=1

∫ (
g(ξ σ jσ

−1
j−1)−g(ξ )

)2
νρ(dξ ).

Notice that σ jσ
−1
j−1 is a transposition between neighbors, and notice as well that

each pair of neighbours appears at most twice on the sum on the right-hand side of
this inequality. Since 2(2`−3)≤ 4`, the path lemma is proved.

Proof of Lemma 14. Using Lemma 15, we see that Dy
`,∗(g) ≤ (1+ 4εn)D(g) for

any g : Ωn→ R and y ∈ Λεn. Therefore, in order to show (22) and hence Lemma
14, it is enough to show that for any γ > 0,

lim
`→∞

lim
ε→0

lim
n→∞

sup
y

sup
g

{
γ〈
∣∣ξ `(0)−ξ

`(y)
∣∣,g2〉− 1

1
n +4ε

Dy
`,∗(g)

}
= 0.

For the reader who knows the theory of hydrodynamic limits, this variational
problem is essentially the same appearing in the middle of page 93 of [19], and
in particular, they may skip the rest of the proof. Let us identify the set of F y

` -
measurable functions with the set of functions from Ω2

` = {0,1}Λ`×{0,1}Λ` to R.
Let us denote by (ξ ,ζ ) the elements of Ω2

` . With this identification, we can rewrite
the supremum above as

sup
g

{
γ〈
∣∣ξ `(0)−ζ

`(0)
∣∣,g2〉− 1

1
n +4ε

D`,∗(g)
}
,
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where the supremum is over non-negative functions g : Ω2
`→R such that 〈g,g〉= 1.

Notice that the dependence on y has been totally washed away. Repeating the
compactness argument given in the proof of the one-block estimate, this time with
ε playing the role of n, we are left to proving that

lim
`→∞

sup
0≤k≤2`

∫ ∣∣ξ `(0)−ζ
`(0)

∣∣dν
2
k,` = 0,

where ν2
k,` is the uniform measure on the set{

(ξ ,ζ ) ∈Ω
2
` ; ∑

x∈Λ`

(
ξ (x)+ζ (x)

)
= k
}
.

It turns out that it is simpler to compute∫ (
ξ
`(0)−ζ

`(0)
)2dν

2
k,` =

∫ (
ξ
`(0)−ξ

`(`)
)2dνk,2`. (23)

In fact, it is enough to observe that
∫

ξ (x)dνk,2` =
k
2` and that

∫
ξ (x)ξ (y)dνk,2` =

k(k−1)
2`(2`−1) . With these two computations in hand, we can show that (23) is equal to
k(2`−k)
`2(2`−1) ≤

1
2`−1 , which finishes the proof of Lemma 14.

5.5 Final remarks

In the previous four subsections, we have proved the local superexponential esti-
mate, Lemma 9. It turns out that in its current form, this is not what we need in
order to deal with the martingales {Ma,n

t ; t ∈ [0,T ]}. The problem is that the local
function appearing there also depends on time. Recalling the bound in (21), we
see a constant t multiplying the supremum on the right-hand side of the inequality.
This constant can be changed into an integration over [0, t], if the local function f
depends on t as well. We did not include this dependence on t from the beginning
because it would have overcharged an already heavy notation. In the application we
have in mind, the dependence on t is rather simple. In fact, f (ξ )= c±(ξ )(ea(t)−1).
Therefore, the constant ea(t)− 1 could have been absorbed into γ during all the
computations, and in the end what we could prove is that the local superexponen-
tial estimate remains true whenever a : [0,T ]→ R remains bounded. If the reader
is not satisfied with this sketch, here is a different argument. Recall that in the
construction of the martingale {Ma,n

t ; t ∈ [0,T ]} we are assuming that a ∈ C1. Ac-
tually for the argument we will explain, continuity is enough. Since f is bounded,
given δ > 0 it is possible to find δ ′ > 0 such that |ea(t)− ea(s)| ≤ δ

2T if |s− t| ≤ δ ′.
Therefore, we can approximate ea(t)−1 by a function which is piecewise constant
on finite intervals of size at most δ ′, with an error at most δ

2 . On each one of these
finite intervals we can use the local superexponential estimate, proving the exten-
sion to the time-dependent function c±(ξ )(ea(t)−1). Since we will only need the
superexponential estimate for these functions, we state it as a lemma:
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Lemma 16. For any t ∈ [0,T ], any δ > 0 and any continuous function a : [0,T ]→
R,

lim
ε→0

lim
n→∞

1
n

logPn

(∣∣∣∫ t

0

{
c±(ηn

s ;xn
s )− v±(πn

s (ιε(xn
s )))
}(

e±a(s)−1
)
ds
∣∣∣> δ

)
=−∞.

6 The energy estimate

Let u : [0,T ]×T→ R be a function of class C0,1. The energy of the function u is
defined as ∫ T

0

∫
T

(
∇u(t,x)

)2dxdt.

Recall that according to our definition of the empirical measure {πn
t ; t ∈ [0,T ]}

in terms of finite elements, πn
t (x) has finite energy for any n ∈ N. Our aim will

be to show that in some sense, the probability of trajectories with very high en-
ergy is very small. Recall that {πn

t ; t ∈ [0,T ]} is a very oscillatory object at local
scales, so a naïve approach does not work. Indeed, we will need a variational
characterization of the energy. Therefore, let us introduce some Hilbert spaces.
For f : [0,T ]×T→ R,4 define

‖ f‖0,T =
(∫ T

0

∫
T

f (t,x)2dxdt
) 1

2
.

Let us denote byH0,T the Hilbert space { f ;‖ f‖0,T < ∞}. For f ,g ∈H0,T , define

〈〈 f ,g〉〉0,T =
∫ T

0

∫
T

f (t,x)g(t,x)dxdt.

For f ∈H0,T , let us define

‖ f‖1,T = sup
h∈C0,1

‖h‖0,T=1

〈〈 f ,∇h〉〉0,T .

We denote by H1,T the space of functions f ∈ H0,T such that ‖ f‖1,T < ∞. Notice
that H1,T is not a Hilbert space: functions that are constant in space and such that∫ T

0 f (t)2dt < ∞ belong toH1,T and satisfy ‖ f‖1,T = 0. In fact, if we say that f ∼ g
whenever f − g =: λ does not depend on x, then H1,T/ ∼ is a Hilbert space. We
will not use this fact, but we will use the following:

Proposition 17. If ‖ f‖1,T < ∞, then there exists a function ∇ f ∈ H0,T such that
‖ f‖1,T = ‖∇ f‖0,T and moreover 〈〈 f ,∇h〉〉0,T =−〈〈∇ f ,h〉〉0,T for any h of class C0,1.
In addition, the function x 7→ f (t,x) is continuous for a.e. t ∈ [0,T ].

4In this section we will only use f for test functions; do not confuse with the notation local
functions used in the previous section
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Proof. The existence of ∇ f is guaranteed by Riesz’s representation theorem. By
Fubini’s Theorem,

∫
(∇ ft)2dx <+∞ for almost every t ∈ [0,T ]. And by Sobolev’s

Embedding Theorem,
∫
(∇ ft)2dx <+∞ implies that f is Hölder-continuous of in-

dex 1/2.

Let {h j; j ∈N} be a sequence of functions in C0,1, dense in the unitary ball of
H0,T . Then, we can restrict the supremum in the variational formula of ‖ f‖1,T to
the set {h j; j ∈N}:

‖ f‖1,T = sup
j
〈〈 f ,∇h j〉〉0,T .

Throughout this section, we will denote by πn
· the process {πn

t ; t ∈ [0,T ]}, and we
will denote by πn (without the dot) the function

η 7→ ∑
x∈Tn

η(x)δ n
x (y)dy

from Ωn toM+
0,1(T).

Lemma 18 (Energy estimate). There exists a constant C0 ∈ (0,∞) such that for
any M > 0, and any ` ∈N,

lim
n→∞

1
n

logPn
(

sup
1≤ j≤`

〈〈πn
·,∇h j〉〉0,T > M

)
≤C0−

M2

8
.

