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Abstract

Recent research in the personal informatics field has focused on correlating aspects of
self-tracked data, supporting users to arrive at meaningful insights when reflecting on ag-
gregated datasets. To date, no research has been completed on how users could explore
personal data using virtual reality, and the opportunities this presents for users’ under-
standing of multidimensional datasets.

In this study we evaluate the open-ended exploration of multidimensional datasets using
two separate visualisations. Be The Data immerses users in a three-dimensional scatter
plot, allowing them to interpret a dataset from new perspectives. The second visualisation,
Parallel Planes, enables a multi-faceted dataset to be chained together, supporting users
in perceiving a holistic overview of interrelated dimensions.

Through an insight-based evaluation methodology, we find that users conducted depth-
based explorations of the Parallel Planes visualisation, arriving at valuable and significant
insights through hypothesising about the data. We also find that there was no overall task-
workload difference between traditional visualisation paradigms and virtual reality. We
conclude by outlining future research directions, and making recommendations for future
evaluation approaches for data visualisation in VR.
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Chapter 1

Introduction

The proliferation of personal computers, connecting and interacting through the Internet, is
the defining characteristic of the Information Age. Entire economies are now built around
data collected from personal devices, revolutionising modern approaches to healthcare, fi-
nancial services and education. Prosumption, first termed by Toffler (1981), describes the
intersection in roles between producers and consumers. The rise of ubiquitous computing,
driven by prosumer-generated content, presents a significant challenge for the data visual-
isation field. What challenges do non-expert users face when viewing and consuming their
personal data? How can people draw meaningful insights from visualisations of their own
data?

Personal analytics platforms are now beginning to emerge, supporting an extensive num-
ber of data tracking services such as Fitbit, Last.FM and various social media platforms.
Exist.io is one example of an aggregation platform, identifying data correlations between
separate services to provide habit insights in the form of graphical visualisations presented
on data dashboards. These dashboards transform distinct data services into aggregated,
consumable information providing a “unique solution to the problem of information over-
load” between multi-faceted information (Few, 2013, p.37). Encouraging users to make
behavioural changes based on visualisation insights is a current area of research (Whooley
et al., 2014). How can data visualisation better stimulate self-reflection in order for users
to understand and benefit from their personal data?

One approach may be through Virtual Reality (VR). VR is not a new phenomenon, having
been popularised in the early 1990s by companies such as VPL research and VR gaming
machines produced by Virtuality Group (Lanier and Biocca, 1992). VR never took off
then for consumers, with the effects of nausea, weak hardware and the lack of standards
cited as reasons for its early decline (Horowitz, 2004; Arthur, 2015). However, a resurgence
is happening. Technological advances induced by Moore’s Law provide a platform for
consumer-led VR experiences. Stand-alone head-mounted displays such as the Oculus Rift
and HTC Vive, alongside low-cost VR experiences provided by Google Daydream in which
consumers’ smartphones drive the experience, have all emerged over the past 12 months.

1
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Notably with smartphone VR, a single device could be used for both the collection of
personal data and reflecting upon this data. Analysts predict extraordinary growth for
VR, with the addressable market size in 2025 larger than today’s television market (Bellini
et al., 2016).

Bryson (1996, p.62) defines virtual reality as “the use of computers and human-computer
interfaces to create the effect of a three-dimensional world containing interactive objects
with a strong sense of three-dimensional presence”. Establishing presence is a key area of
research for developers. Maximising sensory input through three-dimensional audio and
haptic feedback helps to build a sense of presence in VR (Van Dam et al., 2000). Indeed,
data visualists look towards VR’s wider field of view to provide global context for scientific
data, enabling more natural and quicker exploration of big data sets (Van Dam et al.,
2000). Such active, participatory interaction techniques in VR are therefore a fundamental
area of interest for this project, given the ability of VR to engage users with the content
and promote further data exploration.

Existing personal informatics systems can support increased self-understanding by reveal-
ing relationships between wellbeing aspects (e.g food intake and sleep) (Bentley et al.,
2013). However, current visualisation of statistical patterns are presented through natural
language, or statistical graphics, with no research around visualisations of personal data
in virtual reality environments. This project will consider the opportunities of visualising
personal data in VR and the challenges this brings for understanding and interacting with
multi-dimensional personal datasets.

1.1 Aims and Contributions

The aim of this project is to explore the overlap of personal informatics, visualisation, and
virtual reality fields. To the best of our knowledge, there is no existing work in this area,
and as a result our study is rather exploratory in nature. Our objective is therefore to
investigate the differences between personal data exploration in traditional paradigms and
in VR, and the opportunities and challenges this brings for data reflection.

We develop two different techniques of visualising personal data with varying dimensional-
ity. Specific contributions of this project include:

• Be The Data: A three-dimensional scatter graph represented in a virtual world. Users
can navigate around in this environment and take on the perspective of a data point,
immersing themselves in the personal dataset, and interpret the visualisation from
new angles.

• Parallel Planes: An extension of a parallel coordinates visualisation, adding a dimen-
sion in the z axis. The visualisation enables a multi-faceted dataset to be chained
together, letting the user perceive a holistic overview of interrelated dimensions.

• An extensive empirical evaluation measuring presence, task workload and insight for
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both of the visualisations. Significantly, we suggest that presence may not be the
most appropriate evaluation method for assessing data visualisations in VR due to
its close ties to realism. We also make recommendations for future studies looking
to use Saraiya et al. (2005)’s insight-based evaluation approach, and discuss future
research directions.

1.2 Outline

The structure of this dissertation is as follows:

Chapter 1 outlines the project and introduces the motivation behind this work.

Chapter 2 explores three fields in terms of the literature: personal informatics,
visualisation, and virtual reality. We identify the two visualisation tech-
niques which this project evaluates: Be The Data, Parallel Planes.

Chapter 3 describes the requirement elicitation process. A non-exhaustive list of
requirements are produced, which are later refined and scoped during
the prototyping process.

Chapter 4 focuses on the key design considerations made during the prototyping
process.

Chapter 5 displays the implementation results of our visualisations in a graphical
format.

Chapter 6 revisits the literature to justify our chosen evaluation method. The
experimental design is then detailed and hypotheses are formalised.

Chapter 7 discusses and analyses the results of our three-fold evaluation approach,
measuring insight, presence and task workload.

Chapter 8 continues the discussion of results in relation to research questions, sum-
marises our contribution and limitations, and sets out future research
directions.



Chapter 2

Literature Review

In this chapter, we explore three fields: personal informatics, visualisation, and virtual
reality. We begin by investigating the rise of personal data collection, and its association
with the stage-based model of informatics. We identify motivations for self-tracking, and
the challenges which users face when they reflect upon their collected data.

Various approaches towards communicating personal data through visualisation are exam-
ined. In particular, we look at different methods of visualising high-dimensionality datasets.
We then establish two separate visualisation techniques: Parallel Planes and Be The Data.
Finally, we describe the relation of presence and immersion, enabling us to evaluate the
potential of visualising personal datasets in virtual reality.

2.1 Personal Data

The Quantified Self1 movement has rapidly gained momentum over the last few years with
the arrival of mass market products dominating the wearable technology space. Coupled
with the widespread adoption of mobile phones, these devices represent a new era in data
production and consumption through smart, always-on sensors. Researchers have explored
the benefits of self-tracking, both in terms of understanding the patterns between activities
and emotions (Rachuri et al., 2010), and as a means to promote behavioural change (Bentley
et al., 2013). Therefore, quantified self is concerned with the collection of data relating
to oneself. This is personal data, broadly defined by public bodies like the Information
Commissioner’s Office and the European Commission as any data which relates to a living
individual who can be identified from those data and/or other information in possession of
the data controller. Indeed, sensitive personal data extends to information which could be
used in a discriminatory manner - e.g ethnicity, race, political opinions and, in particular,
physical and mental health conditions.

However, given that the driving force of the quantified self movement has been health

1http://quantifiedself.com/
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tracking, we are seeing the emergence of a new classification of self-tracked personal data.
This encompasses additional physiological data such as heart rate, body temperature and
blood glucose levels. It is an increasingly dynamic term compared to the relatively static
IC and EC definitions of personal data. Nevertheless, an EU advisory body has clarified
the scope of personal data to include a broader view on health data in new regulations
applicable from 2018 (European Commission, 2016). Self-tracked personal data falling
under this classification is therefore of particular interest towards this project.

