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Nearly aligned graphene on hexagonal boron nitride (G/BN) can be accurately modeled by a Dirac Hamiltonian
perturbed by smoothly varying moiré pattern pseudospin fields. Here, we present the moiré-band model of G/BN
for arbitrary small twist angles under a framework that combines symmetry considerations with input from
ab initio calculations. Our analysis of the band gaps at the primary and secondary Dirac points highlights the role
of inversion symmetry breaking contributions of the moiré patterns, leading to primary Dirac point gaps when the
moiré strains give rise to a finite average mass, and to secondary gaps when the moiré pseudospin components
are mixed appropriately. The pseudomagnetic strain fields, which can reach values of up to ∼40 T near symmetry
points in the moiré cell stem almost entirely from virtual hopping and dominate over the contributions arising
from bond length distortions due to the moiré strains.

DOI: 10.1103/PhysRevB.96.085442

I. INTRODUCTION

Graphene is a single-atom thick sheet of carbon atoms
arranged in a honeycomb lattice [1–5]. In the past few years,
hexagonal boron nitride (hBN), which also consists of van der
Waals coupled bipartite honeycomb lattice layers, has emerged
as a miracle substrate for graphene [6,7]. While graphene is a
semimetal with a linear band crossing at the neutrality point,
hBN is an insulator with a large band gap of ∼5.8 eV [8–10]
due to its lack of inversion symmetry. Recent experiments
have made it clear that graphene is very flat with reduced
density of puddles when it is placed on hBN substrate [11],
allowing high carrier mobilities without sacrificing mechanical
stability [6]. This drastic improvement in sample quality
opened the door to the observation of new physics, including
the discovery of new graphene fractional quantum Hall states
[12,13], Fermi velocity renormalization [14], and anomalously
large magnetodrag [15]. However, the influences of interlayer
coupling between graphene and hBN become much stronger
and are readily observed when both lattices have similar
orientations. The interlayer coupling between carbon atoms
in graphene and boron and nitrogen atoms in boron nitride is
very large (300–450 meV) [16], allowing for the possibility of
strong substrate-induced distortions of the isolated graphene
electronic structure when placed on a hBN substrate. Ab initio
theory has predicted that commensurate graphene on hBN
(G/BN) would inherit a 50-meV band gap from the substrate
[17].

Due to ∼1.7% lattice mismatch between graphene and hBN
lattices [10,16,18], moiré supperlattices whose periodicity de-
pends on the twist angle, were observed in scanning tunneling
microscopy [11] and atomic force microscopy [19]. It has
been shown that these results do not rely on the twist angle
taking on discrete values giving commensurate superlattices,
but hold for any continuous value [20]. Collectively, these

results imply that G/BN should not have a band gap. However,
the experimental observation of sizable band gaps [19,21–23]
has led to theories where the nonzero average mass generation
introduced by the partial commensuration of the G/BN layers
[24,25] and electron-electron interaction effects [26,27] play a
relevant role. Other manifestations of the moiré pattern effects
in G/BN include the Hofstadter butterfly [28,29], topological
valley current [30,31], tunable Van Hove singularities in the
low-energy regime [32], and the emergence of secondary Dirac
cones (sDC) at the edge of the moiré Brilluoin zone (mBZ)
[23,29].

In this work, we present a theory of the moiré band model
of G/BN for arbitrary twist angles under a framework that
combines symmetry considerations and microscopic ab initio
models for the moiré patterns [16,33]. Electronic structure
theories of nearly aligned G/BN are most simply modeled
through the continuum Hamiltonian of graphene subject to
moiré patterns that vary slowly on an atomic scale. In this case,
we can formulate effective low-energy theories in which the
Hamiltonian has the periodicity of the moiré pattern and use
the simplifications of Bloch’s theorem to obtain the moiré band
[20,34], thus bypassing the need to diagonalize large supercell
approximants of incommensurable crystals often done for
studying twisted bilayer graphene [35–39]. By establishing a
unified framework that uses symmetry considerations [33] and
microscopic ab initio moiré band models [16,24], we provide
realistic estimates of the first harmonics parameters in G/BN
and analytical expressions for the behavior of the band gap
near the primary and secondary Dirac points. Our analysis
allows us to understand the dependence of the moiré band
Hamiltonian parameters on twist as well as the atomic lattice
configuration through the study on rigid and relaxed structures,
which in turn allows us to distinguish the strain fields resulting
from virtual hopping and the effects of bond distortions due
to relaxation strains. For the latter, we further distinguish the
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changes in the moiré pattern due to modifications in stacking
registry from the modifications in the intrinsic band structure
of graphene due to the bond length distorting strains. Using
approaches established in Refs. [16,24], we examine how
the twist and lattice relaxation can influence the band gap
at the primary and secondary Dirac cones identifying the
relevance of inversion asymmetric terms for opening up a band
gap.

The paper is structured as follows. Section II briefly
introduces and compares the moiré band presented in earlier
literature. Subsequently, in Sec. III, we explain the relaxation
model and the procedure to obtain the modified Hamiltonian
parameters at various twist angles. In Sec. IV, we present the
analysis on the resulting moiré band and the band gaps for
the primary and secondary Dirac points, before we present the
summary in Sec. V.

II. MOIRÉ BAND MODEL

The Dirac electrons of monolayer graphene deposited on a
BN substrate at nearly perfect alignment experience periodic
moiré pattern perturbations whose length scale depends on
the lattice constant difference between crystals and the twist
angle. Using the BN substrate as a fixed reference, the
crystal lattice constant difference is represented through ε =
(aG − aBN)/aBN ≈ −1.7 and the twist angle is represented
by θ . A generic approach to analytically describe the moiré
pattern perturbations in van der Waals crystals is based upon
the realization that the interlayer coupling is smoothly varying
over the moiré unit cell since the interlayer distance is substan-
tially larger than the interatomic distance [20]. Consequently,
for a heterostructure with a small lattice mismatch at a nearly
perfect alignment (|ε|,|θ | � 1), the influence of the substrate
is effectively captured by the long wavelength components
of the moiré pattern as defined by first harmonics �Gm

[16,24,33], which are related to graphene and BN reciprocal
lattice vectors �gm and �gBN

m through the following relations,
see Fig. 1:

�gm = R̂2π(m−1)/6

(
0,

4π

3a

)
,m ∈ {1,2, . . . ,6}, (1)

�Gm = �gBN
m − R̂θ �gm = [(1 + ε) − R̂θ ]�gm

≈ ε�gm − θ (ẑ × �gm). (2)

We denote the carbon-carbon distance on a graphene sheet as
a ≈ 1.42 Å, and R̂θ is a rotation by an angle θ . In the G/BN
systems, the reciprocal lattice vector magnitude for the first
harmonics is approximately G = |�Gm| ≈ (4π/3a)

√
ε2 + θ2.