Proof of Lemma 18. By Lemma 10, it is enough to show that

lim
n→∞

1
n

logPn
(
〈〈πn
·,∇h j〉〉0,T > M

)
≤C0−

M2

8

for any j ∈ N. Using the exponential Chebyshev’s inequality and the argument
explained between (20) and (21) in Section 5.1, we see that for any γ > 0

1
n

logPn
(
〈〈πn
·,∇h j〉〉0,T > M

)
≤−γM+

1
n

logEn
[
eγn〈〈πn

· ,∇h j〉〉0,T
]

≤−γM+K0 +K1T +
∫ T

0
sup

g

{
γ〈πn(∇h j

t ),g
2〉−nD(g)

}
dt.

Therefore, we need to estimate the supremum on the right-hand side of this equa-
tion. The way to estimate this term is different from what we did in Sections 5.3
and 5.4. Using the definition of πn, we see that

π
n(∇h j

t ) = ∑
x∈Tn

(
η(x)−η(x+ 1

n)
)(

h j
t (x)+ r j

n(t,x)
)
,

with r j
n(t,x) a correction of order 1/n uniformly in x and t since h j ∈ C0,1. There-

fore,
〈πn(∇h j

t ),g
2〉= ∑

x∈Tn

(
h j

t (x)+ r j
n(t,x)

)
〈η(x)−η(x+ 1

n),g
2〉.
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We will use the following trick: for any x,y ∈ Tn and any g : Ωn → R such that
〈g,g〉= 1,

〈η(x)−η(y),g2〉= 〈η(x),g2(η)−g2(ηx,y)〉
=
〈
η(x),

(
g(η)−g(ηx,y)

)(
g(η)+g(ηx,y)

)〉
≤ 1

βx,y
Dx,y(g)+

βx,y

2

∫ (
g(η)+g(ηx,y)

)2
νρ(dη)

≤ 1
βx,y
Dx,y(g)+2βx,y

for any βx,y > 0. In the first inequality we used the weighted Cauchy-Schwarz in-
equality and the inequality between arithmetic and geometric mean. In the second

inequality we used the fact that 〈g,g〉 = 1. Choosing βx,x+ 1
n
= γ|h j

t (x)+r j
n(t,x)|

n , we
obtain the bound

γ〈πn(∇h j
t ),g

2〉−nD(g)≤ 2γ2

n ∑
x∈Tn

(
h j

t (x)+ r j
n(t,x)

)2
,

valid for any g : Ωn→ R with 〈g,g〉= 1. We conclude that

1
n

logPn
(
〈〈πn
· ,h

j〉〉0,T >M
)
≤−γM+K0+K1T +2γ

2
∫ T

0

1
n ∑

x∈Tn

(
h j

t (x)+ r j
n(t,x)

)2
dt.

Therefore, sending n to ∞ we see that for C0 = K0 +K1T ,

lim
n→∞

1
n

logPn
(
〈〈πn
·,∇h j〉〉0,T > M

)
≤−γM+C0 +2γ

2.

Minimizing over γ concludes the proof.

7 The upper bound

Now that we have the superexponential estimate and the energy estimate at our
disposal, we can show the large deviation upper bound on Theorem 7. As we have
done before, for the sake of clarity, we break the proof into various steps.

7.1 The upper bound for open sets

Let us recall that we want to obtain a large deviation principle for the pair
{(πn

t ;xn
t ); t ∈ [0,T ]}, viewed as a random variable with values in the Polish space

E = D([0,T ];M+
0,1(T))×M+([0,T ])×M+([0,T ]). Recall that we are identify-

ing the process {xn
t ; t ∈ [0,T ]} with the pair of positive Radon measures (ωn

−,ω
n
+),

corresponding to the derivatives of the processes 1
n Nn,−

t , 1
n Nn,+

t .
The space D([0,T ];M+

0,1(T)) is equipped with the J1-Skorohod topology, while
M+([0,T ]) is equipped with the weak topology.
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Notation will become cumbersome very quickly, unless we adopt some sim-
plifying conventions. We will denote the process {(πn

t ;xn
t ); t ∈ [0,T ]} by (πn,xn).

In particular, we abandon the notation introduced in Section 5, where we used
the notation πn

· (with a dot) for {πn
t ; t ∈ [0,T ]}. Let A ⊆ E be an open5 set and

{Mn
t ; t ∈ [0,T ]} be a positive martingale with unit expectation. Assume thatMn

T
is a function of (πn,xn). Then,

1
n

logPn(A) =
1
n

logEn
[
Mn

T
(
Mn

T
)−11A

]
≤ sup

(πn,xn)∈A

1
n

log(Mn
T )
−1 .

The martingales {Ma,n
t ; t ∈ [0,T ]}, {MH,n

t ; t ∈ [0,T ]} are not explicitly functions
of (πn,xn) but the superexponential estimates of Lemma 8 and Lemma 16 say that
these martingales can be approximated by explicit functions of (πn,xn), with an
error that is superexponentially small. To keep track of all the indices and ease the
reading, we now introduce some notation. Let us denote by I the set of indices i of
the form i= {v0,a,H,ε,δ , `,M}, where v0 :T→ [0,1] is continuous, a : [0,T ]→R

is of class C1, H : [0,T ]×T→ R is of class C1,2, ε > 0, δ > 0, and `,M ∈ N. In
what follows, we use the index i to denote dependence on some (sometimes all, but
not always) of the variables {v0,a,H,ε,δ , `,M}. We start by preparing an initial
distribution associated to a profile v0. For v0 : T→ [0,1] continuous, define

f (x) = log
v0(x)

(
1−u0(x)

)
u0(x)

(
1− v0(x)

) .
Recall the definition of {ρn

x ;x ∈ Tn} given in Section 2.6. Define the functions
f n
x = n

∫
δ n

x (y) f (y)dy and

vn
x =

ρn
x e f n

x

1+ρn
x (e f n

x −1)
.

Define ν̂n
v0

as the product measure in Ωn given by

ν̂
n
v0
(η) = ∏

x∈Tn

{
vn

xη(x)+(1− vn
x)(1−η(x))

}
.

Notice that with this definition, the Radon-Nikodym derivative is a function of the
empirical density πn

0 :

dν̂n
v0

dνn
u0

= ∏
x∈Tn

[
vn

x

ρn
x

η(x)+
(1− vn

x)

(1−ρn
x )
(1−η(x))

]
= exp{ ∑

x∈Tn

[
η(x) f n

x − log(1+ρ
n
x e f n

x −ρ
n
x )
]
}=C(u0,v0)exp{n

∫
f (y)πn

0 (dy)},

5We are considering only open sets in order to apply later the Minimax Lemma in Proposition 19.
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with C(u0,v0) not depending on η . The process {(ηn
t ;xn

t ); t ∈ [0,T ]} with initial

distribution ν̂n
v0

has distribution
dν̂n

v0
dνn

u0
Pn. Recall (12) and (13), and consider the

martingale {Mi,n
t ; t ∈ [0,T ]} given by

Mi,n
t =

dν̂n
v0

dνn
u0

Ma,n
t M

H,n
t . (24)

Let Un
i = UH,n

ε,δ ∩U
a,n
ε,δ ∩U

n
M,` denote the intersection of the sets

UH,n
ε,δ =

{∣∣∣Qn
T (H)−

∫ T

0

1
n ∑

x∈Tn

(
∇Ht(x)

)2
π

n
t (ιε(x))

(
1−π

n
t (ιε(x))

)
dt
∣∣∣≤ δ

}
, (25)

Ua,n
ε,δ =

{∣∣∣∫ t

0

{
c±(ηn

s ;xn
s )− v±(πn

s (ιε(xn
s )))
}(

e±a(s)−1
)
ds
∣∣∣≤ δ

}
, (26)

Un
M,` =

{
sup

1≤ j≤`
〈〈πn,∇h j〉〉0,T ≤M

}
.

By using the bound |ψ(u)− 1
2 u2| ≤ 1

6 |u|
3e|u| (recall (14)) and the superexponential

estimate in Lemma 8, we get that

lim
ε→0

lim
n→∞

1
n

logPn
((
UH,n

ε,δ

)c)
=−∞.

