

Citation for published version:
Drzisga, D, Gmeiner, B, Rüde, U, Scheichl, R & Wohlmuth, B 2017, 'Scheduling Massively Parallel Multigrid for
Multilevel Monte Carlo Methods', SIAM Journal on Scientific Computing, vol. 39, no. 5, pp. S873-S897.
https://doi.org/10.1137/16M1083591

DOI:
10.1137/16M1083591

Publication date:
2017

Document Version
Peer reviewed version

Link to publication

© 2017 Society for Industrial and Applied Mathematics. The final publication is available at
http://epubs.siam.org/ via https://doi.org/10.1137/16M1083591.

University of Bath

Alternative formats
If you require this document in an alternative format, please contact:
openaccess@bath.ac.uk

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Download date: 05. Jul. 2024

https://doi.org/10.1137/16M1083591
https://doi.org/10.1137/16M1083591
https://researchportal.bath.ac.uk/en/publications/e891c641-0aac-4ae3-b83a-c5f6853c1f65

SCHEDULING MASSIVELY PARALLEL MULTIGRID FOR
MULTILEVEL MONTE CARLO METHODS

D. DRZISGA∗, B. GMEINER† , U. RÜDE† , R. SCHEICHL‡ , AND B. WOHLMUTH∗

Abstract. The computational complexity of naive, sampling-based uncertainty quantification
for 3D partial differential equations is extremely high. Multilevel approaches, such as multilevel
Monte Carlo (MLMC), can reduce the complexity significantly when they are combined with a
fast multigrid solver, but to exploit them fully in a parallel environment, sophisticated scheduling
strategies are needed. We optimize the concurrent execution across the three layers of the MLMC
method: parallelization across levels, across samples, and across the spatial grid. In a series of
numerical tests, the influence on the overall performance of the “scalability window” of the multigrid
solver (i.e., the range of processor numbers over which good parallel efficiency can be maintained)
is illustrated. Different homogeneous and heterogeneous scheduling strategies are proposed and
discussed. Finally large 3D scaling experiments are carried out including adaptivity.

1. Introduction. Data uncertainties are ubiquitous in many application fields,
such as subsurface flow or climate prediction. Inherent uncertainties in input data
propagate to uncertainties in quantities of interest. This situation has driven the de-
velopment of novel uncertainty quantification (UQ) methods; most commonly, using
partial differential equations (PDEs) to model the physical processes and stochas-
tic models to incorporate data uncertainties. Simulation outputs are then statistics
(mean, moments, cumulative distribution function (CDF)) of the quantities of in-
terest. However, typical sampling-and-averaging techniques for computing statistics
quickly become infeasible, when each sample involves the numerical solution of a PDE.

We consider an abstract, possibly nonlinear system of PDEs with uncertain data

(1) M(u;ω) = 0

posed on a bounded domain D ⊂ Rd, where the solution u is sought in some suitable
space V of functions v : D → Rk with k ∈ N, subject to suitable boundary conditions.
M is a differential operator depending on a set of random parameters parametrised by
an element ω of the abstract sample space (Ω,F ,P) that encapsulates the uncertainty
in the data, with Ω the set of all outcomes, F the σ-algebra (the “set” of all events),
and P the associated probability measure. As a consequence the solution u itself is a
random field, i.e. u = u(x, ω), with realizations in V .

We are typically only interested in functionals Q(u) ∈ R of u. To compute them
we need to approximate the solution u numerically, e.g. using finite element methods,
which introduces bias error. The cost C typically grows inverse proportionally to some
power of the bias error, i.e. C = O(ε−r) where ε denotes the bias error tolerance.
This challenging computational task requires cutting-edge parallel computing for two
reasons: firstly, real life applications lead to PDE systems that often can only be
solved accurately on a parallel computer; secondly, typical uncertainties, such as a
random diffusion coefficient k(x, ω), are spatially varying on many scales.

For low dimensional problems, stochastic Galerkin, stochastic collocation and
polynomial chaos methods have been shown to provide efficient and powerful UQ

∗Institute for Numerical Mathematics, Technische Universität München, 85748 Garching, Ger-
many (drzisga@ma.tum.de, wohlmuth@ma.tum.de), partly funded by WO671/11-1 (DFG)
†Institute of System Simulation, University Erlangen-Nuremberg, 91058 Erlangen, Germany

(bjoern.gmeiner@fau.de, ulrich.ruede@fau.de)
‡Dept. Mathematical Sciences, University of Bath, Bath BA2 7AY, UK (r.scheichl@bath.ac.uk)

1

tools (see, e.g., [14, 40, 25] and the references therein), but in general their complex-
ity grows exponentially with the stochastic dimension. The cost of sampling methods,
such as, e.g., Monte Carlo, does not grow with the stochastic dimension, but classi-
cal Monte Carlo is notoriously slow to converge. Multilevel Monte Carlo (MLMC)
simulation [15, 6] can reduce significantly the algorithmic complexity by performing
as much computational work as possible on coarse meshes. To this end, MLMC uses
a hierarchy of discretisations of (1) of increasing accuracy to estimate statistics of
Q(u) more efficiently, i.e. using a large number of coarse samples to fully capture
the variability, but only a handful of fine samples to eliminate the bias due to the
spatial discretisation. Here, we employ multilevel methods not only to accelerate the
stochastic part, but also to provide a scalable solver for individual realizations of (1).

Current leading-edge supercomputers provide peak performances of about hun-
dred petaflop/s (i.e. 1017 floating point operations per second) [31]. However, they all
draw their computational power from parallelism, with processor numbers already at
Pmax ≈ 107 see [10]. Consequently, designing efficient algorithms for high performance
computers is a challenging task today and will be even more so in the future.

MLMC methods are characterized by three algorithmic levels that are potential
candidates for parallel execution. As in standard Monte Carlo methods, a sequence
of classical deterministic problems (samples) are solved that can be computed in
parallel. Additionally one can distinguish between parallelism within an MLMC level
and parallelism across MLMC levels. The third algorithmic parallelization level is
the solver for the deterministic PDE problem. Indeed, the total number of samples
on finer MLMC levels is typically moderate, so that the first two levels of parallelism
will not suffice to exploit Pmax processors. Parallel solvers for elliptic PDEs are now
able to solve systems with 1.1× 1013 degrees of freedom on petascale machines with
compute times of a few minutes [17] when using parallel multigrid methods [5] in an
optimized implementation [18].

In this paper, we will illustrate how these different levels of parallelism can be
combined and how efficient parallel MLMC strategies can be designed. To achieve this,
we extend the massively parallel Hierarchical Hybrid Grids (HHG) framework [3, 19]
that exhibits excellent node performance as well as strong and weak scaling behavior
[21, 1] to the MLMC setting. Additionally, we use its fast multigrid solver in a novel
way to generate spatially correlated samples of the random diffusion coefficient. In the
MLMC context, problems of drastically different size must be solved. Parallel solvers
may not yield linear speedup and the efficiency may deteriorate on a large parallel
computer system when the problems become too small. In this case, too little work can
be executed concurrently and the scalar overhead dominates. This effect is well-known
and can be understood prototypically in the form of Amdahl’s law [21]. In general, we
characterize a solver, when applied to a problem of given size, by its processor range for
which the parallel efficiency remains above an acceptable threshold. For this purpose,
we introduce the new notion of scalability window. Because of memory constraints,
the scalability window will open at a certain minimal processor number. For larger
processor numbers the parallel efficiency will deteriorate until the scalability window
closes. In practice, additional restrictions imposed by the system and the software
permit only specific processor numbers within the scalability window to be used. On
the coarser MLMC levels, the problem size is in general too small to use the full
machine. The problem is outside the scalability window and solver-parallelism alone
is insufficient. On the finer levels we may not have enough samples to fill the entire
machine, and thus sample-parallelism alone is insufficient. Especially for adaptive
MLMC, where the number of samples on each level is not known a priori but must be

2

increased adaptively using data from all levels. Obtaining a highly efficient parallel
algorithm on peta-scale systems is a challenging load balancing problem. Finding the
optimal schedule restricted by a complex combination of mathematical and technical
constraints is a high-dimensional, multi-constrained, discrete optimisation problem.
Developing suitable approaches in this setting is one of our main objectives. See
[32, 33] for earlier static and dynamic load balancing approaches, and [28] for adaptive
multilevel stochastic algorithms.

The paper is structured as follows: In Section 2, we briefly review the MLMC
method and its adaptive version. Section 3 introduces the model problem. Here, we
use an alternative PDE-based sampling technique for Matérn covariances [24] that
allows us to reuse the parallel multigrid solver. In Sections 4 and 5, we define a
classification of different parallel execution strategies and develop them into different
parallel scheduling approaches. In Section 6, we study the parallel efficiency, flexibility
and robustness of the proposed strategies. Finally Section 7 reports on large-scale
experiments on advanced supercomputer systems.

2. The Multilevel Monte Carlo method. To describe the MLMC method,
we assume that we have a hierarchy of finite element (FE) discretisations of (1). Let
{V`}`≥0 be a nested sequence of FE spaces with V` ⊂ V , mesh size h` > 0 and M`

degrees of freedom. In the Hierarchical Hybrid Grids (HHG) framework [3, 18], the
underlying sequence of FE meshes is obtained via uniform mesh refinement from a
coarsest grid T0, and thus h` ' 2−`h0 and M` ' 23`M0 in three space dimensions.

Denoting by u` = u`(x, ω) ∈ V` the FE approximation of u on Level `, we have

(2) M`(u`;ω) = 0, ` ≥ 0.

2.1. Standard Monte-Carlo Simulation. The standard Monte Carlo (MC)
estimator for the expected value E[Q] of Q(u) on level L ≥ 0 is given by

(3) Q̂MC,N
L =

1

N

N∑
i=1

QiL ,

where QiL = QL(uiL, ω
i), i = 1, . . . , N , are N independent samples of QL(uL).

There are two sources of error: (i) The sampling error due to the finite number N
of samples in (3), and (ii) the bias error due to the FE approximation. For the bias
error, assuming that |QiL − Q(ui, ωi)| = O(M−αL), for almost all ωi and a constant
α > 0, it follows directly that there exists a constant Cb, independent of ML, such
that |E[QL −Q]| ≤ CbM−αL (cf. [34]).