2.1.1 The Rise Of Personal Data Tracking And Analytics

Experimental physiology dates back to the 16th century in one of the earliest examples
of quantified self-tracking. Santorio Santorio measured his body weight, food intake and
excrement for 3 decades, investigating the characteristics of metabolism (Neuringer, 1981).
Fast forward 400 years and self-tracking devices are now rife. Mobile phones are ubiquitous
in developed countries and wearable technology has made significant traction across these
markets. Research firm Gartner predicts that global shipments of wearable devices will
exceed the 500 million mark in 2020 (Levy, 2015). Emerging markets such as the Middle
East, Africa and the Asia Pacific regions are bringing an increasing number of smartphones
online each year (Ericsson, 2015), opening extraordinary opportunities for consumers and
companies alike.

An expansive list of self-tracking products have flooded the market in developed countries,
with a select number exploiting these opportunities correctly for commercial success. The
Fitbit2 product line is an example of an activity tracker accumulating data around a per-
son’s fitness activity. Early Fitbit trackers clipped to the person’s clothing and offered
metrics - distance travelled, sleep tracking and calories burned – on top of a traditional
pedometer function. The modern Fitbit product line has evolved into wearable wristbands,
leveraging additional sensors to track heart rate and floors climbed.

Sports clothing brand Nike have also delved into the wearable fitness market. One of their
first tracking products was the Nike+ standalone sensor, a small sensor which slipped into
the sole of a sports shoe. A wireless network is used to transmit the data from the sensor to
a companion Nike application on iOS and Android mobile devices. In a trend still widely
employed by other fitness companies like Fitbit and Garmin, the app integrates with social
networks, allowing fitness activity to be shared and gamified within a local community.

Moore’s Law has driven the miniaturisation and cost of modern sensors down, enabling
their inclusion in mass market smartwatches and smartphones. Sensors such as accelerom-
eters, gyroscopes and barometers are built into devices, with general purpose APIs allowing
developers access to measurements relevant to the applications they are building. For exam-
ple, consider a car insurance company monitoring the driving safety of its drivers. Bespoke,
dedicated hardware would have previously been used to calculate driving characteristics but
research has shown that inexpensive, accessible smartphones can now be used as a viable

2https://www.fitbit.com/uk
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alternative (Johnson and Trivedi, 2011). This general purpose approach led by ubiquitous
consumer devices has its merits. Smartwatches such as the Apple Watch have an NFC
chip for contactless payments, GPS for location, accelerometer for sleep tracking and a
heart rate sensor. This level of sensor diversity appeals to a wide market as consumers
no longer have to purchase individual dedicated devices for each use case. Arguably this
leads to demographics exploring domains previously inaccessible to them, allowing sensors
to collect and quantify information about tracked activities.

A Framework For Personal Informatics

Quantified self, personal analytics and personal informatics are a “class of systems and
practices that help people collect and reflect on personal information” (Choe et al., 2014,
p.1144). Therefore it is a broad term that encompasses many types of tracking, not just
limited to fitness and health. Li et al. (2010) introduce a stage-based model of the entire per-
sonal informatics system formed of 5 stages: preparation, collection, integration, reflection,
and action. Each of these stages can be described as either user-driven or system-driven.

Within the basis of the collection stage, Fitbit and Nike are examples of system-driven
pesonal data collection. The wearable products assume the responsibility of continuously
recording data. Further examples of system-driven data collection outside of the health and
fitness space include Last.fm3 and RescueTime4. Last.fm integrates with multiple music
services such as Spotify5 and iTunes6, logs the songs which the user listens to and builds
up a profile around their music taste. Rescuetime reports time spent in applications and
on websites, allowing users to set up goals in order to improve work productivity. The
common theme across both instances is background software continously monitoring user
activity without input by the user themselves.

Conversely, in a user-driven collection stage, users take an active role in manually inputting
activities. The social networking app Untappd7 has been built around this premise, en-
abling people to record and rate the beers they drink between pubs. This manual process
is also employed by Quantified Selfers with more basic methods of tracking – such as using
a spreadsheet for data collection, or even through pen and paper (Choe et al., 2014).

Li et al. (2010) describe the opportunities which separate user-driven and system-driven
approaches bring, suggesting that developers and designers should select an approach rel-
evant to the overall system. In the context of more “extreme” quantified self-trackers,
Choe et al. (2014, p.1151) envision a “balance between fully automated sensing and manual
self-report”. System-driven data collection is somewhat limited by its inability to record
specific human traits such as mood or pain, and automatic collection can lead to disen-
gagement with the activity data. Accordingly a balance between the two approaches must

3https://www.last.fm
4https://www.rescuetime.com
5https://www.spotify.com
6https://www.apple.com/itunes
7https://untappd.com
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be met, demonstrating the importance of a flexible, user-centered design when targeting
data collection.

2.1.2 What Motivates People To Collect Personal Data?

Understanding how people collect data is crucial for building adaptable solutions, but
understanding why people collect data will lead to better data insights. So far we have
discussed the second stage of the 5-stage model. However, the first stage - the preparation
stage - is perhaps the biggest barrier to widespread consumer adoption of personal tracking.
What motivates people towards looking at personal data tracking systems? At what point
do they commit to tracking themselves?

Rooksby et al. (2014) identify five overlapping styles in which tracking is initiated:

• Directive Tracking

• Documentary Tracking

• Collecting Rewards

• Fetishised Tracking

• Diagnostic Tracking

While the research acknowledges that the study cohort does not extend to a general popula-
tion, these definitions provide a useful starting framework for considering and categorising
the various factors of motivation. Significantly these are styles of tracking, and not types of
users. The motivations for self-tracking can fluctuate and overlap between these strategies.

Directive And Documentary Tracking

Directive tracking is very much targeted by goals, set either by tracking software, by training
programs or by the user. Behavioural change is of course associated with this, but the study
emphasises the significance of “interweaving technologies”, stating that behaviour change
is not just a possible outcome of a single technology, rather technologies that exist together
in an information ecology. The challenges which result from this – specifically dispersed
tracking data – will be explored over the following section.

Conversely to directive tracking, users of the documentary tracking style are not concerned
with changing their behaviour. Instead they record smaller passages of their life such as
memorable experiences and routine activities. Rooksby et al. discover that while some
people transform observations from the documentary style into specific goals, many see it
as a “necessary” means of occasional life observation and that documentary tracking is
“not usually a long-term endeavour” (Rooksby et al., 2014, p.1168).



CHAPTER 2. LITERATURE REVIEW 8

Figure 2.1: Fitbit App – Competition For Fitness Motivation

Rewards, Fetishised And Diagnostic Tracking

Related to this style is collecting rewards. Recently, gamification (Deterding et al., 2011)
has emerged across new contexts, with positive implications spanning from motivation to
engagement suggested from current research (Hamari et al., 2014). For several participants
in their study, Rooksby et al. found a close connection between this achievement-based
approach and the documentary tracking style. Indeed, the motivational affordances which
gamification provides is now core functionality in many fitness related applications, includ-
ing the previously discussed Fibit (see Figure 2.1) and Strava8.

The next style, fetishised tracking, describes a style relatively synonymous with people
who are “tech savvy”, or simply early adopters. This style may have benefited from being
developed alongside “extreme users” identified by Choe et al. (2014), enabling a broader
definition of quantified-selfers under the general population.

Finally, diagnostic tracking is where the user searches for relationships between two sepa-
rately tracked things, usually representative as a form of self-experimentation. For instance,
this could entail tracking diet pattern to see an effect, if any, on sleep. Identifying mean-
ingful correlations in personal data is a current area of research for the Human Computer

8https://www.strava.com/
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Interaction field.

This is the focus of research by Epstein et al. (2014, p.667), who define a cut of data as “a
subset of the collected data with some shared feature”. Their study determines 13 cuts of
location and activity data for user reflection. While this study largely focuses on physical
activity, it is significant in that it is one of the larger studies (n = 113) that includes
research around casual population motivations. Given that research into motivations so far
has been limited to more extreme demographics (Choe et al., 2014) and ones that do not
scale to the general population (Rooksby et al., 2014), what understanding of motivation
can be gathered from this research to improve insights for casual users?