Moreover, Lemma 16 and Lemma 18, respectively, imply that

lim
ε→0

lim
n→∞

1
n

logPn
((
Ua,n

ε,δ

)c)
=−∞,

and
lim
n→∞

1
n

logPn
((
Un

M,`

)c)≤C0− M2

8 .

Therefore,

lim
n→∞

1
n

logPn
((
Un

i
)c)≤max

{
Ua,H

ε,δ ,C0− M2

8

}
,

where Ua,H
ε,δ is a constant which converges to−∞ as ε→ 0, regardless of the values

of δ ,a or H. Therefore

lim
n→∞

1
n

logPn((π
n,xn) ∈ A)≤

≤ lim
n→∞

1
n

log2max
{
Pn({(πn,xn) ∈ A}∩Un

i ),Pn
((
Un

i
)c)}

≤max
{

lim
n→∞

1
n

logPn({(πn,xn) ∈ A}∩Un
i ),U

a,H
ε,δ ,C0− M

2

}
.

On the set Un
i , the martingaleMi,n

T is a function of the pair (πn,xn), plus some small
error term. Consequenlty, we can bound

1
n

logPn({(πn,xn) ∈ A}∩Un
i )≤ sup

(π,x)∈A∩U `
M

{
−
(

jε(a;π,x)+ Jn
ε (H;π)+

+hn(v0,u0;π0)
)
+ rn(H)+2δ

}
,
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where U `
M = {sup1≤ j≤`〈〈π,∇h j〉〉0,T ≤M} and the functions jε , Jn

ε and hn are given
by

jε(a;π,x) = a(T )xT −
∫ T

0

{
a′(t)xt + ∑

z=±
vz(πt(ιε(xt)))(eza(t)−1)ds

}
, (27)

Jn
ε (H;π) = πT (HT )−π0(H0)−

∫ T

0
πt
(
∂tHt +2∆Ht

)
dπtdt

−
∫ T

0

1
n ∑

x∈Tn

(
∇Ht(x)

)2
πt(ιε(x))

(
1−πt(ιε(x))

)
dt,

hn(v0,u0;π0) =
∫

log
v0(x)(1−u0(x))
u0(x)(1− v0(x))

dπ0 +
1
n ∑

x∈Tn

log
1− vn

x

1−ρn
x
.

Recall that the error term rn(H) comes from replacing a discrete version of the
Laplacian of H by ∆H. The error term 2δ comes from the use of the superexpo-
nential estimates stated in Lemma 8 and Lemma 16. Using the smoothness of ∇Ht

and of v0, we see that hn and Jn
ε converge to the functions

Jε(H;π) = πT (HT )−π0(H0)−
∫ T

0
πt
(
∂tHt +2∆Ht

)
dπtdt

−
∫ T

0

∫ (
∇Ht(x)

)2
πt(ιε(x))

(
1−πt(ιε(x))

)
dxdt,

(28)

h(v0,u0;π0) =
∫

log
v0(x)(1−u0(x))
u0(x)(1− v0(x))

dπ0 +
∫

log
1− v0(x)
1−u0(x)

dx.

Let us define

Ji(π,x) =

{
jε(a;π,x)+ Jε(H;π)+h(v0,u0;π0)−2δ , if (π,x) ∈ U `

M

+∞, otherwise.
(29)

The function Ji(π,x) is lower semicontinuous, since each one of the functions jε ,
Jε and h are continuous, and the set U `

M is closed. Minimizing over all the indices
i, we finally obtain the upper bound for open sets:

lim
n→∞

1
n

logPn((π
n,xn) ∈ A)≤ inf

i∈I
sup

(π,x)∈A
max{−Ji(π,x),U

a,H
ε,δ ,C0−

M2

8
}. (30)

7.2 The upper bound for compact sets

Once a large deviation upper bound has been obtained for open sets, the standard
way to pass from it to an upper bound for compact sets is through the so-called
Minimax lemma, whose proof can be found in [19], Lemma 3.2 in Appendix 2.
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Proposition 19 (Minimax Lemma). Let {Fi; i ∈ I} be a family of upper semicon-
tinuous functions defined on a Polish space E . Let {Pn;n ∈ N} be a sequence of
probability measures in E . Assume that for any open set A⊆ E ,

lim
n→∞

1
n

logPn(A)≤ inf
i∈I

sup
x∈A
Fi(x).

Then, for any compact set K ⊆ E ,

lim
n→∞

1
n

logPn(K)≤ sup
x∈K

inf
i∈I
Fi(x).

Let K ⊆ E be a compact set. Applying the Minimax Lemma to the family of
functions max{−Ji(π,x),U

a,H
ε,δ ,C0− M2

8 } in (30), we obtain the bound

lim
n→∞

1
n

logPn((π
n,xn) ∈ K)≤ sup

(π,x)∈K
inf
i∈I

max {−Ji(π,x),U
a,H
ε,δ ,C0−

M2

8
}. (31)

Recall that the index i includes all the possible choices of v0, a, H, ε , δ , ` and
M. We will take advantage of this by taking the infima in the right order. Ob-
serve that we can replace inf by liminf whenever it is convenient, since the liminf
of a sequence is greater than the inf of the same sequence. Recall the definition
U `

M = {sup1≤ j≤`〈〈π,∇h j〉〉0,T ≤M}. Now we send `→ ∞. Notice that Ji(π,x) is
increasing in `: the set where we define Ji(π,x) as equal to +∞ is growing with
`, and outside of it, the function Ji(π,x) does not depend on `. This is equiva-
lent to saying that we are restricting the supremum to the intersection of K and
UM = ∩`U `

M. By the definition of the sequence {h j; j ∈N}, the set UM is equal to
the set {‖π‖1,T ≤M}. Now it is the turn of sending M→ ∞. Doing this, there are
two effects. First, the term C0− M2

8 goes to −∞, and we can take it out of the max-
imum. And second, the set U = ∪MUM is equal to the setH1,T = {‖π‖1,T <+∞}.
Therefore, after taking the limit in ` first and then in M, in view of (31), we end up
with the inequality:

lim
n→∞

1
n

logPn((π
n,xn) ∈ K)≤ sup

K∩H1,T

inf
i

max{−Ji(π,x),U
a,H
ε,δ }. (32)

Notice that these two limit procedures together with Section 5 were devoted to
maximize over the set K∩H1,T instead of K. The reason for this will become
transparent in what follows. We now move to minimize the r.h.s. of (32) over
ε . Recall that Ua,H

ε,δ goes to −∞ as ε → 0 if the other parameters are fixed. But
then we need to analyze the limit of Ji(π,x) in (29) when ε → 0, the analysis
of the term Jε(H;π) in (28) has been already done in [20] and in Chapter 10 of
[19]. As ε → 0, the function Jε(H;π) has a well-defined limit, and the fact that
πt ∈M+

0,1(T) is enough to justify the limit. This limit is equal to

lim
ε→0

Jε(H;π) = J(H;π) := πT (HT )−π0(H0)−
∫ T

0
πt
(
∂tHt +2∆Ht

)
dπtdt

−
∫ T

0

∫ (
∇Ht(x)

)2
πt(x)

(
1−πt(x)

)
dxdt,
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Now we look at jε(a;π,x) in (27). When ε→ 0, we cannot guarantee that πt(ιε(xt))
in (27) goes to πt(xt) if we only know that πt has bounded density: it may easily be
the case that xt is a non-removable-by-smoothing discontinuity for every t ∈ [0,T ].
The set of points of this type forms a very thin subset ofT, but we cannot rule out a
pathological behavior supposing only that πt ∈M+

0,1(T). Since we can assume that
π ∈H1,T , we can also assume that x 7→ πt(x) is continuous for a.e. t ∈ [0,T ]. Then,
πt(ιε(xt)) converges to πt(xt) for a.e. t ∈ [0,T ]. By the dominated convergence
theorem, we conclude that jε(a;π,x) converges, as ε → 0, to

j(a;π,x) = a(T )xT −
∫ T

0

{
a′(t)xt + ∑

z=±
vz(πt(xt))(eza(t)−1)

}
dt (33)

Finally, by taking ε → 0 in the r.h.s. of (32), we get the bound

lim
n→∞

1
n

logPn((π
n,xn) ∈ K)≤ sup

K∩H1,T

inf
v0,a,H

{−( j(a;π,x)+ J(H;π)+h(v0,u0;π0))}

=− inf
K∩H1,T

sup
v0,a,H

{
j(a;π,x)+ J(H;π)+h(v0,u0;π0)

}
.

