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Abstract: The optimal power flow (OPF) problem for active distribution networks with distributed generation (DG) and a 

variety of discretely adjustable devices (e.g., on-load tap-changers, OLTCs) is essentially a non-convex, nonlinear, mixed-

integer optimization problem. In this paper, the quadratic model of three-phase OLTCs is proposed by adding branch 

currents as unknown variables, which guarantee a constant Hessian matrix throughout iterations. This paper proposes a 

three-phase OPF model for active distribution networks, considering a three-phase DG model. The OPF model is solved by 

an interior point method incorporating a quadratic penalty function as opposed to a Gaussian penalty function. 

Furthermore, a voltage regulator is also incorporated into the OPF model to form an integrated regulation strategy. The 

methodology is tested and validated on the IEEE 13-bus three-phase unbalanced test system. 

 

1. Introduction 

The optimal power flow (OPF) for active distribution 

networks with distributed generation (DG) and a variety of 

discretely adjustable devices is a non-convex, non-linear, 

mixed-integer optimization problem. It involves both 

discrete and continuous variables. By optimizing the 

operation strategy of the adjustable devices, including shunt 

capacitors, adjustable distributed energy resources, on-load 

tap-changers (OLTCs), etc., the OPF aims to minimize the 

operation cost which takes into account network losses. DG 

and energy storage units bring new challenges to traditional 

OPF problems [1-7]. Reference [6] studied how the 

uncertainty in wind outputs and the correlation among 

multiple wind farms would affect the OPF. Reference [6] 

did not consider discrete adjustable devices, which are 

prevalent in active distribution networks. Reference [7] 

proposed an OPF model for active distribution networks 

with OLTCs, where a piecewise linear model is adopted to 

model OLTCs. The OPF is solved by a second-order cone 

relaxation method [7]. Reference [8] optimizes the operation 

of an active distribution network where a non-coupled 

model is adopted for DG, yielding approximate results. 

Reference [9] proposed a three-phase steady-state model for 

DG – the model can be applied to OPF for active 

distribution networks.  

The primal-dual interior point method has been 

widely used to solve the OPF problem for traditional power 

systems because of its advantages such as efficiency and fast 

convergence [10-20]. Reference [13] proposed a discrete 

variable processing method based on the Gaussian penalty 

function, but it does not compare the computation efficiency 

of the function with that of other penalty functions, e.g., the 

quadratic penalty function as introduced in [20]. By 

introducing a virtual node into the OLTC model, reference 

[14] transformed the OPF model into a quadratic 

optimization in the Cartesian coordinate system, thus 

improving computation efficiency.  

This paper proposes a new asymmetrical injection 

model for DG with three phase coupling and a new 

quadratic model for three-phase OLTCs. The three-phase 

OPF for active distribution networks is solved by a 

predictor-corrector primal-dual interior point method 

(PCPDIPM) incorporating a penalty function. The network 

voltages are fine-tuned on each phase by a voltage regulator, 

and an integrated regulation strategy is proposed and 

incorporated into the OPF problem so that the voltages are 

fine-tuned on each phase to further optimize the network 

loss. Case studies demonstrate that the quadratic models for 

three-phase OLTCs and DG improve both the computation 

efficiency and the accuracy of the OPF. Case studies also 

compared the advantages and disadvantages of 1) the 

Gaussian penalty function; and 2) the quadratic penalty 

function with continuous variable discretization process. 

The impacts of the voltage regulator on nodal voltages and 

network losses are also demonstrated. 

2. Three-Phase Distribution Networks  

2.1. Quadratic model of three-phase OLTCs 
In the Cartesian coordinate system, the OPF model is 

a nonlinear optimization problem with an order higher than 

quadratic if considering the turns ratio of the OLTC as a 

control variable. When solving the OPF problem by the 

interior point method, the Hessian matrix is updated in each 

iteration, bringing about significant computation burden 

[14][21]. In order to solve this problem, a new three-phase 

OLTC model is proposed in this paper. By adding the 

branch currents as state variables, the Hessian matrix 

becomes constant throughout the iterations of the OPF. 