In order to develop relevant, meaningful insights for casual users, Epstein et al. (2014)
completed a formative survey in which participants were questioned around their goals for
self-tracking. The findings can be distributed into the tracking styles defined by Rooksby
et al. (2014). The most common responses ’Maintain/Increase Activity’ (41 respondents)
and ‘Maintain/Lose Weight’ (35 respondents) fall under directive tracking, whereas ‘Find
Patterns’ (7 respondents) is clearly an example of diagnosis tracking. It follows that the
other most common responses can be categorised accordingly: ‘Awareness of Activity Lev-
els’, ‘Increase Motivation’, ‘Be Held Accountable’, ‘Have A Record Of Activity’ and ‘Com-
petition’. The survey additionally established that respondents had an average of 1.6 goals.
Principally this means that it is completely attainable for users to have a one-to-many re-
lationship with tracking styles, taking into consideration multiple goals categorised under
varying styles. Ultimately with a wide spectrum of different motivations, users will have
independent goals for different types of collected data.

2.1.3 Broader Challenges Of Personal Data Collection

Businesses benefit from self-tracked data as well. Gartner (2013) predicts that consumer
data collected from wearable devices will account for 5% of sales from the top global 1000
companies by 2020. The notion of the personal data economy has seen much attention
in recent years and an extensive amount has been written across media outlets around
its implications (Economist, 2014; Cassidy, 2016; Moody, 2016). Google’s largest revenue
generator – targeted behavioural advertising – is built around the wealth of information
accumulated on their users. Their Android Pay API 9 allows businesses to send geofenced
notifications to targeted users who are within a certain physical distance of a business
storefront. It isn’t unfeasible to see this extending into the wearable technology space,
exploiting both the smartphone GPS sensor and the “glanceable” nature of smartwatch
notifications to provide quick, contextual discounts based on the personal location of a user
(Lyons, 2016). Similarly, Facebook allows advertisers to create targeted advert campaigns
by picking from 98 personal data points of over 1 billion unique users (Dewey, 2016). With
such colossal data sets centered around collected personal data, there are 3 key challenges
to consider from both business and consumer perspectives.

9https://developers.google.com/save-to-android-pay/
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“The accumulation of personal data has an incremental adverse effect on privacy” – Tene
and Polonetsky (2012, p.251). Self-tracking injects increasing amounts of personal data into
big data systems, with specific concerns around technology enabling the recall of historical
data (Nunan and Di Domenico, 2013) and anonymisation (Mittelstadt and Floridi, 2016).
The first challenge is associated with the privacy of personal data, which is often deeply
physiological. A discussion on this continues in Appendix B, as we did not deem this
challenge to fall under the scope of this project. Over the following sections we will therefore
explore the two remaining challenges: device abandonment, and data dispersion.

Device Abandonment

Data sharing is cited as one of the prominent reasons for device abandonment – the second
key challenge for personal data collection. Research completed by Epstein et al. (2016)
questions the link between data sharing concerns and abandonment of self-tracking. Con-
cerns were focused around location data – specifically oversharing to social media and
location targeted advertising – but did not pick up on newer physiological data such as
heart rate. This study extends an earlier exploration of the barriers leading to smart de-
vice abandonment completed by Lazar et al. (2015). Lazar et al. found three categories of
barriers which led to device abandonment: “devices not fitting with participants conceptions
of themselves”, “collected data not being useful’ ’ and “devices requiring too much work and
maintenance” (Lazar et al., 2015, p.638-640). One of the main reasons why the collected
data was not useful for study participants was because of its unprocessed form. Partici-
pants did not know how to analyse and interpret the data in order to form actionable next
steps.

Supporting users to better reflect on their personal data is an open area of research across
the personal informatics field (Gulotta et al., 2016; Li et al., 2011). Li et al. (2011) in-
troduce the idea of phases of reflection, in which people transition between maintenance
and discovery phases. During the maintenance phase people use their collected data to
maintain their behaviour relative to a goal. The discovery phase is where people identify
data correlations to see the effect on behaviour, ultimately to identify program-level goals.
Li et al. (2011, p.8) establish that the discovery phase can be analytically taxing, but that
“user involvement is critical” for engagement with data. It follows that self-tracking tools
should assist users in identifying goals.

Lee et al. (2015) investigated using a reflective goal-setting strategy to personalise a pro-
gram plan. This encouraged users to deeply think about what goals they are setting,
uniquely tailoring what achieving certain goals meant to them. The outcome was that this
personalisation process drove users to increase their daily step count, albeit over the short-
term length of the study. Gulotta et al. (2016) suggests that starting the reflection process
as early as possible can play a part in acquiring longer-term benefits. Several strategies are
proposed to increase engagement and create actionable next steps — using big data based
upon other users to propose more realistic, achievable goals, and providing the user with
more tailored, achievement-based feedback if they begin to stray from their goals.
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A further reason attributed to abandonment is the physical cost of data collection and
maintenance (Epstein et al., 2016; Lazar et al., 2015). While automation in smart devices
can help to reduce the manual effort associated with spreadsheets, both studies noted the
hassle which participants felt in maintaining devices. It is clear from Lazar et al. (2015)
that there is an inherent link between the value gained from self-tracking versus the time
expensed doing so. Participants simply stopped tracking due to hassle, laziness or loss of
interest (Epstein et al., 2016). An additional barrier specified by (Lazar et al., 2015, p.638)
is that self-trackers did not find the data collected useful — “they were not interested in the
level of information the data gave them”. Therefore, research has looked towards including
additional self-quantified data in order to find “more appealing inferences”(Haddadi and
Brown, 2014, p.1). This brings us to the third challenge.

Data Dispersion

As previously discussed, Rooksby et al. consider that behavioural change may be the
outcome of “interweaving technology”. With diagnosis tracking being a common goal for
self-trackers, how can users best explore data correlations in dispersed, self-tracked data
sets? The arrival of aggregated data dashboards aim to tackle this question (e.g Exist.io10,
Zenobase11, Fluxtream12, TicTrac13). With the increasing ubiquity of smart devices, sen-
sors are accumulating more data than ever before. However, this data is scattered across
all types of distinct devices, open APIs and closed platforms, with no single tool supporting
the tracking and exploration of all data. In the case of extreme quantified-selfers, Choe
et al. (2014) identify that people who have the technical ability build their own tools for
analysis and self-experimentation to remedy this problem.

Existing research also points to users simplifying tracking strategies due to being unable
to extract the significance of high-dimensional data (Choe et al., 2014). Clearly there
is a space for aggregated platforms like Exist.io to appeal to broad audiences, offering a
comprehensive, system-driven method of exploring self-tracked data. The benefits of these
platforms are numerous. Self-tracking services such as Fitbit and Last.fm are integrated
into the platform automatically. Exist.io then analyses data across distinct services, auto-
matically investigating relationships between the users chosen connected services. Finally,
visualisations are continuously computed to aid non-experts in the reflection process.

Jones and Kelly (2016) highlight the sensemaking challenges associated with aggregated
self-tracking platforms such as Exist.io. In particular, the cognitive effort required to ex-
amine vast quantities of data alongside the correlational nature of the data itself. One
participant in their study experienced “analysis paralysis” (Jones and Kelly, 2016, p.3)—
consistent with open challenges identified by Choe et al. around the steep learning curve
users may experience when first faced with analysing data visualisations. A further sense-

10https://www.exist.io
11https://www.zenobase.com
12https://www.fluxtream.org
13https://www.tictrac.com
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making challenge focuses on the difficulty of inferring holistic insights from disjointed out-
puts (Jones and Kelly, 2016). In this context, the aggregation platform needed to provide
explicit, user-driven functionality to chain multiple dispersed datasets. Much like how Choe
et al. envision achieving synergy between user-driven and system-driven data collection,
this is also true of data reflection.

A mixed-initiative approach (Horvitz, 1999) should be explored for personal informatic sys-
tems, supporting the discovery of powerful data insights and maximised user engagement.
This approach, amongst others, will be considered over the remainder of this chapter as
methods of reflecting upon collected personal data. A discussion of visualisation techniques
firstly occurs in the following section, and finally we explore the potential of virtual reality
as a medium for immersive personal data exploration.

2.2 Visualisation

2.2.1 A Mixed-Initiative Approach To Exploring Data

Allen et al. (1999) discuss the duality of AI and HCI and how strategies between these fields
leads to mixed-initiative interaction. Adjusting to the current context, either human agents
or system agents will contribute towards a system at a suitable time. Data exploration may
leverage a mixed-initiative approach to support increasing the user’s understanding of the
data. This deep means of collaboration has been debated previously (Shneiderman and
Maes, 1997), with a flexible interaction strategy between agents providing automation, and
agents directly interfacing with the system, cited as the goal for a combined interaction
approach (Allen et al., 1999). Visualisation techniques are then layered on top of this
approach to minimise the cognitive load of users (Pu and Lalanne, 2002). Clearly the
complexity and diversity of visualisations will widely range between systems and their
intended audiences.

