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Quasi-Monte Carlo and Multilevel Monte Carlo Methods for

Computing Posterior Expectations in Elliptic Inverse Problems

R. Scheichl, A.M. Stuart, A.L. Teckentrup

Abstract

We are interested in computing the expectation of a functional of a PDE solution under a
Bayesian posterior distribution. Using Bayes’ rule, we reduce the problem to estimating the ratio
of two related prior expectations. For a model elliptic problem, we provide a full convergence
and complexity analysis of the ratio estimator in the case where Monte Carlo, quasi-Monte Carlo
or multilevel Monte Carlo methods are used as estimators for the two prior expectations. We
show that the computational complexity of the ratio estimator to achieve a given accuracy is
the same as the corresponding complexity of the individual estimators for the numerator and
the denominator. We also include numerical simulations, in the context of the model elliptic
problem, which demonstrate the effectiveness of the approach.

1 Introduction

Simulation frequently plays an essential role in the mathematical modelling of physical processes.
However, the model parameters are often subject to uncertainty. This may be due to incomplete or
inaccurate knowledge of the system or due to an inherent variability. It is important to understand
how this uncertainty in the input parameters influences the reliability of the simulation outputs.

In the Bayesian framework, we initially assign a probability distribution, called the prior dis-
tribution, to the input parameters. In addition observations, related to the model outputs, are
often available, and it is then possible to reduce the overall uncertainty and get a better repre-
sentation of the input parameters by conditioning the prior distribution on this data. This leads
to the posterior distribution on the input parameters. The goal of the simulations is then often
to compute the expected value of a quantity of interest (related to the model outputs) under the
posterior distribution. This is the problem of Bayesian inference.

Typically, the posterior distribution is intractable, in the sense that direct sampling is unavail-
able. One way to circumvent this problem is to use a Markov chain Monte Carlo (MCMC) approach
to sample from the posterior distribution [40, 18, 11, 32, 9]. However, for large-scale applications
where the number of input parameters is typically large and the solution of the forward model
expensive, MCMC methods require careful tuning and may become infeasible in practice.

An alternative approach, considered in this paper, is to note that any given posterior expec-
tation can be written as the ratio of two prior expectations, both involving the likelihood. The
denominator is the normalising constant in Bayes’ rule, namely the expected value under the prior
of the likelihood. The numerator is similar, but the likelihood is weighted by the test function of
interest. This approach has already been considered in [44, 41, 43], where the prior expectations are
computed using adaptive sparse grid techniques. Similar ideas are also found in [1] in the context
of importance sampling. The focus of this work is to use sampling methods to compute the prior
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expectations, which are also well-suited to the case of high dimensional inputs. In particular, we
investigate the use of Monte Carlo (MC), quasi-Monte Carlo (QMC) [38, 37, 35, 26] and multilevel
Monte Carlo (MLMC) [25, 30, 2, 47, 29, 20] methods. The work is closely related to the inde-
pendent works [14, 15, 23] that also investigate the use of QMC methods in computing posterior
expectations. The papers [14, 15] are narrower in the range of problems considered. Their analysis
is based on holomorphy arguments which require uniformly bounded coefficients, thus excluding
the Gaussian case considered here. On the other hand, the range of methods considered is wider
and includes higher-order QMC and multilevel QMC methods. The work [23] investigates the use
of higher order QMC methods for computing posterior expectations arising from partial differential
equations posed on random domains, again in the case of bounded parameters.

As a particular example, we consider the model inverse problem of determining the distribution
of the diffusion coefficient of a divergence form elliptic partial differential equation (PDE) from ob-
servations of a finite set of noisy continuous functionals of the solution. The coefficient distribution
is assumed to be determined by an infinite number of scalar parameters through a basis expan-
sion. In contrast to the works [44, 41, 43, 14], our analysis includes also results in the technically
demanding case of log-normal diffusion coefficients, where the differential operator depends in a
non-affine way on the parameters, each of which is modelled as a Gaussian random variable under
the prior distribution. We provide a full convergence and complexity analysis of the estimator of
the posterior expectation in the case of MC, QMC and MLMC sampling. We also demonstrate the
effectiveness of this approach for the estimation of a typical quantity of interest derived from the
elliptic inverse problem. The main conclusion of our work is that, for a given accuracy, the cost of
computing the posterior expectation with any of these Monte Carlo variants is proportional to the
computational complexity of the same estimator for prior expectations.

The remainder of this paper is organised as follows. Section 2 provides the mathematical set-up
of the inverse problem of interest, including the formulation of ratio estimators for posterior ex-
pectations. Section 3 is then devoted to the analysis of the error committed by approximating the
governing equations by finite elements, and Section 4 introduces MC, QMC and MLMC estimators
together with bounds on their sampling errors, extending the QMC analysis to non-linear function-
als. In Section 5, we then provide a full convergence and complexity analysis of ratio estimators
of posterior expectations. We demonstrate the performance of the proposed ratio estimators on a
specific quantity of interest in Section 6, and finally provide some conclusions in Section 7.

2 Bayesian Inverse Problems

Let X and V be separable Banach spaces, and define the Borel measurable mappings G : X → V
and H : V → R

m, for some m ∈ N. We will refer to G as the forward map and to H as the
observation operator. We denote by F : X → R

m the composition of H and G, and by | · | the
Euclidean norm on R

m. The inverse problem of interest is to determine the unknown function
u ∈ X from the noisy observations (or data) y ∈ R

m given by

y = H(G(u)) + η, (2.1)

where the noise η is a realisation of the R
m-valued Gaussian random variable N (0,Γ), for some

(known) covariance matrix Γ. For simplicity, we will assume that Γ = σ2ηI, for some positive
constant σ2η.
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We adopt a Bayesian perspective in which, in the absence of data, u is distributed according to
a prior measure µ0. Under the conditions given in Proposition 2.1 below, the posterior distribution
µy on the conditioned random variable u|y is absolutely continuous with respect to µ0 and given
by an infinite dimensional version of Bayes’ Theorem. This takes the form

dµy

dµ0
(u) =

1

Z
θ(G(u)), (2.2)

where

θ(ζ) = exp[−Φ(ζ)], Φ(ζ) =
1

2σ2η
|y −H(ζ)|2 and Z = Eµ0 [θ(G(u))]. (2.3)

The following proposition from [45] provides conditions under which the posterior distribution µy

is well defined and satisfies (2.2).

Proposition 2.1. Assume the map F : X → R
m is continuous and µ0(X) = 1. Then the posterior

distribution µy is absolutely continuous with respect the prior distribution µ0, with Radon-Nikodym
derivative given by (2.2).

In applications, it is often of interest to compute the expectation of a functional φ : V → R of
G(u) under the posterior distribution µy. If we define

ψ(ζ) = θ(ζ)φ(ζ) and Q = Eµ0 [ψ(G(u))], (2.4)

it follows from (2.2) that the posterior expectation of φ(G(u)) can be written as

Eµy [φ(G(u))] =
Eµ0 [ψ(G(u))]
Eµ0 [θ(G(u))]

=
Q

Z
. (2.5)

We will approximate Eµy [φ(G(u))] by using different Monte Carlo type methods to compute the
prior expectations Z and Q.

2.1 Parametrisation of the Unknown Input

We consider the setting where the Banach space X is a space of real-valued functions defined on
a bounded spatial domain D ⊂ R

d, for some dimension d = 1, 2 or 3. For ease of presentation,
we shall restrict our attention to the case X = C(D), the space of continuous functions on D, but
other choices are possible (cf. Remark 2.12), as is the extension to vector-valued functions.

We assume that the unknown function u ∈ X admits a parametric representation of the form

u(x) = m0(x) +

∞∑

j=1

ujφj(x), (2.6)

where m0 ∈ X, {φj}∞j=1 denotes an infinite sequence in X (typically normalised to one in X or
in a larger space containing X) and {uj}∞j=1 ⊂ R

∞ denotes a set of real-valued coefficients. By

randomising the coefficients {uj}∞j=1, we create real-valued random functions on D. To this end,
we introduce the deterministic, monotonically non-increasing sequence γ = {γj}∞j=1 and the i.i.d
random sequence ξ = {ξj}∞j=1, and set uj = γj ξj. To emphasise the dependence of u on ξ, we will
write u = u(x; ξ).