They define the mBZ, which is � 5% of graphene-BZ’s size
when θ � 2◦ considered in our calculations, see Fig. 2. The
corresponding moiré period lM = √

3a/
√

ε2 + θ2 ranges from
∼6 nm up to a maximum of ∼14 nm, which is attained
in a perfectly aligned G/BN. The moiré band Hamiltonian,
constructed by adding the moiré pattern perturbation on top of
the pristine graphene Hamiltonian,

H = h̄υ �p · �στ0 + H0(�r)σ0τ0 + Hz(�r)σ3τ3 + �Hxy(�r) · �στ3

= h̄υ �p · �στ0 + (V0 + V (�r))σ0τ0 + (m0 + m(�r))σ3τ3

+ �A(�r) · �στ3, (3)

FIG. 1. The first harmonics reciprocal space wave vectors and the
moiré Brillouin zone (mBZ) in a perfectly aligned G/BN ( �Gm, θ = 0)
and at a finite twist angle (�G′

m, θ > 0). The relative size of the mBZ
with respect to the graphene BZ is defined by the factor ε̃ = √

ε2 + θ2,
and is rotated by ϕ under twist, such that χθ = cos(ϕ) ≈ ε/ε̃. The
Dirac electrons in moiré band are coupled by interger multiples of
these wave vectors which generally lead to band splitting at the mBZ
edges. The primary valley is located at the mBZ center (
), while K

and K ′ refer to the secondary valleys at which sDC might be found.

which is periodic over one moiré length, and we take the
Fermi velocity υ ∼ 106 m/s [14]. We represent the sublattice
and valley pseudospins through σ and τ Pauli matrices and
use the conventions in Refs. [33,40] where H acts on the
four-component state (�AK,�BK,�BK ′ , − �AK ′)T . We have
explicitly separated the �G = (0,0) Fourier components V0 for
the potential and m0 for the average mass or sublattice potential
difference [18,24]. The constant V0 represents a global shift
in the Dirac cone’s energy that plays no role in the physical
properties and is set to zero in our present analysis. The average
mass m0 plays an important role in opening a gap at the
primary Dirac cone and it can be increased by commensuration
strains [24]. The spatially periodic G/BN couplings give rise
to three distinct effects, which can be represented by three
local terms in the sublattice pseudospin basis: (1) V (�r) reflects
the periodic sublattice potential, (2) m(�r) describes the local
mass which opens a local gap at the neutrality point, and
(3) �A(�r) can be interpreted as an in-plane gauge field that
arises due to asymmetric hopping between one carbon atom
and its neighbors on the opposite honeycomb sublattice [41].
The Pauli matrices σi and τi act on the sublattice and valley
degrees of freedom, respectively. The form of Eq. (3) reflects
the time-reversal symmetry present in the G/BN system. (In the
representation, we use τ3 and �σ are odd under time reversal.) In
this work, we limit our analysis to the primary valley τ3 = 1.

There are two common ways to construct the moiré patterns
Hamiltonians in the literature. In Ref. [33] the moiré pattern
Hamiltonians are parametrized using symmetry considerations
that are distinguished by inversion-symmetric and inversion-
asymmetric coupling coefficients, which are denoted as ui

and ũi , respectively. The other representation is found in the
ab initio studies of G/BN couplings, which extract the moiré
couplings from Fourier analysis and were represented through
complex numbers in a magnitude-phase representation Cμ and
φμ [16]. Here we show that the two parametrizations can be
mathematically related to each other exactly in the following
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FIG. 2. (Top) Plot of the relaxation coefficient CR which defines
the strain magnitude as a function of twist angle θ and a schematic
representation of different symmetric stacking arrangements. It is
shown in Appendix A that CR ∝ ε̃−2. (Bottom) In-plane strain �u�r
and interlayer spacing h(�r) at two different twist angles. In-plane
strain causes a reconfiguration in the positions of graphene unit cells,
which prefer the BA stacking (red), where one carbon atom sits
on top of boron atom, and one carbon is in the middle of BN’s
hexagon. In this case the strain field points away from the BA stacking
point since aG < aBN. When G/BN layers are at zero twist angle,
in-plane relaxation is maximized and allows graphene unit cells to
move a distance of up to ∼0.085 Å. The out-of-plane relaxation
brings the interlayer distance around BA to a minimum, while it
is maximized around AA (black), consistent with BA (AA) as the
most (least) energetically favorable configuration. Similar plots are
obtained for twisted G/BN (θ = 2◦) at the same energy scale. Under
this twist, the maximum displacement attainable by a carbon site
decreases to ∼0.04 Å. The twist introduces an additional contribution
kR(ẑ × ∇(�r)) to the strain field, which leads to a nonzero curl.

manner:

V (�r) = υG( u0f1(�r) + ũ0f2(�r) ) = 2C0�e[eiφ0f(�r)], (4)

m(�r) = υG( u3f2(�r) + ũ3f1(�r) ) = 2Cz�e[eiφzf(�r)], (5)

�A(�r) = υ[ẑ×�∇(u1f2(�r) + ũ1f1(�r)) + �∇(u2f2(�r) + ũ2f1(�r))]

= 2Cxy[cos(ϕ)(ẑ × 1) − sin(ϕ)] �∇ �e[eiφxy f(�r)], (6)

where cos(ϕ)  ε/ε̃ and sin(ϕ)  θ/ε̃ can be expressed in
terms of ε̃ = √

ε2 + θ2 in the small angle approximation, and
where ϕ is the rotation angle of the moiré pattern discussed in
Appendix A. The real periodic functions f1 and f2 are defined
in the following way:

(f1(�r), f2(�r)) =
∑
m

(1, i(−1)m−1) exp(i �Gm · �r), (7)

and the complex valued function f = (f1 + if2)/2 is similar
to the first nearest-neighbor structure factor of graphene’s
tight-binding model [42] and has been used in Refs. [16,24] to
represent the triangular modulation of the moiré pattern in real
space. In the above equations, the Hamiltonian parameters
ui, ũi are inversely proportional to υG and decrease when
the twist angle is increased, while the parameters in the
magnitude-phase representation, (Cμ,ϕμ), capture the local
stacking-dependent interlayer coupling and are insensitive
to the twist angle. We particularly note that for a complete
mapping of the �Hxy = �Axy term in a twisted G/BN as defined
in Ref. [16], we need to include all of the four parameters
(u1,ũ1,u2,ũ2) that define the gauge fields in the xy plane.
However, the contributions from u2 and ũ2 can be absorbed
into the global phase and can be neglected in our subsequent
analysis of the moiré band [33]. This is equivalent to dropping
the sin(ϕ) term in �A(�r) of Eq. (6). Their dependence on the
twist angle can be seen clearly from our analytical mapping
in Eqs. (6) and (10) where both terms are scaled according to
χθ = cos(ϕ) ≈ ε/ε̃, which reflects the amount of rotation in
the moiré first harmonic wave vectors under twist, see Fig. 2.
The unification of both representations can be summed up by
the following equations relating {ui,ũi} and {Cμ,φμ}:

υG(u0 − iũ0) = C0e
iφ0 , (8)

υG(ũ3 − iu3) = Cze
iφz , (9)

υG(ũ1 − iu1) = cos(ϕ)Cxye
iφxy  ε

ε̃
Cxye

iφxy . (10)

It becomes transparent now that Cμ quantifies the strength of
the moiré pattern pseudospins and the phase φμ determines the
ratio between the inversion symmetric ui and asymmetric ũi

parameters. The explicit equations relating them are presented
in Appendix A, together with the specific parameter values
that we have used to model the band structures.

