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ABSTRACT This paper presents a recent case study of monitoring the effects of piling on an adjacent old masonry vault in London. The
monitoring scheme consists of 3 independent instrumentation sets that provide different types of information: (a) discrete total station point
targets, (b) linear distributed fibre optic cable sensors and (c) surface distributed laser scanners. The availability of these sensors is able to
shed some light on the actual response of the masonry structure through precise displacements and high-accuracy localised strains. The
collected monitoring data show the location of cracks and provide indications for their opening magnitude. Relevant numerical analyses have
also been conducted using (a) limit analysis mechanisms and (b) finite element deformation analysis which confirmed the observed field
deformation mechanism and the presence of cracks within the structure. It is shown that such innovative sensing approaches can provide
valuable detailed information about the real behaviour of structures that were not available before.

1 INTRODUCTION 2 THE MASONRY STRUCTURE

Recent work during the London Bridge Station rede-
velopment involved construction of piles inside his-
toric brick barrel vaults. The latter were monitored
regularly by total stations in order to maintain safe op-
eration of the transport systems throughout the course
of the redevelopment.

Two additional spatially distributed sensing sys-
tems were used to provide more detailed monitoring
data: (a) distributed Brillouin Optical Time Domain
Reflectometry (BOTDR) and (b) laser scans.

This paper presents some of the monitoring data
collected during piling within the masonry vault. Spe-
cial emphasis is given on the relative merits of discrete
total station prisms and distributed fibre optic (FO)
and laser scan data, especially in detecting regions of
localized cracks.

Figure 1 shows a longitudinal section cut through the
vault which also includes the geometric details of the
arch and the local shallow soil stratigraphy. The arches
were constructed on shallow concrete footings
founded in made ground and soft alluvium.

During September to December 2013, 57 end-bear-
ing piles were constructed under the arch. These are
450mm diameter CFA piles which terminate in Lon-
don Clay.

3 MONITORING SYSTEMS

3.1  Discrete-point total station prisms

Total station devices use a laser beam and a precise
servomotor and emit a modulated wave reflected from
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Figure 1. Longitudinal cross-section (left) and photos of the arch and piling works (right).

optical targets which is used by the device to deter-
mine the centre of the optical target and its relative lo-
cation.

In this project a number of discrete-point prisms
were installed in the masonry vault in an array of 3
prisms in each cross-section of the vault (Figure 2).
The total station provides the exact location of the
prisms and therefore using successive measurements,
one can determine the relative displacements. Then by
getting the difference between displacements of adja-
cent prisms and dividing this by their distance, one can
obtain the averaged strain over that section.

3.2 Distributed FO cables

The distributed BOTDR technique uses optical fibre
to monitor axial strains on civil infrastructure (Soga,
2014). A change in the Brillouin frequency of the
back-scattered light within an optical fibre is linearly

Pose
Liootng = 4.7m Lo
River Terrace Gravels between 91.4-98.4

@i = 0.45Mm, L= 25.7m ! L=

dependent on the applied strains. Therefore, the FO
cables provide directly the axial strains within the
monitored infrastructure (Soga et al., 2015).

Distributed FO sensing techniques have been used
widely over the last 10 years to monitor various types
of civil infrastructure, such as tunnels (Mohamad et
al., 2010, 2012; Cheung et al., 2010), piles (Klar et al.,
2007), retaining walls (Mohamad et al., 2011;
Schwamb et al., 2014; Schwamb & Soga, 2015) and
slopes (Amatya et al., 2008). The principle of FO sens-
ing is based on the strain-dependent change of light
frequency within a bare optical fibre (Soga, 2014). A
detailed explanation of the background theory and ex-
amples of recent applications may be found by Soga
et al. (2015).

In this masonry vault, a close loop of a FO cable
was installed to monitor several points within the
structure, and was installed as shown in Figure 2.

— FO monitoring sections
— Highlighted FO monitoring
sections (see Figure 7)

-$- Prism targets
Y

<

Figure 2. Attachment of the FO cables to masonry (left), arrangement of cables in arch
(middle) and photos from the installation (right).
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Figure 3. A laser scanner device (left), a colorized point cloud (top right) and locations of
point clouds from laser scan surveys during piling (bottom right).

3.3 Distributed laser scans

Terrestrial laser scanners are geomatic devices
equipped with a laser beam and precise servomotors,
carrying out similar surveying operations to total sta-
tions. Several techniques exist to convert the laser
scans to absolute structural displacements and these
may be found elsewhere.
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In this structure, laser scans were taken using firstly
a FARO Focus 3D S20 laser scanner and later a Top-
con GLS-2000 laser scanner. These provide a ranging
error of 2mm and angle measurement error of 6 arc
seconds (Figure 3). The data processing procedure
took advantage of the open source software Cloud
Compare.
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Figure 4. Change in axial mechanical strain during piling for selected sections
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Figure 5. Comparison of vertical deformations from the laser scan (M3C2) method,

mechanism and FE models.

4  MONITORING RESULTS

The monitoring results from the distributed FO cables
are shown in Figure 4. It is shown that some sections
do not show significant development of axial cable
(and hence, structural) strains, whereas some sections
show some high unexpected strain values which also
exhibit some localized peaks. The latter peaks may
suggest the development of localized tension cracks.
In order to check the monitored response from the
3 sensing systems, independent numerical analysis
studies have been undertaken using limit analysis
mechanism and finite element (FE) deformation mod-
els. Figure 5 shows the vertical displacements of one
cross-section of the masonry arch (for which the FO
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cables showed some high values of axial strain) from
the laser scans and the numerical analysis.

The latter figure shows that a localized crack is
suggested by both the field monitoring data and the
numerical analysis results. This is attributed to the
nearby piling operations which may have caused some
settlement of one of the vault piers and hence re-dis-
tribution of the arch stresses.

It is finally shown that the nature of the distributed
FO and laser scan systems provides an advantage over
conventional discrete sensing systems in determining
localized deformations such as cracking.



5 CONCLUSIONS

This paper presents some monitoring data from a ma-
sonry vault at the London Bridge Station which expe-
rienced some movements due to nearby piling con-
struction. Three independent monitoring systems have
been deployed and the results have been analysed.

The analysis showed that the spatially distributed
systems (fibre optics and laser scans) provide an ad-
vantage over conventional discrete systems, such as
total station prisms, in detecting localized regions of
high strains and possible cracking.

Relevant numerical analyses (both limit analysis
mechanism and finite element deformation analyses)
were able to match the observed trend of strains and
displacements within the vault, therefore confirming
the validity of the monitoring data.
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