We will consider two specific examples of the infinite series representation (2.6), referred to as
uniform priors and Gaussian priors, respectively.
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2.1.1 Uniform Priors

In the case of uniform priors, we specify the i.i.d. sequence of random variables ξ = {ξj}∞j=1 by
choosing ξj ∼ U [−1, 1], a uniform random variable on [−1, 1], and the deterministic sequence γ is
chosen absolutely summable, γ ∈ ℓ1(R∞). The functions {φj}∞j=1 and m0 are chosen as elements

of C(D), and are assumed normalised so that ‖φj‖C(D) = 1, for all j ∈ N.

We then have the following result from [12].

Lemma 2.2. Suppose there are finite, strictly positive constants mmin,mmax and r such that

min
x∈D

m0(x) ≥ mmin, max
x∈D

m0(x) ≤ mmax and ‖γ‖ℓ1 =
r

1 + r
mmin.

Then the following holds almost surely: the function u(·; ξ) defined in (2.6) is in C(D) and satisfies
the bounds

1

1 + r
mmin ≤ u(x; ξ) ≤ mmax +

r

1 + r
mmin, for almost all x ∈ D.

Note in particular that the upper and lower bounds on u in Lemma 2.2 are independent of the
particular realisation of the random sequence ξ. With X = C(D), it follows from Lemma 2.2 that
µ0(X) = 1. We furthermore have the following result from [12] on the spatial regularity of the
function u in the case where the functions (m0, {φj}∞j=1) are Hölder continuous.

Lemma 2.3. Suppose m0 and {φj}j≥1, are in Cα(D), the space of Hölder continuous functions

with exponent α ≤ 1, and suppose
∑∞

j=1 |γj|2‖φj‖
β

Cα(D)
< ∞, for some β ∈ (0, 2). Then the

function u(·; ξ) defined in (2.6) is in Ct(D) almost surely, for any t < αβ/2.

2.1.2 Gaussian Priors

For Gaussian priors, we specify the i.i.d sequence of random variables ξ by choosing ξj ∼ N(0, 1),
a standard Gaussian random variable with mean 0 and variance 1. We choose the sequences
{φj}∞j=1 and {γ2j }∞j=1 to be the eigenfunctions and eigenvalues, respectively, of a covariance operator

C : L2(D) → L2(D), such that the series (2.6) is the Karhunen-Loeve (KL) expansion of the
Gaussian measure µ0 = N(m0, C) on L2(D). Denote by c : D × D → R the covariance kernel
corresponding to the covariance operator C. It follows from Mercer’s Theorem that the eigenvalues
{γ2j }∞j=1 are positive and summable, and the equality c(x, y) =

∑∞
j=1 γ

2
j φj(x)φj(y) holds for almost

all x, y ∈ D.
We have the following result on the spatial regularity of the function u from [4, 12].

Lemma 2.4. Let C denote the covariance operator with covariance kernel c satisfying c(x, y) =
g(‖x − y‖), for all x, y ∈ D, some norm ‖ · ‖ on R

d and some Lipschitz continuous function
g ∈ C0,1(D). Let {φj}∞j=1 and {γ2j }∞j=1 be the eigenfunctions and eigenvalues of C, respectively, and
suppose m0 ∈ Ct(D), for some t < 1/2. Then, the function u(·; ξ) defined in (2.6) is also in Ct(D)
almost surely.

An example of a covariance kernel c(x, y) that satisfies the assumptions of Lemma 2.4 is the
exponential covariance kernel

c(x, y) = σ2 exp[−‖x− y‖r /λ], (2.7)
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where the positive parameters σ2 and λ are known as the variance and correlation length, respec-
tively, and typically r = 1 or 2.

It follows from Lemma 2.4 that if the covariance operator C is smooth enough, so that the
function g is Lipschitz continuous, the function u(·; ξ) is almost surely continuous. With X = C(D),
it hence follows that µ0(X) = 1.

For practical applications, such as the problem described in Section 2.2, it is often of interest
to construct a function that is strictly positive on D. For this reason, we consider the function
a(·; ξ) = exp[u(·; ξ)]. Since u(·; ξ) is almost surely continuous, we can define almost surely the
quantities

amin(ξ) = min
x∈D

a(x; ξ), and amax(ξ) = max
x∈D

a(x; ξ).

We have the following result on the boundedness of the function a [4, 5].

Lemma 2.5. Let the assumptions of Lemma 2.4 hold. Then a(·; ξ) = exp(u(·; ξ)) is in Ct(D)
almost surely, for any t < 1/2. Furthermore,

0 < amin(ξ) ≤ a(x; ξ) ≤ amax(ξ) <∞, for almost all x ∈ D and ξ ∈ R
∞,

and a−1
min ∈ Lr(R∞), amax ∈ Lr(R∞) and a ∈ Lr(R∞, Ct(D)), for all r ∈ [1,∞).

Other, smoother covariance kernels, such as the Gaussian kernel

c(x, y) = σ2 exp[−‖x− y‖22 /λ2]

or the kernels from the Matérn family, also satisfy the assumptions of Lemmas 2.4 and 2.5, but
they lead to a significantly higher spatial regularity t ≥ 1/2 of a.

2.1.3 Finite-dimensional approximation

In simulations, it is often necessary to use a finite-dimensional approximation of the unknown u.
Given the parametrisation (2.6), this can be achieved by simply truncating the series at finite
truncation order J , or through best N -term approximations [7, 48]. For simplicity, we here choose
the former, and make the following assumption in the remainder of this paper.
Assumption A1. (Finite Truncation Order) Suppose the coefficients {γj}∞j=J+1 are all equal to
zero, for some finite J ∈ N, such that

u(x; ξ) = u(x; ξJ) = m0(x) +
J∑

j=1

γjξjφj(x), (2.8)

where ξJ := {ξj}Jj=1 ∈ R
J .

An important question is how one should optimally choose the truncation order J in (2.8), and
the answer typically involves a trade-off between choosing J sufficiently large to retain a required
accuracy, and sufficiently small to avoid an unnecessarily large computational cost associated to
sampling from u. We will in this paper assume that J ∈ N is given, and will not explicitly discuss
how to choose J . We refer the interested reader to the works [4, 35, 47, 26].

The series (2.8) defines a linear mapping P : RJ → X, with P (ξJ) = u, and we will define
the prior measure µ0 on X as the pushforward under P of a suitable measure P defined on the
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coefficient space RJ , equipped with the Borel product σ-algebra. For the uniform priors considered
in section 2.1.1, the measure P is the product measure

P(dξJ) =
J∏

j=1

dξj
2
. (2.9)

For the Gaussian priors in section 2.1.2, we have

P(dξJ) =
J∏

j=1

1√
2π

exp[−ξ2j /2] dξj . (2.10)

Corollary 2.6. Suppose Assumption A1 holds. Then (i) Lemmas 2.2 and 2.3 hold; and (ii) if
{φj}Jj=1 and {γ2j }Jj=1 are chosen as the first J elements of {φj}∞j=1 and {γ2j }∞j=1 in Lemma 2.4,
respectively, then Lemma 2.4 and 2.5 hold.

Proof. Part (i) follows directly from Lemmas 2.2 and 2.3, since the parametrisation (2.8) is just a
special case of (2.6). Part (ii) is proven in [4].

Remark 2.7. (Alternative Approximations) The truncated parametrisation (2.8) is not the only
way to obtain an approximation of u from which we can easily produce samples for simulation.
In the case of Gaussian priors, knowledge of the covariance kernel c allows us to assemble the
covariance matrix of the Gaussian vector [u(x1), u(x2), . . . , u(xn)], for any n ∈ N and {xi}ni=1 ⊆ D,
and we can hence use methods based on factorisations of the covariance matrix, such as [17], to
sample from u at a finite number of locations in the domain D. In applications such as the elliptic
problem discussed in section 2.2, this is usually sufficient, since typically quadrature methods are
used to compute the numerical approximation discussed in section 3. For more details, we refer
the interested reader to [27, 28, 46].

2.2 Model Elliptic Problem

We consider the model inverse problem of determining the distribution of the diffusion coefficient
of a divergence form elliptic partial differential equation (PDE) from observations of a finite set of
noisy continuous functionals of the solution. Let D ⊂ R

d, for d = 1, 2 or 3, be a bounded Lipschitz
domain, and denote by ∂D its boundary. The forward problem which underlies the inverse problem
of interest here is to find the solution p(·; ξJ ) of the following linear elliptic PDE,

−∇ · (k(x; ξJ )∇p(x; ξJ )) = f(x) in D, p(·; ξJ) = 0 on ∂D, (2.11)

for given functions k(·; ξJ ) ∈ C(D) and f ∈ H−1(D). Although all results in this section apply
also in the case of infinite-dimensional parameter vectors ξ, we restrict our attention to finite-
dimensional ξJ for consistency.