The total error is typically quantified via the mean square error (MSE), given by

(4) e
(
Q̂MC,N
L

)2

:= E[(Q̂MC,N
L − E[Q])2] = (E[QL −Q])

2
+N−1V[QL],

where V[QL] denotes the variance of the random variable QL(uL). The first term
in (4) can be bounded by ε2

b if ML ≥ (εb/Cb)
1/α, and the second term is smaller

than a sample tolerance ε2
s if N ≥ V[QL]ε−2

s . We note that for L sufficiently large,
V[QL] ≈ V[Q]. To ensure that the total MSE is less than ε2 we choose ε2

s = ζε2 and
ε2
b = (1− ζ)ε2, for any fixed 0 < ζ < 1.

Thus, to reduce (4) we need to choose a sufficiently fine FE mesh and a sufficiently
large number of samples. The cost for one sample QiL of QL depends on the complexity
of the FE solver and of the random field generator. Typically it will grow like CcM

γ
L,

3

for some γ ≥ 1 and some constant Cc, independent of i and of ML. Thus, the total
cost to achieve a MSE e(Q̂MC,N

L)2 ≤ ε2 (the ε-cost) is

(5) Cost
(
Q̂MC,N
L

)
= O(MγN) = O(ε−2−γ/α).

For the coefficient field and for the output functional studied below, we have only
α = 1/6 [34]. In that case, even if γ = 1, to reduce the error by a factor 2 the cost
grows by a factor of 28 = 256, which quickly leads to an intractable problem even in
a massively parallel environment.

2.2. Multilevel Monte-Carlo Simulation. Multilevel Monte Carlo (MLMC)
simulation [15, 6, 2] seeks to reduce the variance of the estimator by a hierarchy of FE

models as control variates. Using the simple identity E[QL] = E[Q0]+
∑L
`=1 E[Y`], we

estimate the mean on the coarsest level (Level 0) and correct this mean successively
by adding estimates of the expected values of Y`(ω) := Q`(u`, ω)−Q`−1(u`−1, ω), for
` ≥ 1, Y0 := Q0. The MLMC estimator is then defined as

(6) Q̂ML
L :=

L∑
`=0

Ŷ MC,N`
` ,

where the numbers of samples N`, ` = 0, . . . , L, are chosen to minimize the total cost
for a given tolerance (see Eqn. (9) below). Note that we require the FE solutions
u`(x, ω

i) and u`−1(x, ωi) on two levels to compute a sample Y i` of Y`, for ` ≥ 1, and
thus two PDE solves, but crucially both with the same ωi (see Algorithm 1).

Algorithm 1 Multilevel Monte Carlo.

for all levels ` = 0, . . . , L do
for i = 1, . . . , N` do

Set up (2) for ωi on Level ` and `− 1 (if ` > 0).
Compute u`(ω

i) and u`−1(ωi) (if ` > 0), as well as Y i` .
end for
Compute Ŷ MC,N`

` = 1
N`

∑N`
i=1 Y

i
` .

end for
Compute Q̂ML

L using (6).

The cost of this estimator is

(7) Cost(Q̂ML
L) =

L∑
`=0

N`C` ,

where C` is the cost to compute one sample of Y` on level `. For simplicity, we use
independent samples across all levels, so that the L + 1 standard MC estimators in
(6) are independent. Then, the MSE of Q̂ML

L simply expands to

(8) e
(
Q̂ML
L

)2

=
(
E[QL −Q]

)2
+

L∑
l=0

N−1
` V[Y`] .

This leads to a hugely reduced variance of the estimator since both FE approximations
Q` and Q`−1 converge to Q and thus V[Y`]→ 0, as M`−1 →∞.

4

The bias error can be ensured to be less than εb by choosing ML ≥ (εb/Cb)
−1/α

again, but there is some flexibility in choosing N` on each level to ensure the sampling
error is less than ε2

s. We can use this freedom to minimize the cost Cost(Q̂ML
L) in

(7) subject to the constraint
∑L
`=0N

−1
` V[Y`] = ε2

s, a simple discrete, constrained
optimization problem with respect to N0, . . . , NL (cf. [15, 6]). It leads to

(9) N` = ε−2
s

(
L∑
`=0

√
V[Y`]C`

) √
V[Y`]

C`
.

Finally, under the assumptions that C` ≤ CcM
γ
` and V[Y`] ≤ CvM

−β
` for some

0 < β ≤ 2α and γ ≥ 1 and for two constants Cc and Cv, independent of M`, the
ε-cost to achieve e(Q̂ML

L)2 ≤ ε2 can be bounded by

(10) Cost(Q̂ML
L) = ε−2

s

(
L∑
`=0

√
V[Y`]C`

)2

≤ CML ε
−2−max(0, γ−βα) .

Typically β ≈ 2α for smooth functionals Q(·). For CDFs, i.e., cumulative distribution
functions, we typically have β = α.

There are three regimes: γ < β, γ = β and γ > β. In the case of the exponential
covariance, typically γ > β and β = 2α and thus Cost(Q̂ML

L) = O(ε−γ/α), which is a
full two orders of magnitude faster than the standard MC method. Moreover, MLMC
is optimal for this problem, in the sense that its cost is asymptotically of the same
order as the cost of computing a single sample to the same tolerance ε.

2.3. Adaptive Multilevel Monte Carlo. In Algorithm 2 we present a simple
sequential, adaptive algorithm from [15, 6] that uses the computed samples to estimate
bias and sampling error and thus chooses the optimal values for L and N`. Alternative
adaptive algorithms are described in [16, 7, 12]. For the remainder of the paper we
will restrict to uniform mesh refinement, i.e. h` = 2−`h0 and M` = O(8`M0) in 3D.

Algorithm 2 Adaptive Multilevel Monte Carlo.

1: Set ε, ζ, L = 1 and N0 = N1 = NInit.
2: for all levels ` = 0, . . . , L do
3: Compute new samples of Y` until there are N`.
4: Compute Ŷ MC,N`

` and s2
` , and estimate C`.

5: end for
6: Update the estimates for N` using (12).

7: if Ŷ MC,NL
L > (8α − 1)εb then increase L→ L+ 1 and set NL = NInit

8: if all N` and L are unchanged then go to 9 else go to 2
9: Set Q̂ML

L =
∑L
`=0 Ŷ

MC,N`
` .

To estimate the bias error, let us assume that M` is sufficiently large, so that we
are in the asymptotic regime, i.e. |E[Q` −Q]| ≈ CbM−α` . Then (cf. [12])

(11) |E[Q` −Q]| ≤ 1

8α − 1
Ŷ MC,N`
` .

Also, using the sample estimator s2
` := 1

N`

∑N`
i=1

(
Y i` − Ŷ

MC,N`
`

)2
to estimate V[Y`]

5

and the CPU times from the runs up-to-date to estimate C`, we can estimate

(12) N` ≈ ε−2
s

(
L∑
`=0

√
s2
`C`

) √
s2
`

C`
.

3. Model problem and deterministic solver. As an example, we consider
an elliptic PDE in weak form: Find u(·, ω) ∈ V := H1

0 (D) such that

(13)

∫
D

∇v(x) ·
(
k(x, ω)∇u(x, ω)

)
dx =

∫
D

f(x)v(x) dx, for all v ∈ V and ω ∈ Ω.

This problem is motivated from subsurface flow. The solution u and the coefficient
k are random fields on D × Ω related to fluid pressure and rock permeability. For
simplicity, we only consider D = (0, 1)3, homogeneous Dirichlet conditions and a
deterministic source term f . If k(·, ω) is continuous (as a function of x) and kmin(ω) :=
minx∈D k(x, ω) > 0 almost surely (a.s.) in ω ∈ Ω, then it follows from the Lax-
Milgram Lemma that this problem has a unique solution (cf. [4]). As quantities of
interest in Section 7, we consider Q(u) := u(x∗), for some x∗ ∈ D, or alternatively
Q(u) := 1

|Γ|
∫

Γ
−k ∂u∂n ds, for some two-dimensional manifold Γ ⊂ D.

3.1. Discretisation. To discretise (13), for each ω ∈ Ω, we use standard P1

finite elements on a sequence of uniformly refined simplicial meshes {T`}`≥0. Let V`
be the FE space associated with T`, N` the set of interior vertices, h` the mesh size
and M` = |N`| the number of degrees of freedom. Now, problem (13) is discretised
by restricting it to functions u`, v` ∈ V`. Using the nodal basis {φj : xj ∈ N`} of V`

and expanding u`(·, ω) :=
∑
j∈N` U

(`)
j (ω)φj , this can be written as a linear equation

system where the entries of the system matrix are assembled elementwise based on

on a four node quadrature formula A
(`)
i,j (ω) :=

∑
τ∈T` ∇φi · ∇φj

∣∣
τ

|τ |
4

∑4
k=1 k(xτk, ω).

Here xτk, 1 ≤ k ≤ 4 denote the four vertices of the element τ .
The quantity of interest Q(u) is approximated by Q(u`). For Q(u`) to converge

to Q(u), as `→∞, we need stronger assumptions on the random field k. Let k(·, ω) ∈
C0,t(D), i.e. Hölder-continuous with coefficient t ∈ (0, 1), and suppose kmin(ω) and
‖k(·, ω)‖C0,t have bounded second moments. It was shown in [34] that α = t

3 , which
also implies the bound for the variance with β = 2α = 2t

3 , since

V [Q(u`)−Q(u`−1)] ≤ E
[
(Q(u`)−Q(u`−1))2

]
≤ 2

∑
r=`,`−1

E
[
(Q(u)−Q(ur))

2
]
.

3.2. PDE-based sampling for lognormal random fields. A coefficient func-
tion k of particular interest in subsurface flow applications [8, 4] is the lognormal ran-
dom field k(·, ω) := exp(Z(·, ω)), where Z(·, ω) is a mean-free, stationary Gaussian
random field with exponential covariance

(14) E[Z(x, ω)Z(y, ω)] = σ2 exp

(
−|x− y|

λ

)
.

The two parameters in this model are the variance σ2 and the correlation length
λ. Individual samples k(·, ω) of this random field are in C0,t(R3), for any t < 1/2.
In particular, this means that the relevant convergence rates are α = 1/3 − δ and
β = 2/3 − δ, for any δ > 0. The field Z(·, ω) belongs to the larger class of Matérn
covariances [24, 25], which also includes smoother, stationary fields, but we will only
consider the exponential covariance in this paper.