It should be noted that there are three different but
equivalent parameter sets to describe the same bands which
depend on the choice of stacking configuration at the origin
�r = 0 [43]. Such a possibility can be attributed to the presence
of three centers on the AA, AB, and BA stacking points around
which c3 symmetry is respected, see Appendix A for more
discussions. The different sets of moiré patterns are related
to each other through a rotation of ±2π/3 equivalent to a
real-space translation that changes the reference frame origin
to a different local symmetry point H (�r) → H (�r ± 4π

3G2
�G1):(

u0 u1 u3

−ũ0 ũ1 ũ3

)
→ R̂± 2π

3

(
u0 u1 u3

−ũ0 ũ1 ũ3

)
, (11)

φμ → φμ ± 2π

3
, (12)
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while in the magnitude-phase representation the parameter
rotations are achieved by shifting the phases by ±2π/3. Seem-
ingly different solutions just represent changes in the reference
stacking point that permute the mapping between boron,
nitrogen, and empty sites under inversion. This equivalence
between parameter sets is illustrated further in Appendix A
where we represent each moiré pseudospin term in real space
for different stacking.

III. AB INITIO MOIRÉ PATTERNS IN RIGID
AND RELAXED G/BN

Initial attempts to model the moiré patterns of graphene on
hexagonal boron nitride have used simplifying assumptions
based on experimental observations or physical intuition to
restrict the large parameter space [33,44–47]. In this work,
this uncertainty is resolved by using the model Hamiltonian
parameters defined through ab initio calculations that incor-
porate information for all possible stacking configurations of
the local crystal Hamiltonian going beyond the two-center ap-
proximation for the interatomic hopping [16]. In the presence
of a small lattice mismatch ε or twist angle θ , the crystals are
in general incommensurable but the local Hamiltonian H (�r) ≡
H̃ ( �d(�r)) at a given point �r can be captured with short period
commensurate geometry calculations containing few atoms.
The electronic structure of incommensurable G/BN with rigid
lattices leads to vanishingly small gaps [16,18,29,45,48], in
contrast to the ∼50 meV single particle gaps when the lattice
constants of G and BN are perfectly aligned [17]. As we have
shown in the previous section, the ab initio model can be
mapped naturally into the moiré Hamiltonian through Eq. (3).
The parameters of the moiré Hamiltonian implied by these ab
initio calculations are presented in Appendix A.

The global average of the mass term Hz(�r) in the moiré unit
cell of area AM is given by

m0 = 1

AM

∫
AM

d�r H̃z( �d0(�r)), (13)

and the first harmonics contributions to the Hamiltonian Hμ,�Gj

that use the first shell of �G vectors can be obtained through the
corresponding Fourier transforms

Hμ,�Gj
= 1

AM

∫
AM

d�r exp(−i �Gj · �r) H̃μ( �d0(�r)), (14)

where the index μ ∈ {0,x,y,z} labels the sublattice pseu-
dospins, and the integrands are obtained from stacking depen-
dent ab initio calculations. Despite the sublattice asymmetry
introduced by the BN layer on the graphene sheet, the average
mass term m0 of rigid graphene remains approximately zero
in the absence of strains [16] and only a small gap is expected
to open due to higher-order perturbation terms [24,44].

In the following, we discuss effects of strains resulting
from partial commensuration in a G/BN heterojunction. For
the study about the effect of strains, we follow closely the work
presented in Ref. [24]. When we allow the lattice structure to
relax in a G/BN heterojunction, the lattices undergo a partial
commensuration expanding and compressing regions with
different local stacking depending on their energy landscape. It
was shown that such strains become relevant in the limit of long

moiré lengths because the elastic energy resisting deformation
decreases proportionally to ε2, or equivalently with the inverse
square of the moiré length. We use the Born-von Karman
plate theory to capture the relaxation of the atoms and we
use interlayer potential energies that depend on the local
displacement between graphene and BN unit cells. This type
of continuum approximation is justified for moiré lengths on
the order of ∼10 nm that is between one to two orders of
magnitude larger than the interatomic distance. The following
Lamé parameters: λg = 3.25 eV Å−2 and μg = 9.57 eV Å−2

for graphene and λBN = 3.5 eV Å−2 and μBN = 7.8 eV Å−2

for BN characterize the elastic properties of the layers. In the
analysis of strains presented here we focus on the restricted
relaxation scheme where only the graphene sheet is allowed
to deform, while we keep the underlying rigid BN substrate
rigid. A more general analysis shows that the hexagonal boron
nitride sheet in contact with the graphene layer relaxes by an
approximately equal magnitude but in the opposite sense when
compared with the strains produced in the graphene sheet.

We obtain the strain vector fields by taking the gradient
on a scalar function (ε̃; �r), which respects the periodicity of
the moiré pattern, which we define using the magnitude-phase
representation:

(�r) = 2ε̃−2CR(ε̃)�e[eiφR (ε̃)f(�r)], (15)

where the coefficient CR quantifies the degree of relaxation,
and φR sets the direction of displacements around the symme-
try points. The magnitude of CR depends on the strength of the
van der Waals interaction and the elastic constants of the layer,
and its magnitude decreases with growing twist angle. At an
angle of θ ∼ 2◦, the coefficient CR is reduced by a factor of
∼6 compared to the strain for zero twist angle, see Fig. 2. On
the other hand, the phase φR exhibits little dependence on ε̃,
and can be assumed to maintain a constant value for different
twist angles. Further details for the relationship between CR

and the adhesion potentials are presented in Appendix B.
The in-plane displacement vectors �u(�r) for a general twist

angle can be readily obtained from the scalar function in the
following manner:

�u(�r) = uxx̂ + uyŷ = [1 + kR(ẑ × 1)] �∇(�r), (16)

where the factor kR = (2 + λg/μg)(θ/ε) grows with misalign-
ment. The first term �∇(�r) contributes to the translation of the
local unit cell leading to local compressions and expansions,
while the latter term kR(ẑ × �∇(�r)) is a nonzero curl term
that distorts the carbon unit cell without changing its local
area. Since ab initio calculations on commensurate lattices
show that G/BN prefers the BA stacking, the displacement
vectors of graphene lattices should be pointing away from the
position of BA stacking to partially compensate for the lattice
mismatch due to aG < aBN. The local displacement at certain
positions can be as large as ∼5% of the carbon-carbon distance,
e.g., ∼0.07 Å when θ ∼ 0, while the magnitude of the local
displacement �u(�r) decreases with twist, as we illustrate in
Fig. 2. The cumulative displacement within the moiré cell will
be smaller than one lattice constant per moiré cell required for
global commensuration.

To describe the out-of-plane stacking-dependent interlayer
distance of G/BN we assume that the spatial profile of the
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out-of-plane relaxation is purely determined by �d(�r), which
follows the moiré periodicity, instead of explicitly solving
the out-of-plane height variations based on the interlayer
coupling potentials. Typically, the height variations range
between 3.28 and 3.49 Å, see Fig. 2, with an average interlayer
distance of z0 = 3.4 Å within the local density approximation
(LDA) [16,24]. Figure 2 shows that the preference over BA
configuration in G/BN layers is also reflected in the smaller
interlayer separation around BA stacking points.

The local relaxation leads to significant changes to the
effective G/BN couplings experienced by the Dirac electrons.
We capture this effect by modifying the local sliding vector �d
between the graphene and BN sites:

�d(�r) = �d0(�r) + �u(�r) + h(�r)ẑ, (17)

where h(�r) = h̃( �d) is the local interlayer distance for each
position. The effects of strains alter the Hamiltonian in such
a way that H̃ ( �d0) → H̃ ( �d), which in turn modifies the spatial
averages of the different pseudospin terms in Eqs. (13) and
(14) that capture the moiré pattern effects. We discuss in
Appendix C the analytical expressions for m0, ui , and ũi in
the limit of |�u| � a.