The variational formulation of (2.11) is to find p(·; ξJ) ∈ H1
0 (D) such that

b(p, q; ξJ) = L(q), for all q ∈ H1
0 (D), (2.12)

where the bilinear form b and the linear functional L are defined as usual, for all v,w ∈ H1
0 (D) by

b(v,w; ξJ ) =

∫

D
k(x; ξJ )∇v(x) · ∇w(x) dx and L(w) = 〈f,w〉H−1(D),H1

0 (D). (2.13)
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We say that p(·; ξJ) is a weak solution to (2.11) iff p(·; ξJ ) ∈ H1
0 (D) and p(·; ξJ ) satisfies (2.12).

In the inverse problem, we take the coefficient k to be a function of the unknown u, in which case
both the coefficient k and the solution p depend on the random sequence ξJ . When the dependence
on ξJ of k and p is irrelevant, we will simply write k = k(x) and p = p(x). With the unknown
function u(·; ξJ ) as in Section 2.1, we choose

• k(·; ξJ ) = u(·; ξJ ), in the case of the uniform priors described in Section 2.1.1, and

• k(·; ξJ ) = k∗ + exp(u(·; ξJ )), in the case of Gaussian priors, for some given continuous non-
negative function k∗ ≥ 0.

By Lemmas 2.2 and 2.5, both these choices ensure that the diffusion coefficient k(·; ξJ ) in (2.12) is
strictly positive on D, P-almost surely. In terms of the notation in previous sections, the Banach
space X is the space of continuous functions C(D) as before. The forward map G is defined by
G(u) = p, i.e. it maps the unknown function u(·; ξJ) to the solution p(·; ξJ). (Note that the
definition of G differs between the two choices k = u and k = k∗ + exp(u).) We take the Banach
space V as the Sobolev space H1

0 (D).
Existence and uniqueness of the weak solution p(·; ξJ ) is ensured by the Lax-Milgram Theorem.

As in previous sections, let kmin(ξJ) and kmax(ξJ) be such that

0 < kmin(ξJ) ≤ k(x; ξJ) ≤ kmax(ξJ) <∞, for almost all x ∈ D and for ξJ P-almost surely.

For uniform priors, kmin(ξJ) and kmax(ξJ) are independent of ξJ . If k
∗(x) > 0, for all x ∈ D, then

kmin(ξJ) is also independent of ξJ in the Gaussian case.

Definition 2.8. We will refer to the coefficient k as uniformly elliptic (respectively uniformly
bounded) when kmin(ξJ) (respectively kmax(ξJ)) is independent of ξJ .

The following is a direct consequence of the Lax-Milgram Lemma and Lemmas 2.2 and 2.5.

Lemma 2.9. For P-almost all ξJ ∈ R
J , there exists a unique weak solution p(·; ξJ ) ∈ H1

0 (D) to
the variational problem (2.12) and

∣∣p(·; ξJ)
∣∣
H1(D)

≤
‖f‖H−1(D)

kmin(ξJ)
.

Furthermore, p ∈ Lr
P
(RJ ,H1

0 (D)), for all r ∈ [1,∞). If k is uniformly elliptic, then the result holds
also for r = ∞.

In order to conclude on the well-posedness of the posterior distribution µy, we furthermore have
the following result on the continuity of the forward map G.
Lemma 2.10. The map G : X → V , G(u) = p, is continuous.

Proof. Denote by p1 and p2 two weak solutions of (2.12) with the same right hand side f and with
coefficients k1 and k2, respectively. Let kmin and kmax be such that

0 < kmin ≤ ki(x) ≤ kmax <∞, for almost all x ∈ D,

for i = 1, 2. Then it follows from the variational formulation (2.12) that

|p1 − p2|H1(D) ≤
‖f‖H−1(D)

k2min

‖k1 − k2‖C(D).
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In the case k = u, the continuity of G now follows immediately. In the case k = exp(u), the
continuity of G follows from the continuity of the exponential function.

We then have the following corollary to Proposition 2.1, which follows immediately from Lemmas
2.2, 2.4 and 2.10, together with the continuity of the observation operator H.

Corollary 2.11. For the forward map G defined by G(u) = p, the posterior measure µy is absolutely
continuous with respect to the prior measure µ0, with Radon-Nikodym derivative (2.2).

Remark 2.12. (Piecewise continuous coefficients) Although we here restrict our attention to the
case of continuous random coefficients, the theory extends to the piecewise continuous case where
a further source of randomness can be introduced in the partitioning of the computational domain
D into sub-domains. The well-posedness of the posterior distribution in this case was shown in [?].
The regularity and spatial discretisation error (as discussed in Section 3) were analysed in [47, 46].

3 Finite Element Discretisation

In this section, we analyse the error introduced in the computation of the prior expectations Z and
Q by a finite element approximation of the forward map G. We consider only standard, continuous,
piecewise linear finite elements on polygonal/polyhedral domains in detail. To this end, denote by
{Th}h>0 a shape-regular family of simplicial triangulations of the Lipschitz polygonal/polyhedral
domain D, parametrised by their mesh width h := maxτ∈Th diam(τ). Associated with each trian-
gulation Th we define the space

Vh :=
{
qh ∈ C(D) : qh|τ linear for all τ ∈ Th and qh|∂D = 0

}
(3.1)

of continuous, piecewise linear functions on D that vanish on the boundary ∂D.
The finite element approximation to (2.12), denoted by ph, is now the unique function in Vh

that satisfies
b(ph, qh; ξJ ) = L(qh), for all qh ∈ Vh, (3.2)

where the bilinear form b and the functional L are as in (2.13). Note that, in particular, this implies
that ph satisfies the same bound as in Lemma 2.9:

|ph(·; ξJ )|H1(D) ≤ ‖f‖H−1(D)/kmin(ξJ) . (3.3)

The approximate forward map Gh : X → V is then defined by Gh(u) = ph, and we denote the
resulting approximations of Z and Q, respectively, by

Zh = Eµ0 [θ(Gh(u))] and Qh = Eµ0 [ψ(Gh(u))].

A standard technique to prove convergence of finite element approximations of functionals is to
use a duality argument, similar to the classic Aubin Nitsche trick used to prove optimal convergence
rates for the L2 norm. In the context of the elliptic PDE (2.11) with random coefficients, this
analysis was performed in [47]. We here summarise the main results of the error analysis, and show
that if the observation operator H and the functional of interest φ are smooth enough, the finite
element error in the prior expectations Zh and Qh converges at the optimal rate.
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Let v,w ∈ H1
0 (D). Given a functional F : H1

0 (D) → R, we denote by DvF (w) its Fréchet
derivative at w, applied to v. With p and ph as before, we define

DvF (p, ph) =

∫ 1

0
DvF (p+ λ(ph − p)) dλ,

and |DvF |(p, ph) =
∫ 1

0
|DvF (p+ λ(ph − p))|dλ,

which in some sense are averaged derivatives of F on the path from p to ph. Let us now define the
following dual problem: find z ∈ H1

0 (D) such that

b(q, z; ξJ ) = DqF (p, ph), for all q ∈ H1
0 (D). (3.4)

Denote the finite element approximation of the dual solution z by zh ∈ Vh. It then follows from
the Fundamental Theorem of Calculus, Galerkin orthogonality of the primal problem (2.12) and
boundedness of the bilinear form b that

|F (p)− F (ph)| = |b(p− ph, z; ξJ)| = |b(p − ph, z − zh; ξJ)| ≤ kmax(ξJ) |p− ph|H1(D) |z − zh|H1(D).

In order to prove convergence of the finite element error |F (p) − F (ph)|, it hence suffices to prove
convergence of |p − ph|H1(D) and |z − zh|H1(D). For our further analysis, we make the following
assumption on the smoothness of the maps φ andH. Examples of functionals satisfying Assumption
A2 are discussed in [47], and include linear functionals, powers of linear functionals and boundary
fluxes.
Assumption A2. (Differentiability) Let φ and Hi, i = 1, . . . ,m, be continuously Fréchet differ-
entiable on the path {p+ λ(p − ph)}λ∈[0,1], and suppose that there exist t∗ ∈ [0, 1], q∗ ∈ [1,∞] and

Cφ, CH ∈ Lq∗
P
(RJ) such that f ∈ Ht∗−1(D),

|Dvφ|(p, ph) ≤ Cφ(ξJ)‖v‖H1−t∗ (D), and |DvHi|(p, ph) ≤ CH(ξJ)‖v‖H1−t∗ (D),

for all v ∈ H1
0 (D) and almost all ξJ ∈ R

J .