6

Two of the most common approaches to realise the random field Z above are
Karhunen-Loeve (KL) expansion [14] and circulant embedding [9, 20]. While the
KL expansion is very convenient for analysis and essential for polynomial expansion
methods such as stochastic collocation, it can quickly dominate all the computational
cost for short correlation lengths λ in three dimensions. Circulant embedding, on the
other hand, relies on the Fast Fourier Transform, which may pose limits to scalability
in a massively parallel environment. An alternative way to sample Z(x, ω) is to
exploit the fact that in three dimensions, mean-free Gaussian fields with exponential
covariance are solutions to the stochastic partial differential equation (SPDE)

(15) (κ2 −∆)Z(x, ω) =d W (x, ω),

where the right hand side W is Gaussian white noise with unit variance and =d

denotes equality in distribution. As shown by Whittle [39], a solution of this SPDE
will be Gaussian with exponential covariance σ2 = (8πκ)−1 and λ = 2/κ.

In [24], the authors show how this SPDE can be solved using a FE discretisation
and this will be the approach we use to bring our fast parallel multigrid methods to
bear again. Since we only require samples of k(·, ω) = exp(Z(·, ω)) at the vertices of
T`, we discretise (15) using again standard P1 finite elements. If now Z ′`(·, ω) ∈ V ′`
denotes the FE approximation to Z ′, then we approximate k(xj , ω) in our quadrature
formula by exp(Z ′`(xj , ω)), for all xj ∈ N`. It was shown in [24, 29] that Z ′` converges

in a certain weak sense to Z ′ with O(M
1/3−δ
`), for any δ > 0. Since (15) is in principle

posed on all of R3 we embed the problem into the larger domain D̃ := (−1, 2)3 ⊃ D

with artificial, homogeneous Neumann boundary conditions on ∂D̃ (see [29]).

4. Performance parameters and execution strategies. Although MLMC
methods can achieve better computational complexity than standard MC methods,
parallel execution strategies depend strongly on the performance characteristics of the
solver. The ultimate goal is to schedule the different subtasks on the Pmax processors
such that the total run time is minimal. This can be formulated as a high dimensional,
multi-constraint discrete optimization problem. More precisely, it is in general NP-
complete, see, e.g., [11, 13, 22, 35] and the references therein.

4.1. Characteristic performance parameters. To design an efficient schedul-
ing strategy, we rely on predictions of the time-to solution and have to take into
account fluctuations. Static strategies thus possibly suffer from a significant load im-
balance and may result in poor parallel efficiency. Dynamic strategies, such as the
greedy load balancing algorithms in [32], which take into account run-time data are
more robust, especially when run-times vary strongly within a level.

For the best performance, the number of processors P` per sample on level ` should
lie within the scalability window {Pmin

` , Pmin
` +1, . . . , Pmax

` } of the PDE solver, where
the parallel efficiency is above a prescribed threshold of, e.g., 80%. Due to machine
constraints, P` may be restricted to a subset, such as {Pmin

` , 2Pmin
` , . . . , 2SPmin

` },
where S ∈ N0 characterizes the size of the scalability window and Pmax

` = 2SPmin
` .

Efficient modern implementations of 3D multigrid schemes have excellent strong scal-
ability and a large scalability window, with typical values of S = 4 for a parallel
efficiency threshold of 80%. In addition, the HHG solver also exhibits excellent weak
scalability. We can thus assume that Pmin

` = 23`Pmin
0 and Pmax

` = 23`Pmax
0 for PDEs

in 3D. The value of Pmin
0 is the number of processors for which the main memory

capacity is fully utilized. Multigrid PDE solvers typically achieve the best parallel
efficiency for P = Pmin

` , when each subdomain is as large as possible, and the ratio

7

of computation to communication is maximal (cf. [19]).
In the following, the time-to solution for the ith sample on level ` executing on

2θPmin
` = 23`+θPmin

0 processors is denoted by t(i, `, θ). We assume that

(16) t(i, `, θ) ≈ C`,θ(ωi) t`,θ, 1 ≤ i ≤ N`, 0 ≤ ` ≤ L, 0 ≤ θ ≤ S.

Here, t`,θ is a reference time-to solution per sample on level `, such as the mode,
median, mean or minimum over a sample set, while C`,θ(ω

i) encapsulates fluctuations
across samples. It depends on the robustness of the PDE solver, as well as on the
type of parallel computer system. It is scaled to be one in the case of no run-time
variations. Fig. 1 (right) shows a typical run-time distribution for 2048 samples each
of which was computed on 512 processors with ` = 0 and σ2 = 0.5 in (14).

Assuming no efficiency loss due to load imbalances and an optimal parallel effi-
ciency for θ = 0, the theoretical optimal mean run-time for the MLMC method is

(17) topt
mlmc =

Pmin
0

Pmax

L∑
`=0

N`2
3`E(C`,0)t`,0 .

There are three main sources of inefficiency in parallel MLMC algorithms: (i)
a partly idle machine due to large run-time variations between samples scheduled
in parallel, (ii) non-optimal strong scalability properties of the solver, i.e., t`,θ >
2t`,θ−1, or (iii) over-sampling, i.e., more samples than required are scheduled to fill
the machine. In the following we address (ii) and (iii) in more detail.

The strong scaling of a solver can be characterized by Eff`(θ) := t`,0/(2
θt`,θ). In

order to predict t`,θ, 1 ≤ θ ≤ S, we define a surrogate cost function depending on
0 ≤ θ ≤ S that is motivated by Amdahl’s law [21]:

(18) t`,θ ≈ t`,0(B + 2−θ(1−B)), Eff`(θ) ≈ (2θB + (1−B))−1.

The serial fraction parameter B in (18) quantifies the amount of non-parallelizable
work. It can be calibrated from time measurements. Fig. 1 (left) shows the HHG par-
allel efficiency for S = 4, ` = 0 and Pmin

0 = 512 on the JUQUEEN supercomputer (cf.
Sec. 7) and the influence of different serial fraction parameters B ∈ {0, 0.01, 0.1, 1}.
The fitted serial fraction parameter B lies in the range of [0.01, 0.03] for different types
of PDE within the HHG framework, and its parallel efficiency is in excellent agree-
ment with Amdahl’s law. Moreover B is almost constant over the levels so that we use
a single value. In an adaptive strategy, we can also use performance measurements
from past computations to reevaluate B for future scheduling steps.

512 1024 2048 4096 8192

B = 0

B = 0.01

HHG

B = 0.1
B = 1

Number of processors P

P
ar

al
le

l
effi

ci
en

cy

0
0.1

0.2

0.3
0.4

0.5

0.6

0.7
0.8

0.9

1

Time [s]

N
u

m
b

er
of

sa
m

p
le

s

1

10

100

1000

10000

40 41 42 43 44 45 46 47 48 49 50

Fig. 1. Left: Parallel efficiency for different serial fraction parameters B, Right: Example of
a run-time histogram for a multigrid solver using full multigrid-cycles.

8

Let J`(θ) ∈ N denote the maximum number of samples that can be computed
simultaneously on level ` if 23`+θPmin

0 processors are used per sample, and let kseq
` (θ)

denote the number of required sequential cycles to run a minimum of N` samples.
Then, J`(θ), k

seq
` (θ) and the associated relative load imbalance Imb`(θ) are given by

(19) J`(θ) =

⌊
Pmax

23`+θPmin
0

⌋
, kseq

` (θ) =

⌈
N`
J`(θ)

⌉
, Imb`(θ) := 1− 23`+θPmin

0 N`
kseq
` (θ)Pmax

.

Note that 0 ≤ Imb`(θ) < 1, with Imb`(θ) = 0 for a perfectly balanced load and
Imb`(θ) > 0 when part of the machine is idle due to Pmax/(2

3`+θPmin
0) 6∈ N or

N`/J`(θ) 6∈ N. The idle processors can be used to compute additional samples in
the last sequential steps that are not necessary to achieve the required tolerance,
but still improve the accuracy, or we can schedule samples on other levels in parallel
(cf. Sect. 4.2). The product

(20) η`(θ) := (1− Imb`(θ))Eff`(θ)

will be termed MLMC level efficiency and we note that it also depends on N`.

4.2. Classification of concurrent execution strategies. We classify exe-
cution strategies for MLMC methods in two ways, either referring to the layers of
parallelisms or to the resulting time-processor diagram.

4.2.1. Layers of parallel execution. To fully exploit modern parallel systems
we must identify multiple layers of parallelism. For MLMC, three natural layers exist:
Level parallelism: The estimators on level ` = 0, . . . , L may be computed in parallel.
Sample parallelism: The samples {Y i` }

N`
i=1 on level ` may be evaluated in parallel.

Solver parallelism: The PDE solver to compute sample Y i` may be parallelized.
The loops over the levels and over the samples are inherently parallel, except for

some minimal postprocessing to compute the statistical quantities of interest. The
challenge is how to balance the load between different levels of parallelism and how
to schedule the solvers for each sample. Especially in the adaptive setting, without
a priori information, an exclusive use of level parallelism is not always possible, but
in most practical cases, a minimal number of required levels and samples is known a
priori. For the moment, we assume L and N`, 0 ≤ ` ≤ L, to be fixed and given. In
general, these quantities have to be determined dynamically (cf. Alg. 2).

The concurrent execution can now be classified by the number of layers of par-
allelism that are exploited. Typically, Pmax >

∑L
l=0N` and Pmax � NL on modern

supercomputers. Thus, solver parallelism is mandatory for large-scale computing and
the only possible one-layer approach is the solver-only strategy. For a two-layer ap-
proach, one can either add the level layer or the sample layer. Since the number of
levels L is, in general, quite small, the solver-level strategy has significantly lower
parallelization potential than the solver-sample strategy. Finally, the most flexible
three-layer approach takes into account all three possible layers of parallelism.

4.2.2. Concurrency in the processor-time diagram. An alternative way to
classify different parallel execution models is to consider the time-processor diagram,
as illustrated in Fig. 2, where the scheduling of each sample Y i` , 1 ≤ i ≤ N`, 0 ≤
` ≤ L, is represented by a rectangular box with the height expressing the number of
processors used. A parallel execution model is called homogeneous bulk synchronous
if at any time in the processor diagram, all tasks execute on the same level with the
same number of processors. Otherwise it is called heterogeneous bulk synchronous.