It turns out that the last supremum is exactly the rate function of the large deviation
principle stated in Theorem 7 (see equations (1.1)-(1.4) in Chapter 10 of [19] for the
equivalence), and therefore we have completed the large deviation upper bound of
Theorem 7 for compact sets. We state this bound as a lemma for further reference.

Lemma 20. For any compact set K ⊆ E ,

lim
n→∞

1
n

logPn((π
n,xn) ∈ K)≤− inf

(π,x)∈K
{Irw(x|π)+Iex(π)

}
7.3 Upper bound for closed sets

The canonical way to extend a large deviation upper bound from compact sets to
closed sets is to proving the exponential tightness of the corresponding sequence of
processes. We say that the sequence (πn,xn) is exponentially tight if for any M > 0
there exists a compact KM ⊆ E such that

lim
n→∞

1
n

logPn((π
n,xn) ∈ Kc

M)≤−M.

The relevance of this condition is given by the following proposition (see Lemma
1.2.18 in [8]):

Proposition 21. Let {Pn;n ∈ N} a sequence of probability measures defined on a
Polish space E . Let I : E → [0,∞] be a lower semicontinuous function. Assume
that for any compact set K ⊆ E ,

lim
n→∞

1
n

logPn(K)≤− inf
x∈K
I(x).
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Assume in addition that the sequence {Pn;n ∈N} is exponentially tight. Then,

lim
n→∞

1
n

logPn(C)≤− inf
x∈C
I(x).

for any closed set C ⊆ E .

Due to the product structure of the state space of (πn,xn), it is enough to show
exponential tightness for each of the process {πn;n ∈ N}, {xn;n ∈ N} separately.
The exponential tightness of {πn;n∈N} is proved in Chapter 10.4 of [19], starting
from eq. (4.5). We are left to proving the exponential tightness of {xn;n ∈ N}.
This is equivalent to showing the exponential tightness of each one of the processes
{ωn
±;n∈N}. Recall the following characterisation of compact sets ofM+([0,T ]).

A closet set C ⊆ M+([0,T ]) is compact if and only if supµ∈C µ([0,T ]) < +∞.

Notice as well that ωn
±([0,T ]) =

1
n N±,nT . Therefore, in order to show exponential

tightness of {ωn
±;n ∈N}, it is enough to show that

lim
M→∞

lim
n→∞

1
n

logPn(N
±,n
T > nM) =−∞.

This is actually simple to prove. In fact, the processes {M±,nt ; t ∈ [0,T ]}

M±,nt = exp
{

θN±,nt −n
∫ t

0
c±(ξ n

s )(e
θ −1)ds

}
are positive martingales of unit expectation. In particular, taking C1 = supξ c±(ξ ),

En
[
eθN±,nt

]
≤ eC1nt(eθ−1).

Using the exponential Chebyshev’s inequality, we see that

1
n

logPn(N
±,n
T > nM)≤C1T (eθ −1)−θM,

which proves the exponential tightness of {xn;n ∈ N}. Therefore by Proposition
21 and Lemma 20, we conclude that

lim
n→∞

1
n

logPn((π
n,xn) ∈ C)≤− inf

(π,x)∈C

{
Irw(x|π)+Iex(π)

}
, (34)

for any closed set C ⊆ E .

7.4 Some properties of the rate function

It turns out that a more explicit formula for the rate function Irw(x|π) can be ob-
tained. Recall that we are assuming that x has finite variation. We claim that
Irw(x|π) = +∞ if x is not absolutely continuous. Since x has finite variation, we
can justify an integration by parts to show that

a(T )xT −
∫ T

0
a′(t)xtdt =

∫ T

0
a(t)dxt .
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Therefore,

Irw(x|π) = sup
a∈C1

{∫ T

0
a(t)dxt −

∫ T

0
∑

z=±
vz(πt(xt))(eza(t)−1)dt

}
.

Let us assume that x is not absolutely continuous. Then there exists a compact
set K ⊆ [0,T ] such that

∫ T
0 1Kdxt 6= 0 and

∫ T
0 1Kdt = 0. For simplicity, we assume

that x(K) =:
∫ T

0 1Kdxt > 0. Since K is compact, there exists a sequence of smooth
functions aε : [0,T ]→ [0,1] such that aε ↓ 1K as ε → 0. Then, by the dominated
convergence theorem,

lim
ε→0

∫ T

0
λaε(t)dxt = λx(K),

lim
ε→0

∫ T

0
∑

z=±
vz(πt(xt))(ezλaε (t)−1)dt = 0.

Sending λ → ∞, we conclude that Irw(x|π) = +∞. In particular, we can rewrite
the rate function Irw as

Irw(x|π) = sup
a∈C1

∫ T

0

{
a(t)x′t − ∑

z=±
vz(πt(xt))(eza(t)−1)

}
dt. (35)

By an approximation argument, we can check that the supremum over C1 functions
can be replaced by a supremum over bounded functions. An upper bound for Irw
can be obtained by exchanging the supremum and the integration. The maximizing
function a is sensitive to v+(πt(xt))v−(πt(xt)) = 0. If v+(πt(xt))v−(πt(xt))> 0, it
is given by

âx,π(t) = log
x′t +

√
(x′t)2 +4v+(πt(xt))v−(πt(xt))

2v+(πt(xt))
(36)

=− log
−x′t +

√
(x′t)2 +4v+(πt(xt))v−(πt(xt))

2v−(πt(xt))
. (37)

In general, the pointwise supremum of a(t)x′t −∑z=± vz(πt(xt))(eza(t)− 1) is ob-
tained at

ax,π(t) =



âx,π(t), v+(πt(xt))v−(πt(xt))> 0

log |x′t |
v+(πt(xt))

, v+(πt(xt))v−(πt(xt)) = 0, x′t > 0

− log |x′t |
v−(πt(xt))

, v+(πt(xt))v−(πt(xt)) = 0, x′t < 0

−∞, v+(πt(xt))v−(πt(xt)) = 0, x′t = 0, v+(πt(xt))> 0
∞, v+(πt(xt))v−(πt(xt)) = 0, x′t = 0, v+(πt(xt)) = 0

(38)

where we use the convention that ∞ ·0 = 0 and log(1/0) = ∞.
If ax,π is bounded we have an explicit form for Irw by (35).
We show now that (38) is in fact always the optimizer. For simpler notation, we

write v±t = v±(πt(xt)). In a first step, we look at the finiteness of the rate function:
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Lemma 22. The rate function Irw(x|π) is finite if and only if x as absolutely con-
tinuous and ∫ T

0
|x′t | log+ |x′t |dt < ∞, (39)∫ T

0
(x′t)

+ log+
(
(v+t )

−1) dt < ∞ and (40)∫ T

0
(x′t)

− log+
(
(v−t )

−1) dt < ∞, (41)

where f+ = max( f ,0) and f− = max(− f ,0) are the positive and negative part of
a function.

Proof. Finiteness of the rate function follows from∫ T

0

{
ax,π(t)x′t − ∑

z=±
vz(πt(xt))(ezax,π (t)−1)

}
dt < ∞, (42)

which we now show under (39), (40) and (41). First we observe that

0≤ ∑
z=±

vz
t e

zax,π (t) ≤ |x′t |+2
√

v+t v−t . (43)

Hence ∫ T

0
∑

z=±

∣∣∣vz
t (e

zax,π (t)−1)
∣∣∣dt < ∞ (44)

by the absolute continuity of x and the fact that v+ and v− are bounded from above.
Since the integrand in (42) is non-negative, it follows from (43) and (44) that we
only need to look at the integrability of the positive part

(ax,π(t)x′t)
+ = a+x,π(t)(x

′
t)
++a−x,π(t)(x

′
t)
−.