Let now F = φ or F = Hi, for some i ∈ {1, . . . ,m}. To get well-posedness of the primal
problem (2.12) and the dual problem (3.4), as well as existence and uniqueness of the solutions
p(·; ξJ) ∈ H1

0 (D) and z(·; ξJ ) ∈ H1
0 (D), for almost all ξJ ∈ R

J , it is sufficient to assume that
Assumption A2 holds with t∗ = 0. However, in order to prove convergence of the finite element
approximations, it is necessary to require stronger spatial regularity of p and z, which requires
Assumption A2 to hold for some t∗ > 0. We have the following result from [5, 47]. The assumptions
on D being polygonal and convex are purely to simplify the presentation. Proposition 3.1 also
holds for piecewise smooth or for non-convex domains, but typically with stronger restrictions on
the range of s.

Proposition 3.1. Let D be a Lipschitz polygonal, convex domain, let k ∈ Lr∗
P
(RJ , Ct(D)) and

k−1
min ∈ Lr∗

P
(RJ), for some t ∈ (0, 1] and r∗ ∈ [1,∞], and let Assumption A2 hold with t∗ = t and

q∗ = r∗. Then, the solutions p and z of (2.12) and (3.4) are both in Lr
P
(RJ ,H1+s(D)), for any

s < t and r < r∗. The result also holds for r = r∗ or for s = t, if r∗ = ∞ or t = 1, respectively.
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We will now show that the functionals θ and ψ appearing in the prior expectations Z and Q,
respectively, satisfy the bounds in Assumption A2 provided φ and H satisfy Assumption A2, as
well as the growth conditions in Assumption A3 below.

Assumption A3. (Boundedness) Suppose there are constants M1,M2 > 0 and n1, n2 ∈ N, such
that

|φ(v)| ≤M1

(
1 + |v|n1

H1(D)

)
and |H(v)| ≤M2

(
1 + |v|n2

H1(D)

)
, for all v ∈ H1

0 (D). (3.5)

Recall the product and chain rules for Fréchet derivatives for functionals F1, F2 : H1
0 (D) → R

and a function f : R → R:

Dv(F1F2)(w) = F2(w)DvF1(w) + F1(w)DvF2(w) and Dv(f ◦ F1)(w) = DDvF1(w)f(F1(w)).

We then have the following result.

Lemma 3.2. Let Assumption A2 hold with t∗ ∈ [0, 1] and q∗ ∈ [1,∞], and suppose Assumption
A3 holds. Then

|Dvθ|(p, ph) ≤ Cθ(ξJ)‖v‖H1−t∗ (D), and |Dvψ|(p, ph) ≤ Cψ(ξJ)‖v‖H1−t∗ (D),

for all v ∈ H1
0 (D) and for ξJ P-almost surely, where Cθ(ξJ) and Cψ(ξJ) are in Lr

P
(RJ), for all

r ∈ [1, q∗) If k is uniformly elliptic, then the result holds also for r = q∗.

Proof. First, we use the chain rule and product rule for Fréchet derivatives to obtain

Dvθ(w) = Dv

(
exp

[
− 1

2σ2η

m∑

i=1

(yi −Hi(w))
2

])
= −θ(w) 1

σ2η

m∑

i=1

DvHi(w)(yi −Hi(w)).

Denoting pλ = p+ λ(ph − p), we then have

|Dvθ|(p, ph) =
∫ 1

0
|Dvθ(pλ)| dλ ≤

∫ 1

0
θ(pλ)

1

σ2η

m∑

i=1

|DvHi(pλ)| |yi −Hi(pλ))|dλ.

By the definition of θ in (2.3), we have θ(pλ) ≤ 1, for all λ ∈ [0, 1]. By Assumption A3, it follows
that

|yi −Hi(pλ))| ≤ C(1 + |pλ|n2

H1(D)
) ≤ C(1 + ‖f‖n2

H−1(D)
k−n2
min (ξJ)),

for some (generic) constant C independent of the mesh size h and random parameter ξJ . It then
follows that

|Dvθ|(p, ph) ≤
C

σ2η
(1 + ‖f‖n2

H−1(D)
k−n2
min (ξJ))

m∑

i=1

|DvHi|(p, ph).

With Cθ(ξJ) =
mC
σ2η

(1 + ‖f‖n2

H−1(D)
k−n2
min (ξJ))CH(ξJ), it then follows from Assumption A2 that

|Dvθ|(p, ph) ≤ Cθ(ξJ)‖v‖H1−t∗ (D).

Next, using the product rule for Fréchet derivatives, together with the result just proved, we
have

Dvψ(w) = θ(w)Dvφ(w)− φ(w) θ(w)
1

σ2η

m∑

i=1

DvHi(w)(δi −Hi(w)).
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With pλ as before, it then follows that

|Dvψ|(p, ph) =
∫ 1

0
|Dvψ(pλ)| dλ

≤
∫ 1

0
θ(pλ)

[
|Dvφ(pλ)|+ φ(pλ)

1

σ2η

m∑

i=1

|DvHi(pλ)| |δi −Hi(pλ)|
]
dλ.

Now θ(pλ) ≤ 1, for all λ ∈ [0, 1]. By Assumption A3, it follows that

|φ(pλ)| max
i∈{1,...,m}

|yi −Hi(pλ))| ≤ C(1 + |pλ|n2

H1(D)
)2 ≤ C(1 + ‖f‖2n2

H−1(D)
k−2n2
min (ξJ)),

for some (generic) constant C independent of the mesh size h and random parameter ξJ . It then
follows that

|Dvψ|(p, ph) ≤ |Dvφ|(p, ph) +
C

σ2η
(1 + ‖f‖2n2

H−1(D)
k−2n2
min (ξJ))

m∑

i=1

|DvHi|(p, ph).

With Cψ(ξJ ) = Cφ(ξJ) +
mC
σ2η

(1 + ‖f‖2n2

H−1(D)
k−2n2
min (ξJ))CH(ξJ), it then follows that

|Dvψ|(p, ph) ≤ Cψ(ξJ)‖v‖H1−t∗ (D).

Finally, recall that by Lemmas 2.2 and 2.5, we have k−1
min(ξJ) ∈ L∞

P
(RJ) if k is uniformly elliptic,

and k−1
min(ξJ) ∈ Lq

P
(RJ), for any 1 ≤ q < ∞, otherwise. Hence, it follows from Assumption A2,

together with Hölder’s and Minkowski’s inequalities, that Cθ(ξJ ) and Cψ(ξJ) are in Lr
P
(RJ), for all

r ∈ [1, q∗). If k is uniformly elliptic, we can also set r = q∗.

Bounds on the finite element errors |θ(p)− θ(ph)| and |ψ(p) − ψ(ph)| now follow directly from
Proposition 3.1 and Lemma 3.2.

Theorem 3.3. Under the assumptions of Proposition 3.1 and Lemma 3.2 with t ∈ (0, 1] and
r∗ ∈ [1,∞], we have

‖θ(p)− θ(ph)‖Lr
P
(RJ ) ≤ Ck,f,θ,D h2s, and ‖ψ(p) − ψ(ph)‖Lr

P
(RJ ) ≤ Ck,f,ψ,D h2s,

for any s < t and r < r∗. The constants Ck,f,θ,D and Ck,f,ψ,D are independent of h. If r∗ = ∞, we
can also bound the L∞

P
norms. If t = 1, we can set s = 1.

Proposition 3.1, Lemma 3.2 and Theorem 3.3 hold, without any additional assumptions, also
for infinite-dimensional parameter vectors ξ ∈ R

∞ [5, 47].