Nevertheless, both human and intelligent agents have respective limitations when it comes
to supporting visualisations. Modern computers are generally scalable, and can handle
increasingly large simulations and data transformations. Humans may not be as compu-
tationally powerful in this area, but are experts at interpreting the results using natural
“highly developed pattern-recognition skills” (Van Dam et al., 2000, p.27). The measure of
an effective visualisation is when humans are able to identify unpredicted trends and data
characteristics (Saraiya et al., 2005). Measuring this form of effectiveness will therefore be
a key evaluation criterion for this project.

Epstein et al. (2014) explore the value of discovering unexpected data, potentially pat-
terned data, in a contextually aware environment. Indeed, the timing and location of
data visualisation and the insights which humans can gain from them is an important
engagement factor. Intille (2004) investigates the opportunities of providing just in time
information at points of decision, finding that behaviour change can be successfully achieved
in non-technological fields. Therefore the aim of visualisation is to communicate informa-
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tion clearly such that insights can be inferred from data features and patterns, and also to
enable viewers to ask questions of visualisations to identify new hypotheses (Saraiya et al.,
2005).

2.2.2 Presenting Data Using Dashboards

A traditional dashboard paradigm is often employed as a starting point for data exploration.
Few (2013) offers the following definition for a dashboard:

“A dashboard is a visual display of the most important information needed to achieve one
or more objectives; consolidated and arranged on a single screen so the information can be
monitored at glance”

The glanceability of dashboards cannot be overstated; conveying a high-level overview of
data reduces the burden of information overload. Data summaries are concise and are
primarily used to open the door to lower-level details. This extends itself to working
human memory which supports a finite number of visual chunks — dashboard design
should enable efficient understanding of information in visual gulps (Few, 2013, p.79).
Ultimately, dashboards transform data repositories into consumable information (Hovis,
2002), equipping users with a tool to deduce visual patterns and make effective decisions
(Brath and Peters, 2004).

Figures 2.2 and 2.3 show the companion app dashboard for a Fitbit tracker. The dashboard
contains both text and graphics, but is primarily graphical. It acts as a visual overview of
activity, with a particular emphasis on visual — approximately 70% of all sense receptors
in the human body are situated in the eyes (Few, 2013). Consistent with Few’s definition,
the means of achieving objectives are clearly stated: e.g the coloured, circular progress
bars for physical activity in Figure 2.2 and “500ml left” for the water target in Figure 2.3.
Clicking on activities opens an exploratory environment where users can analyse the chosen
activity in greater detail. For example, clicking on the heart symbol in Figure 2.3 opens a
new screen dedicated to exploring the user’s heart rate statistics in Figure 2.4. Inconsistent
with Few’s definition, the dashboard is not consolidated to a single screen. However, it is
worth noting that Few talks of the compromises to be made in sacrificing “effective design
to accommodate diversity in screen types”(Few, 2013, p.70).



CHAPTER 2. LITERATURE REVIEW 14

Figure 2.2: Fitbit
Dashboard: Above the fold

Figure 2.3: Fitbit
Dashboard: Below the fold

Figure 2.4: Fitbit:
Lower-level analysis

Natural Language For Visualisation

Bentley et al. (2013) consider a modern skill gap across developed countries such as Ger-
many and America in which general audiences have difficulty grasping simple bar and pie
charts. Consequently Bentley et al. explore an alternative method of communicating and
presenting statistical data to users; through natural language. Statistically significant re-
sults were displayed to study participants with the neutral form “On days when you X,
you Y ” (Bentley et al., 2013, 30:4). Similarly, short verbal data summaries have also been
evaluated by Epstein et al. (2014) who presented them alongside data visualisations to
their study participants. In both cases, the use of natural language was found to create
behaviour change opportunities. Exist.io is a commercial example which uses the combina-
tion of natural language statements and visual graphs to present correlations in aggregated
self-tracked data (see Figure 2.5).

There are challenges associated with using natural language to explain data correlations.
Li et al. (2010, p.6) establishes that most personal informatic systems “do not have specific
suggestions on what do next” when people reflect on their data. Indeed, this was extended
by (Epstein et al., 2014) who found that people expected actionable steps when reflecting
with the use of natural language. In particular, participants who had difficulty interpreting
graphical visualisations expected natural language insights to serve as both “an explanation
and identification of actionable changes” (Epstein et al., 2014, p.9).

2.2.3 Filtering For Meaningful Insights

Moreover, discerning between correlation and causation for a relationship between two
variables can be difficult task for those reflecting on their self-tracked data. This ties into
the reality that not all outputs of personal informatics systems will be insightful, often
due to the virtue of them being obvious. Jones (2015) considers the task of filtering vast
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Figure 2.5: Exist Correlational Data

quantities of self-tracked data to select the most interesting insights. Manual analysis
by users is unfeasible, given that additional correlations will emerge as dimensions are
added to the system (Jones, 2015). Hence, Jones and Kelly (2016) examine introducing
automation into the process for filtering for interesting correlations. However, a fully-
automated approach based on generalised participant-based criteria for interestingness did
not yield significant value for participants. Therefore, Jones and Kelly suggest a different
approach such as semi-automated filtering, where user and system collaborate together to
capture the user’s measure of interestingness on a deeper, individual level. Clearly, there
are many open questions around determining the most interesting correlations to present
to users, and furthermore, how systems can best describe data correlations and provide
actionable next steps.

Casual Infovis Distinctions

Pousman et al. (2007) define Casual Infovis to cover a broad practice of visualisation for a
wider audience. This term complements traditional information visualisation and encom-
passes many other types including ambient, social and artistic visualisation. Pousman et al.
describes the usage patterns of traditional infovis systems as episodic — domain experts
will deeply explore datasets over a number of hours. Alternatively, Casual Infovis users will
dip in and out with “fleeting moments of inspection” (Pousman et al., 2007, p.1149). Since
much of Casual Infovis illustrates personal data, Pousman et al. (2007, p.1151) note that
visualisations are increasingly “meaningful to users”, comparative to the data in traditional
systems purely being “efficient and effective”.

Stusak et al. (2014) investigate data physicalization, a subset of Casual Infovis, where
in their study running activity was represented through a physical form. Their study
discovered that personalised physical sculptures encouraged participants to interpret and
reflect on their activities — fostering engagement by motivating users to self-experiment
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to change the sculpture’s shape. Evidently the objectives of Casual Infovis systems are
different to those of traditional visualisation systems, and accordingly the insights which
we gain from these systems are also different.

2.2.4 Towards Visualisation Techniques

Although there is much overlap between the two disciplines, there is an important distinc-
tion to be made between scientific visualisation and information visualisation. According
to Card et al. (1999, p.6), scientific visualisation is the “use of interactive visual repre-
sentations of scientific data, typically physically based, to amplify cognition”. Information
visualisation also shares the objective of amplifying cognition, but through an interactive
visual representation of “abstract, non-physical data” (Card et al., 1999, p.6). Munzner
(2008) extends this definition by stating that spatial representation is chosen for informa-
tion visualisation, whereas it is given for scientific visualisation. These definitions reflect
that information visualisation makes design choices on how best to abstract data for a
chosen task. Nevertheless, for the purposes of this project and with this distinction con-
sidered, after this section both of these terms will be unified under the umbrella term of
data visualisation.

Immersive Scientific Visualisation

Scientists have looked towards visualisation to “enhance comprehension and deepen insight”
since requirements to analyse large, complex data sets emerged in the 1970s (Haber and
McNabb, 1990, p.74). Visualisation plays a crucial role in interfacing between the human
visual system and the vast computational power of computers (Ware, 2004, p.2). These
cognitive systems support the understanding of underlying datasets in scientific disciplines
ranging from molecular biology to astronomy. Ware (2004) highlights that a view of both
small-scale and large-scale features of the data can be observed with visualisation, allowing
the perception of significant patterns at both a local and global level. Techniques for
mapping data to 2D visualisations are now widespread, with popular software for generating
diagrams and graphs including matplotlib14, Tableau15, Google Charts16and D3.js17.