W.l.o.g. we look at x′t > 0. We have

∫
{t∈[0,T ]:x′t>0}

x′ta
+
x,π(t)dt ≤

∫
{t∈[0,T ]:x′t>0}

x′t

∣∣∣∣∣log

(
x′t +

√
(x′t)2 +4v+t v−t

2v+t

)∣∣∣∣∣ dt

≤
∫

{t∈[0,T ]:x′t>0}

x′t

∣∣∣∣∣log
x′t +

√
(x′t)2 +4v+t v−t

2

∣∣∣∣∣ dt +
∫

{t∈[0,T ]:x′t>0}

x′t
∣∣log

(
(v+t )

−1)∣∣ dt,

which is finite by (39) and (40).
For the other direction, assume that (39), (40) or (41) is infinite, which is equiv-

alent to
∫
{t∈[0,T ]:x′t>0} |x′t | log+ |x

′
t |

v+t
dt = ∞ or

∫
{t∈[0,T ]:x′t<0} |x′t | log+ |x

′
t |

v−t
dt = ∞. To see

that notice that since v± is bounded from above there is no relevant difference be-
tween log and log+, the integrals can only diverge if the argument of the logarithm
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diverges. So assume w.l.o.g.
∫
{t∈[0,T ]:x′t>0} |x′t | log+ |x

′
t |

v+t
dt = ∞. Define for K > 0 the

bounded function

aK(t) := min

(
log+

(
x′t +

√
(x′t)2 +4v+t v−t

2v+t

)
,K

)
1x′t>0.

Then, by (35) and using the fact that −v−t (e−aK(t)−1) ≥ 0 and −v+t (eaK(t)−1) ≥
−1

2

(
x′t +

√
(x′t)2 +4v+t v−t

)
, we have

Irw(x|π)≥
∫ T

0
aK(t)x′t − ∑

z=±
vz

t

(
ezaK(t)−1

)
dt

≥
∫ T

0
aK(t)x′t −

1
2

(
x′t +

√
(x′t)2 +4v+t v−t

)
dt.

Since x is absolutely continuous, there is some constant M > 0 independent of K
so that

Irw(x|π)≥
∫

{t∈[0,T ]:x′t>0}

x′t min

(
log+

(
x′t +

√
(x′t)2 +4v+t v−t

2v+t

)
,K

)
dt−M

≥
∫

{t∈[0,T ]:x′t>0}

x′t min
(

log+
(

x′t
v+t

)
,K
)

dt−M,

which by assumption diverges as K→ ∞.

Lemma 23. The rate function Irw(x|π) is given by

Irw(x|π) =
∫ T

0

{
ax,π(t)x′t − ∑

z=±
vz(πt(xt))(ezax,π (t)−1)

}
dt.

Proof. Most of the work has been done in Lemma 22, in particular we know that

Irw(x|π)≤
∫ T

0

{
ax,π(t)x′t − ∑

z=±
vz(πt(xt))(ezax,π (t)−1)

}
dt

and the left hand side is finite iff the right hand side is. So we only need to show
that the right hand side is also a lower bound. We define for K > 0

aK(t) := max(min(ax,π(t),K) ,−K) .

Then

Irw(x|π)≥ limsup
K→∞

∫ T

0
aK(t)x′t − ∑

z=±
vz

t

(
ezaK(t)−1

)
dt.
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To move the limit inside the integral we will use dominated convergence. We claim
that there is an M > 0 so that∣∣∣∣∣aK(t)x′t − ∑

z=±
vz

t

(
ezaK(t)−1

)∣∣∣∣∣≤ |ax,π(t)x′t |+4|x′t |+2M,

which is integrable by Lemma 22. The first term is clear, so we only look at the
second term:∣∣∣vz

t

(
ezaK(t)−1

)∣∣∣≤ (|x′t |+√(x′t)2 +4v+t v−t + vz
t

)
1|aK(t)|<K

+

(
|x′t |+

√
(x′t)2 +4v+t v−t + vz

t

)
1aK(t)=zK

+ vz
t (1− e−K)1aK(t)=−zK

≤ 2|x′t |+M

for some M > 0 depending only on the upper bounds of v±t .

8 The lower bound

8.1 Hydrodynamic limit for the perturbed system

From now on we denote by i a given choice of the triple i = {v0,H,a}, where
v0 : T→ [0,1] is continuous, H : [0,T ]×T→ R is of class C1,2 and a : [0,T ]→ R

is of class C1. Given such an i, consider the martingaleMi,n
t from (24). Since it is a

positive martingale with unit expectation we can use it to define a new probability
law Pi

n on D([0,T ];Ωn×Tn), by

dPi
n

dPn
:=Mi,n

T .

We call the perturbed system, the time-inhomogeneous Markov process on Ωn×Tn

described by Pi
n with generator

Li,n,t f (η ;x) = n2
∑
y∼z

eHt(η
x,y)−Ht(η)

(
f (ηy,z;x)− f (η ;x)

)
(45)

+n ∑
z=±1

eza(t)cz(η ;x)
(

f (η ;x+ z
n)− f (η ;x)

)
, (46)

where Ht(η) =
∫

∑x∈Tn η(x)δ n
x (y)Ht(y)dy. We want to derive the hydrodynamic

behaviour of this perturbed system, namely, the analogs of Propositions 2 and 3.
For this aim, we first show that the statement of Lemma 9 remains in force under
Pi

n.

Lemma 24. Let f : Ωn→ R be a local function. Then,

lim
ε→0

lim
n→∞

1
n

logPi
n

(∣∣∣∫ t

0

{
f (ξ n

s )− f̄
(
π̂

n
s (ιε)

)}
ds
∣∣∣> δ

)
=−∞

for any δ > 0 and any t ∈ [0,T ].
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Proof of Lemma 24. By (24) and the explicit expressions of the involved factors,
we have that

∥∥dPi
n

dPn

∥∥
∞
= ‖Mi,n

T ‖∞ ≤ exp{nCH,a,T}. (47)

Recall the notations in (16) and (17) and note that

1
n

logPi
n

(∣∣∣∫ t

0
Wεn

f (ξ n
s )ds

∣∣∣> δ

)
=

1
n

logEn

[dPi
n

dPn
1{
|
∫ t

0 Wεn
f (ξ n

s )ds|>δ

}]. (48)

The claim now follows by applying (47) and Lemma 9 to the r.h.s. of (48).

Note that the generator in (45) restricted to functions acting only on the first
coordinate η corresponds to a perturbation of the exclusion process. The hydro-
dynamic behaviour of such a perturbed exclusion process is well known in the
literature, see e.g. [19], Proposition 5.1, Chapter 5. We recall it in the next propo-
sition.

Proposition 25. Fix i = {v0,H}, with respect to Pi
n,

lim
n→∞

π
n
t (dx) = ui(t,x)dx

in distribution with respect to the J1-Skorohod topology on D([0,T ];M+(T)),
where the density {ui(t,x); t ∈ [0,T ],x ∈T} is the unique solution of{

∂tui(t,x) = ∆ui(t,x)−∂x (ui(t,x)(1−ui(t,x)∂xH)

ui(0,x) = v0(x).
(49)

We are now ready to prove the hydrodynamic behavior for our perturbed sys-
tem.

Proposition 26. Define v±a (ρ, t) := e±a(t)v±(ρ), va(ρ, t) := v+a (ρ, t)−v−a (ρ, t) and
fix an index i = {v0,H,a}. Under Pi

n, the triple (π̂n
t ,

1
n Nn,+

t , 1
n Nn,−

t ) converges in
distribution to (ûi(t), 1

2( fi(t) + t),−1
2( fi(t)− t)) with respect to the J1-Skorohod

topology in D([0,T ];M+(T)×M+(T)×M+(T)), where ûi is the unique solu-
tion of{

∂t ûi(t,x) = ∆ûi(t,x)−∂x (ûi(t,x)(1− ûi(t,x))∂xH)+ va(ûi(t,0))∂xûi(t,x)
ûi(0,x) = v0(x),

(50)
and fi is given by {

f ′i (t) = va(ui(t, fi(t))) = va(ûi(t,0))
fi(0) = 0.