4 Sampling methods

In this section, we briefly recall the main ideas behind Monte Carlo (MC), Multilevel Monte
Carlo (MLMC) and quasi-Monte Carlo (QMC) estimators to compute the prior expectation Qh =
Eµ0 [ψ(ph)]. The estimators for Zh = Eµ0 [θ(ph)] are defined analogously. We also provide bounds
on the sampling error of the estimators, which will become useful for bounding the mean square
error in Section 5. For more details, we refer the reader to [40, 6, 35, 26].
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4.1 Monte Carlo estimators

The standard Monte Carlo estimator for Qh is

Q̂MC
h,N =

1

N

N∑

i=1

ψ(ph(·; ξ(i)J )), (4.1)

where ξ
(i)
J is the ith sample of ξJ from the distribution P, and N independent samples are computed

in total. The estimator (4.1) is an unbiased estimator of Qh, with variance

V[Q̂MC
h,N ] =

V[ψ(ph)]

N
. (4.2)

4.2 Multilevel Monte Carlo estimators

The main idea of multilevel Monte Carlo estimation is simple. Linearity of the expectation operator
implies that

Eµ0 [ψ(ph)] = Eµ0 [ψ(ph0)] +
L∑

ℓ=1

Eµ0 [ψ(phℓ)− ψ(phℓ−1
)],

where {hℓ}Lℓ=0 are the mesh widths of a sequence of increasingly fine triangulations Thℓ with hL = h,
the finest mesh width, and k1 ≤ hℓ−1/hℓ ≤ k2, for all ℓ = 1, . . . , L and some 1 < k1 ≤ k2 <∞. The
multilevel idea is now to estimate each of the terms independently using a Monte Carlo estimator.
Setting for convenience Y ψ

0 = ψ(ph0), and Y
ψ
ℓ = ψ(phℓ) − ψ(phℓ−1

), for ℓ = 1, . . . , L, we define the
MLMC estimator as

Q̂ML
h,{Nℓ}

=
L∑

ℓ=0

Ŷ ψ,MC
ℓ,Nℓ

=
L∑

ℓ=0

1

Nℓ

Nℓ∑

i=1

Y ψ
ℓ (·; ξ(i,ℓ)J ), (4.3)

where importantly the quantity Y ψ
ℓ (·; ξ(i,ℓ)J ) uses the same sample ξ

(i,ℓ)
J on both meshes. The

estimator (4.3) is an unbiased estimator of Qh, with variance

V[Q̂ML
h,{Nℓ}

] =
L∑

ℓ=0

V[Y ψ
ℓ ]

Nℓ
≤ C

L∑

ℓ=0

h4sℓ
Nℓ

, (4.4)

where the last inequality follows from Theorem 3.3, with a constant C independent of {hℓ}Lℓ=0 and
with 0 ≤ s < t ≤ 1, as defined in Proposition 3.1.

When defining the MLMC estimator (4.3), one can in fact also use level-dependent truncation
levels Jℓ. This approach was analysed in [47], and can lead to further significant gains in terms of
computational cost.

4.3 Quasi-Monte Carlo estimators

Quasi-Monte Carlo methods are classically formulated as quadrature rules over the unit cube [0, 1]J ,
for some J ∈ N. Treating ξJ as a deterministic parameter vector distributed according to the
product uniform or Gaussian measure, respectively,

Eµ0 [ψ(ph)] =

∫

[0,1]J
ψ(ph(·; (Φ−1

J (v))))dv, (4.5)
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where ξJ = Φ−1
J (v) denotes the inverse cumulative normal applied to each entry of v in the Gaussian

case. In the uniform case, Φ−1
J is the simple change of variables mapping vj to 2vj − 1. We will use

a randomly shifted lattice rule to approximate the integral (4.5). This takes the form

Q̂QMC
h,N =

1

N

N∑

i=1

ψ
(
ph
(
·; ξ̃(i)J

))
, where ξ̃

(i)
J := Φ−1

J

(
frac

( iz
N

+∆
))

, (4.6)

z ∈ {1, . . . , N − 1}J is a generating vector, ∆ is a uniformly distributed random shift on [0, 1]J ,
and ”frac” denotes the fractional part function, applied component-wise. To ensure that every
one-dimensional projection of the lattice rule has N distinct values we furthermore assume that
each component zj of z satisfies gcd(zj , N) = 1 (cf. [16]).

The variance of the QMC estimator (4.6) is given by

V[Q̂QMC
h,N ] = E∆[(Eµ0 [ψ(ph)]− Q̂QMC

h,N )2]. (4.7)

To bound it, we make the following assumption on the integrand ψ(ph).
Assumption A4. Let c1 > 0 be a constant independent of J and let bj := γj‖φj‖C0(D), for j ∈ N.

We assume that, for any multi-index ν ∈ {0, 1}J with |ν| =∑j≤J νj ,

∣∣∣∣∣
∂|ν|ψ(ph)

∂ξνJ

∣∣∣∣∣ ≤ Ck,f,ψ,D
c
|ν|
1 |ν|!

kmin(ξJ)

J∏

j=1

b
νj
j .

For linear functionals ψ on H1
0 (D), this has been proved in [35] and in [26] for the uniform

and the Gaussian cases, respectively. In both cases, we can choose c1 = 1/ ln 2. However, in the
Bayesian setting, both ψ and θ are inherently non-linear functionals of p. Nevertheless, if φ and
H are linear functionals of p, and k is uniformly elliptic, Assumption A4 can be proved by using
the classical Faà di Bruno formula [10], a multidimensional version of the chain rule. A proof for
θ in the case m = 1 can be found in Appendix A. We omit the proof for ψ or for m > 1. A proof
for general analytic functionals φ and H of p would be even more technical and require the use of
generalisations of Faà di Bruno’s formula to Fréchet derivatives. For this reason, we simply work
under Assumption A4.

In the case of uniform priors, Assumption A4 was proven to hold in [14] using arguments from
complex analysis and the holomorphy of ph as a function of ξJ .

Lemma 4.1. Suppose Assumption A4 holds and the sequence {bj}∞j=1 is in lq(R∞), for some
q ∈ (0, 1]. Then, a randomly shifted lattice rule can be constructed via a component-by-component
algorithm in O(JN logN) cost, such that

V[Q̂QMC
h,N ] ≤

{
Cψ,q,δ N

−1/δ, if q ∈ (0, 2/3],

Cψ,q N
−(1/q−1/2), if q ∈ (2/3, 1),

for any δ ∈ (1/2, 1], independently of J . For q = 1 and under further assumptions given in [26,
Theorem 20] and [35, Theorem 6.4], we have V[Q̂QMC

h,N ] ≤ Cψ N
−1/2.

Proof. The proof follows those in [35, 26] with suitable changes to the product and order dependent
(POD) weights if c1 6= 1/ ln 2.

It is even possible to combine quasi-Monte Carlo sampling and multilevel estimation and the
gains are complementary [36, 34], but we will not include these estimators or their analysis here.
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5 Mean Square Error and Computational Complexity

We will now use the results from Sections 3 and 4 to bound the mean square error (MSE) of
estimators for the ratio Q/Z. To this end, let us denote by Ẑh and Q̂h one of the Monte Carlo type
estimators discussed in Section 4 for Zh and Qh, respectively. Let us define the mean square error

e
(
Q̂h

/
Ẑh

)2
= E

[(
Q

Z
− Q̂h

Ẑh

)2
]
. (5.1)

For MC and MLMC estimators, the expectation in the expression (5.1) above is with respect to
the prior measure µ0 on X. For QMC estimators, it is with respect to the random shift ∆.

Rearranging the mean square error and using the triangle inequality, we have

e
(
Q̂h

/
Ẑh

)2
=

1

Z2
E

[(
Q− Q̂h + (Q̂h/Ẑh)

(
Ẑh − Z

))2]

≤ 2

Z2

(
E

[
(Q̂h −Q)2

]
+ E

[
(Q̂h/Ẑh)

2(Ẑh − Z)2
])

. (5.2)

Our further analysis depends on the integrability of Q̂h
/
Ẑh, and we thus consider separately the

cases of uniformly and non-uniformly elliptic coefficients k.

5.1 Uniformly elliptic case

In the case where the coefficient k is uniformly elliptic, we have the following result on the in-
tegrability of Q̂h/Ẑh. The assumptions on φ and H are more general than Assumption A3, and
allow for very general non-linear growth. Since, in general, ẐML

h,{Nℓ}
could be negative, we require

stronger assumptions in the case of multilevel Monte Carlo estimators. In particular, we require
the assumptions of Theorem 3.3 to hold with r = ∞, which means that the coefficient k needs to
be uniformly bounded as well as uniformly elliptic. The analysis of MLMC in Lemma 5.1 below
therefore does not apply in the case of Gaussian priors.

Lemma 5.1. Suppose k is uniformly elliptic and there are two constants M1,M2 > 0, such that

|φ(v)| ≤M1 and |H(v)| ≤M2, for all v ∈ H1
0 (D) with |v|H1(D) ≤ ‖f‖H−1(D)/kmin.

Then Q̂MC
h,N

/
ẐMC
h,N ∈ L∞

P
(RJ), and Q̂QMC

h,N

/
ẐQMC
h,N ∈ L∞

∆ ([0, 1]J ), with L∞-norms bounded indepen-
dently of h and N .