Fig.1 shows the OLTC in a Wye-delta (Yd) 

configuration, a virtual node m is added to branch ij. This 

transforms the OLTC into an ideal transformer im (with an 

adjustable turns ratio k) connected in series with an 

equivalent impedance mj (with impedance R + jX). The 

nodal voltages and branch currents are also shown in Fig.1. 
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Fig.1. Three-Phase Model of OLTCs 
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Based on the conservation of energy, there is 
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Substituting (1) in (2) yields, 
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In the three-phase system, the line voltage is set as 

the base voltage. So, for the Yd transformer, the standard 

transformation ratio is 1: 3 under the per-unit system. 

Considering the equivalent impedance branch mj, 

there is 
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2.2. Quadratic model of three-phase DGs 
The model in Fig. 2 represents different types of DG 

units, including those with the interface of voltage-source 

converters, wind generation based on doubly fed induction 

generators, synchronous generators, etc. 

Fig.2. A generalized sequence component model of DG 

 

Where I0d+jI
0
q, I
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+
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q represent zero 

sequence current, positive sequence current, and negative 

sequence current from DG to the network, respectively. 

U
0
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0
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d+jU

+
q, and U

–
d+jU

–
q represent zero sequence 

voltage, positive sequence voltage, and negative sequence 

voltage at the coupling point, respectively. R0+jX0 and R–

+jX
–
 represent zero sequence impedance and negative 

sequence impedance, respectively. U
0
rd+jU

0
rq and U

–
rd+jU

–
rq 

represent the zero sequence and negative sequence of the 

excitation voltage, respectively.  

The DG control system consists of three parts: active 

power control, reactive or voltage control, and the control of 

the unbalanced components. The active power control keeps 

the positive sequence active power unchanged. The reactive 

control maintains a constant reactive power injection to the 

grid. DG excitation voltage contains only positive sequence 

component, with negative and zero sequence components 

being zero. Consequently, the equality constraints are 

established, as shown in equations (5, 6, 7). 
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Where, Re[] and Im[] correspond to the real part and 

the imaginary part of the expression, respectively. Psp and 

Qsp correspond to the positive sequence values of the target 
active power and reactive power, respectively. 

The grid interface of a three-phase coupled DG is 

modelled as both a voltage controlled voltage source and a 

current controlled current source, as illustrated in Fig. 3.  

The sequence values of the DG injection currents and the 

terminal voltages are unknown variables in the quadratic 

model of DG. The variables include 
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Fig.3. Sequence-phase coupled interface 

 
The transformations from phase values to sequence 

values are given by 
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Where, 
0abcT → +−  is phase to sequence transformation 

matrix.  ‘·’ corresponds to complex quantities. 

The constraints (5) – (9) consider the coupling 

characteristics of three-phase powers. They are different 

from the steady-state model in [22] which does not consider 

sequence control under unbalanced condition. The equations 

involving DG are either linear or quadratic – this guarantees 

a constant Hessian matrix in the OPF. 

A popular model of DG is the three-phase non-

coupling model [8], described in (10). 

 

( )( )P P P P P P

re im re im
P jQ U jU I jI+ = + −      (10) 

 

Where, PP and QP correspond to the active and 

reactive power outputs from DG on phase P, respectively. 

U
P
re and U

P
im correspond to the real part and the imaginary 

part of the nodal voltage of DG on phase P, respectively. I
P
re 

and IPim correspond to the real part and the imaginary part of 

the injection current from DG on phase P, respectively. 

The three-phase coupled model of DG is accurate 

model, and the three-phase non-coupled model is an 

approximate model. So, the optimal power flow results of 

the three-phase coupled model are more accurate than those 

of the approximate three-phase non-coupled model. 

The above formulas constitute the DG constraints in 

the three-phase OPF model. Since the highest order of these 

formulas are quadratic, the Hessian matrix is constant 

throughout iterations. 