(51)
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Sketch of proof of Proposition 26. Much of the proof is analogous to the proof of
the unperturbed system derived in [1]. For this reason, we only show how to adapt
it. Since a,H are bounded, the tightness arguments for π̂n,xn of [1], Section 2.3,
show tightness in the space D([0,T ];M+(T)×T). A more careful checking of
these arguments show that we can actually prove tightness in D([0,T ];T) of each
of the processes {1

n Nn,±
t ; t ∈ [0,T ]}n∈N. Since these processes are increasing, the

uniform topology is stronger than the weak topology, showing tightness for the
triple (π̂n

t ,
1
n Nn,+

t , 1
n Nn,−

t ).
To identify the limits, the local replacement lemma for ξ n

t needs adaptation to
the perturbation, however Lemma 24 can be used to provide a suitable analogue:

lim
ε→0

lim
n→∞

Pi
n

(∣∣∣∣∫ t

0

(
e±a(s)c±(ξ n

s ;0)− v±a (π̂
n
s (ιε)))

)
ds
∣∣∣∣> δ

)
= 0. (52)

Next, the martingales

M̃n,a,±
t :=

Nn,±
t

n
− 1

n

∫ t

0
e±a(s)c±(ξ n

s ;0)ds (53)

have quadratic variations bounded by C
n for a suitable constant C depending on a

and the rates c±. Hence these martingales converge to 0 in probability, with respect
to the uniform topology. With fi a limit point of xn

n , it follows from (52) and (53)
that

fi(t) =
∫ t

0
va(ui(s, fi(s)))ds,

which is the integral version of (51). Since (49) admits a unique solution and
ûi(t,x) = ui(t,x+ fi(t)), the claim follows.

8.2 Relative entropy and the rate function

To obtain the lower bound for the large deviation principle in Theorem 7, we show
in this section that the relative entropy of Pi

n with respect to Pn can be interpreted
as a rate function.

Lemma 27. Recall definitions (6), (7), (33) and (8).

lim
n→∞

1
n

H
(
Pi

n

∣∣Pn
)
= h(v0|u0)+ J(H;ui)+ j(a;ui, fi) (54)

≤ Irw( fi|ui)+Iex(ui). (55)

Proof of Lemma 27. Recall (25),(26) and set Un
i := UH,n

δ ,ε ∩U
a,n
δ ,ε . Since

lim
ε→0

lim
n→∞

1
n

logPn ((Un
i )

c) =−∞
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and 1
n log dPi

n
dPn

= 1
n logMi,n

T is bounded, we have

lim
ε→0

lim
n→∞

Pi
n ((Un

i )
c) = 0.

Hence,

1
n

H
(
Pi

n

∣∣Pn
)
=

1
n
Ei

n

[
log

dPi
n

dPn

]
= Ei

n

[
1
n

log
dPi

n

dPn
1U i

n

]
+on,ε(1).

On Un
i ,

1
n

log
dPi

n

dPn
=

1
n

log
dv̂n

v0

dvn
u0

+a(T )xn
T −

∫ T

0
a′(s)xn

s + ∑
z=±1

vz (πn
s (ιε(xn

s )))
(

ea(s)−1
)

ds

+π
n
T (HT )−π

n
0 (H0)−

∫ T

0
π

n
s (∂sHs)+π

n
s (∆Hs)

− 1
n ∑

x∈Tn

(∇Hs(x))
2

π
n
s (ιε(x))(1−π

n
s (ιε(x))) ds+oδ ,n,ε(1),

with the error term bounded by 2δ according to (25) and (26). Finally, when taking
n→ ∞ and δ ,ε → 0, we can use Lemma 24 together with the hydrodynamic limit
for the perturbed system, Proposition 26, and obtain (54).

8.3 The lower bound

We can finally show the lower bound which together with (34) concludes the proof
of Theorem 7. We will proceed in two steps. We first restrict ourself to paths
obtained as solutions of the perturbed system in Proposition 26. Then, in Lemma
29 below, we show that paths with finite rate function can be approximated by
paths which arise via perturbation. For notational convience, define

I(x,π) := Irw(x|π)+Iex(π)

Lemma 28. Let O be an open set in E . Then

lim
n→∞

1
n

logPn(O)≥− inf
{
I( fi,ui) : H ∈ C1,2,v0 :T→ [0,1],a ∈ C1,(ui, fi) ∈ O

}
,

where i = {v0,H,a} and (ui, fi) is the solution of the differential equations in (49)
and (51).

Proof of Lemma 28. For a given open set O ∈ E , choose parameters i = {v0,H,a}
such that the solution (ui, fi) of the differential equations in (49) and (51) is con-
tained in O. By a change of measure and Jensen’s inequality we have that

logPn(O) = logEi
n

[
1{(πn,xn)∈O}

dPn

dPi
n

]
= logEi

n

[
dPn

dPi
n

∣∣∣∣O]Pi
n(O)

≥ Ei
n

[
log
(

dPn

dPi
n

)∣∣∣∣O]+ logPi
n(O)
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Moreover, by Proposition 26 and our choice of parameters, limn→∞P
i
n(O) = 1 and

lim
n→∞

1
n

(
Ei

n

[
log
(

dPi
n

dPn

)∣∣∣∣O]−H
(
Pi

n|Pn
))

= 0.

Hence, by Lemma 27,

lim
n→∞

1
n

logPn(O)≥−I( fi,ui).

Optimizing over i = {v0,H,a} such that (ui, fi) ∈ O ends the proof.

All that remains is to remove the restriction to paths obtained by perturbations.
To do so we use the theory of Orlicz spaces, see the appendix for basic facts on
Orlicz spaces. Motivated by Lemma 22 we use the Young function Φ(x) = (1+
x) log(1+ x).

Lemma 29. Fix a pair (x,π) and a sequence (yN ,π
N) which converges to (x,π)in

D([0,T ];M+(T)×T), for which I(x,π),I(yN ,π
N)< ∞ and

∥∥(yN)′− x′
∥∥

Φ
→ 0.

Furthermore assume that ε ≤ πN ≤ 1− ε , ε ≤ π ≤ 1− ε for some ε > 0 and that

lim
N→∞

∥∥π
N(yN)−π(x)

∥∥
L1([0,T ]) = 0. (56)

Then

lim
N→∞
Irw(yN |πN) = Irw(x|π). (57)

Proof of Lemma 29. Let us first observe that

lim
N→∞
‖vz(πN(yN))− vz(π(x))‖L1([0,T ]) = 0, for z =±, (58)

which follows from (56) by the Lipschitz continuity of vz(ρ). Also, by the assump-
tion that the densities are bounded away from 0 and 1, we have

vz(πN),vz(π)> ε̃, for some ε̃ > 0 and z =±. (59)

In Section 7.4 we found that under this assumption, when the rate function
Irw(x|π) is finite, it can be written explicitly as in equation (36). We can thus
rewrite the formula of the rate function in Lemma 23 using (36) and (37). Since

vz(πt(xt))ezax,π (t) =
zx′t +

√
(x′t)2 +4v+(πt(xt))v−(πt(xt))

2
,

we can rewrite Irw as

Irw(x|π) =
4

∑
j=1

∫ T

0
h( j)

πt(xt)
(x′t)dt, (60)
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with

h(1)ρ (x) :=−x+
√

x2 +4v+(ρ)v−(ρ)
2

, h(2)ρ (x) := h(1)ρ (−x), (61)

h(3)ρ (x) := x log

(
−h(1)ρ (x)

v+(ρ)

)
, h(4)ρ (x) := v−(ρ)+ v+(ρ). (62)

In view of (60), to show (57), we will prove that

lim
N→∞

∣∣∣∣∫ T

0

[
h( j)

πN
t (yN(t))

(
y′N(t)

)
−h( j)

πt(xt)
(x′t)
]

dt
∣∣∣∣= 0 for j = 1,2,3,4.

For j = 4, this is readily obtained due to (58). For j = 1,2,3, by triangular
inequality, we have that∣∣∣∣∫ T

0

[
h( j)

πN
t (yN(t))

(
y′N(t)

)
−h( j)

πt(xt)
(x′t)
]

dt
∣∣∣∣ (63)

≤
∫ T

0

∣∣∣h( j)
πt(xt)

(y′N(t))−h( j)
πt(xt)

(x′t)
∣∣∣ dt +

∫ T

0

∣∣∣h( j)
πN

t (yN(t))

(
y′N(t)

)
−h( j)

πt(xt)
(y′N(t))

∣∣∣ dt.