If in addition h0 is sufficiently small and the assumptions of Theorem 3.3 hold with r = ∞, we
also have Q̂ML

h,{Nℓ}

/
ẐML
h,{Nℓ}

∈ L∞
P
(RJ), with L∞-norm bounded independently of {hℓ}, {Nℓ} and L.

Proof. Using the definition of Q̂MC
h,N in (4.1), as well as the bound in (3.3) and the fact that θ(v) ≤ 1,

for all v ∈ H1
0 (D), it follows that

|Q̂MC
h,N | =

∣∣∣∣∣
1

N

N∑

i=1

φ(ph(·; ξ(i)J ))θ(ph(·; ξ(i)J ))

∣∣∣∣∣ ≤M1
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and

ẐMC
h,N =

1

N

N∑

i=1

θ(ph(·; ξ(i)J )) ≥ exp

(
−|y|2 +mM2

2

2σ2η

)
=: b > 0 .

Since the upper bound on Q̂MC
h,N and the lower bound on ẐMC

h,N are independent of the random samples

{ξ(i)J }Ni=1, the claim of the lemma follows for Monte Carlo estimators. The proof for quasi-Monte
Carlo estimators is identical.

For multilevel Monte Carlo estimators, an upper bound on Q̂ML
h,{Nℓ}

follows as before. On the

other hand, to bound ẐML
h,{Nℓ}

we can use Theorem 3.3 which implies that

ẐML
h,{Nℓ}

≥ b−
L∑

ℓ=1

Ch2sℓ ,

for a constant C independent of {hℓ}. If we choose h0 sufficiently small such that
∑∞

ℓ=1 h
2s
ℓ < b/C,

this lower bound on ẐML
h,{Nℓ}

is positive and independent of {hℓ}, {Nℓ} and L. The claim of the
Lemma then follows also for MLMC estimators.

Using Lemma 5.1 and Hölder’s inequality, it then follows from (5.2) that

e
(
Q̂h

/
Ẑh

)2
≤ 2/Z2 max{1, ‖Q̂h/Ẑh‖2L∞}

(
E

[
(Q− Q̂h)

2
]
+ E

[
(Z − Ẑh)

2
])

.

Thus, the MSE of the ratio Q̂h
/
Ẑh can be bounded by the sum of the MSEs of Q̂h and Ẑh. Using

the fact that, for Qh the mean of the estimator Q̂h,

E

[
(Q− Q̂h)

2
]
= (E[Q−Qh])

2 + V

[
Q̂h

]
(5.3)

and the results from Sections 3 and 4, this gives the following bounds on the MSEs.

Theorem 5.2. Suppose the relevant assumptions of Proposition 3.1, Lemma 4.1 and Lemma 5.1
hold in each case. Then

e
(
Q̂MC
h,N

/
ẐMC
h,N

)2
≤ CMC

(
N−1 + h4s

)
,

e
(
Q̂QMC
h,N

/
ẐQMC
h,N

)2
≤ CQMC

(
N−1/δ + h4s

)
,

e
(
Q̂ML
h,{Nℓ}

/
ẐML
h,{Nℓ}

)2
≤ CML

( L∑

ℓ=0

h4sℓ
Nℓ

+ h4s
)
,

for some 1/2 < δ ≤ 1 and for some 0 < s ≤ 1, related to the spatial regularity of the data (cf.
Proposition 3.1), and for constants CMC, CQMC and CML independent of h,N, {hℓ}, {Nℓ} and L.

We note that the convergence rates of the mean square errors in Theorem 5.2 are identical to
the convergence rates obtained for the individual prior estimators Q̂h and Ẑh.
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5.2 Non-uniformly elliptic case

If the functionals φ and H are uniformly bounded, in the sense that

|φ(v)| ≤M1 and |H(v)| ≤M2, for all v ∈ H1
0 (D), and |θ(p)− θ(ph)| ≤M3h, (5.4)

for some constants M1,M2,M3 > 0, then the analysis in Lemma 5.1 carries over to the non-
uniformly elliptic case, with only minor modifications in the proof.

For more general functionals φ and H, the analysis is significantly more difficult and we are
only able to analyse Monte Carlo estimators. We restrict to functionals φ and H that satisfy the
polynomial growth conditions in Assumption A4. Then we can follow an approach similar to [19]
to obtain the following integrability result on Q̂MC

h,N/Ẑ
MC
h,N .

Lemma 5.3. Suppose that φ and H satisfy Assumption A4 and that the same N i.i.d. samples

{ξ(i)J }Ni=1 are used in the estimators Q̂MC
h,N and ẐMC

h,N . Then Q̂
MC
h,N

/
ẐMC
h,N ∈ Lr

P
(RJ) and ‖Q̂MC

h,N

/
ẐMC
h,N‖Lr

P
(RJ )

can be bounded independent of h and N , for all 1 ≤ r <∞.

Proof. To simplify the presentation, let us denote pih = ph(·; ξ(i)J ). Then, due to (3.3) and (3.5) we

can bound θ(p
(i)
h ) > 0, P-almost surely. Hence, it follows from (4.1) that

∣∣∣∣∣
Q̂MC
h,N

ẐMC
h,N

∣∣∣∣∣ =
∣∣∣∣∣
1
N

∑N
i=1 φ(p

i
h)θ(p

i
h)

1
N

∑N
i=1 θ(p

i
h)

∣∣∣∣∣ ≤ max
1≤i≤N

|φ(pih)|. (5.5)

Using the same argument as in the proof of [19, Lemma 1], for any convex and non-decreasing
function ρ : R+ → R+, we have

ρ

(
E

[
max
1≤i≤N

∣∣φ(pih)
∣∣r
])

≤ E

[
ρ
(

max
1≤i≤N

∣∣φ(pih)
∣∣r
)]

≤
N∑

i=1

E

[
ρ
(∣∣φ(pih)

∣∣r
)]
.

Choosing ρ(x) = |x|r̃/r, for some r ≤ r̃ <∞, and using (3.5) we have

∥∥∥ max
1≤i≤N

|φ(pih)|
∥∥∥
Lr
P
(RJ )

≤ ‖φ(ph)‖Lr̃
P
(RJ )N

1/r̃ ≤M1

(
1 + ‖f‖n2

H−1(D)
‖k−1

min‖n2

L
n2 r̃
P

(RJ )

)
N1/r̃ ,

The term in the bracket is finite due to Lemma 2.5 and the claim of the Lemma now follows if we
choose r̃ ≥ lnN .

Theorem 5.4. Suppose the assumptions of Proposition 3.1 and Lemma 5.3 hold. Then

e
(
Q̂MC
h,N

/
ẐMC
h,N

)2
≤ CMC

(
N−1 + h4s

)
,

for some 0 < s ≤ 1 related to the spatial regularity of the data (cf. Proposition 3.1) and for a
constant CMC > 0 independent of h and N .

Proof. Since Q̂MC
h,N

/
ẐMC
h,N is not in L∞

P
(RJ) in this case, we apply the Cauchy-Schwarz inequality to

the second term on the right hand side of (5.2) to obtain

e
(
Q̂MC
h,N

/
ẐMC
h,N

)2
≤ 2

Z2

(
E

[
(Q̂MC

h,N −Q)2
]
+ ‖Q̂MC

h,N

/
ẐMC
h,N‖2L4

P
(RJ )‖ẐMC

h,N − Z‖2L4
P
(RJ )

)
. (5.6)
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To bound ‖ẐMC
h,N−Z‖L4

P
(RJ ) we apply the triangle inequality and consider separately ‖Zh−Z‖L4

P
(RJ )

and ‖ẐMC
h,N − Zh‖L4

P
(RJ ). The former is bounded by Ch2s due to Theorem 3.3.

To bound the latter, let Xi := θ(ph(·; ξ(i)J ), i = 1, . . . , N . Since the range of θ is [0, 1], this is a

sequence of i.i.d. random variables with finite mean m := Zh, finite variance σ
2
X := E[(θ(ph)−Zh)2]

and finite central fourth moment τ4X := E[(θ(ph)− Zh)
4]. A direct calculation gives

‖ẐMC
h,N − Zh‖4L4

P
(RJ ) = E

[(
X̂N −m

)4]
=

3(N − 1)σ4X/2 + τ4X
N3

≤ 3σ4X/2 + τ4X/N

N2
.

Thus, the result follows from (5.6) together with Theorem 3.3 and Lemma 5.3.