High-dimensionality structures place a considerable demand on real-time visualisation of
large datasets, particularly with the larger datasets scientific visualisation typically con-
tends with (Bryson, 1996). Indeed, notably as the dimensionality of data increases, so does
the complexity of user interfaces which support the exploration of this data (Steed et al.,
2016). Scientists have therefore evaluated solutions within Immersive Analytics18 such as
the CAVE2 virtual environment19 — a 320 degree circle of 72 LCD panels with multiple

14http://matplotlib.org/
15http://www.tableau.com/
16https://developers.google.com/chart/
17https://d3js.org/
18http://immersiveanalytics.net/
19https://www.mechdyne.com/hardware.aspx?name=CAVE2
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Figure 2.6: Visualisation of large datasets on a CAVE2 system (Marai et al., 2016)

tracking cameras – to provide new opportunities for sensemaking.

CAVE is an example of an adaptable, immersive visualisation system for large scientific
datasets. CAVE-like systems offer great promise towards collaborative data exploration,
but there are still challenges ahead for this strand of visualisation (Marai et al., 2016).
Evidently manual data integration and programming the visualisation process is suitable
for experts only and the system is only typically concerned with scientific data, which is
not within the scope of this project. However, the research around interactivity within
this form of cognitive system forms part of the wider context surrounding interaction and
dimensionality.

Keim (2001, p.40) states that visual representations of data provide a “higher degree of
confidence in the findings” of data exploration than standard textual representations do.
It follows that multiple visualisation techniques will be required to achieve this for different
types and dimensionalities of data. For instance, visualisation of a simple x-y graph plot
versus grouped data with values on one dimension represented through colour. There is not
a universal solution and consequently evaluation of distinct visualisation techniques must
take place on an individual basis for the task at hand (Keim, 2001). As a result, much of
the research around particular visualisation techniques is task and domain specific.

A Taxonomy For Visualisation

Building upon previous taxonomies devised by Chi (2000) and (Keim, 2001), Chengzhi
et al. (2003) proposes a visualisation taxonomy which takes the viewpoints of both users
and developers into account. Two separate frameworks were created, targeting the correct
application of visualisation techniques fron both user and developer perspectives. For in-
stance, the user-oriented framework considers Text, 2D, 3D and multi-dimensional data
types amongst several others. Specific examples of visualisation techniques include a Per-
spective Wall (Text), a scatter plot (2D) and Grand Tour (multi-dimensional).



CHAPTER 2. LITERATURE REVIEW 18

Comparatively, the developer-oriented framework views the relationship between represen-
tation modes such as pixel-oriented and geometric projection, and states corresponding
interaction levels ranging from manual to automated analysis for the visualisation opera-
tor. The purpose of this taxonomy is to support the correct application of visualisation
techniques to appropriate domains, and indeed to highlight research gaps and challenges
across the frameworks.

A thorough search of personal visualisation literature and applications yielded many exam-
ples of 2D visualisation techniques, but no examples of 3D visualisations for representing
personal data. Within the personal informatics field, the lack of 3D visualisations is one
such example of a research gap.

Choe et al. (2015) analysed the frequency of specific visualisations during presentations at
a Quantified-Selfers meet-up. The most frequently used visualisation techniques amongst
participants included a line chart, bar chart, and scatter plot. It is notable that even
with a more extreme demographic of self-trackers, traditionally these visualisations are
used in 2D environments, and that no examples of 3D visualisations were recorded by
Choe et al.. Indeed, searches of current literature all showed users interacting with these
forms of personal data visualisations in 2D, with some alongside natural language (Bentley
et al., 2013; Epstein et al., 2014; Choe et al., 2014; Jones, 2015). A 3D design space is
“self-evidently richer” than its 2D equivalent, but this does not automatically result in
3D providing more effective access to information (Ware, 2004, p.294). Given that we
have established that many visualisation techniques are domain specific, further research
is needed within the context of personal data to measure the effectiveness of moving from
2D to 3D visualisations for the general population.

Dealing With Dimensionality

During this project, one of our objectives is to explore ways in which distinct, dispersed
datasets can be combined and visualised. The integration of these separate datasets will
result in an increased dimensionality. However, traditionally humans have trouble per-
ceiving high-dimensional data – a conceptual barrier which causes difficulties with “proper
intuition of the properties of high dimensional space” (Jimenez and Landgrebe, 1998, p.2).

One solution to increases in dimensionality is to adapt low-dimensional visualisations to
represent further dimensions within the same dimensional space. For instance, using at-
tributes of existing data – such as colour and shape – to depict an additional dimension.
Indeed, a different visualisation technique can be used altogether, such as a radar chart
or parallel coordinates as seen in Figure 2.7, which allow visualisation of high-dimensional
data.

Alternatively, the data itself can be adjusted in a process known as dimensionality reduc-
tion. One part of this process is feature selection, the exercise of acquiring a subset of
relevant, informative features in the data. The second part is feature extraction, the pro-
cess of projecting highly-dimensional data into a lower-dimensional space. Conventional
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Figure 2.7: Parallel Coordinates with N=5 dimensions (Heinrich and Weiskopf, 2013, p.98)

methods such as Principal Component Analysis are traditionally utilised for extracting
new features. Both of these methods are therefore beneficial for improving computational
properties and for reflecting upon the most important characteristics of high-dimensional
datasets efficiently (Cunningham and Ghahramani, 2015).

2.2.5 Parallel Planes and Be The Data for Visualisation Insight

We have identified two different visualisation techniques which we will evaluate throughout
our study. The first technique – Parallel Planes – enables high-dimensional datasets to
be represented in a single visualisation. Be The Data is the second technique and lets
users navigate around a three-dimensional scatter plot, and take on the perspective of data
points. The aim of our study is to see whether both of these techniques support users to
understand and reflect on personal datasets in an immersive environment.

Parallel Planes

Brunhart-Lupo et al. (2016) extends the aforementioned parallel coordinates visualisation
technique by mapping multivariate data into a three-dimensional space. By mapping onto
a series of parallel rectangles, rather than a series of parallel planes, and exploring the
results within an immersive environment, the technique helps to alleviate the over-plotting
problem associated with standard parallel coordinates and supports data analysts in locat-
ing correlations in the data (Brunhart-Lupo et al., 2016). An example visualisation can be
seen in Figure 2.8.

In the context of this project, Brunhart-Lupo et al.’s study raises two important questions:

• Can immersive environments be used as a medium for effective personal data ex-
ploration? Brunhart-Lupo et al. cite existing literature describing the benefits of
immersive environments for analysing data, but much of the research focuses on sci-
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Figure 2.8: Immersive Parallel Planes Visualisation (Brunhart-Lupo et al., 2016)

entific visualization (Henry and Polys, 2010) or more broadly (Arms et al., 1999),
without exclusively looking at personal data.

• Are potentially complex high-dimensional visualisations such as Parallel Planes a
suitable visualisation technique for non-expert users? The users in Brunhart-Lupo
et al. (2016) were simulation analysts, so it is not yet clear whether this technique is
feasible for the wider population.

A further area explored by Brunhart-Lupo et al. is brushing. Brushing is a mechanism
for “interactively selecting subsets of the data”, which then enables further actions such
as highlighting or deletion (Martin and Ward, 1995, p.271). Explicitly focusing on spe-
cific observations, particularly in a parallel coordinates scenario, allows the user to detect
correlations across multiple dimensions (Hauser et al., 2002). The significance of brushing
in this context was the ability for analysts to generate new simulations on selected data
regions. This links back to Saraiya et al. (2005, p.1), who assert that visualisation not only
enables data exploration, but “to also find questions that identify new hypotheses”.

Be The Data

Techniques for visualising global and local perspectives of data have previously been ex-
pressed as one of the top scientific visualisation research problems (Johnson, 2004). Be The
Data by Chen et al. (2016) discusses an educational approach to teaching students about
data analytics tasks such as dimension reduction. Rather than purely viewing the data
from a global perspective, students embodied and became virtual data points. Students
collaborated in a physical environment and motion-tracking technology was used to track
students across the room. As they moved, the corresponding data points moved with them
in the original projection of data. The results from the study were positive — users were
engaged, “exploiting embodiment” to further analyse the data in new ways (Chen et al.,
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2016, p.5). Therefore, extending the Be The Data visualisation approach will be a focus
for this project. More specifically, the notion of letting users take on the perspective of a
data point. However, rather than this taking place in a collaborative physical space, the
notion will be applied on an individual basis in an immersive, virtual environment.

Choe et al. (2015) categorise eight data-driven insight types to inform the design of data
exploration tools: Detail, Self-Reflection, Trend, Comparison, Correlation, Data Summary,
Distribution and Outlier. Previously, literature has defined insights across non-personal
data domains — however, Choe et al. directly examine insights within the context of
personal data elicited from Quantified Selfers. Although these insight categorisations may
not extend to representing the general public, Choe et al. argue that this community is at
the forefront of understanding personal data visualisation and can nonetheless provide a
valuable understanding of insights.