The changes in the moiré patterns captured by Eq. (14)
result from the local modification in the effective couplings
of graphene to the BN substrate due to the reconfiguration
of the relative positions between graphene and BN sites.
Additionally, we have to bear in mind the modification of
the electronic structure in graphene due to bond distortions
that can be related to variations in the local site energy ε′

p and
intersite hopping parameter t [41,49]. The pseudospin terms
in the Hamiltonian H0 and �Hxy are consequently changed due
to these additional contributions by

δH0 = γ ′(uxx + uyy), γ ′ = a

2

∂ε′
p

∂a
, (18)

δ �Hxy = γ [(uxx − uyy)x̂ − 2uxyŷ], γ = 3a

4

∂t

∂a
. (19)

where γ ′ ≈ 4.0 eV quantifies the rate of change of the
site potential, and γ ≈ −4.5 eV captures the gauge fields
produced by hopping asymmetry in the presence of bond
distortions [43,50,51].

It is possible to gain further insight on how the strains
modify the Hamiltonian assuming that they depend linearly on
the symmetrized strain tensor uij ≡ 1

2 (∂ui/∂xj + ∂uj/∂xi) +
∂h/∂xi ∂h/∂xj , where the potential and pseudomagnetic field
terms respectively arise from the dependence of the local site
energy ε′

p and the hopping parameters t to the neighboring
carbon atoms. With an in-plane strain profile which respects
the lattice symmetry and the moiré periodicity, we are able to
map the strain-induced potential and gauge field into Eqs. (4)–
(6). The resulting changes in the first harmonics parameters
are given by

υG(δu0 − i δũ0) = −γ ′CR(ε̃)g2eiφR , (20)

υG(δu1 + i δũ1) = γ CR(ε̃)g2F (ϕ)eiφR , (21)

where g = 4π/3a is the magnitude of the reciprocal lattice
vector of graphene, while F (ϕ) is a dimensionless function

that respects the threefold rotational symmetry:

F (ϕ) = cos(3ϕ) + kR sin(3ϕ). (22)

The presence of kR-dependent term only in Eq. (22) indicates
that the nonzero curl contributions modify the gauge field
terms but do not influence the electrostatic potential terms. As
a consequence the site potential δH0 contribution decreases
together with CR(ε̃) whereas the gauge field contribution δ �Hxy

has a more complex behavior since F (ϕ) changes sign around
θc ≈ 1.3◦ as observed in the variation of the moiré parameters
u1 and ũ1 with respect to twist angle, see Fig. 3. This critical
angle is related with the elastic constants of graphene.

It is found that the intrinsic changes in the Hamiltonian due
to out-of-plane strains are negligible with respect to the in-
plane components, since the variation in the interlayer distance
�h are orders of magnitude smaller than the moiré length. We
can thus neglect the out-of-plane effects in its contribution to
Eqs. (18) and (19).

Our analysis for δH0 and the calculations of γ ′ have
uncertainties related with the effect of electrostatic screenings
by the carriers [52], whereas the pseudomagnetic field effects
are unaffected by electrostatic effects. We found that in G/BN
structures with long moiré periods, the pseudomagnetic field
realistically reaches 40 T near the AA and BA stacking
points. These originate almost entirely from virtual strain fields
produced by hopping of electrons to and fro from graphene to B
and N sites [16,24], while the contributions due to real strains
have maximum values of ∼5 Te, which amounts to ∼15%
of the total pseudomagnetic field at selected points. We note
that the physics originating the virtual and real contributions
to the pseudomagnetic fields are clearly distinct. The larger
contribution from virtual hopping processes manifests directly
the electronic coupling between the graphene and BN sheets,
whereas the smaller strain-induced field expressed in Eq. (21)
results from the mechanical adhesive properties between the
layers that introduces a bond-length asymmetry between the
neighboring carbon atoms of graphene. Our elastic model
suggests that the bond distortions between carbon atoms reach
maximum values on the order of �0.1 Å, which translates
into a relatively small strain-induced field proportional to
γCRg2/Cxy . The specific Hamiltonian parameter values for
θ = 0◦ and how they are influenced by the lattice relaxation
are discussed further in Appendix C. We present in Fig. 3
the behavior of the Hamiltonian coefficients as a function of
twist angle where we label with α the Hamiltonian parameters
that incorporates only the modifications in the shape of the
moiré pattern due to change in the local stacking, while
the β solutions include also the modifications of graphene’s
Hamiltonian itself due to bond distortions resulting from
the relaxation strains. When compared with the rigid lattice,
we find that relaxations tend to enhance (u0, ũ1 and ũ3),
and reduce (ũ0, u1 and u3) in the limit of small twist
angles. The relaxation also allows the generation of a finite
average mass term m0 leading to a band gap on the order
of �p ≈ 2|m0| ∼ 7 meV within a graphene relaxation only
scheme. The somewhat larger gaps than previous values in
Ref. [24] can be attributed to the simpler form of the strains
assumed to calculate the elastic energy functional in the
present calculations. Further enhancement of the band gap
results when electron-electron interaction effects are included,
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FIG. 3. Moiré pattern Hamiltonian parameters for rigid and relaxed G/BN plotted against twist angle θ using the BA stacking as the
reference origin. For the relaxed cases, we distinguish the α case that includes only stacking registry modification effects from the β case
that also includes the strain induced electronic structure change in graphene. The top figures represent the inversion symmetric terms ui ,
while the bottom figures represent the inversion asymmetric terms ũi . The relaxation gives rise to nonzero average mass m0, which we
plot in the right bottom panel with a black solid line with a value of ∼3.5 meV near zero twist angle. The changes in the moiré pattern
Hamiltonian parameters as a function of twist due to full relaxation are greatest for site potential (u0, ũ0) and in-plane pseudomagnetic fields
(u1, ũ1).

making it possible to obtain magnitudes for the band gaps that
are comparable to experiments [22,24]. The additional effects
of bond distortions in the Hamiltonian parameters included
in the β-relaxation case through the first harmonic terms in
Eqs. (18) and (19) do not affect the average mass term. The
effects of β relaxations in Fig. 3 tend to partially restore the
parameters of the rigid Hamiltonian and this explains in part
why the rigid model [16,24] already gives a relatively accurate
description of experimentally observed moiré band features
[53,54]. The modifications of the Hamiltonian parameters
show most clearly near the mBZ edges and they introduce
subtle changes in the behavior of the sDC features. The
strain-induced gauge field terms change sign around θ ∼ 1.3◦
with a crossover in the values of u1 and ũ1 in the relaxed α

and β cases. As a result, for moderately large twist angles the
complete relaxation effects indicates an overall weakening of
the pseudomagnetic fields. We present additional discussions
on the relationship between strain and pseudomagnetic fields
in Appendix B.