 

2.3. Three-phase model of voltage regulator 
A voltage regulator is connected to the grid for the 

fine-tuning of nodal voltages. A three-phase Y-connected 

voltage regulator consists of three single-phase voltage 

regulators, each with a tap changer that changes the tap 

position. The configuration of the three-phase voltage 

regulator is illustrated in Fig.4. 
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Fig.4. Three-phase star-shaped voltage regulator 
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In formula (13), a plus (‘+’) corresponds to ‘step up’ 

and a minus (‘－ ’) corresponds to ‘step down’. ‘Tap’ 

denotes the position of voltage regulator tap (e.g., 32-level 

adjustments within a range of ±10%). The tap is controlled 

to regulate the voltage of load center with a line voltage 

drop compensator. The line voltage drop compensator is 

coupled with the distribution line through a voltage 

transformer (turns ratio NPT: 1) and a current transformer 

(turns ratio CTP: CTS), as shown in Fig.5. The impedance of 

the compensator represents the equivalent impedance from 

the regulator to the load center: 

 

' ' ( ) P
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CT
R jX R jX

N
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The voltage at the load center is 

 

/ ( ' ') /
x x x

load PT PU U N R jX I CT= − + ⋅& & &      (15) 

 

If the voltage level of the load center is 120V and the 

bandwidth is 2V, the voltage will change by 0.75V each 

time the tap of the voltage regulator moves to the next 

position. The step up and the step down tap changes are 

given by 
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0.75

x

load

x

U
Tap

−
=                           (16) 

121

0.75

x

load

x

U
Tap

−
=                         (17) 

 

line voltage drop 
compensator

current transformer R+jX

load center

voltage 

transformer

voltage regulator

 
Fig.5. Line voltage drop compensator 

3. Optimal Power Flow Model and Algorithm 

3.1. OPF model 
This paper establishes three-phase OPF model for 

distribution networks by taking the nodal voltages and 

branch currents as the state variables.  

The objective function of the OPF model is the 

minimum loss of the network, as shown in equation (18). 

 

}{

*

, ,

1 , ,

min ( )
bn

loss br P br P

br P A B C

f x P U I t
= =
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Where, bn is the number of branches in the network. 
Ubr,P  and Ibr,P  correspond to the branch voltage and branch 

current on phase P of the brth branch, respectively. And the 

branch voltage is the difference between the nodal voltages at 

both ends of the branch. 

The equations include the KCL and KVL constraints 

(as shown in equation (19)), transformer branch constraints 

(as shown in equation (1) (3) (4)), DG branch constraints 

(such as (5) - (9)), the regulator branch constraints (as 

shown in equation (11) (12)). 

 

, , , ,

, , , ,

, ,

, ,

0

0

br P re n P re

br P im n P im

T

br P re

T

br P im

=

=

=

=

U AU

U AU

A I

A I

                       (19) 

 

Where, Ubr,P,re and Ubr,P,im  correspond to the real part 

and the imaginary part of the branch voltage on phase P of 

the brth branch, respectively. Un,P,re and Un,P,im  correspond to 

the real part and the imaginary part of the nodal voltage on 

phase P of the nth node, respectively. Ibr,P,re and Ibr,P,im 

correspond to the real part and the imaginary part of the 

branch current on phase P of the brth branch, respectively. A 

is the node-branch incidence matrix 

The inequality constraints include state variable 

constraints and control variable constraints. The state 

variable constraints include the generator active and reactive 

power constraints, the node voltage amplitude constraint, 

and the line transmission power Pij constraint (as shown in 

equation (20)). The control variable constraints including 

the constraints of the OLTC turns ratio KT, the voltage 

regulator tap position KV, reactive power capacitor 

compensation capacity QC, as shown in equation (21). 
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Thus, the equations in the OPF model are either 

linear or quadratic which guarantees a constant Hessian 

matrix when the interior point method is used to solve the 

model. In this paper, we use the predictor-corrector primal-

dual interior point method [23] to solve the optimization 

model with the advantages of efficiency and fast 

convergence. 

 

3.2. Continuous variable discretization process 
The OPF for active distribution networks involves 

discrete control variables (such as OLTCs turns ratio, 

capacitor compensation capacity, etc.). The objective 

function incorporates a penalty function to cope with the 

discrete variables. This introduces a virtual loss to the 

objective function which will reduce the error brought by 

rounding-off. At present, the quadratic penalty function [20] 

and the Gaussian penalty function [13] are two widely used 

penalty functions, as given by (22) and (23), respectively. 