Using this model, the Parallel Planes technique is an example of a data summary insight
type, and the Be The Data technique represents a detail visualisation insight. The principal
purpose of visualisation is insight (Saraiya et al., 2005; North, 2006), and therefore under-
standing the different forms of insight types is beneficial towards creating more powerful,
insight-generating visualisation platforms. It has been argued that immersive visualisation
multiplies “the effectiveness of desktop visualization” (Donalek et al., 2014, p.610), and
that emerging immersive technologies harness the “remarkable pattern recognition systems”
which humans possess to gain more intuitive data understandings (Donalek et al., 2014,
p.609). Indeed, immersive environments contain many desirable qualities – global context,
easier navigation and adventurous interaction amongst others (Van Dam et al., 2000) –
which can augment the capacities of humans to interpret complex datasets. The follow-
ing section therefore investigates the potential of using a fast-growing immersive platform,
Virtual Reality, as a means for perceiving insight through personal data visualisation.

2.3 Virtual Reality

This section gives an overview of the virtual reality field. We begin by defining the term and
contextualising its use across scientific and healthcare domains. The distinction between
immersion and presence is stated, and the immersive characteristics of the platform are
detailed. Finally, we discuss the opportunities of using a smartphone for both collection of
personal data, and reflection of personal data in VR.

2.3.1 Backdrop of VR

Virtual reality (VR) is undergoing a resurgence. VR first rose to prominence in the 1990s
with Sega’s VR project and the Virtuality gaming machines – the primary breakthrough
products. However, VR never took off then for consumers, with the effects of nausea, weak
hardware and the lack of global standards cited as reasons for its early decline (Horowitz,
2004; Arthur, 2015). Two decades later, ubiquitous smartphones have not only revolu-
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tionised many aspects of daily life, but also have driven a demand for hardware miniatur-
isation. With the advent of tiny, immensely powerful chips, there has now been a shift
back towards VR – largely propelled by immersive gaming experiences which first brought
VR to fame in the 1990s. Importantly, in late 2016 an open consortium was established,
consisting of large technology companies such as Google, Intel, Samsung and Nvidia. The
Khronos VR standard20 will enable portability between different VR systems, and will in-
clude open APIs for a wide range of VR functions. Ultimately the purpose of this standard
is to enable further growth within the VR market – of which analysts have predicted will
possess an addressable market size in 2025 larger than today’s television market (Bellini
et al., 2016).

Firstly we must define what VR is. When VR first emerged in the 1990s, many early
definitions naturally conflicted and were tied to specific hardware, rather than addressing
the forms of human experience which VR produces (Steuer, 1992). In their seminal paper,
Cruz-Neira et al. (1993) adopt the definition that VR is an experience in which a person
is “surrounded by a three-dimensional computer-generated representation, and is able to
move around in the virtual world and see it from different angles, to reach into it, grab it,
and reshape it” (Cruz-Neira et al., 1993, p.1). While this definition is hardware agnostic,
Steuer (1992) also argues that VR must be thought of in terms of perceptual factors,
notably “mindful attentional, perceptual, and other mental processes”(Steuer, 1992, p.6).
A succinct summarisation of all of these processes is presence, which shall be discussed over
the following sections. Therefore, for this project we will define VR in line with Bryson’s
definition, who describes VR as: “the use of computers and human-computer interfaces to
create the effect of a three-dimensional world containing interactive objects with a strong
sense of three-dimensional presence” (Bryson, 1996, p.62).

2.3.2 Disciplines And Applications For VR

Van Dam et al. (2000) reported on an accelerating data size crisis in the scientific com-
munity where scientists ability to interpret and visualise data is far outweighed by their
ability to produce and collect data. With management prioritising investment in data com-
putation over data visualisation technology, VR is considered to be a galvanizing technique
to strengthen the bond between visualisation and human understanding of large datasets
(Van Dam et al., 2000). Through a multidisciplinary approach, scientists have leveraged
the power of existing developments across gaming industries in the absence of substantial
visualisation investment (Bryson, 1996), and the benefits of VR are ample. Virtual reality
enables global context through “much more use of peripheral context” (Van Dam et al.,
2000, p.32), allowing the human eyes to consume a greater amount of information within
the data exploration environment. Indeed, VR is an interface which offers “significantly
enhanced three-dimensional perception” (Bryson, 1996, p.64), distinctly lending itself to the
scientific demands of three and higher-dimensional data exploration. Artificial intelligence
will support scientific understanding in the future, but clearly the fundamental appeal of

20https://www.khronos.org/news/press/khronos-announces-vr-standards-initiative
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present VR technology for scientists is for gaining “rapid insight” (Van Dam et al., 2000,
p.35) of expanding, complex scientific datasets.

VR also has important use cases across healthcare (Bellini et al., 2016; Mantovani et al.,
2003), largely relating to education and training. Interaction is the central element to VR
experiences which encourages active participation, rather than passivity, during learning
(Mantovani et al., 2003). This empowers students to understand, shape and learn from
the virtual world in their own context, which culminates in “more meaningful and effective
learning” (Mantovani et al., 2003, p.390). Consequently, there are a multitude of medical
VR applications, such as the orthopedic surgery simulator (Tsai et al., 2001), which look
to address task-specific clinical skills. Seymour et al. (2002) showed that it is possible to
train surgeons to specified objectives through VR and successfully transfer these skills to
patients in real operating room environments. Primarily these forms of VR applications
come closer to real-world experiences than conventional 3D desktop-based applications do
(Van Dam et al., 2000), making them compelling educational tools for fostering engagement
with users.

Much like education and training, VR can be used for cost-effective solutions beyond the
healthcare field. There are applications in simulation and verification of manufacturing
processes (Ong and Nee, 2013), as well as the architectural designs of buildings and land-
scapes (Portman et al., 2015) – two examples of potentially inaccessible realities attainable
with VR. Using a “lifetime of experience” of making spatial decisions, humans can navi-
gate more effectively through VR in comparison to traditional desktop based environments
(Van Dam et al., 2000, p.32). Head-tracking – one of the fundamental characteristics of VR
– allows for objects to remain in a fixed position while the user explores the environment.

This form of organic navigation can be beneficial in scenarios such as architectural walk-
throughs, where designers wish to experience their plans before they are physically built.
In contrast, input devices such as a mouse, keyboard or joystick are used with 3D desktop
environments to move the environment around a fixed user view. Consequently, navigation
is more natural in VR and furthermore supports improved search task performance (Pausch
et al., 1997). Pausch et al. (1997) shows that VR supports users to remember previously
viewed locations – an important instinctual memory recall technique for pilots training in
cockpit simulators, for instance. VR therefore has interdisciplinary characteristics which
are widely applicable over a wide-range of use cases.

2.3.3 What Does VR Offer? What Makes It Engaging?

There is one characteristic of VR which is a focal target throughout all of the disciplines.
This is presence. Steuer (1992, p.6) defines presence as “the sense of being in an envi-
ronment” – in effect, the perceived reality of objects in the VR experience and the users’
presence with these objects (Van Dam et al., 2000). In this context, presence is principally
the users’ relative distinction between them being in scenes in virtual and real world envi-
ronments (Schuemie and Van der Mast, 1999). The notion of presence will be used across
this project as a measurable condition of a users’ subjective experience in VR.
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Establishing presence is an area of interest for researchers and applications which harness
VR. One of the earliest examples by Hodges et al. (1995) explored invoking presence as
an exposure therapy technique for Acrophobia21. Much research on exposure therapy and
presence has followed since, particularly for anxiety disorders such as Arachnophobia22

and Aviophobia23 (Powers and Emmelkamp, 2008). Riva et al. (2007) demonstrates the
bidirectional relation between presence in VR and an individual’s emotion, although the
study was limited to two emotional states of anxiety and relaxation. Indeed, the full extent
of the relationship between presence and emotion is somewhat undefined and represents a
research gap across the psychology field (Diemer et al., 2015). Nevertheless, within clinical
psychology, Hodges et al. (1994, p.10) asserts that presence was the “defining factor in the
success” of their exposure therapy application.