9

Time

P
r
o
c
e
s
s
o
r
s

Level 2

Time

P
r
o
c
e
s
s
o
r
s

synchronization point

Level 2

Time

P
r
o
c
e
s
s
o
r
s

synchronization point

Level 2

Time

P
r
o
c
e
s
s
o
r
s

synchronization point

Level 2

Level 0:
Level 1:

Fig. 2. From left to right: illustration of homogeneous (one-layer and two-layer) and of het-
erogeneous bulk synchronous strategies (two-layer and three-layer).

The one-layer homogeneous strategy, as shown in Fig. 2 (left), offers no flexibility.

The theoretical run-time is simply given by
∑L
`=0

∑N`
i=1 t(i, `, θ

max
l), where θmax

` is such
that Pmax = 23`+θmax

` Pmin
0 . It guarantees perfect load balancing, but will not lead

to a good overall efficiency since on the coarser levels θmax
` is typically significantly

larger than S. On the coarsest level we may even have M0 < Pmax, i.e., less grid
points than processors. Thus we will not further consider this option.

5. Examples for scheduling strategies. Our focus is on scheduling algorithms
that are flexible with respect to the scalability window of the PDE solver and robust on
huge numbers of processors Pmax. To solve the optimization problems, we will either
impose additional assumptions that allow an exact solution, or we will use meta-
heuristic search algorithms, such as simulated annealing [36, 37]. Before we start let
us briefly comment on two important practical aspects for the implementation.

Sub-communicators. To parallelize over samples as well as within samples, we
split the MPI COMM WORLD communicator via the MPI Comm split command and pro-
vide each sample with its own MPI sub-communicator. This requires only minimal
changes to the multigrid algorithm and all MPI communication routines can still be
used. A similar approach, using the MPI group concept, is used in [33].

Random number generator. To generate the samples of the diffusion coefficient
k(x, ω) we use the approach described in Sect. 3.2. This requires suitable random
numbers for the definition of the white noise on the right hand side of (15). For large
scale MLMC computations we select the Ran [27] generator that has a period of ≈ 3.1·
1057 and is thus suitable even for 1012 realizations. It is parallelized straightforwardly
by choosing different seeds for each process, see, e.g., [23].

5.1. Sample synchronous and level synchronous homogeneous. Here we
assume that the run-time of the solver depends on the level ` and on the number
of associated processors, but not on the particular sample Y i` , 1 ≤ i ≤ N`. As the
different levels are treated sequentially and each concurrent sample is executed with
the same number of processors, we can test all possible configurations.

Let 0 ≤ ` ≤ L be fixed. Then, for a fixed 0 ≤ θ ≤ S, the total time on level ` is
kseq
` (θ)t`,θ . We select the largest index θ` ∈ {0, 1, . . . , S} such that

(21) θ` = arg min
0≤θ≤S

kseq
` (θ)t`,θ = arg max

0≤θ≤S
Eff`(θ)(1− Imb`(θ)) = arg max

0≤θ≤S
η`(θ),

i.e., minimizing run-time per level or equivalently, maximizing total level efficiency.
Since kseq

` (θ) is given explicitly in (19), the computation of θ` is trivial provided t`,θ
is known for all θ, e.g., using the average of pre-computed timings of the solver on
level `. Alternatively, we can use (18) with a fitted serial fraction B, such that

θ` = arg min
0≤θ≤S

kseq
` (θ)(B + 2−θ(1−B)).

10

Time

synchronization point

Pr
oc

es
so

rs

Time

Pr
oc
es
so
rs

Time

Pr
oc
es
so
rs

Fig. 3. Illustration of different homogeneous scheduling strategies. Left: sample synchronous
homogeneous (SaSyHom); Centre: level synchronous homogeneous (LeSyHom); Right: dynamic
level synchronous homogeneous (DyLeSyHom, Sec. 5.3).

Given θ`, we then group the processors accordingly and run kseq
` (θ`) sequential steps

for each level `. The actual value of t`,0 does not affect the choice of θ`, but only the
absolute run-time.

We consider two variants: (i) Sample synchronous homogeneous (SaSyHom) where
a synchronization step is imposed after each sequential step (see Fig. 3, left). Here sta-
tistical quantities can be updated after each step. (ii) Level synchronous homogeneous
(LeSyHom), where each block of 23`+θPmin

0 processors executes all kseq
` (θ`) samples

without any synchronization (see Fig. 3, centre). Altogether kseq
` (θ`)J`(θ`) ≥ N` sam-

ples are computed. When the run-time does not vary across samples, both strategies
will results in the same MLMC run-time. If it does vary then the LeSyHom strategy
has the advantage that fluctuations in the run-time t(i, `, θ) will be averaged and a
shorter overall MLMC run-time can be expected for sufficiently large kseq

` (θ`).

5.2. Run-time robust homogeneous. So far, we have assumed that the run-
time is sample independent, which is idealistic. In the experiment in Fig. 1 (right), 3
out of 2048 samples required a run-time of 50 s on Pmin

0 = 512 processors. On a large
machine with Pmax = 524288 and with θ0 = 0 we need only kseq

0 (0) = 2 sequential
steps on level 0. Therefore, the (empirical) probability that the SaSyHom strategy
leads to a runtime of 100 s is about 75%, while the theoretical optimal run-time is

2
2048

∑2048
i=1 ti ≈ 90 s. Here, ti is the actual run-time of the ith sample from Fig. 1

(right). The probability that the LeSyHom strategy leads to a runtime of 100 s is less
than 1%; in all other cases, a run-time of ≤ 96 s is achieved.

Let us now fix 0 ≤ ` ≤ L again and include run-time variations in the determina-
tion of θ`. Unfortunately, in general, run-time distribution functions are not known
analytically, and thus the expected run-time

(22) E`,θ := E

 max
1≤j≤J`(θ)

(kseq` (θ)∑
k=1

t(ijk, `, θ)

)
cannot be computed explicitly. Here, the samples are denoted by ijk with j =
1, . . . , J`(θ) and k = 1, . . . , kseq

` (θ), related to their position in the time-processor
diagram. The expression in (22) yields the actual, expected run-time on level ` to
compute J`(θ)k

seq
` (θ) ≥ N` samples with 23`+θPmin

0 processors per sample when no
synchronization after the sequential steps is performed.

The main idea is now to compute an approximation Ê`,θ for E`,θ, and then to

find θ` such that Ê`,θ` ≤ Ê`,θ, for all 0 ≤ θ ≤ S. First, we approximate t(ijk, `, θ)
by C`,θ(ω

ijk) t`,θ in (16) and assume that C`,θ(·) ≡ C0,0(·), independent of ` and θ.

11

Approximating the expected value by an average over µ samples then leads to

(23) Ê`,θ(µ) :=
1

µ

µ∑
m=1

max
1≤j≤J`(θ)

kseq` (θ)∑
k=1

C0,0(ωijkm)

 t`,θ ,

where ijkm := ijk + (m− 1)J`(θ)k
seq
` (θ). If reliable data for t`,θ is available we define

θ` := arg min
0≤θ≤S

Ê`,θ(µ)

Otherwise, we include, as before, a further approximation and replace t`,θ by B +

2−θ(1−B) in (23) before finding the minimum of Ê`,θ(µ). To decide on the number
of samples µ in (23), we keep increasing µ until µ and µ/2 yield the same θ`. For all
our test settings, a value of µ ≤ 500 was sufficient.

To evaluate (23), we need some information on the stochastic cost factor C0,0(ω)
which was assumed to be constant across levels and across the scaling window. We
use a run-time histogram associated with level ` = 0. This information is either
available from past computations or can be built up adaptively within a MLMC
method. Having the run-times tk, 1 ≤ k ≤ K, of K samples on level ` = 0 at
hand, we emulate C0,0(ω) by using a pseudo random integer generator from a uniform
discrete distribution ranging from one to K and replace the obtained value j ≤ K
by tjK/

∑K
k=1 t

k. Having computed the value of θ`, we proceed as for LeSyHom and
call this strategy run-time robust homogeneous (RuRoHom). For constant run-times,
RuRoHom yields again the same run-times as LeSyHom and as SaSyHom.

5.3. Dynamic variants. The use of pre-computed values for θ` and kseq
` (θ`) in

all the variants above will still lead to unnecessary inefficiencies in the case of large
run-time variations. Instead, new samples can also be assigned to each processor
block dynamically at run-time, as soon as a block terminates a computation, until
the required number N` is reached. This can reduce the total run-time on level `
further, largely avoiding over-sampling. However, on massively parallel architectures
this will only be effective if it does not lead to a significant communication overhead.
The dynamic strategy can be combined with either the LeSyHom or the RuRoHom
approach and we denote them dynamic level synchronous homogeneous (DyLeSyHom)
and dynamic run-time robust homogeneous (DyRuRoHom), respectively. Fig. 3 (right)
illustrates the DyLeSyHom strategy. Here it is essential that not all processor blocks
execute the same number of sequential steps.

To utilize the full machine, it is crucial that processors are not blocked by actively
waiting to coordinate the asynchronous execution. The necessary functionality may
not be fully supported on all parallel systems. We use the MPI 2.0 standard that
permits one-sided communication and allows a non-intrusive implementation. The
one-sided communication is achieved by remote direct memory access (RDMA) using
registered memory windows. In our implementation, we create a window on one
processor to synchronize the number of samples that are already computed. Exclusive
locks are performed on a get/accumulate combination to access the number of samples.

5.4. Heterogeneous bulk synchronous scheduling. Heterogeneous strate-
gies are clearly more flexible than homogeneous ones, but the number of scheduling
possibilities grows exponentially. Thus, we must first reduce the complexity of the
scheduling problem. In particular, we ignore again run-time variations and assume
t(i, `, θ) = t`,θ. We also assume that N` > 0 on all levels ` = 0, . . . , L. Within an

12

adaptive strategy, samples may only be required on some of the levels at certain times
and thus this condition has to hold true only on a subset of I := {0, . . . , L}.

In contrast to the homogeneous setups, we do not aim to find scaling parameters θ`
that minimize the run-time on each level separately, but instead minimize the total
MLMC run-time. We formulate the minimization process as two nested constrained
minimization steps. Let N`,θ ∈ N0 be the number of samples on level ` that are
carried out in parallel with 23`+θPmin

0 processors. Then, firstly assuming N`,θ to be
given, for all 0 ≤ ` ≤ L, 0 ≤ θ ≤ S, we solve the following constrained minimization
problem for kseq

` (θ), the associated sequential steps,

arg min
kseq` (θ)∈N0

(
max

0≤θ≤S
t`,θ k

seq
` (θ)

)
,

S∑
θ=0

N`,θ k
seq
` (θ) ≥ N`.