(64)

We want to show that, as N→ ∞, the two terms in the r.h.s. of (63) vanish.
For the first term, consider the case j = 3, the derivative

∂xh(3)ρ (x) = log

(
x+
√

x2 +4v+(ρ)v−(ρ)
2v+(ρ)

)
+

2x√
x2 +4v+(ρ)v−(ρ)

,

is monotone increasing and by (59), there are constants a,b > 0 so that

|∂xh(3)ρ (x)| ≤ log(1+a|x|)+b

uniformly in ρ and x.
By Taylor expansion,∣∣∣∣∫ T

0
h(3)ρ (x′t)−h(3)ρ (y′t)dt

∣∣∣∣≤ ∫ T

0
(log(1+amax(|x′t |, |y′t |))+b)|x′t − y′t |dt. (65)

By Hölder’s inequality (77) for Orlicz spaces,

(65)≤ 2‖x′t − y′t‖Φ‖log(1+amax(|x′t |, |y′t |))+b‖Φ∗ . (66)

By assumption ‖x′− y′ ‖
Φ
→ 0, so we only need to show that right term stays

bounded. To do so, observe that

Φ
∗(x) = max(ex−1− x,0)≤ ex−1 (67)
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Therefore, for r > 0,∫ T

0
Φ
∗ ((log(1+amax(|x′t |, |y′t |))+b)/r

)
dt (68)

≤ T
(

1
T

∫ T

0
1+amax(|x′t |, |y′t |))+bdt

) 1
r

−T. (69)

By max(|x′t |, |y′t |)≤ |x′t |+|x′t−y′t | and the fact that ‖x′− y′ ‖
Φ
→ 0 implies ‖x′− y′ ‖L1→

0 we get that the integral stays bounded. Therefore we can choose r large enough
so that (69) is less than 1, which shows that the Φ∗-norm stays bounded. Hence
y′→ x′ in ‖·‖Φ implies

∣∣∣∫ T
0 h(3)ρ (x′t)−h(3)ρ (y′t)dt

∣∣∣→ 0.
Thus, to conclude that the first term in the r.h.s. of (63) goes to zero when

j = 3, it suffices to show that smooth functions are dense in the Orlicz space. This
is a consequence of the following two facts. First, on the set of functions uniformly
bounded by an arbitrary but fixed constant, the L1-norm and the Orlicz-norm are
equivalent, see e.g. [22]. Hence the fact that the smooth functions lie densely in
the bounded functions in L1 implies the same fact for the Orlicz space. Second,
bounded functions are dense in the Orlicz space, see [22].

When j = 1,2, this argument becomes simpler because ∂xh( j)
ρ (x) is monotone,

and |∂xh( j)
ρ (x)| ≤ K uniformly in x and ρ , for some positive constant K.

For the second term in the r.h.s. of (63), when j = 1,2,3, we argue as follows.
First, consider the case j = 1, abbreviate ci(t) := v+(ρi(t))v−(ρi(t)) for i = 1,2,
and estimate

∣∣∣∣∫ T

0

[
h(1)

ρ1(t)
(x′t)−h(1)

ρ2(t)
(x′t)
]

dt
∣∣∣∣=
∣∣∣∣∣
∫ T

0

2 [c1(t)− c2(t)]√
(x′t)2 + c1(t)+

√
(x′t)2 + c2(t)

dt

∣∣∣∣∣
≤ K1

∫ T

0
|c1(t)− c2(t)| dt ≤ K1

∫ T

0

∣∣v−(ρ1)
∣∣ ∣∣v+(ρ1)− v+(ρ2)

∣∣ dt (70)

+K1

∫ T

0

∣∣v+(ρ2)
∣∣ ∣∣v−(ρ1)− v−(ρ2)

∣∣ dt ≤ K2 ∑
z=±
‖vz(ρ1)− vz(ρ2)‖L1([0,T ]), (71)

for some constants K1,K2 > 0 depending on (59) and on the uniform bounded
function 1/

(√
x2 + c1 +

√
x2 + c2

)
. Hence, the claim follows by (58). The case

j = 2 is the same due to (61).
It remains to consider the case j = 3. By using Hölder’s inequality for Orlicz

spaces (77), estimate∣∣∣∣∫ T

0
h(3)

ρ1(t)
(x′t)−h(3)

ρ2(t)
(x′t)dt

∣∣∣∣≤ 2‖x′‖Φ

∥∥∥∥∥log

(
x′+

√
x′2 +4c1(t)

x′+
√

x′2 +4c2(t)
· v

+(ρ2)

v+(ρ1)

)∥∥∥∥∥
Φ∗

.

(72)
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By the triangle inequality, the right hand side goes to 0 if both∥∥∥∥∥log

(
h(1)ρ1

h(1)ρ2

)∥∥∥∥∥
Φ∗

,

∥∥∥∥log
(

v+(ρ2)

v+(ρ1)

)∥∥∥∥
Φ∗

(73)

converge to 0. Note that by definition of the norm, ‖(·)‖Φ∗ goes to 0 iff
∫ T

0 Φ∗(a ·
(·))dt goes to 0 for all a > 1. For the left term in (73), by using the estimate (67),
we have

Φ
∗

(
a log

(
h(1)ρ1

h(1)ρ2

))
≤max

((
h(1)ρ1

h(1)ρ2

)a

−1,

(
h(1)ρ2

h(1)ρ1

)a

−1

)

Note that by (59), 0 < c−1 ≤ h(1)ρ1

h(1)ρ2

≤ c < ∞. Hence the above is less than

aca−1 max

(
h(1)ρ1

h(1)ρ2

−1,
h(1)ρ2

h(1)ρ1

−1

)
. (74)

We have for {i, i′}= {1,2}

h(1)ρi

h(1)ρi′

−1 =
h(1)ρi −h(1)ρi′

h(1)ρi′

= (ci− ci′)
−x+

√
x2 + ci′

ci′(
√

x2 + ci +
√

x2 + ci′)
.

As this right hand side is bounded from above by some constant, (74) is estimated
by

K3|c1− c2|,

and from (70) we can conclude that the left norm in (73) goes to 0. The right norm
in (73) is controlled with the same type of argument with v+ instead of h(1), which
completes the case j = 3.

Lemma 30. Assume π satisfies Iex(π)< ∞ and π is differentiable in time with an
absolutely continuous derivative which satisfies supx,t

∂

∂t
πt(x) < M for some 0 <

M < ∞. Then πt is Hölder-1/2 continuous for almost every t.

Proof of Lemma 30. Assume π has finite energy, that is ‖∇π‖0,T < ∞. Then, by
the Sobolev embedding theorem, the conclusion follows. So what we will show is
that if π has infinite energy under the given assumptions, then the rate function is
infinite as well, which is a contradiction.

First observe that instead of taking the supremum over all H when determining
Iex we can restrict ourself to those H with Ht(0) = 0,0≤ t ≤ T . This is easily seen
by observing that π has constant mass and hence J(H−H(0);π) = J(H;π).
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Looking in more detail at J(H;π), by partial integration, the boundedness of π̇

and basic estimates,∣∣∣∣πT (HT )−π0(H0)−
∫ T

0
πt(∂tHt)dt

∣∣∣∣= ∣∣∣∣∫ T

0

∂

∂t
πt(Ht)dt

∣∣∣∣
≤M

∫ T

0

∫ 1

0
|Ht(x)|dxdt = M

∫ T

0

∫ 1

0

∣∣∣∣∫ x

0
∇Ht(y)dy

∣∣∣∣ dxdt

≤M
∫ T

0

∫ 1

0
|∇Ht(y)| dydt ≤MT

1
2

(∫ T

0

∫ 1

0
(∇Ht(y))

2 dydt
) 1

2

.

If π has infinite energy, then by Proposition 17 there exists a sequence Hn ∈C0,2

with ‖∇Hn‖0,T = 1 and limn→∞〈〈π,∇∇Hn〉〉0,T = ∞. As C1,2 is dense in H0,T we
can w.l.o.g. assume Hn ∈ C1,2. Since∣∣∣∣J(Hn;π)−2

∫ T

0
πt(∆Hn)dt

∣∣∣∣≤ (1+MT
1
2 ),

we have limn→∞ J(Hn,π) = ∞, which implies that the rate function is infinite.