The proofs of Lemma 5.3 and Theorem 5.4 can potentially also be extended to the case of
Quasi-Monte Carlo estimators. However, it seems impossible to satisfy Assumption A4 in the case
of non-uniformly elliptic coefficients k and so we did not pursue this any further.

The analysis in the case of multilevel Monte Carlo estimators is complicated by the fact that the
multilevel estimator ẐML

h,{Nℓ}
can take on negative values. This precludes the approach in the proof

of Lemma 5.3. The existence of moments of a ratio of random variables where the denominator
is not strictly positive has been the subject of research since the 1930s [3, 21, 31, 39, 33, 22],
and is a problem not yet fully solved. A possible approach to show existence of moments of the
ratio Q̂ML

h,{Nℓ}

/
ẐML
h,{Nℓ}

could be to use the Central Limit Theorem in [8], which shows that the
individual MLMC estimators are asymptotically normally distributed as the number of levels and
the number of samples per level tend to infinity. Hinkley [31] then gives an explicit expression of the
cumulative distribution function of the ratio of two correlated normal random variables, together
with its limiting normal distribution, as the denominator tends to a normal random variable with
non-zero mean and zero variance.

5.3 Computational ε-cost

Based on the bounds on the mean square errors given in Theorems 5.2 and 5.4, we now analyse
the computational complexity of the various estimators of our quantity of interest Q/Z. We are
interested in bounding the ε-cost, i.e., the cost required to achieve a MSE of order ε2. Since the
convergence rates of the mean square error are the same as for the individual estimators Q̂h and
Ẑh, bounds on the computational ε-cost can be proved as in [47, 26].

We denote by Cℓ the cost of obtaining one sample of θ(phℓ) and/or ψ(phℓ). This cost will
typically also depend on the truncation parameter J , but we will not make this dependence explicit
here. We furthermore denote by CMC, CML and CQMC the computational cost of the ratio estimator

Q̂h
/
Ẑh based on MC, MLMC and QMC estimators, respectively.

Theorem 5.5. Let the conclusions of Theorem 5.2 or Theorem 5.4 hold and suppose

Cℓ ≤ Cγh
−γ
ℓ , for some γ > 0.

Then for any ε < e−1, there exist a constant CML > 0, a value L ∈ N and a sequence {Nℓ}Lℓ=0,
such that

e
(
Q̂ML
h,{Nℓ}

/ẐML
h,{Nℓ}

)2
≤ ε2 and CML ≤





CMLε−2, if s < γ/4,
CMLε−2(log ε)2, if s = γ/4,

CMLε−γ/2s, if s > γ/4,
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where 0 < s ≤ 1 is related to the spatial regularity of the data (cf. Proposition 3.1). Furthermore,
there exist positive constants CMC and CQMC and values of h and N , such that

e
(
Q̂MC
h,N/Ẑ

MC
h,N

)2
≤ ε2 and CMC ≤ CMC ε−2−γ/2s,

e
(
Q̂QMC
h,N /ẐQMC

h,N

)2
≤ ε2 and CQMC ≤ CQMC ε−2δ−γ/2s, for some 1/2 < δ ≤ 1.

Theorem 5.5 shows that MLMC and QMC can outperform standard MC in terms of the growth
rate of the ε-cost. However, both QMC and MLMC also require stronger assumptions than MC (cf
section 4).

6 Numerical examples

We now study the performance of the ratio estimators on a typical model problem. As the forward
model, we take the elliptic equation

−∇ · (k(x; ξJ ))∇p(x; ξJ )) = 0, in D = (0, 1)2, (6.1)

subject to the deterministic, mixed boundary conditions p|x1=0 = 1, p|x1=1 = 0 and zero Neumann
conditions on the remainder of the boundary. The prior distribution on the coefficients ξJ is
Gaussian, as in Section 2.1.2, and k is a (truncated) log-normal random field. We choose the
exponential covariance function (2.7) with r = 1, correlation length λ = 0.3 and variance σ2 = 1.
The mean m0 is chosen to be 0. In this case, the assumptions of Proposition 3.1 hold for any
t < 1/2.

For the spatial discretisation, we use standard, continuous, piecewise linear finite elements
on a uniform triangular mesh. The stiffness matrix is assembled using the trapezoidal rule for
quadrature. The mesh hierarchy for the MLMC estimator is generated by uniform refinement of a
uniform grid with coarsest mesh width h0 = 1/8, and hℓ−1/hℓ = 2, for all ℓ = 1, . . . , L.

The quantity of interest φ is the outflow over the boundary at x1 = 1. To obtain optimal
convergence rates of the finite element error, we compute φ(ph) as

φ(ph) = −
∫

D
k(x; ξJ)∇wh(x) · ∇ph(x; ξJ))dx,

for a suitably chosen weight function wh with wh|x1=0 = 0, wh|x1=1 = 1 [47]. In particular, we
choose wh ∈ Vh to be one at the nodes of the finite element mesh on the boundary x1 = 1 and zero
at all other nodes.

The data y is generated from the solution of equation (6.1) with a random sample ξJ from the
prior distribution, on a fine reference mesh with h∗ = 1/256. The observation functional H is taken
as a local average pressure, representing a regularised point evaluation. To obtain m-dimensional
data y, we take the uniform finite element mesh on [0, 1]2 with grid size 1/(

√
m+ 1), and evaluate

the local average pressure at the m interior nodes in this mesh. The average is taken over the
six elements of the finite element mesh with h∗ = 1/256 adjacent to that node. We furthermore
add observational noise to the data y, which is a realisation of an m-dimensional normal random
variable with mean zero and covariance σ2ηI.

To generate samples of k, we use a truncated Karhunen-Loève expansion [24], i.e. we truncate
the infinite expansion (2.6) at a finite order JKL = 1400. An alternative that allows to sample from
the infinite expansion (2.6) would be the circulant embedding method [17, 27, 28].
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Figure 1: Convergence w.r.t. h of the discretisation errors |Qh/Zh − Q2h/Z2h|, |Qh − Q2h| and
|Zh−Z2h| (top left), as well as convergence w.r.t. N of the sampling errors E[(Q̂h/Ẑh−Qh/Zh)2]1/2,
E[(Q̂h−Qh)2]1/2 and E[(Ẑh−Zh)2]1/2 for MC (top right), QMC (bottom left) and MLMC (bottom
right), respectively. The dotted and dashed reference slopes are −1 and −1/2, respectively.

For the QMC estimators, we choose a lattice rule with product weight parameters γj = 1/j2

and one random shift. The generating vector for the rule used is available from Frances Kuo’s web-
site (http://web.maths.unsw.edu.au/∼fkuo/) as ”lattice-39102-1024-1048576.3600”. We point
out here that this generating vector is a standard, off the shelf generating vector, rather than a
generating vector specifically constructed for the weights implicitly defined in Assumption A4 and
Lemma 4.1. In practice we found this generating vector to work well, even though the convergence
rates in Lemma 4.1 were not proven for this particular choice.

6.1 Mean Square Error

We start by investigating the discretisation error, the sampling error and the mean square error of
the ratio estimators, for a fixed number of observations m = 9 and a fixed level of observational
noise σ2η = 0.09.
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Figure 2: Computational cost of ratio estimators Q̂h/Ẑh to achieve a RMSE e(Q̂h/Ẑh) of ε, using
the same random samples in Q̂h and in Ẑh (left) and using different random samples in Q̂h and in
Ẑh (right), respectively.

Figure 1 shows the discretisation error and the sampling errors of the different estimators. The
top left plot shows the discretisation error |Qh/Zh−Q2h/Z2h|, as well as the individual discretisation
errors |Qh−Q2h| and |Zh−Z2h|. We see these errors decay linearly in h, as predicted by Theorem 3.3.

The other three plots show the sampling error E[(Q̂h/Ẑh−Qh/Zh)2]1/2, as well as the individual
sampling errors E[(Q̂h−Qh)2]1/2 and E[(Ẑh−Zh)2]1/2, for MC (top right), QMC (bottom left) and
MLMC (bottom right). The mesh size h is fixed at h = 1/16, and the “exact” expected values Qh
and Zh are estimated with MLMC with a very large number of samples. For MC and QMC, N
on the horizontal axis represents the number of samples. For MLMC, N represents the equivalent
number of solves on the finest grid h = 1/16 that would lead to the same cost as the MLMC
estimator. This means that for a given N , the cost of all three estimators is the same. The number

of samples Nℓ in the MLMC estimator was chosen proportional to h
−(4s+γ)/2
ℓ ≈ h−2

ℓ , as suggested
by the optimisation in [25, 6], assuming s ≈ 1/2 and γ ≈ 2. We show results for ratio estimators
with the same random samples used in Q̂h and Ẑh, referred to as dependent estimators, as well
as ratio estimators with different random samples used in Q̂h and Ẑh, referred to as independent
estimators. For MC and MLMC, we observe a convergence rate of N−1/2. For QMC, we observe a
convergence rate which is significantly faster than order N−1/2 and almost order N−1.