Secondly, having found kseq
` (θ), we seek values for N`,θ ∈ N0 that minimize

arg min
N`,θ∈N0

max
0≤θ≤S
0≤`≤L

t`,θk
seq
` (θ),

the expected run-time, subject to the following inequality constraints

L∑
`=0

S∑
θ=0

N`,θ2
3`2θPmin

0 ≤ Pmax,(24a)

S∑
θ=0

N`,θ > 0, for ` ∈ I.(24b)

We apply integer encoding [30] for the initialization and for possible mutations
and require that N`,θ ∈ [0, 2−3`2−θPmax/P

min
0]. Condition (24a) is a hard constraint.

The number of processors that are scheduled cannot be larger than Pmax. If (24a)
is violated, we enforce it by a repeated multiplication of N`,S , . . . , N`,0 by 1/2 until
it holds. At first glance this might lead to a load imbalance, but the applied meta-
heuristic search strategy compensates for it. Condition (24b) that at least one sample
is scheduled on each level at all times could clearly be relaxed. However, this would
require a redistribution of processors in the optimization problem and can significantly
increase the algorithmic complexity, especially for large scale architectures. If (24b)
is violated on some level `, we set N`,0 = 1. With the values of N`,θ identified, the
samples are distributed dynamically onto the machine, see also [32].

For the following two subsections, let us consider the example (N0, N1, N2, N3) =
(4123, 688, 108, 16) and actual run-times from a set of numerical experiments:

(25) (t`,θ) 0≤`≤3,
0≤θ≤4

=

167 83.84 42.30 21.63 11.60
171 86.28 44.53 23.13 12.41
177 90.40 47.07 24.21 12.97
179 91.61 48.27 24.86 13.63

 .

5.4.1. The degenerate case S = 0 and a new auxiliary objective. A cheap
but non-optimal way to choose N`,0 for S = 0, is

(26) N`,0 =

⌊
PmaxN` t`,0∑L

i=0Ni2
3iPmin

0 ti,0

⌋
.

13

The corresponding run-time is then max`=0,...,L t`,0dN`/N`,0e, and the total number

of processors is
∑L
`=0N`,023`Pmin

0 . This choice is acceptable when the workload is
evenly distributed across levels and serves as a good initial guess in combination with
an adaptive local neighborhood search.

The first column of (25) gives a total run-time of 716 s in (26) and the distribution
(N0,0, N1,0, N2,0, N3,0) = (1314, 221, 36, 5), see the left of Fig. 4, while on the right, a
pattern that leads to the minimal run-time of 684 s is illustrated. This configuration
to achieve the minimal run-time is not unique. Due to weak scaling effects, the lower
levels tend to have a larger number of sequential steps than the higher ones.

Level 0

Level 1

Level 2

Level 3

Level 0

Level 1

Level 2

Level 3

Fig. 4. Different scheduling patterns: Selection of N`,0 by (26) (left) and optimal choice of N`,0

For S > 0, we cannot define a good starting guess as easily and have to resort to
meta-heuristic strategies. We consider simulated annealing (SA), see, e.g., [36, 38],
which provides a computationally feasible approach to approximately solve complex
scheduling problems. We start with S = 0. The following experiments were performed
with Python using inspyred1 with minor modifications. The temperature in the SA
method is decreased using a geometric schedule Tk+1 = 0.8Tk with initial temperature
T0 = 103, which is of the order of the initial changes of the objective function.

We choose a Gaussian mutation with distribution N (0, 0.1Pmax/(2
3`Pmin

0)) and
mutation rate 0.2, guaranteeing that roughly one gene per SA iteration is changed.
All runs were repeated ten times with different seeds, and we report minimal (min),
maximal (max) and mean (avg) MLMC run-times. Selecting a stopping criterion of
1 000 evaluations in SA, we obtain [min, avg,max] = [684, 691.2, 708] s, while after
2 000 evaluations we obtain [min, avg,max] = [684, 684, 684] s. The curve labelled
“time [w/o aux. obj.]” in Fig. 5 shows the evolution of the average MLMC run-time
between iteration 100 and 1 000 in the SA. We observe that between iteration 250 and
iteration 800 almost no decrease in the average run-time is achieved. This is due to
the rather flat structure of the objective function in large parts of the search domain
since many different possible combinations yield identical run-times.

To improve the performance of the SA scheduling optimizer, we introduce the
number of idle processors as a second auxiliary objective. Having more idle processors,
the probability to find a shorter run-time in the next search step is increased and thus
the total number of iterations is reduced significantly, see Fig. 5. A MLMC run-time
of less than 700 s can now be found in less than 300 iterations. The optimal run-time
can be obtained with (N0,0, N1,0, N2,0, N3,0) = (1031, 172, 36, 6) and a total of 7783
processors used. From now on, we always include the number of idle processors as a
secondary objective in the SA optimization algorithm.

5.4.2. The highly scalable case S = 4 and new hybrid mutants. We use
the data in (25) and compare different mutation operators. Standard strategies [26],
such as random reset mutation and non-uniform mutation, do not improve efficiency.
Since more than 50 000 SA iterations are necessary to find average run-times close to

1Garrett, A. (2012). inspyred (Ver. 1.0). Inspired Intelligence Initiative; from http://github.com

14

http://github.com

10

100

1000

650

700

750

800

850

900

950

1000

1050

100 200 400 800

N
u

m
b

e
rw

o
fw

u
n

u
se

d
wp

ro
ce

ss
e

sw
(n

u
p

)

T
im

e
w[

se
co

n
d

s]

Numberwofwiterations

timew[w/owaux.wobj.] timew[w/waux.wobj.] nupw[w/owaux.wobj.] nupw[w/waux.wobj.]

Fig. 5. Average MLMC run-time with Pmax = 8192 and number of unused processors (nup)
with and without auxiliary objective (w/ and w/o aux. obj.) w.r.t. the number of SA iterations.

the optimal one, new problem-adapted mutation operators are essential.We propose
two new hybrid variants. Both first perform a Gaussian mutation with mutation rate
0.1 and then take the required processor numbers into account.

Hybrid A. In each step, we select randomly two different “genes” N`1,θ1 and N`2,θ2 ,
0 ≤ `1, `2 ≤ L, 0 ≤ θ1, θ2 ≤ S, as well as a uniformly distributed random number
k ∈ {0, .., N`1,θ1 − 1}. Then we mutate

N`1,θ1 = N`1,θ1 − k and N`2,θ2 = N`2,θ2 +
⌊
k 2θ1−θ223(`1−`2)

⌋
.

If the original values N`1,θ1 and N`2,θ2 are admissible (satisfy the constraints (24)),
then the mutated genes are also admissible. This type of mutation exploits level
parallelism and the scalability window of the solver. For S = 0, it reduces to exploiting
the weak scalability of the solver to balance the workload on each level separately.

Hybrid B. This variant is most suitable for PDE solvers with large scalability
windows. It is identical to Hybrid A except for keeping `1 = `2 fixed, therefore
exploiting only solver parallelism and not level parallelism.

Table 1
Comparison of MLMC run-times (min, avg, max) using measurements from JUQUEEN (cf.

Sec. 7) for different mutation operators and different numbers of SA iterations.

Mutation 1 000 4 000 16 000 64 000
Gaussian 612.0, 633.9, 641.2 605.2, 624.8, 635.5 603.9, 614.6, 624.6 603.9, 608.0, 612.0
Hybrid A 624.6, 632.7, 641.2 603.9, 608.0, 612.0 604.5, 604.5, 604.5 604.5, 604.5, 604.5
Hybrid B 603.9, 619.8, 627.3 603.9, 603.9, 603.9 603.9, 603.9, 603.9 603.9, 603.9, 603.9

In Tab. 1, we see that Hybrid B performs best. It is less sensitive to the initial
guess than Hybrid A and robustly finds a very efficient scheduling in less than 4 000
SA iterations. Thus, we restrict ourselves to Hybrid B type mutations in the following
examples. In the example considered in this section, it leads to the schedule

(27) (N`,θ) 0≤`≤3,
0≤θ≤4

=

0 443 73 0 0
1 98 0 0 0
0 0 3 3 0
6 0 0 0 0

 (kseq
`,θ) 0≤`≤3,

0≤θ≤4
=

0 7 14 0 0
3 7 0 0 0
0 0 12 24 0
3 0 0 0 0

 .

Comparing the results for S = 0 and S = 4, shows how important the strong scaling
of the solver is to reach shorter MLMC run-times. It allows to reduce the run-time

15

by more than 10%, and thus improves the parallel MLMC performance significantly.
If strong scaling is included (S > 0), we call this scheduling strategy StScHet in the
following. Otherwise, if no strong scaling is included (S = 0), we call the scheduling
strategy noStScHet.

Finally, we summarise all the considered scheduling strategies in Tab. 2.

Table 2
Summary of parallel scheduling strategies.

Abbreviation Schedule Defined in
SaSyHom Sample Synchronous Homogeneous Sec. 5.1
LeSyHom Level Synchronous Homogeneous Sec. 5.1
RuRoHom Run-Time Robust Homogeneous Sec. 5.2

DyLeSyHom Dynamic Level Synchronous Homogeneous Sec. 5.3
DyRuRoHom Dynamic Run-Time Robust Homogeneous Sec. 5.3

StScHet Heterogeneous with Strong-Scaling (S > 0) Sec. 5.4
noStScHet Heterogeneous without Strong-Scaling (S = 0) Sec. 5.4

6. Scheduling comparison. In this section, we evaluate the sampling strategies
from the previous section and illustrate the influence of the serial fraction parameter
B, of the level-averaged number of sequential steps and of the run-time variation.

6.1. The influence of the number of sequential steps. The fact that pro-
cessor and sample numbers have to be integer not only complicates the solution of
the optimization problem, it also strongly influences the amount of imbalance.

Let us start with some preliminary considerations, ignoring for the moment run-
time variations. Now, let ∆t ≥ 0 denote the relative difference between the run-time∑L
`=0 k

seq
` (θ`)t`,θ` of the presented strategies and the theoretically optimal run-time

in (17) (with E(C`,0) = 1). Recall the MLMC level efficiency η`(θ`) in (20). Then

∆t =
Pmax

Pmin
0

∑L
`=0 k

seq
` (θ`)t`,θ`∑L

`=0N`2
3`t`,0

− 1 =

∑L
`=0N`2

3`t`,0(η`(θ`))
−1∑L

`=0N`2
3`t`,0

− 1 .