IV. BAND GAPS AT THE PRIMARY AND SECONDARY
DIRAC POINTS

The presence of band gaps in G/BN has been a subject of
interest thanks to the prospect of tailoring a high mobility
2D semiconductor based on graphene. Although the LDA
predicts the formation of a band gap of ∼50 meV in lattice
matched G/BN [17], the lattice constant mismatch between

the graphene and hexagonal boron nitride should suppress
the band gap near charge neutrality [45] because the spatial
average of the local mass term distributed sinusoidally in
real space cancels out to a value close to zero [16]. The
experimental observation of a band gap at the primary Dirac
point came as a surprise [21,22] and soon it was speculated
that the band gap near charge neutrality at the primary Dirac
point originates from Coulomb interaction effects [26,27].
Another plausible scenario for the formation of the gap is the
generation of an average mass term resulting from the moiré
strains [24] observed experimentally through atomic force
microscopy [19,55]. These strains originate from stacking
registry dependent total energy differences on the order of
a few tens of meV [16,48] that lead to sizable in-plane strains
in the limit of long moiré patterns thanks to the quick decrease
of the elastic energy with the increase of the moiré length
[24]. The average of the band gap at the primary Dirac
cone as a function of strain obtained neglecting higher-order
contributions in G reads

�p ≈ �0 + C̃R(θ ) cos(φR − φz) (23)

with C̃R(θ ) = 12 CR(θ ) Cz(ε + θ2(2 + λg/μg)/ε)g2, where g

is the magnitude of the reciprocal lattice vector of graphene.
The constant �0 ∼ 4 meV accounts for the small gap that
already develops with only out-of-plane relaxation, and Cz,
φz are the moiré parameters for the mass field obtained when
height variation is allowed. This result shows that the band
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FIG. 4. (Top) (a)–(c) Moiré band diagrams for θ = 0◦ G/BN obtained for different relaxation schemes using the parameters listed in
Appendix A. The k-path in the mBZ follows 
 → K ′ → M → 
 → K → M → 
. In the rigid case, we expect to find a sDC on K ′ at the
valence band when graphene is hole doped. When relaxation is accounted for including only stacking registry change, the α scheme described
in the main text, we find an indirect sDC gap due to a change in the band shape near the M point. In the more complete β scheme where
the strain induced band structure change in graphene is accounted for the pseudospin fields arising due to stacking registry modification is
partially canceled and the direct gap at the sDC is restored. Bottom panel: (d)-(f) Moiré band diagram for rigid (red) and relaxed β (black)
G/BN calculated at various twist angles and the corresponding density of states (DOS). The interlayer coupling in G/BN gives rise to gapped
sDC around the K ′ point in the moiré Brillouin zone. This finding is consistent with the experimental observation of a resistivity peak and
the reversal of the Hall resistivity sign at the hole side reported in Ref. [29]. The relaxation effects introduces strongest changes in the
band structure at small twist angles whereas they are closely similar to the rigid band structure when the twist angle is increased. (a) Rigid,
(b) Relaxed α, (c) Relaxed β, (d) θ = 0◦, (e) θ = 1◦, and (f) θ = 2◦.

gap at the primary Dirac point depends almost linearly to
the coefficient CR(θ ) used to quantify the magnitude of the
in-plane deformation. Further details of this derivation are
presented in Appendix C.

We now turn our attention to the features of the moiré band
near the secondary Dirac points observed in G/BN heterojunc-
tions [29,46,56]. The band structure and the associated density
of states (DOS) profile resulting from our model Hamiltonian
in Fig. 4 confirm the presence of such features near the mBZ
corner at energies of ∼ ± h̄υG/

√
3. It was noted that the strong

asymmetry between electron and holes commonly observed
in experiments with prominent hole features are intrinsic to
the band structure model and originate due to opposite chiral
winding of the bands combined with the moiré pseudospin
terms leading to destructive or constructive contributions of
the secondary Dirac cone features [18]. A proper modeling of
the Hamiltonian parameters for the moiré patterns is necessary
to capture the correct band features near the mBZ corners
including the sDC shapes and number. The modifications in
the Hamiltonian in the presence of lattice relaxation lead to
mild modifications of the sDC features as shown in Fig. 4.
Depending on how we account for the relaxation effects in
the α and β cases, the gap at the secondary Dirac point is
an indirect one in the former due to the increase in energy

of the valence bands near the M point in the mBZ, whereas
in the latter case a Dirac cone shape similar to the rigid band
structure is restored. This suggests that the modifications in the
electronic structure of graphene due to bond length changes
as shown in the β solutions can influence details in the optical
transitions within the secondary Dirac cones in the terahertz
range [18]. In the following, we discuss how the strain and
twist can influence the primary and sDC gaps. In Fig. 5, we
represent the magnitude of the gaps as a function of a strain
parameter η and twist angle θ . While both gaps shrink with
growing twist angle, they show opposite behaviors under the
influence of an in-plane strain because the physical origin of
the gaps are different. In the case of the primary gap, we
find that �p, which is essentially proportional to the global
mass m0 grows monotonically with the magnitude of in-plane
strain. On the other hand, the sDC feature at the mBZ edges is
determined by the interplay between all of the first harmonics
pseudospin components and the increase of in-plane strain
results in reduction of its magnitude. Further insight about
the behavior of the gaps at the sDC can be achieved by
analyzing the bands based on perturbation theory where a
triply degenerate band crossing splits under the influence of
moiré Hamiltonian parameters [18,33,43]. The energy splitting
at the mBZ K point can be neatly expressed in the following
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FIG. 5. The magnitudes of the band gaps for the primary Dirac
cone �p (left) and secondary Dirac cone �s (right) for the valence
band K ′ valley in the mBZ plotted against twist angle and in-plane
strain ηCR(θ ), where η is a dimensionless multiplicative factor used
to locally increase or reduce the relaxation. When η = 0, only out-of-
plane relaxation is present in the system and our model of relaxation
corresponds to the white dashed line along the horizontal axis for
η = 1. As a general feature we find that the primary gap increases for
larger strains with its value doubling when the strain is three times
larger. However, the sDC gap decreases with increasing strains and
a well defined sDC feature is only found within a certain window
in twist angle. The shaded region on the right panel represents the
parameter space where the direct sDC gap is obscured by the higher-
energy band which dips below the sDC energy at the M point when
the twist angle is increased.

analytical form:

Eζκ,m ≈ υGζ − �e
[
exp

(
i 2πm

3

)
�ζκ

]
√

3
, (24)

where the term

�ζκ =
√

3υG((u0 − iκũ0) − i2ζ (ũ1 − iκu1)

+ i
√

3(ũ3 − iκu3))

=
√

3C0e
iκφ0 + 2

√
3ζκε

ε̃
Cxye

i(κφxy−π/2)

+ 3Cze
i(κφz+π/2), (25)

can be viewed as a sum of three complex numbers that define
the three pseudospin components of the moiré pattern. The m ∈
{0,1,2} indices represent the bands on the secondary valley K

(κ = 1) or K ′ (κ = −1) of the mBZ, while ζ = 1 (ζ = −1)
labels the conduction (valence) band.