We are finally in shape to conclude the lower bound.

Proposition 31. Let O be an open set in E . Then

lim
n→∞

1
n

logPn(O)≥− inf
(π,x)∈O

{Irw(x|π)+Iex(π)} .

Proof of Proposition 31. We extend Lemma 28 in two steps, using Lemma 29. We
will always keep either π or x constant because that way it is easier to show the L1

condition of Lemma 29.
First we drop the restriction on a. To do so, fix H,v0 and let ui be the solution of

(49). By Lemma 30, for almost every t ui(t, ·) is Hölder-1/2 continuous, especially
ui(t, ·) is continuous.

Fix a path x with Irw(x|ui) < ∞. We have shown in Section 7.4 that x is abso-
lutely continuous whenever Irw(x|π)< ∞. Since the class C2 is dense in the set of
absolutely continuous functions with finite Φ-norm derivative, we can consider a
sequence of paths {y(N) : N ≥ 1} in C2 such that yN converges to x pointwise and∥∥(yN)′− x′

∥∥
Φ
→ 0.

For each N ≥ 1, let aN ∈ C1 be the unique function identified by the solution of

(yN
t )
′ = vaN

(
ui(t,yN

t )
)
.

Note that this is possible since ε ≤ ui ≤ 1− ε for some ε > 0. Hence yN is the
solution of (51) corresponding to aN ,H,v0. Since ui is continuous for almost all
t, ui(t,yN

t ) converges pointwise to ui(t,xt) a.e. Since ui is bounded, this implies
L1-convergence. By Lemma 29, Irw(yN |ui) converges as well, and hence

inf
{
I( fi,ui) : H ∈ C1,2,v0 : T→ [0,1],a ∈ C1,(ui, fi) ∈ O

}
= inf

{
I(x,ui) : H ∈ C1,2,v0 : T→ [0,1],(ui,x) ∈ O

}
.
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To remove the remaining restrictions we follow the steps in [19], Lemma 5.5,
Chapter 5, where the corresponding statement for the perturbed exclusion was
proved. What we will show is that the approximation steps in that lemma not
only work for Iex but for Irw as well. The general idea is the following scheme. If
π is smooth in time and space and is bounded away from 0 and 1 we can find H,v0
so that π = ui, where ui is the solution of (49). In three steps the conditions are then
relaxed, and in each step the convergence of the rate function is proved by use of
Lemma 29. A minor difference to Lemma 5.5 in [19] is that we exchange the order
of space and time convolution, however that has no influence on the convergence
of Iex.

Assume π is bounded away from 0 and 1, smooth in time with Iex(π)< ∞ and
supx,t | ∂

∂ t πt(x)| < ∞. Let x be a path with Irw(x|π) < ∞. Let αε : T→ [0,∞) be
a smooth function which integrates to one and has support contained in [−ε,ε].
Define πN(x) =

∫
π(x+ y)α1/N(y)dy. By Lemma 30 πt is Hölder-1/2 continuous

for a.e. t and

|πN
t (xt)−πt(xt)| ≤Ct

∫
|y|

1
2 α1/N(y)dy≤CtN−1/2,

which converges to 0, showing (56).
Therefore we can use Lemma 29 and obtain that limN→∞Irw(x|πN) = Irw(x,π)
and hence limN→∞I(x,πN) = I(x,π). Since πN is smooth in space and time and
is bounded away from 0 and 1, there are H,v0 so that πN is the solution of (49).
Together with the corresponding convergence for Iex from [19], we get

inf
{
I(x,ui) : H ∈ C1,2,v0 : T→ [0,1],(ui,x) ∈ O

}
= inf

{
I(x,π) : ∃ε > 0 : ε ≤ π ≤ 1− ε,sup

x,t
| ∂
∂ t

πt(x)|< ∞,(π,x) ∈ O
}
.

Now assume π is a density bounded away from 0 and 1, and x is a path
with Irw(x|π) < ∞. Extend π from [0,T ] to [0,T + 1] by the heat equation. Let
βε : R→ [0,∞) be a smooth function which integrates to 1 and whose support is

contained in [0,ε]. Define πN via πN
t =

∫ 1
N

0 πt+sβ1/N(s)ds. Since β1/N is smooth
supx,t | ∂

∂ t πn
t (x)| < ∞. Furthermore, since π is a càdlàg path πN

t (xt) converges to
πt(xt) pointwise, and since the densities are bounded also in L1([0,T ]).

Hence the condition for Lemma 29 is satisfied and Irw(x|πN) converges to
Irw(x|π).

As a final step, assume that I(x,π) < ∞. Let π̃0,π̃1 be the constant paths
identical to 0 and 1 respectively. Let πN = (1− 2

N )π + 1
N π̃0 + 1

N π̃1. We can no
longer apply Lemma 29. Instead we prove the statement directly via dominated
convergence using estimates similar to the first part of the proof of Lemma 22. Let
M be the supremum of v± and write v±,Nt := v±t (πN

t (xt)). Then, by (43),

0≤ ∑
z=±

vz,N
t ezax,πN (t) ≤ 2|x′t |+2M, (75)
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which is integrable and independent of N. Next, just as in Lemma 22, we only need
to to find an upper bound on the positive part (x′tax,πN (t))+, which we do only for
x′t > 0. Using log+ ≤ | log |= log++ log−,

a+x,πN (t)x′t = x′t log+

x′t +
√
(x′t)2 +4v+,N

t v−,Nt

2v+,N
t


≤ x′t

∣∣∣∣∣∣log

x′t +
√
(x′t)2 +4v+,N

t v−,Nt

2

∣∣∣∣∣∣+ x′t
∣∣∣log

(
(v+,N

t )−1
)∣∣∣

≤ x′t
[
log+(x′t +M)+ log−(x′t)

]
+ x′t

[
log+

(
(v+,N

t )−1
)
+ log−

(
M−1)] .

The only dependence on N is in x′t log+
(
(v+,N

t )−1
)

. The function v+(·) is a non-

negative polynomial which can be 0 only at the boundary points 0 and 1. If v+

is positive everywhere there is nothing to prove. Assume v+ has at least one 0.
Since as a polynomial v+ is monotone near 0 and 1 we can find δ > 0 so that
(v+,N

t ) ≥ min
(
infρ∈[δ ,1−δ ] v+(ρ),v+(πt(xt))

)
. By the assumption that Irw(x|π) <

∞ and Lemma 22 we use dominated convergence to show that limN→∞Irw(x|πN) =
Irw(x|π).

A Orlicz spaces

Orlicz spaces are a natural generalization of Lp-spaces. We recall here some basic
definitions and properties (see e.g. [22] for more details). For a general measurable
space (E,E ,µ) and a Young function Φ, that is a lower-semicontinuous convex
function Φ : [0,∞)→ [0,∞] with Φ(0) = 0 but not identical to 0, we can define the
Luxembourg norm of f : E→ R:

‖ f ‖
Φ

:= inf
{

a > 0 :
∫

Φ

(
| f |
a

)
dµ ≤ 1

}
. (76)

The Orlicz space is then given by LΦ(µ) := { f : ‖ f ‖
Φ
< ∞}, and it turns out to be

a Banach space. In the case that Φ(x) = xp we recover the Lp-space. If the measure
µ is finite it also holds that LΦ(µ)⊂ L1(µ).

Similar to the Lp-spaces Orlicz spaces also have a natural dual. Let Φ∗ be the
convex conjugate of Φ. Then Φ∗ is also a Young function, and has an associated
Orlicz space LΦ∗ .

Based on this duality there is a Hölder inequality for dual Orlicz spaces: for all
f ∈ LΦ(µ), g ∈ LΦ∗(µ), ∫

| f g| dµ ≤ 2‖ f ‖
Φ
‖g‖

Φ∗ . (77)

In particular, f g ∈ L1(µ). Note that in contrast to the usual Hölder-inequality there
is an additional factor 2.
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