For the special case that Pmax/(2
3`+θPmin

0) ∈ N, we can further bound ∆t in terms of

kseq :=
∑L
`=0N`2

3`Pmin
0 /Pmax. We assume that t0,0 ≤ t`,0 ≤ tL,0, for all ` = 0, . . . , L,

which is typically the case. The ratio tL,0/t0,0 reflects the weak scalability of the solver.
Peta-scale aware massively parallel codes have a factor close to one. Recall from (25)
that for our solver tL,0/t0,0 = 179/167 ≈ 1.07. Since kseq

` (θ`)t`,θ` ≤ kseq
` (0)t`,0 and

since kseq
` (0) ≤ N`23` P

min
0

Pmax
+ 1 we have

∆t ≤
(

max0≤`≤L t`,0
min0≤`≤L t`,0

)
Pmax

Pmin
0

L+ 1∑L
`=0N`2

3`
=

tL,0
t0,0

L+ 1

kseq
.

The larger kseq, the smaller the efficiency loss.
In Fig. 6, we illustrate the influence of kseq on LeSyHom, noStScHet, StScHet.

We use Pmin
0 = 1, Pmax = 131072 and (N0, N1, N2, N3) = fac · (4123, 688, 108, 16)

with fac ∈ {1, . . . , 18}, yielding kseq ≈ 0.189 · fac. All strategies stay below the
theoretically predicted upper bound. The two scheduling strategies that exploit the
solver parallelism, LeSyHom and StScHet, are significantly more robust with respect
to kseq than the heterogeneous strategy, noStScHet, which ignores the scalability

16

window and sets S = 0. This is particularly relevant for adaptive MLMC strategies,
where N` may be increased within any of the adaptive steps and then a new optimal
scheduling pattern has to be identified. As a consequence of the ceil operator we
see a staircase pattern for noStScHet. Regardless, all three strategies seem to be
very robust to variations in kseq and very efficient. The run-times for LeSyHom and
StScHet are larger than the optimal one by roughly a factor of 1.5 for kseq ≈ 0.2 and
only by a factor of 1.15 for kseq ≈ 3.4.

k

Fig. 6. Heterogeneous versus homogeneous scheduling for kseq ∈ [0.2, 3.4].

6.2. The influence of solver scalability. The serial fraction parameter B
models the strong scalability of the solver, see Sec. 5. The higher B, the less beneficial
it is to increase θ. In Fig. 7, we consider the influence of B on the run-time for two
different values of fac, namely 4 and 16, and compare LeSyHom and StScHet using
the same setup as in the previous subsection.

Serial fraction (B)

T
im

e
[s

ec
on

d
s]

0.001 0.01 0.1 1

LeSyHom (fac = 16)

LeSyHom (fac = 4)
StScHet (fac = 16)

StScHet (fac = 4)

0

100

200

300

400

500

600

700

(kseq ≈ 0.189 · fac)

Fig. 7. Influence of the serial fraction parameter on the run-time.

First, we consider a small value kseq ≈ 0.75. With a serial fraction parameter
B ≤ 0.02, there is almost no run-time difference between the two strategies. For B
up to 0.1 the run-time difference is below 25%. So the homogeneous strategy provides
enough flexibility to be efficient in the case of large scalability windows with small
values of B. However, the run-time increases significantly for LeSyHom for larger B,
since the strong scaling of the solver is too poor to obtain a robust scheduling. Only
a heterogeneous strategy with its flexibility to schedule parallel samples on different
levels can guarantee small run-times in that case. The run-time of StScHet depends
only moderately on the serial fraction parameter B.

The situation is different for larger values of kseq. Then both strategies exhibit
roughly the same performance, but the total run-time is more sensitive to the size of
B. A good strong scaling of the PDE solver can improve the time to solution by up to
27% for the homogeneous and up to 21% for the heterogeneous bulk synchronous case.

17

As expected, carrying out one synchronization step with kseq ≈ 3 is more efficient than
four steps with kseq ≈ 0.75. This observation is important for the design of efficient
adaptive strategies, i.e., they should not be too fine granular. For highly performant
multigrid solvers, i.e., B ≤ 0.05, the simpler homogeneous strategies are an excellent
choice. When the parallel scalability of the solver is poorer, which is typical for the
peta-scale regime, i.e. near the strong scaling limit of the solver, the more complex
heterogeneous strategies lead to significant efficiency gains.

6.3. Robustness and efficiency with respect to the parameters. In this
subsection, we modify all three key parameters that we have discussed so far. We
assume again that the run-time variations C`,θ(·) are independent of ` and θ and use
a half-normal distribution with parameter Var for C0,0(·) − 1 follows a half-normal
distribution, i.e. the mode of C0,0(·) is at 1. The time t`,θ is chosen to be the run-time
of the mode, as described in Sec. 4.1.

StScHet SaSyHom LeSyHom DyLeSyHom RuRoHom DyRuRoHom

P
ar

al
le

l
effi

ci
en

cy

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.01 0.1 1 0.01 0.1 1 0.01 0.1 1
1 5 24 1 5 24 1 5 24 1 5 24 1 5 24 1 5 24 1 5 24 1 5 24 1 5 24

0 0.5 2

fac
B
V ar

Fig. 8. MLMC efficiencies for different values of the parameters kseq ≈ 0.97 · fac, B and Var,
and for all the different scheduling strategies.

Fig. 8 illustrates the parallel efficiencies of all the strategies developed above (cf.
Tab. 2), as well as their robustness with respect to the parameters kseq, B and Var.
The parallel efficiency is calculated with respect to the theoretical, optimal run-times
given in (17) not with actual measured run-times. We choose B ∈ {0.01, 0.1, 1}
and Var ∈ {0, 0.5, 2}, and set the sample numbers on the different levels to be
(N0, N1, N2, N3) = fac ·(1314, 221, 36, 5), with fac ∈ {1, 5, 24} and Pmax/P

min
0 = 8192.

We comment first on the case of no run-time variations, i.e., Var = 0, where our
numerical results confirm that all homogeneous strategies produce the same perfor-
mance. For large numbers of sequential steps, the homogeneous variants are superior
to the heterogeneous ones. This is somewhat artificial and mainly due to the con-
straint (24b) which forces us to consider all levels in parallel. As mentioned above, this
constraint is not essential and dropping it might lead to more efficient heterogeneous
strategies. This will be the subject of future work. If variations in the run-time are in-
cluded, then all homogeneous strategies yield different results. The parallel efficiency
of the simplest one, SaSyHom, then drops to somewhere between 0.1 and 0.55. As ex-
pected, the worst performance is observed for a small kseq, poor solver scalability, and

18

high run-time variation. In that case, the dynamic variants can counterbalance the
run-time variations more readily and provide computationally inexpensive scheduling
schemes (provided the technical realization is feasible).

Secondly, we discuss the case of small kseq, typical for large parallel systems
or when using adaptive MLMC. Here, only the heterogeneous strategies lead to ac-
ceptable parallel efficiencies for all values of B. The homogeneous variants result in
efficiencies below 0.7 and 0.4, for Var = 0 and for B = 0.1 and B = 1, respectively.

In all considered cases, one of our strategies results in parallel efficiencies of
more than 0.5; in many cases even more than 0.7. For moderate run-time variations
and large enough kseq, the parallel efficiency of StScHet improves to more than 0.8.
StScHet is also the most robust strategy with respect to solver scalability. However,
for solvers with good scalability, i.e. B ≤ 0.05, the DyRoRuHom strategy is an attrac-
tive alternative, since it does not require any sophisticated meta-heuristic scheduling
algorithm and can dynamically adapt to run-time variations in the samples.

7. Numerical results for MLMC. In this section, the scheduling strategies
developed above are tested in a large-scale MLMC computation. We consider the
model problem in (13) with D = (0, 1)3 and f ≡ 1, discretised by piecewise linear
FEs. The serial fraction parameter for our multigrid PDE solver is B ≤ 0.02 and the
fluctuations in run-time are < 2%. Only few timings deviate substantially from the
average (cf. Fig. 1) so that we focus on investigating strategies for that regime.

The following experiments were carried out on the peta-scale supercomputer
JUQUEEN, a 28 rack BlueGene/Q system located in Jülich, Germany2. Each of
the 28 672 nodes has 16 GB main memory and 16 cores operating at a clock rate of
1.6 GHz. The compute nodes are connected via a five-dimensional torus network.
HHG is compiled by the IBM XL C/C++ Blue Gene/Q, V12.0 compiler suite with
MPICH2 that implements the MPI-2 standard and supports RDMA. Four hardware
threads can be used on each core to hide latencies. We always use 2 processes (threads)
per core to maximize the execution efficiency.

7.1. Static scheduling for scenarios with small run-time variations. We
choose four MLMC levels, i.e., L = 3, with a fine grid that has roughly 1.1 · 109 mesh
nodes. The random coefficient is assumed to be lognormal with exponential covari-
ance, σ2 = 1 and λ = 0.02. The quantity of interest is the PDE solution u evaluated
at the point x = (0.25, 0.25, 0.25). All samples are computed using a single FMG-
2V(4,4) cycle on a fixed hierarchy of geometric levels, i.e., a full multigrid method with
two V-cycles per new level, as well as four pre- and four post-smoothing steps. The
excellent numerical and parallel efficiency of this multigrid method applied to (13) is
well documented in [18]. In particular, after completing the FMG-2V(4,4) cycle for all
samples, the minimal and maximal residual differ at most by a factor 1.5 within each
MLMC level. We use an a priori strategy with (N`)`=0,1,2,3 = (4 123, 688, 108, 16)
for the MLMC estimator based on pre-computed variance estimates. We first study
the balance between sample and solver parallelism and thus the tradeoffs between the
efficiency of the parallel solver and possible load imbalances in the sampling strat-
egy, as introduced in Sec. 4.1. We set Pmin

0 = 1, and consequently Pmin
` = 23`.

The run-times to compute a single sample with Pmin
` processors are measured as

(t`,0)`=0,1,2,3 = (166, 168, 174, 177) seconds, showing only a moderate increase in run-
time and confirming the excellent performance of the multigrid solver.