The way that the band triplet of Eq. (24) splits in the
secondary valleys is schematically represented in Fig. 6. The
bands can be described as singlet-doublet structure when
only inversion-symmetric Hamiltonians with ũi = 0 is used
[33], while in the limit where inversion-asymmetric terms are
dominant the triplets are separated by approximately equal
gaps [57]. Defining the sDC gap �s,ζκ as the energy difference
at the Dirac point of the mBZ between bands that are nearer
to the primary Dirac cone they can be written as

�s,ζκ = |�ζκ sin φζκ |, (26)

where the phase factor φζκ = arg[−ζ�3
ζκ ]/3 is defined in such

a way that φζκ ∈ (−π/3, π/3]. The above equation for the gap
�s,ζκ is a generally valid expression independent of the choice
on coordinate reference for the moiré patterns. The triplets
exhibit a periodicity in phase of 2π/3 and the form of �ζκ

is consistent with the possibility of having three different sets
of parameters with equivalent electronic structures where the
only difference is the choice of the reference origin for the

FIG. 6. Schematic representations (a)–(c) of the band triplets at the secondary valleys in the mBZ used to analyze the magnitude of the sDC
gaps of G/BN. We show three representative cases in the Hamiltonian parameter space for the behavior of the bands at K ′. The three arrow
heads separated by a phase of 2π/3 represent the energy levels that can be found projecting them on the y axis following Eq. (24). The length
of the arrows given by the magnitude of �ζκ given in Eq. (25) quantifies the interplay between the moiré patterns that split the bands at the sDC
valleys with respect to the energy coordinate origin located at ζυG/

√
3. In the insets, we plot �ζκ and the phase φζκ , which determines the

size of the sDC gap, see Eq. (26). (a) In a system with only inversion symmetric couplings ui , the band triplets separate into a singlet-doublet
structure, with an energy difference of

√
3|�ζκ |/2. A gap at the sDC appears if the energy level crossing of the doublet located closer to the

charge neutrality is lifted. (b) In the presence of inversion asymmetric couplings ũi , we expect to find an energy band splitting of �̃ = |�ζκ |/2
that leads to a gapped sDC. (c) A general situation involves both nonzero ui and ũi terms. This diagram represents the situation of G/BN valence
sDC (ζ = −1), which is found on K ′ (κ = −1). The analytical expression for the sDC gap given in Eq. (26) is most conveniently represented
when the phase φζκ lies within −π/3 < arg[−ζ�ζκ ] � π/3, see Eq. (27). (a) ui �= 0,ũi = 0, (b) ui = 0,ũi �= 0, and (c) ui,ũi �= 0.
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moiré patterns as we discussed earlier in Eqs. (11) and (12). In
the case we choose the Hamiltonian parameter set that already
satisfies −π/3 < arg[−ζ�ζκ ] � π/3, the secondary gap can
be expressed as the imaginary part of �s,ζκ involving only
inversion asymmetric Hamiltonian terms ũi :

�s,ζκ = �m[�ζκ ] =
√

3υG|κũ0 + 2ζ ũ1 −
√

3ũ3|. (27)

We note that the expression for the sDC gap in Refs. [43,57]
did not impose the restriction in the phase of �ζκ required for
a correct description of the results and whose parameter sets
can have phases rotated by ±2π/3 depending on the choice in
the reference point.

V. SUMMARY

We have presented a moiré band Hamiltonian for G/BN
within a framework that uses the symmetry of the moiré
patterns and relies on input from ab initio theories, unifying
notation used in the literature for the moiré pattern models in
the first harmonics approximation. Our G/BN model accounts
for the average mass term that develops in the presence of
commensuration strains when the lattice is allowed to relax.
We have calculated the lattice relaxation by using a continuum
elastic model of graphene for several misalignment angles
based on simplifying assumptions where the strain fields are
represented within a first harmonics expansion. Taking advan-
tage of the formal simplicity where the strains can be expressed
in terms of two parameters, effectively reducing to a magni-
tude, which is variable, and a constant phase term we have ob-
tained numerically and analytically the twist angle dependence
of the moiré pattern Hamiltonian parameters. The presence of
strains influences the moiré pattern Hamiltonian parameters
first by modifying the real-space distribution of local stacking
profiles, which in turn change the interlayer coupling maps,
and then through intrinsic modifications in the electronic struc-
ture of graphene arising due to the bond distortions. These two
contributions partially cancel each other resulting in a Hamil-
tonian where the final electronic structure is not too different
from the rigid model except for the presence of a band gap at
the primary Dirac point. The virtual strain terms in the Hamil-
tonian due to second-order hopping processes of the electrons
that are already present for rigid lattices is found to dominate
over the relatively small corrections in the Hamiltonian
introduced by bond length distortions due to the moiré strains.

The evolution of the band gaps at the primary and secondary
Dirac points were studied analytically and numerically based
on the strain models we have developed. Our analysis shows
that an overall increase of the commensuration strains, and
thus the average mass term, opens up further the primary gap
whereas the magnitude of the secondary gap is reduced when
strains are larger. Both gaps are found to progressively decrease
with the increase of twist angle due to the impact the shortening
of the moiré pattern period has on the electronic structure.
The primary gap reduces due to the quick decrease of the
strain magnitudes, whereas the reshaping of the bands near the
mBZ corners that reduce the secondary gap is more strongly
influenced by the decreases of the virtual strain terms rather
than by the modifications in the Hamiltonian introduced by
commensuration strains.
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APPENDIX A: ANALYTICAL MAPPING OF THE
AB INITIO PARAMETERS IN RIGID G/BN

The ab initio results for the moiré pattern in Ref. [16] were
calculated using input from short period commensurate struc-
tures with the minimum size of unit cell within self-consistent
LDA using an equal lattice constant 2.439 Å for both graphene
and hBN. The projection of the pseudospin Hamiltonian
components H̃μ( �d) calculated for various displacement vectors
�d are used as input to obtain the first harmonics approximation
for the Fourier components of three pairs of parameters
{Cμ,φμ}, which correspond to each pseudospin term. These
can be related with the ui, ũi parameters [33] through the
relations in Eqs. (8)–(10) whose explicit correspondence is
presented in Table I. Here, we show the analytical mapping
between the two parametrization systems. We found that only
u1υG and ũ1υG are changed with twist according to χθ , see
Fig. 2, which can be analytically expressed in the following
way for a general twist angle:

cos(ϕ) ≡ χθ = 1 + ε − cos(θ )

(1 + ε)2 − 2(1 + ε) cos(θ ) + 1
≈ ε

ε̃
. (A1)

Three equivalent parameter sets for the same solution that can
be obtained using the transformations in Eq. (11) and (12)
are presented in Table II, and the corresponding plots of the
moiré patterns in real space Hμ(�r) are presented in Fig. 7.
The Hamiltonian parameters for rigid graphene presented in
Table II are equivalent to those in Eq. (40) of Ref. [16] where
the pseudospin magnitudes have been defined as positive
numbers and their phases have been changed accordingly. In
addition, we have also redefined φxy such that it relates to
φAB in Ref. [16] through φxy = π/6 − φAB , which allows to

TABLE I. Two-way mapping between the parametrizations in
Refs. [16] and [33] are explicitly presented here. These are equivalent
to the more compact expressions in Eqs. (8)–(10). In the left columns,
we are expressing ui and ũi in terms of the corresponding Cμ and
φμ, and vice versa in the right columns. The approximate expression
for small twist angles involving ε̃ can be made exact by restoring
ε/̃ε  χθ ≡ cos(ϕ), where ϕ is the rotation angle of the moiré pattern
used in Eq. (A1). The angle φxy defined in this work is related to φAB

in Ref. [16] through φxy = π/6 − φAB for consistency of HAB term
in Eq. (38) of Ref. [16] with the Hxy term defined in Eq. (6).

u0υG C0 cos(φ0) C0 υG
√

u2
0 + ũ2

0

ũ0υG −C0 sin(φ0) φ0 arg[u0 − iũ0]
u3υG −Cz sin(φz) Cz υG

√
u2

3 + ũ2
3

ũ3υG Cz cos(φz) φz arg[ũ3 − iu3]
u1υG −ε̃−1εCxy sin(φxy) Cxy |ε−1ε̃|υG

√
u2

1 + ũ2
1

ũ1υG ε̃−1εCxy cos(φxy) φxy arg[ε(ũ1 − iu1)]
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TABLE II. Ab initio moiré parameters in a perfectly aligned
rigid G/BN (z0 = 3.35 Å) presented in Refs. [16,24]. Each column
represents different sets of parametrizations related to each other
through 2π/3 rotation as defined in Eqs. (11) and (12), which results
in different local stacking at the moiré pattern center. The moiré
Hamiltonian parameters Cμ, uiυG, and ũiυG are presented in meV
units. We found that inversion symmetry is maximized (minimized)
when BA (AA) stacking is chosen as the coordinate center.