Figure 2 compares the computational costs of the different estimators to achieve an RMSE of ε.
The computational cost of the estimators was computed as Nh−2 for the MC and QMC estimators,
and as N0h

−2
0 +

∑L
ℓ=1Nℓ(h

−2
ℓ + h−2

ℓ−1) for the MLMC estimator. The bias |Qh/Zh − Q/Z| was
estimated from the values of |Qh/Zh −Q2h/Z2h| shown in Figure 1. As predicted by Theorem 5.2
with γ ≈ 2 and s ≈ 1/2, the cost of the MC estimator grows with about ε−4, the cost of the QMC
estimator grows with about ε−3, and the cost of the MLMC estimator grows with about ε−2.

6.2 Dependency on m and σ2
η

Finally, we look at the dependency of the sampling error on the number of observations m and on
the noise level σ2η . For large values of m and small values of σ2η , we expect the posterior distribution
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Figure 3: Sampling errors E[(Q̂h/Ẑh − Qh/Zh)
2]1/2 as a function of noise level σ2η (left) and as a

function of number of observations m (right), respectively.

µy to concentrate on a small region of the parameter space. The ratio estimators sample from the
prior distribution and do not make use of this fact. We expect the sampling errors to grow with
increasing m and decreasing σ2η . To ameliorate this problem, one can under certain assumptions
rescale the parameter space before applying the ratio estimators, see e.g. [42] for details.

Figure 3 shows the sampling error of ratio estimators based on using the same samples in Q̂h
and Ẑh. We observe a mild growth of the sampling errors both with increasing m and decreasing
σ2η , but the growth is not dramatic and all estimators appear to be robust over a large range
of practically interesting values. The fact that the sampling error for MLMC based estimators
grows more quickly than for MC and QMC based estimators, is at least partly caused by the fact
that V[ψh0 ] and V[ψh1 − ψh0 ] become of the same size for small σ2η or large m, making the choice

Nℓ = Ch−2
ℓ less and less optimal. Experiments with estimators based on using independent samples

in Q̂h and Ẑh also showed growth of sampling errors for small σ2η and large m, in fact much faster
than in the case of dependent estimators.

7 Conclusions and further work

In Bayesian inverse problems, the goal is often to compute the expected value of a quantity of
interest under the posterior distribution. For sampling based approaches, one has to overcome the
difficulty that the posterior distribution is typically intractable, in the sense that direct sampling
from it is unavailable since the normalisation constant is unknown. We considered here an approach
based on Bayes’ theorem that computes an estimate of the normalisation constant and estimates
the posterior expectation as the ratio of two prior expectations. To compute the prior expectations,
we considered the sampling based approaches of Monte Carlo, quasi-Monte Carlo and multilevel
Monte Carlo estimators. For a model elliptic inverse problem, we provided a full convergence and
complexity analysis of the resulting ratio estimators. Our theory shows that asymptotically the
complexity of computing the posterior expectation with this approach is the same as computing
prior expectations, and this result is also confirmed numerically for a typical model problem in
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uncertainty quantification.
It would be interesting to compare the performance of the ratio estimators considered in this

work to Markov chain Monte Carlo (MCMC) and multilevel Markov chain Monte Carlo (MLM-
CMC) methods [32, 18]. Especially in the case of small noise level σ2η or large number of observations
m, MCMC based approaches might explore the posterior distribution more efficiently. In terms of
the ε-cost of estimators, the analysis and simulations in [18] show that the computational cost of
a standard MCMC estimator grows at the same rate as a ratio estimator based on MC, and the
cost of an MLMCMC estimator will grow at the same rate as a ratio estimator based on MLMC.
The constants appearing in these estimates, for MCMC based approaches, depend on quantities
like the acceptance rate, autocorrelation and possibly the dimension of the parameter space. For
the high dimensional problems considered in this work, these constants might be very large.

A Proof of Assumption A4 for θ for linear and scalar H
Let m = 1, let H be a linear functional on V = H1

0 (D) and let k∗min := minx∈D k
∗(x) > 0 and thus

kmin(ξJ) ≥ k∗min > 0, for all ξJ ∈ R
J . Let us assume without loss of generality that y = 0 and

σ2η = 1, and for simplicity let ξ = ξJ ∈ R
J . Then, θ(ph(·; ξ) = g(h(ξ)) with g(ζ) := exp(−ζ2/2) ≤ 1

and h(ξ) := H(ph(·; ξ)). To simplify the presentation, we write gn :=
dng

dζn
(h(ξ)) and hµ :=

∂|µ|h

∂ξµ
(ξ)

where µ is a multi-index in {0, 1}J .
Let C be a generic constant independent of J , ν and ξ. First note that due to (3.3) and the

linearity of H
|h(ξ)| ≤ ‖H‖H−1(D)|ph|H1

0 (D) ≤
‖H‖H−1(D)‖f‖H−1(D)

k∗min

=: κ∗.

Then, we have gn(ζ) = (−1)nHn(ζ)g(ζ) where Hn is the nth Hermite polynomial, and so

|gn(h(ξ))| ≤ Cmax{1, |h(ξ)|n} g(h(ξ)) ≤ Cmax{1, κn∗ } . (A.1)

Moreover, it was shown in [26, Theorem 16] that, for linear H,

|hµ(ξ)| ≤ κ∗
|µ|!

(ln 2)|µ|

J∏

j=1

b
µj
j . (A.2)

Now, Faa di Bruno’s formula for the special case where ν ∈ {0, 1}J and where h(ξ) is scalar (cf.
[10, Corollary 2.10]) states that

θν =

|ν|∑

r=1

gr
∑

P (r,ν)

r∏

i=1

h
µ(i)

where

P (r,ν) :=

{
µ
(1), . . . ,µ(r) : 0 ≺ µ

(1) ≺ . . . ≺ µ
(r) and

r∑

i=1

µ
(i) = ν

}
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and ≺ indicates some unique linear ordering of multi-indices (see [10, p. 505] for an example). And
so, using (A.1) and (A.2), we get

|θν | ≤ C

∣∣∣∣∣∣

|ν|∑

r=1

max{1, κr∗}
∑

P (r,ν)

r∏

i=1


κ∗

|µ(i)|!
(ln 2)|µ

(i)|

J∏

j=1

b
µ
(i)
j

j



∣∣∣∣∣∣

≤ C

(
max{κ∗, κ2∗}

ln 2

)|ν|



|ν|∑

r=1

∑

P (r,ν)

r∏

i=1

|µ(i)|!




︸ ︷︷ ︸
=:ρν

J∏

j=1

b
νj
j

since all elements of P (r,ν) satisfy
∑r

i=1µ
(i) = ν and

∑r
i=1 |µ(i)| = |ν|. It remains to bound ρν .

We give a simple but fairly crude bound.
First note that, for each element (µ(1), . . . ,µ(r)) ∈ P (r,ν), the moduli |µ(i)|, i = 1, . . . , r, form

a partition of n := |ν|. Hence, instead of partitioning the summands in ρν into the subsets P (r,ν),
we can also sum over all possible partitions k1, . . . , kr of n with 1 ≤ r ≤ n. The partition function
p(n) is the number of possible partitions of n. It is bounded by exp(π

√
2n/3) [13]. For each

partition k1, . . . , kr of n, the number of possible elements in P (r,ν) that satisfy |µi| = ki can be
bounded by

(
n

k1

)(
n− k1
k2

)(
n−∑2

i=1 ki
k3

)
. . .

(
n−∑r−1

i=1 ki
kr

)
=

n!

k1!k2! . . . kr!

Elements of P (r,ν) where |µi| = |µj |, for some i 6= j, are counted twice in this bound. Since∏r
i=1 |µ(i)|! = k1!k2! . . . kr!, we finally get the bound

ρν ≤ p
(
|ν|
)
|ν|! ≤ exp

(
π

√
2|ν |
3

)
|ν|! .

Hence, there exists a constant cp > 1 such that Assumption A4 holds with c1 := cpmax{κ∗, κ2∗}/ ln 2.
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