2http://www.fz-juelich.de/ias/jsc/EN/Expertise/Supercomputers/JUQUEEN/Configuration/
Configuration node.html

19

http://www.fz-juelich.de/ias/jsc/EN/Expertise/Supercomputers/JUQUEEN/Configuration/Configuration_node.html
http://www.fz-juelich.de/ias/jsc/EN/Expertise/Supercomputers/JUQUEEN/Configuration/Configuration_node.html

A lower bound for the run-time of the parallel MLMC estimator of topt
mlmc = 520 s

is now provided by eq. (17). A static cost model is justified since the timings be-
tween individual samples vary little. We therefore employ the level synchronous
homogeneous (LeSyHom) scheduling strategy, as introduced in Sect. 5.1. This re-
quires only a few, cheap real time measurements to configure the MLMC scheduling
strategy. The smaller θ, the larger the solver efficiency Eff`(θ) while the larger θ,
the smaller Imb`(θ). To study this effect quantitatively, we measure the parallel
solver efficiency in a pre-process step by computing a few samples on the coarsest
level for different θ and measure the required time t0,θ. On level ` = 0 we obtain
{Eff0(0),Eff0(1),Eff0(2),Eff0(3),Eff0(4)} = {1, 0.99, 0.96, 0.92, 0.86} and by assuming
that the efficiency is level independent, we take the same values on the higher levels.

In Tab. 3, we present for this particular N` the level efficiency η`(θ) defined in
(20), and the run-time as a function of θ. For θ = 0 and ` = 0, the runs are carried
out with one thread, and they go up to 8 192 hardware threads on 4 096 cores for
θ = 4 and ` = 3. The maximal level efficiency and the minimal run-time on each
level are marked in boldface to highlight the best setting chosen by the LeSyHom
strategy (cf. (21)).

Table 3
Level efficiencies, level run-times and total run-time in seconds

θ time η0(θ) time η1(θ) time η2(θ) time η3(θ) t. time
0 167 0.50 171 0.67 177 0.84 179 1.00 694
1 168 0.50 173 0.67 181 0.84 183 0.99 704
2 127 0.64 134 0.86 188 0.81 193 0.96 642
3 108 0.74 139 0.83 169 0.89 199 0.92 615
4 104 0.77 136 0.84 181 0.81 218 0.86 640

The minimal run-time of a simple scheduling strategy that picks a fixed θ for all
MLMC levels is 615 s. Our homogeneous scheduling strategies pick θ` for each level
automatically and by doing so, a considerably shorter run-time of 586 s is obtained.
If the solver scaled perfectly also to processor numbers that are not powers of 2, we
could reduce the compute time even further by about 11% from 586 to 520 seconds.
In summary, the strong scalability of the PDE solver helps to avoid load imbalances
due to oversampling and improves the time to solution by about 15% from 694 to 586
seconds. The cost is well distributed across all levels, although most of the work is
on the finest level which is typical for this model problem (cf. [4]).

We conclude this subsection with a strong scaling experiment, i.e., we increase
the number of processes in order to reduce the overall time to solution. Since we are
interested in the behavior for extremely large Pmax, we reduce the number of samples
to Nl = (1 031, 172, 27, 4). The time for one MLMC computation with an increasing
number of processes Pmax is presented in Fig. 9. The initial computation employs
Pmax = 2 048 which is large enough so that all fine-grid samples can be computed
concurrently. We scale the problem up to 131 072 processes. Increasing Pmax while
keeping the number of samples per level fixed results in a decrease of kseq. Thus the
load imbalance increases and the total parallel efficiency decreases. Nevertheless, even
with Pmax = 32768, we obtain a parallel efficiency of over 60%. For Pmax = 131072,
the efficiency drops below 40%, since we have reached the limits of the scalability
window. This is inevitable in any strong scaling scenario. Overall, the compute time
for the MLMC estimator can be reduced from 616 to 22 seconds, resulting in the

20

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

8

16

32

64

128

256

512

1024

2]048 4]096 8]192 16]384 32]768 65]536 131]072

M
LM

C
]p

ar
al

le
l]e

ff
ic

ie
n

cy

T
im

e]
[s

e
co

n
d

s]

Number]of]processes]Pmax

Optimal MLMC Parallel]efficiency

Fig. 9. Strong scaling of MLMC using homogeneous bulk synchronous scheduling.

claimed excellent parallel efficiency of the MLMC implementation. For each choice of
Pmax, we select the optimal regime for θ`, ` = 0, . . . , 3, as discussed above.

7.2. Scheduling with dynamic variants for scenarios with large run-
time variations. In this subsection, we compare static strategies with their dynamic
variants in the case of large run-time variations on three MLMC levels, i.e. L =
2, with a fine grid resolution of about 1.6 · 107 mesh nodes. We assume again a
lognormal random coefficient, but in order to increase the run-time variation, we
choose a greater variance σ2 = 4.0 and λ = 0.5. The quantity of interest, is the PDE
solution u evaluated at the point x = (0.5, 0.5, 0.5). All samples are computed with
a FMG-2V(4,4) cycle with up to a hundred additional V(4,4) cycles until a relative
residuum of 10−10. Pre-computed variance estimates lead to an a priori strategy with
(N`)`=0,1,2 = (27 151, 10 765, 3 792). In this scenario, with Pmax = 8192, the estimated

scaling parameters using the LeSyHom strategy are (θLeSy
`)`=0,1,2 = (1, 0, 0), whereas

using the RuRoHom strategy yields (θRuRo
`)`=0,1,2 = (1, 1, 0). In Tab. 4, we compare

the required time with both strategies in the static and dynamic variants and see that
the dynamic strategies are 6% and 7% faster than their static counterparts.

Table 4
Comparison of static and dynamic scheduling strategies

Level LeSyHom DyLeSyHom Ratio RuRoHom DyRuRoHom Ratio
0 500 s 460 s 0.92 501 s 460 s 0.92
1 1512 s 1347 s 0.89 1449 s 1270 s 0.88
2 5885 s 5596 s 0.95 5885 s 5594 s 0.95

Total 7897 s 7403 s 0.94 7835 s 7324 s 0.93

7.3. Adaptive MLMC. Finally, we consider an adaptive MLMC algorithm as
introduced in Sec. 2.3 in a weak scaling scenario with LeSyHom scheduling strategy.

Each row in Tab. 5 summarizes one adaptive MLMC computation. The MLMC
method is initially executed on 2 048 cores, choosing P`=0,1,2,3 = (2, 16, 128, 1 024).
In each successive row of the table, the number of unknowns on the finest level in the
MLMC method and the number of processors on each level is increased by a factor of
eight. Moreover, the correlation length λ of the coefficient field is reduced by a factor
of two, keeping σ2 = 1 fixed. This means that the problems are actually getting more
difficult as well. The quantity of interest is defined as the flux across a separating

21

Table 5
Weak scaling of an adaptive MLMC estimator.

No. Samples Correlation Idle
Processes Resolution Runtime Fine Total length time

4 096 1 0243 5.0 · 103 s 68 13 316 1.50E-02 3%
32 768 2 0483 3.9 · 103 s 44 10 892 7.50E-03 4%

262 144 4 0963 5.2 · 103 s 60 10 940 3.75E-03 5%

Table 6
Number of samples and over-samples for different levels for the largest run.

No. Samples No. Over-samples
Level No. partitions Scheduled Calculated Estimated Actual

0 2 048 7 506 8 192 3 726 686
1 256 2 111 2 304 429 193
2 32 382 384 15 2
3 4 57 60 3 3

plane Γ at x2 = 0.25, i.e.,

Q(u, ω) =

∫
Γ

k(x, ω)
∂u

∂n
ds .

In all cases, the initial number of samples is set to N`=0,1,2,3 = (1 024, 256, 64, 16).
The final number of samples is then chosen adaptively by the MLMC algorithm. It
is listed in the table. As motivated in Sec. 2, the tolerance for the sampling error,
which is needed in (12) to adaptively estimate N`, is chosen as εs ≈ |E[QL −QL−1]|,
balancing the sampling error with the bias error. The estimates for the expected

E(Q)

E(Y)

1

1× 10−1

1× 10−2

1× 10−3

1× 10−4

1× 10−5

1× 10−6

0 1 2 3Level

1× 10−3

1× 10−4

1× 10−5

1× 10−6

1× 10−7

1× 10−8

1× 10−9

V ar(Y)

V ar(Q)

0 1 2 3Level

Fig. 10. MLMC performance plots: expected value (left) and variance (right) of Q` (red, solid)
and Y` (blue, dashed) for λ = 0.015 and σ2 = 1.

values and for the variances of Q` and Y`, for a problem of size M` = 1 0243 and with
a correlation length of λ = 0.015, are plotted in Fig. 10. The expected values and the
variances of Y` show the expected asymptotic behavior as ` increases, confirming the
benefits of the multilevel approach. The total number of samples that are computed
is 13 316, but only 68 of them on the finest grid. A standard Monte Carlo estimator
would require several thousand samples on level 3 and would be significantly more
costly. The idle time, in the last column of Tab. 5, accounts for the variation in the
number of V-cycles, required to achieve a residual reduction of 10−5 on each level
within each call to the FMG algorithm.

22

The largest adaptive MLMC computation shown in Tab. 5 involves a finest grid
with almost 7× 1010 unknowns. Discrete systems of this size must be solved 60
times, together with more than 10 000 smaller problems, the smallest of which still
has more than 1.6× 107 unknowns. With the methods developed here, a computation
of such magnitude requires a compute time of less than 1.5 hours when 131 072 cores
running 262 144 processes are employed. Additional details for this largest MLMC
computation are presented in Tab. 6. The table lists the number of partitions that are
used on each level for the respective problem sizes. The number of calculated samples
on each level is a multiple of the number of these partitions. As Tab. 6 illustrates,
the number of scheduled samples is smaller and the difference indicates the amount
of oversampling. The number of unnecessary samples is presented explicitly in the
last column of the table to compare with the estimated number of unneeded samples.
This estimated number is significantly higher on each level, since it is the sum of all
the oversampled computations in all stages of the adaptive MLMC algorithm. As
we pointed out earlier, this is caused by a special feature of the adaptive MLMC
algorithm. Samples that were predicted to be redundant in an early stage of the
algorithm, may become necessary later in the computation. Thus at termination, the
actual oversampling is significantly less than predicted. This is a dynamic effect that
cannot be quantified easily in a static a priori fashion.