Rigid G/BN AA AB BA

C0 10.13 10.13 10.13
φ0 −93.47◦ 26.53◦ 146.53◦

Cz 9.01 9.01 9.01
φz −171.57◦ −51.57◦ 68.43◦

Cxy 11.34 11.34 11.34
φxy 10.40◦ 130.40◦ −109.60◦

u0υG −0.613 9.06 −8.45
ũ0υG 10.11 −4.53 −5.58
u1υG 2.05 8.64 −10.68
ũ1υG −11.15 7.36 3.80
u3υG 1.32 7.06 −8.38
ũ3υG −8.91 5.60 3.31

represent the HAB term in Eq. (38) of Ref. [16] in the compact
form given in Eq. (6) in the main text of this work.

APPENDIX B: GRAPHENE IN-PLANE RELAXATION
MODEL AND STRAIN-INDUCED

PSEUDOMAGNETIC FIELD

In our analysis on the relaxed structure, we assume the
simplest case in which only graphene layer relaxes under
the influence of a rigid BN substrate. It was shown that the
BN sheet in contact with graphene acquires strains that are
almost equal in magnitude [24] and are important to correctly
account for the modified Hamiltonian coupling parameters.
This additional effect can be included as a later correction
and here we exclude it from the self-consistent calculation
to give preference to the formal simplicity. The graphene
layer is modeled using the Born-von Karman plate theory,
in which the elastic properties of graphene are represented by
the Lamé parameters λg and μg [58,59]. We also approximate
the relaxation by decoupling the in-plane components from the
out-of-plane components, so that graphene in-plane relaxation
allows the system to minimize its energy with respect to the
rigid structure as given by the functional

E[�u,uij ] =
∫

AM

d�r [Ue(uij (�r)) + Up(�u(�r))], (B1)

and the elastic energy density Ue can be fully expressed in
terms of the symmetric tensor in-plane components within lin-
ear approximation uij = 1

2 [∂iuj + ∂jui], where the potential
energy density Up is purely a function of the displacement
vector �u(�r),

Ue(uij (�r)) = λg

2

[∑
i

uii(�r)

]2

+ μg

∑
ij

uij (�r)2, (B2)

FIG. 7. The spatial plots of the pseudospin components are
obtained in rigid G/BN using the ab initio parameters [16]. We also
illustrate here the possibility of using three different stacking points as
our coordinate reference: AA (black), AB (blue), and BA (red). The
threefold symmetry of the system is respected around these special
points, so that a translation from one symmetry point to another
is equivalent to a 2π/3-rotation of the moiré pattern parameters,
see Eq. (11), that does not change the moiré band. The figures also
indicate that different degrees of inversion symmetry depending on
the chosen coordinate reference. We found that in G/BN, inversion
symmetric couplings are maximized (minimized) around BA(AA),
see Table II.

Up(�u(�r)) = 1

Ag

[U0 + U1f̃1( �d0 + �u(�r)) + U2f̃2( �d0 + �u(�r))],

(B3)

where Ag = 3
√

3a2
0/2 is graphene’s unit cell area. The f̃1( �d)

and f̃2( �d) functions are similar to the first harmonics functions
f1(�r) and f2(�r) but now expressed in terms of the displacement
vector �d(�r) = �d0(�r) + �u(�r):

(f̃1( �d),f̃2( �d)) =
∑

n

(1, i(−1)n−1) exp(i �gn · �d), (B4)

where �gn are the first shell reciprocal lattice vectors of
graphene, similar to Eq. (2). In the absence of strain, f̃1( �d0)
and f̃2( �d0) are equivalent to f1(�r) and f2(�r), respectively, see
Eq. (7). It should also be noted that in Eq. (B3), we have offset
the average energy to zero, and the values for U1 and U2 can
be easily deduced from ab initio calculations of the potential
energy on AA, AB, and BA stacking points [24] through the
following relations:

U0 = 1
3 (UAA + UAB + UBA), (B5)

U1 = 1
18 (2 UBA − UAB − UAA), (B6)
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FIG. 8. (a) Potential energy density profile Up(�r), which results from graphene interaction with the BN substrate, calculated at z0 = 3.4 Å.
The panel (b) represents the pseudomagnetic field profile in a relaxed G/BN at θ = 0◦ and (c) as a function of twist angle at special stacking
points in rigid (dotted) and relaxed G/BN (solid). An increase in the pseudomagnetic field is expected at small twist angle, with fields of
magnitude 40 T are attainable in the vicinity of AA and BA stacking points. The relatively long magnetic lengths compared with the moiré
period preclude the formation of well defined Landau levels originated by pseudomagnetic fields but may lead to snake states for appropriate
spatial distributions of positive and negative fields.

U2 = 1

6
√

3
(UAA − UAB). (B7)

Optimizing the functional in Eq. (B1) with respect to �u and its
derivative ∂iuj requires solving

∂Up

∂uj

= ∂i

{
∂Ue

∂(∂iuj )

}
. (B8)

The potential energy profile U (�u(�r)) as expressed in Eq. (B3),
describing the interlayer coupling at zero twist is illustrated in
Fig. 8(a). Treating the problem within the first harmonics, the
term on each side of the equation can be expressed as follows:

ĵ
∂Up

∂uj

≈ ε + θ (ẑ × 1)

ε̃2Ag

[U1 �∇f1(�r) + U2 �∇f2(�r)], (B9)

�ej
�∇i

∂Ue

∂uij

= 2μg

[ �∇2 �u − (ẑ × �∇)uA
xy

] + λg
�∇( �∇ · �u), (B10)

in which we denote the asymmetric part of the strain tensor as
uA

xy = 1
2 [∂xuy − ∂yux]. We solve Eq. (B8) using the following

ansatz, which respects the moiré periodicity of the system,

�u(�r) = [ �∇ + kR(ẑ × �∇)](�r), (B11)

where the scalar function (�r) defined in Eq. (15) can also be
written in terms of C1 and C2 parameters that satisfy

(�r) = C1f1(�r) + C2f2(�r) (B12)

whose magnitude-phase expression is given by

CR(ε̃) = ε̃2
√

C2
1 + C2

2 , φR = arg[C1 − iC2]. (B13)

The solutions that relate the strain parameters and interlayer
potentials are

C1 + iC2 = −ρε

ε̃4

[
U1 + iU2

λg + 2μg

]
, kR = θ

ε

[
2 + λg

μg

]
,

(B14)

where ρ = (Agg
2)−1 ≈ 2.19 × 10−2 is a term that depends

on the lattice constant of graphene. The analytic solutions
illustrate the way the twist angle influences the magnitudes
C1, C2 ∝ ε̃−4 and the shape distortions encoded in the factor
kR . Within our estimates, C1 and C2 are always related by

a constant phase φR ≈ −171◦, in keeping with the value of
φR = −51◦ in Ref. [24], where we added a −2π/3 phase for
AA → BA stacking origin representation change.