 

2

1

1
( ) ( )

2

n

i i

i

x v x bφ
=

= −∑          (22) 
2

1

( )
( ) ( ) exp[ ]

n
i i

i i

x b
x vG x v

c
φ

=

−
= = −∑    (23) 

 

Where v is penalty factor. The value of the function 

drops to zero when the distance from the vector 

1 2
( , , , )T

n
x x x x= K  to the center 

1 2
( , , , )T

n
b b b b= K  reduces 

to zero. 

The penalty function is incorporated into (18), 
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When the penalty factor is large enough, the discrete 

control variable will be optimized to the corresponding 

discrete value, so that the penalty function value becomes 

zero and the objective function to reach the minimum value. 

Compared with the quadratic penalty function, the 

Gaussian penalty function decreases faster than the 

quadratic penalty function with the decrease of the distance 

between the vectors x and b; the former is more sensitive to 

the variation of discrete variables. However, the Gaussian 

penalty function is a non-quadratic function, which makes 

the Hessian matrix change throughout iterations — this 

compromises computation efficiency. 

 

3.3. Integrated regulatory strategy 
In order to minimize network losses, this paper 

proposes an OPF integrated regulatory strategy with voltage 

regulators. The integrated regulatory strategy is defined as 

an OPF strategy for a variety of adjustable devices to 

coordinate and optimize in this paper — the voltage 

regulator fine-tunes nodal voltages on each phase, and 

constitutes integrated regulatory strategy with the generator, 

OLTCs, shunt capacitors and DGs. 

The voltage regulator is a special transformer with a 

zero equivalent impedance. The voltage regulator is 

modelled by a quadratic model where the tap position is 

chosen as a control variable. The Hessian matrix remains 

constant under the integrated regulatory strategy. This is the 

reason why the integrated regulatory strategy is suitable for 

the OPF model proposed in this paper. 

4. Example 

According to the three-phase OPF model for 

distribution networks based on constant Hessian matrix, this 

paper uses Symbolic Math Toolbox to verify the model on 

MATLAB. And the OPF analysis is carried out on the 

modified IEEE13 test system as shown in Fig.6. The 

mutual-impedance and the mutual-admittance are omitted in 

the figure. The control variables in the example are 

generator reactive power, DG output, the turns ratio of the 

OLTC, voltage regulator tap position and capacitors 

adjustment, in which the turns ratio of the OLTC and the 

capacitors are discrete control variables. The range of the 

turns ratio is set at 0.90~1.10, divided into 8 taps, its step 
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size is 0.025. The maximum reactive power of the capacitors 

is 0.02 p.u. and the step size is 0.01 p.u.. The range of all 

nodal voltages is 0.9 ~1.1 p.u.. The voltage regulator tap has 

a 32-stage adjustment with ± 10% regulation range, the 

voltage level of load center is 120V, and the bandwidth is 

2V.  

Fig.6. Modified IEEE13 Test System 

 

4.1. Analyze the quadratic model of three-phase 
OLTCs 

In order to verify the rationality of the proposed 

three-phase OLTCs model in the OPF problem for active 

distribution networks, the OPF calculation based on the 

predictor-corrector primal-dual interior point method 

embedding quadratic penalty function (PCPDIPM-QPF) is 

used to compare the traditional non-quadratic model for 

three-phase OLTCs [21] and the quadratic model for three-

phase OLTCs proposed in this paper. The results are shown 

in Table 1. 

 

Table 1 The optimization results 

 quadratic model of non-quadratic 

Network loss 0.002523 0.002523 

Iteration 

number /time 

17 17 

Calculating 

time/s 

49.5946 196.8835 

 

Table 1 shows that the results (network loss) of the 

two methods using different models are the same, but the 

quadratic model has a faster calculation speed. The reason is 

that, the Hessian matrix of the non-quadratic model of 

OLTCs is not constant in the OPF calculation process, and is 

updated in each iteration, which makes the calculation speed 

very slow. The quadratic model of OLTCs guarantee a 

constant Hessian matrix throughout iterations, thus reducing 

the calculation time greatly. 