To understand presence, first we must consider the components which it is composed of.
Sheridan (1992) proposed three orthogonal principles that construct presence. These are:

• Extent of sensory information

• Control of relation of sensors to environment

• Ability to modify physical environment

Each principle can be varied independently, as reflected in the three labeled axes in Figure
2.9. Perfect presence is an unspecified function of the combination of axes, with lines
of constant information flow indicating that the extent of sensory information consumes
more information than the two related but independent control components (Sheridan,
1992). The independence of the determinants lead Sheridan to clarify them to be task-
dependent – both in terms of the task difficulty, and the degree of task automation. The
level of automation between a manual or automatic approach (perhaps resulting in a mixed-
initiative interaction) will affect the user’s perceived presence and/or performance ability.

Distinguishing Immersion And Presence

A distinction between immersion and presence must also be made. Slater and Wilbur
(1997, p.606) state that immersion is an “objective and quantifiable description” of what
systems can provide, whereas presence is a “state of consciousness” of the user. There-
fore, immersion describes the characteristics of a technology, and the sense of presence
it builds for a user. Slater and Wilbur (1997) further breaks down immersion into four
areas: Inclusive, Extensive, Surrounding and Vivid. This categorisation of immersion goes
hand in hand with Sheridan’s model of presence, but notably there is not a direct rela-
tionship between them. Cognitive processes which sit between immersion and developing
presence can become a hindering factor (Schubert et al., 2001). Furthermore, there is a

21The fear or phobia of heights
22The fear or phobia of spiders
23The fear or phobia of flying



CHAPTER 2. LITERATURE REVIEW 25

Figure 2.9: Sheridan’s three principal determinants of presence (Sheridan, 1992)

Figure 2.10: Sheridan’s experimental determination of presence, learning efficiency and
performance (Sheridan, 1992)

strong dependency on a user’s ability to operate a user interface which Slater and Wilbur
(1997) describe as crucial with regards to task performance. As a result, presence and task
performance are not necessarily analogous. Sheridan’s dependent measures in Figure 2.10
accordingly consider presence and task performance independently.

Inclusive Immersion

Inclusive immersion refers to the extent to which the virtual environment is occluded
from the physical environment. Factors which may impact inclusive immersion include
the physical properties of the VR devices themselves. Headsets can be uncomfortable to
wear, particularly for prolonged periods of time, and protruding wires from the headset
can negatively affect the VR experience. In the context of scientific visualisation, Van Dam
et al. (2000, p.38) assert that VR will not become a normal part of an office environment
until it “literally becomes indistinguishable from that environment”. Additional challenges
may arise with sound or other sensory interference from the physical world, highlighting the
importance for an immersive system to maximise its influence along the extent of sensory
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information axis defined by Sheridan.

Slater and Wilbur (1997) define matching – head-tracking – separate to inclusivity, but
arguably this definition is a naturally ingrained component of inclusive immersion. Head-
tracking is a pervasive characteristic of modern VR systems, with numerous studies demon-
strating its positive effects on presence (Slater and Wilbur, 1997). Without head-tracking,
the virtual environment is not able to respond to physical head motion, breaking one of the
major interface goals in VR which is to create “natural, human-like interaction” (Van Dam
et al., 2000, p.41).

Extensive Immersion

Extensive immersion indicates the collection of sensory features which the systems supports.
This covers all three axes in Sheridan’s model of presence. Sound is one such example of
a powerful medium for human perception – for instance, the aural rendering of system
alerts, spatial cues, and the indication of objects outside of the visual display. VR can also
use three-dimensional spatial sound to simulate distance and the geometry of the user’s
virtual environment, which has been found to increase a users’ sense of presence (Slater
and Wilbur, 1997).

Sound can be used alongside haptic feedback, with other forms of interaction such as
simultaneous speech and hand gestures driving the system. Van Dam et al. (2000) argues
that multimodal interaction is a far richer way of interacting with an environment than a
mouse and keyboard. Consequently, VR can be seen as “a natural extension of existing
computing environments” (Van Dam et al., 2000, p.27). VR exists at one extreme of the
spectrum, beginning with a keyboard and a text-only display, moving to 2D graphics and
adding a mouse, and then proceeding to 3D desktop graphics with joysticks, finally finishing
with multi-modal interaction in VR (Van Dam et al., 2000).

Surrounding Immersion

Surrounding immersion represents the extent to which the system is “panoramic rather than
limited to a narrow field” (Slater and Wilbur, 1997, p.605). Immersion is enhanced by a
wider field of view comparative to traditional desktop displays, enabling the consumption
of extra peripheral information. This is beneficial for “situational awareness and context”,
which supports navigational and spatial decision-making, ultimately augmenting presence
(Van Dam et al., 2000, p.27).

Vivid Immersion

The final category of immersion is vivid immersion. This depicts the “richness, information
content, resolution and quality of the displays” (Slater and Wilbur, 1997, p.605). CRTs and
LCD panels were one of the limiting factors of previous generation VR technology, largely
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due to poor screen resolutions and physical property restrictions. Advances in screen types
to OLED and AMOLED technologies have resulted in resolutions up to 2160x1200 on
popular devices such as the Oculus Rift24 and the HTC Vive25. At this screen resolution
the limitations are the processing hardware which drives the display, as well as battery life
on smartphones supporting VR experiences.

The content itself is also an important aspect of vivid immersion. According to Witmer and
Singer (1998), the greater the consistency between information in a virtual environment
and that learned through the real-world, the greater the presence shall be. There is also a
small amount of evidence to suggest that photo realism – e.g environment illumination with
reflections and dynamic shadows – is associated with gains in reported presence (Khanna
et al., 2006). However, a major constraint with Khanna et al.’s study was that the VR
system only delivered a low 15fps (frames per second) to keep a stable frame rate, which
may have affected the findings. Modern VR platforms such as Google Daydream26 and
Playstation VR27 specify a stable minimum of 60fps. This display requirement is also
closely related to inclusive immersion, and ensures that immersion is not disrupted by
frame rate should the user move their head in motion.

Related to frame rate is the latency of the VR experience. System latency is exceptionally
important in VR systems where poor latencies can cause an interruption in immersion,
and perhaps even motion sickness. Van Dam et al. (2000, p.41) establishes that latency
doesn’t result in sickness until hitting a “task and user-dependent threshold”. Particularly
with head-tracking (as opposed to hand/body-tracking which is relatively less demanding),
latencies must be kept to an absolute minimum. Van Dam et al. cite 35ms to avoid a
mismatch in visual and interaction cues. Consistent and minimal latencies enable easy
transitions between cognition and perception (Van Dam et al., 2000), allowing for effective
task performance in virtual environments.

Clearly presence is a multi-sensory experience, with a great deal of additional influential
factors as defined through the categorisation of immersion. The purposefully unspecified
function of perfect presence in Sheridan’s model of presence is a popular research area,
with a full understanding not yet forthcoming. We have defined factors known to increase
both immersion and presence, as well as discerning between the two terms, and how task
performance is independent of them. However, this discussion has only taken place in the
context of a virtual environment.

Figure 2.11 shows the classifications of reality through to virtuality. We have considered
immersion and presence at virtual environment, with the rest of the continuum out of scope
for this project. However, there is active research across the rest of the continuum – in
particular, augmented reality (AR) in which reality is virtually modified by a computer.
The Microsoft Hololens28 is a mixed reality device which uses a multitude of sensors,

24https://www.oculus.com/
25https://www.vive.com
26https://vr.google.com/daydream/
27https://www.playstation.com/en-gb/explore/playstation-vr/
28https://www.microsoft.com/microsoft-hololens
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Figure 2.11: Reality Virtuality Continuum (Milgram et al., 1995)

cameras and microphones to augment the user’s experience with a physical environment.
As a result, the forms of presence and immersion differ in this experience, and across
the continuum itself. Indeed, Baos et al. (2000) describe experiences in which people have
assigned reality judgments but do not feel specifically present, and vice versa. Nevertheless,
VR devices have been released in greater numbers across the consumer market relative to
their AR counterparts up until this point, and as a result are the focus of this project.

2.3.4 Towards Mobile VR For Personal Data Visualisation

The gaming industry has driven the growth of head-mounted displays (HMD) such as the
Oculus Rift, HTC Vive and Playstation VR. These VR devices connect to a computer via
an HDMI cable which controls the visual display on the HMD. Internal sensors enable low-
latency head-tracking, and a stereoscopic image is created for the users with the inclusion
of lenses inside the HMD. Motion tracking can be supported through additional accessories
such as external sensors positioned around the physical environment, smart gloves and
wireless controllers.

These VR devices are popular with gamers due to their ability to connect with existing
hardware and provide immersive, high frame-rate experiences. However, these are still
early generation devices and challenges such as protruding cables and the necessity of buy-
ing additional hardware for increased immersion do exist. Furthermore, the total cost and
requirements needed for high-end VR systems can be prohibitively expensive – Nvidia re-
ported that less than 1% of computers globally in 2016 would be able to run VR technology
(BBC, 2016).