We should keep in mind that even in the absence of any
relaxation the pseudomagnetic fields are already present in
G/BN due to the influence of the substrate on the hopping
asymmetry [16,24], leading to finite values in u1 and ũ1, see
Fig. 3. This is expected to give rise to a constant pseudomag-
netic field profile despite the changing moiré periodicity, see
the dashed lines in Fig. 8(c) where a pseudomagnetic field of
35 T is found on the AA stacking point. The pseudomagnetic
fields can be obtained by calculating the curl on the vector
potential and results in

B(�r) = −G2

e
[u1f2(�r) + ũ1f1(�r)] (B15)

= −2ε

ε̃

G

eυ
Cxy�e[eiφxy f (�r)]. (B16)

where the relaxation strains for different twist angles can
introduce changes in the value of the parameters u1 and ũ1

or CR and φR upon relaxation. The pseudomagnetic field
profile at zero twist in a relaxed structure is plotted in
Fig. 8, together with its behavior under twist on some special
stacking points. For small twist angles, relaxation enhances
the pseudomagnetic fields resulting in u1 values that are
significantly larger than ũ1 with local maxima at AA and AB
stacking points where magnitudes of up to 40 T are expected.
This enchancement due to relaxation is present for a very small
window in twist angle before it decreases and even counters the
underlying pseudomagnetic field in the rigid structure when
the twist goes beyond the critical angle θc of 1.3◦.

APPENDIX C: MODIFICATIONS IN THE MOIRÉ
PATTERN HAMILTONIAN PARAMETERS AND THE

PRIMARY GAP IN THE PRESENCE OF STRAINS

As we have shown in the main text, the linearity in the
displacement field with respect to position in rigid G/BN
lead to a practically zero spatial average for each pseudospin
term H̃μ( �d0(�r)), thus resulting in a zero global mass, see
Eq. (13). Accordingly, the band features in such a system
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TABLE III. Hamiltonian parameters based on the ab initio calculations for rigid and relaxed graphene in Refs. [16,24], and the parameters
obtained within the simplified relaxation scheme used in the present work. In a relaxed G/BN, there are two distinct effects which lead to the
modifications in the moiré Hamiltonian parameters: (1) change in the G/BN couplings due to local stacking modifications due to strains, (2)
strain-induced modification of electronic structure and pseudomagnetic fields in graphene. We denote with the label α the case in which only
(1) is included, while β refers to the case where both effects are present. All parameters are presented in meV except for the phases provided in
degrees, and we label with “XY” the results obtained when only in-plane relaxation is allowed while we keep a constant interlayer separation
distance at z0 = 3.4 Å. We have taken the BA stacking point as our coordinate reference that provides the parameter sets where the inversion
asymmetric terms are smallest.

m0 u0υG u1υG u3υG ũ0υG ũ1υG ũ3υG C0 φ0 Cxy φxy Cz φz

Rigid, Ref. [16] z0 = 3.35 Å 0 −8.46 −10.69 −8.38 −5.58 3.81 3.32 10.13 146.53◦ 11.34 −109.60◦ 9.01 68.43◦

Rigid, Ref. [24] z0 = 3.40 Å 0 −7.24 −9.15 −7.23 −4.85 3.26 2.79 8.71 146.18◦ 9.71 −109.60 ◦ 7.75 68.90◦

Relaxed, Ref. [18] 3.74 −8.41 −6.68 −4.70 −3.40 3.05 3.13 9.07 157.99◦ 7.34 −114.53 ◦ 5.64 56.34◦

Relaxed α 3.62 −9.48 −7.49 −5.94 −4.33 3.85 3.41 10.42 155.45◦ 8.43 −117.20 ◦ 6.85 60.14◦

Relaxed β 3.62 −4.93 −12.57 −5.94 −5.01 3.09 3.41 7.03 134.54◦ 12.94 −103.81 ◦ 6.85 60.14◦

Relaxed-XY α 1.55 −7.73 −8.50 −6.72 −4.60 3.36 2.89 9.00 149.24◦ 9.14 −111.57 ◦ 7.32 66.73◦

Relaxed-XY β 1.55 −3.22 −13.59 −6.72 −5.28 2.60 2.89 6.18 121.38◦ 13.84 −100.83 ◦ 7.32 66.73◦

can be fully described by the first harmonics contributions
to the Hamiltonian. This is in line with the experimental
observation of a nearly vanishing gap on the primary valley of
G/BN despite the sublattice asymmetry of BN [29]. However,
structural relaxation modifies the displacement field �u(�r),
resulting in a global mass term m0 in order to describe the
band features properly.The changes in the interaction between
the carbon atoms with the underlying BN substrates due to the
additional displacement �u(�r) lead to modifications in the first
harmonics functions f̃1( �d) and f̃2( �d). The calculation of the
effective moiré couplings under relaxation requires numerical
computations of the Fourier components of Hμ,�Gj

, see Eq. (14),
but we can obtain the following analytical approximation in
the small strain limit where |�u| � a:

f̃1( �d) =
∑

n

exp[i �gn · ( �d0 + �u)]

≈
∑

n

(1 + i �gn · �u) exp[i �gn · �r]

= 6ε′C1g
2 + (1 + ε′C1g

2)f1(�r) − ε′C2g
2f2(�r), (C1)

f̃2( �d) = −i
∑

n

(−1)n exp[i �gn · ( �d0 + �u)]

≈ −i
∑

n

(−1)n(1 + i �gn · �u) exp[i �gn · �r]

= 6ε′C2g
2 − ε′C2g

2f1(�r) + (1 − ε′C1g
2)f2(�r), (C2)

where ε′ = ε + kRθ , and kR was defined in Eq. (B14). This
approximation allows to decompose the contributions into two
different relaxation modes quantified by the coefficients C1 and
C2. The finite average results from the nonzero cancellation

of the spatial average of f̃1( �d) [f̃2( �d)] due to the presence of a
constant 6ε′C1g

2 (6ε′C2g
2). Considering the transformations

in Eq. (C1) and (C2) on Hz(�r), the mass m0 given in Eq. (23)
can also be expressed as

m0 ≈ �0

2
+ 6ε′υGg2(u3C2 + ũ3C1), (C3)

which is expected to grow proportionally to the interlayer
coupling strength and the strain magnitude in graphene. The
constant �0 is the finite average gap that opens when the
system is allowed to relax on the z axis only. Experimental
observation of the primary gap can thus be understood in
the light of Eq. (C3), which makes the contributions of
out-of-plane and in-plane deformation to the resulting gap
more transparent.

Taking into account the additional terms introduced by the
potential energy and the gauge field, see Eqs. (20) and (21), the
effective Hamiltonian parameters u′

i and ũ′
i can be expressed

in terms of the parameters ui and ũi in a system with mere
corrugation using the following expansion:

υG

(
u′

0 ũ′
1 ũ′

3

ũ′
0 u′

1 u′
3

)

≈ υG

[
1 + ε′g2

(
C1 −C2

−C2 −C1

)](
u0 ũ1 ũ3

ũ0 u1 u3

)
+ G2

(−γ ′C1 −γC2F (ϕ) 0
−γ ′C2 γC1F (ϕ) 0

)
. (C4)

The changes in the average mass and the Hamiltonian
parameter modifications have signatures in observable features
of the bands such as the primary gap �p and the sDC gap
�s . The explicit parameter values for the moiré Hamiltonians
corresponding to rigid and relaxed configurations for zero
twists angle obtained within different approximations are listed
in Table III.
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