In addition, the computation time of the two models 

is relatively long. This is because the Hessian matrix is 

generated using Matlab’s automatic differentiation function, 

which is convenient but not efficient. This, however, does 

not affect the conclusion of this paper. The case study 

involves a total of 17 iterations. The one-time calculation of 

the Hessian matrix takes 6.67s on the computer with Intel 

core i3-3240M CPU 3.40GHz, 4GB memory. Therefore, a 

conservative estimate of the computation time of the non-

quadratic model is 17 times of the time for calculating the 

Hessian matrix, i.e., 113.84s. Therefore, the computation 

time in Table 1 is justified. 

4.2. Analyze the continuous variable discretization 
process 

In order to verify the convergence properties of the 

quadratic penalty function and the Gaussian penalty function 

in the OPF calculation, the PCPDIPM-QPF and predictor-

corrector primal-dual interior point method embedding 

Gaussian penalty function (PCPDIPM-GPF) are designed. 

The OPF for the modified IEEE13 three-phase system is 

calculated by the two algorithms. This paper proves the 

advantages and disadvantages of each method by comparing 

the optimization results (network loss), iteration number and 

calculating time (the accuracy is e-10). 

Table 2 contains the results of the OPF calculation. It 

shows that, the PCPDIPM-GPF is better than the 

PCPDIPM-QPF in terms of the optimization results (the 

network loss is reduced by 2.4%). But the iteration times of 

the PCPDIPM-GPF is slightly higher than that of the 

PCPDIPM-QPF, and the PCPDIPM-GPF takes longer time. 

The reason is that the Gaussian penalty function is a higher 

order function and the Hessian matrix is a non-constant 

matrix throughout iterations. So the Hessian matrix is 

updated as the iterations increasing, which increases the 

computation time. 

 

Table 2 The optimization results 

 PCPDIPM-QPF PCPDIPM-GPF 

Network loss 0.00252 0.00246 

Iteration 

number /time 

17 18 

Calculating 

time/s 

45.9738 243.2054 

 

Fig.7 shows the comparison of the PCPDIPM-QPF 

and PCPDIPM-GPF. It can be seen that the dual gap 

decreases as the iterations increasing, and the time of the 

PCPDIPM-QPF is about 1/5 of the PCPDIPM-GPF when 

the convergence effect of the two penalty functions reaches 

the desired value.  

 
Fig.7. The optimization results 

 

4.3. Analyze the integrated regulatory strategy 
The integrated regulatory strategy of OPF is 

implemented by the modified IEEE13 three-phase system 

with the voltage regulator. It verifies the effect of the 

voltage regulator on each phase voltages fine-tuning in 

active distribution networks, and further reduce the network 

loss in the OPF calculation. The results are shown in Table 3. 
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Table 3 The optimization results 

 
Voltage regulator tap Network 

loss Phase A Phase B Phase 

No 

regulator 
— — — 0.002523 

With 

regulator 

1.006250 1.006250 1 0.002515 

 

As shown in Table III, the network loss of the 

network with voltage regulator is reduced by 0.32% 

compared with that without the voltage regulator. The three-

phase voltage profile of all nodes, before and after 

integrated regulatory, is shown in Fig8, Fig9 and Fig10. 

Thus, the voltage regulator has an effect on fine-tuning the 

nodal voltages. It can be seen that, the voltage regulator can 

regulate the nodal voltages at each phase and further reduce 

the network loss in the OPF calculation.  

 
Fig.8. Voltage profile of phase-A 

 
Fig.9. Voltage profile of phase-B 

 
Fig.10. Voltage profile of phase C 

5. Conclusion  

1) This paper proposes a quadratic model for three-

phase OLTCs. The model is incorporated into the OPF 

model, where the Hessian matrix becomes constant 

throughout iterations. This results in a considerable 

improvement in computation efficiency.  

2) This paper solves the three-phase OPF problem for 

active distribution networks by using the interior point 

method. The OPF model incorporates both the quadratic 

model for the three-phase OLTC (as explained above) and 

the asymmetric model for the three-phase DG. The 

methodology is validated by case studies. 

3) The case studies demonstrate the advantages and 

disadvantages of the interior point method incorporating the 

quadratic penalty function and the Gaussian penalty function. 

4) An integrated regulation strategy supported by a 

voltage regulator is incorporated into the OPF. Case studies 

demonstrate that the voltage regulator fine-tuned the 

network voltages, thus further reducing network losses. 
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