8. Conclusions. In this paper we have explored the use of multilevel Monte
Carlo methods combined with multigrid solvers on very large supercomputers. Three
levels of parallelism must be coordinated, since it is not sufficient to just execute
samples in parallel. The combination of solver- and sample-parallelism leads to a
non-trivial scheduling problem, where the trade-off between solver scalability, over-
sampling, and additional efficiency losses due to run-time variations must be balanced
with care. This motivated the development of scheduling strategies of increasing
complexity, including advanced dynamic methods that rely on meta-heuristic search
algorithms. These scheduling algorithms are based on performance predictions for
the individual tasks that can in turn be derived from run-time measurements and
performance models motivated by Amdahl’s law.

The success of the techniques and their scalability are demonstrated on a large-
scale model problem. The largest MLMC computation involves more than 10 000
samples and a fine grid resolution with almost 7× 1010 unknowns and is thus one of
the largest UQ computations demonstrated to date. It is executed on 131 072 cores
of a peta-scale class supercomputer in 1.5 hours of total compute time.

The techniques of this paper may be extended by exploring other interesting
dynamic load balancing strategies. In this case, the system is filled with jobs while
prioritizing large jobs over small jobs. After a job terminates, the released processors
can be used for the next job of same size or smaller jobs, if no large jobs are left. If
new large jobs are created, then a sufficient number of smaller jobs must terminate
to free enough space for the larger ones. The resulting gaps in processor utilization
must be reduced as much as possible by suitable strategies. Heuristic approaches like
this are of great interest when an even larger number of parallel processors becomes
available. Then the complexity of the optimization problems, as they are solved here
for the heterogeneous strategies, grows even worse. The dynamic variants of our
homogeneous strategies have already showed improvements in run time and therefore
energy consumption as compared to their static counterparts.

REFERENCES

23

[1] A. H. Baker, R. D. Falgout, T. Gamblin, T. V. Kolev, M. Schulz, and U. M. Yang. Scaling
algebraic multigrid solvers: On the road to exascale. In Competence in High Performance
Computing 2010, pages 215–226. Springer, 2012.

[2] A. Barth, C. Schwab, and N. Zollinger. Multi-level Monte Carlo finite element method for
elliptic PDE’s with stochastic coefficients. Numer. Math., 119:123–161, 2011.

[3] B. K. Bergen and F. Hülsemann. Hierarchical hybrid grids: data structures and core algorithms
for multigrid. Numer. Lin. Alg. Appl., 11(2-3):279–291, 2004.

[4] J. Charrier, R. Scheichl, and A. L. Teckentrup. Finite element error analysis of elliptic PDEs
with random coefficients and its application to multilevel Monte Carlo methods. SIAM
J. Numer. Anal., 51(1):322–352, 2013.

[5] E. Chow, R. D. Falgout, J. J. Hu, R. S. Tuminaro, and U. M. Yang. A survey of parallelization
techniques for multigrid solvers. In M. A. Heroux, P. Raghavan, and H. D. Simon, editors,
Parallel Processing for Scientific Computing, chapter 10, pages 179–201. SIAM, 2006.

[6] K. A. Cliffe, M. B. Giles, R. Scheichl, and A. L. Teckentrup. Multilevel Monte Carlo methods
and applications to elliptic PDEs with random coefficients. Comput. Visual. Sci., 14(1):3–
15, 2011.

[7] N. Collier, A. L. Haji-Ali, F. Nobile, E. von Schwerin, and R. Tempone. A continuation
multilevel Monte Carlo algorithm. BIT Numer. Math., 55(2):399–432, 2015.

[8] G. Dagan. Flow and Transport in Porous Formations. Springer, 1989.
[9] C. R. Dietrich and G. H. Newsam. Fast and exact simulation of stationary Gaussian processes

through circulant embedding of the covariance matrix. SIAM J. Sci. Comput., 18:1088–
1107, 1997.

[10] J. Dongarra. Report on the Sunway TaihuLight system. Technical report,
University of Tennessee, Oak Ridge National Laboratory, June 24, 2016.
http://www.netlib.org/utk/people/JackDongarra/PAPERS/sunway-report-2016.pdf.

[11] M. Drozdowski. Scheduling for Parallel Processing. Springer-Verlag, London, 2009.
[12] D. Elfverson, F. Hellman, and A. Målqvist. A multilevel Monte Carlo method for computing

failure probabilities. SIAM/ASA J. Uncertainty Quantification, 4(1):312–330, 2016.
[13] M. Garey and D. Johnson. Computers and Intractability; A Guide to the Theory of NP-

Completeness. W. H. Freeman & Co, New York, 1990.
[14] R. G. Ghanem and P. Spanos. Stochastic Finite Elements: A Spectral Approach. Springer,

1991.
[15] M. B. Giles. Multilevel Monte Carlo path simulation. Operations Res., 56(3):981–986, 2008.
[16] M. B. Giles and B. J. Waterhouse. Multilevel quasi-Monte Carlo path simulation. Radon Series

Comp. Appl. Math., 8:1–18, 2009.
[17] B. Gmeiner, M. Huber, L. John, U. Rüde, and B. Wohlmuth. A quantitative performance study

for Stokes solvers at the extreme scale. Journal of Computational Science, 17, Part 3:509
– 521, 2016. Recent Advances in Parallel Techniques for Scientific Computing.

[18] B. Gmeiner, U. Rüde, H. Stengel, C. Waluga, and B. Wohlmuth. Towards textbook efficiency
for parallel multigrid. Numer. Math. Theor. Meth. Appl., 8(01):22–46, 2015.

[19] T. Gradl, C. Freundl, H. Köstler, and U. Rüde. Scalable multigrid. In High Performance
Computing in Science and Engineering, Garching/Munich 2007, pages 475–483. Springer,
2009.

[20] I. G. Graham, F. Y. Kuo, D. Nuyens, R. Scheichl, and I. H. Sloan. Quasi-Monte Carlo methods
for elliptic PDEs with random coefficients and applications. J. Comput. Phys., 230:3668–
3694, 2011.

[21] G. Hager and G. Wellein. Introduction to high performance computing for scientists and
engineers. CRC Press, 2010.

[22] J. K. Lenstra, A. H. G. Rinnooy Kan, and P. Brucker. Complexity of machine scheduling.
Annals of Discrete Mathematics, 1:343–362, 1977.

[23] J. L. Leva. A fast normal random number generator. ACM Transactions on Mathematical
Software (TOMS), 18(4):449–453, 1992.

[24] F. Lindgren, H. Rue, and J. Lindström. An explicit link between gaussian fields and gaussian
markov random fields: the stochastic partial differential equation approach. Journal of the
Royal Statistical Society: Series B (Statistical Methodology), 73(4):423–498, 2011.

[25] G. J. Lord, C. Powell, and T. Shardlow. An Introduction to Computational Stochastic PDEs.
Cambridge Texts in Applied Mathematics. Cambridge University Press, 2014.

[26] Z. Michalewicz. Genetic Algorithms + Data Structures = Evolution Programs. Springer, 1996.
[27] W. H. Press. Numerical Recipes 3rd Edition: The Art of Scientific Computing. Cambridge

University Press, 2007.
[28] E. Prudencio and S. H. Cheung. Parallel adaptive multilevel sampling algorithms for the

bayesian analysis of mathematical models. International Journal for Uncertainty Quan-

24

tification, 2(3), 2012.
[29] D. Simpson, J. Illian, F. Lindgren, S. Sørbye, and H. Rue. Going off grid: Computationally

efficient inference for log-Gaussian Cox processes. Biometrika, 103:49–70, 2016.
[30] M. Srinivas and L. M. Patnaik. Genetic algorithms: A survey. Computer, 27(6):17–26, 1994.
[31] E. Strohmaier, H. W. Meuer, J. Dongarra, and H. D. Simon. The Top500 list and progress in

high-performance computing. Computer, 48(11):42–49, 2015.
[32] J. Šukys. Adaptive load balancing for massively parallel multi-level Monte Carlo solvers. In

Parallel Processing and Applied Mathematics, pages 47–56. Springer, 2014.
[33] J. Šukys, S. Mishra, and C. Schwab. Static load balancing for multi-level Monte Carlo finite

volume solvers. In Parallel Processing and Applied Maths, pages 245–254. Springer, 2012.
[34] A. L. Teckentrup, R. Scheichl, M. B. Giles, and E. Ullmann. Further analysis of multilevel MC

methods for elliptic PDEs with random coefficients. Numer. Math., 125(3):569–600, 2013.
[35] J. D. Ullman. NP-complete scheduling problems. J. Comput. System Sci., 10:384–393, 1975.
[36] P. J. M. Van Laarhoven and E. H. L. Aarts. Simulated annealing. Springer, 1987.
[37] P. J. M. Van Laarhoven, E. H. L. Aarts, and J. K. Lenstra. Job shop scheduling by simulated

annealing. Operations Res., 40(1):113–125, 1992.
[38] I. Wegener. Simulated annealing beats Metropolis in combinatorial optimization. In L. Caires

et al., editors, Automata, Languages and Programming, volume 3850 of Lecture Notes in
Computer Science, pages 589–601. Springer, 2005.

[39] P. Whittle. Stochastic processes in several dimensions. Bull. Inst. Internat. Stat., 40:974–994,
1963.

[40] D. Xiu and G. E. Karniadakis. The Wiener–Askey polynomial chaos for stochastic differential
equations. SIAM J. Sci. Comput., 24(2):619–644, 2002.

25

	Introduction
	The Multilevel Monte Carlo method
	Standard Monte-Carlo Simulation
	Multilevel Monte-Carlo Simulation
	Adaptive Multilevel Monte Carlo

	Model problem and deterministic solver
	Discretisation
	PDE-based sampling for lognormal random fields

	Performance parameters and execution strategies
	Characteristic performance parameters
	Classification of concurrent execution strategies
	Layers of parallel execution
	Concurrency in the processor-time diagram

	Examples for scheduling strategies
	Sample synchronous and level synchronous homogeneous
	Run-time robust homogeneous
	Dynamic variants
	Heterogeneous bulk synchronous scheduling
	The degenerate case S=0 and a new auxiliary objective
	The highly scalable case S=4 and new hybrid mutants

	Scheduling comparison
	The influence of the number of sequential steps
	The influence of solver scalability
	Robustness and efficiency with respect to the parameters

	Numerical results for MLMC
	Static scheduling for scenarios with small run-time variations
	Scheduling with dynamic variants for scenarios with large run-time variations
	Adaptive MLMC

	Conclusions
	References