Google Cardboard29, Google Daydream and Samsung Gear VR30 are prominent examples of
low-cost VR experiences which could provide a solution to the price barrier for mainstream
audiences. Consumer smartphones drive the VR experience using a basic, inexpensive
headset which, with increased consumer adoption and interest, may lower the price of the
entire range of VR systems. While the level of immersion on these devices may not be
comparable to high-end systems, the ubiquity of smartphones means that an overwhelming
majority of the population potentially has access to a portable device which supports VR.

29https://vr.google.com/cardboard/
30www.samsung.com/global/galaxy/gear-vr/
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The Google Daydream platform mandates specific design and functional requirements such
as maintaining head tracking and consistently high frame rates for high-quality mobile
VR experiences31. However, only the most modern, high-end smartphones can handle
Daydream specifications. To achieve a stable, high frame rate, the mobile requires powerful
processing chips driving mobile displays with resolutions similar to that of modern desktop
computers. This requires expensive hardware, and places a further strain on mobile battery
life. However, these limitations will begin to disappear as new hardware emerges and
consumers upgrade to the latest generation technology.

Consequently, the opportunities for high-quality mobile VR experiences are set to rapidly
increase within the next few years. The Google Cardboard platform has shown that there
is an appetite for low-cost mobile VR experiences, with over 5 million headsets shipped over
the first 18 months of launching (Bavor, 2016). The pervasiveness of smartphones enables
a single device to potentially act as a medium for both self-tracking, and the exploration
of personal data in VR. This is only enhanced by smartwatches and other self-trackers
which supplement the collection of personal data. Rather than using expensive, high-end
VR systems, the progressing specifications of smartphones allow consumers to use their
existing device as a means for VR.

2.4 Chapter Summary

This project seeks to evaluate whether VR is a suitable medium for personal data explo-
ration. This literature review has explored a small amount of literature relating to the
Quantified Self, the extensively researched field of scientific data visualisation, and its ap-
plications in VR. However, a research gap exists between personal data and VR. Could the
Be The Data visualisation technique be an effective method for personal data exploration
in VR? Can the Parallel Planes visualisation translate from scientific domain experts to
non-expert users in VR?

We have identified a user-driven and system-driven approach to the stage-based model
of personal informatics (Li et al., 2010). We have also identified overlapping motivations
for initiating self-tracking, and discussed studies which looked at participants goals for
collecting personal data (Epstein et al., 2014). The abandonment and barriers of personal
data collection were explored, and the challenges of inferring insights from data aggregation
platforms were highlighted by Jones and Kelly (2016).

Various approaches towards communicating data to users including dashboards and natural
language summaries have been examined through research by Bentley et al. (2013) and as
part of a similar study by Epstein et al. (2014). The complexities of filtering multi-faceted
personal datasets for visualisation has been studied by Jones and Kelly (2016), and using
immersive CAVE-like systems to visualise high-dimensional scientific data has also been
described. Furthermore, two visualisation techniques – Parallel Planes and Be The Data
– have been identified to evaluate in the next stages of this project.

31https://developers.google.com/vr/distribute/daydream/app-quality
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Virtual Reality has been established as an immersive platform which has numerous appli-
cations across scientific research, healthcare, entertainment and education. The exhibiting
characteristics of immersion and presence have been described in relation to VR (Van Dam
et al., 2000; Sheridan, 1992; Slater and Wilbur, 1997). Finally, the ubiquity of smartphone
adoption has been pinpointed as a reason which could enable low-cost VR experiences in
the future. Evaluating the crossover between Virtual Reality and personal data exploration,
and the effectiveness of specific visualisations for non-expert users, forms the next stage of
this project.



Chapter 3

Requirements

This chapter begins with an overview of the technology available within the mobile Vir-
tual Reality domain, where we choose Google Daydream as the platform for exploration of
personal data in VR. Following this, the implementation path for building a Daydream ap-
plication is detailed, and requirements are gathered from a multitude of sources, including
visualisation techniques discussed during the previous chapter. Given the exploratory na-
ture of this project, these requirements are neither definitive, nor exhaustive. Rather, they
serve as a starting point for refining the prototype VR environments during the following
Design chapter. A discussion of key requirements elicited from multiple sources concludes
this chapter.

3.1 VR Platform Design Space Exploration

During the literature review, we started to collate the immersive characteristics of VR
technology. We established that systems must exhibit inclusive, extensive, surrounding,
and vivid immersive qualities to generate presence, the sense of being there, for the user.
We related each of these qualities to certain technological properties. For instance, head
tracking with inclusive immersion, and screen richness with vivid immersion. The underly-
ing takeaway was one of a multi-sensory experience. This is the idea that VR should touch
upon as many of the users’ senses as possible.

Clearly to fully meet the objective of a multi-sensory experience we would use standalone
head-mounted displays which create the greatest levels of immersion. However, a key idea
in this project is the notion of using a single device for collection of self-tracked data, and as
the exploratory medium for reflecting upon this data. As a result, this rules out standalone
head-mounted displays, and narrows the focus to consumer smartphone VR instead.

VR is an emerging platform, and even more so in the smartphone VR domain. Conse-
quently, there are a limited number of point systems in this space. In fact, there are only
three: Google Cardboard, Google Daydream, and Samsung Gear VR. The common factor

31
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between these three platforms is that they all run on the Android operating system. Google
Cardboard is the only cross-platform VR platform which runs on iOS. It is worth noting
that there are various third-party headsets, but these are usually headsets for the Google
Cardboard platform, and not a platform in their own right. Consequently, these headsets
do not form part of this platform-based discussion.

Android VR Platforms

Given the increased adoption of VR on Android over iOS, plus the authors’ existing knowl-
edge of Android, the Android operating system was chosen for development of the VR
prototype. Choosing the development platform, however, required a little more considered
thought.

Google Cardboard was the first VR platform to arrive on the Android OS. It supports
the largest number of Android devices, from Android 4.1 and up giving a potential 97.5%
coverage of global Android devices1. While the Cardboard platform does have potential
widespread coverage, the VR experience is somewhat hindered by platform restrictions
to support lower-end devices. The extent of CPU and GPU processing can cause poor
responsiveness on low-end devices, adversely affecting users’ experiences in VR.

Samsung’s Gear VR platform builds upon the basic VR experience offered by Google Card-
board, and adds additional tracking sensors into the Gear VR headset. Combined with
low-level GPU optimisations, frame-rate and responsiveness is improved over Google Card-
board. However, Gear VR only supports Samsung smartphones, restricting the audience
reach of the VR platform. Additionally, like Cardboard, the only method of interaction is
through head gaze2 which detects where the user is looking within the VR environment
and triggers interactions based on their forward facing direction. For rich, multimodal
interaction a controller-based approach is preferable.

The Google Daydream platform launched in November 2016 and it is only supported on
Android 7.0 and up compatible phones. The requirement for high-end phones with powerful
CPU/GPU chips means that there is a reduced audience reach within the current consumer
market for this technology. However, this requirement vastly improves VR experiences with
compelling visual outputs particularly suitable for the demands of data visualisation. Fur-
thermore, greater requirements are mandated for the design, performance and functionality
of Daydream apps – significantly, it is the only mobile VR platform with native controller
support. The composition of these immersive attributes, coupled with the additional sen-
sory input through the Daydream controller, led to its selection as the platform to develop
for.

1Correct as of 31st December 2016. See the Android ’Platform Versions’ dashboard:
https://developer.android.com/about/dashboards/index.html

2In March 2017 after development was complete, Samsung updated the Gear VR platform to include a
handheld controller.
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3.1.1 Technological Requirements – Building for Google Daydream

At the time of requirement gathering, Google Daydream was at an early developer preview
stage. This meant that the Daydream platform was not fully developed, and official/non-
official technical documentation was somewhat limited in quantity. However, after a com-
prehensive review of the features and support available we were able to ascertain that the
project was technically feasible. Accordingly, we looked at the 3 paths available for writing
a Google Daydream application:

• A C/C++ application with the Google VR NDK (Native Development Kit)

• Unity with the Google VR SDK

• Unreal Engine with the Google VR SDK

Each development path was considered in terms of available resources, and the necessity
to rapidly develop prototype applications. The VR NDK was ruled out early on, due to
the additional complexity involved with developing against this API. Additionally, we had
limited experience with the C/C++ programming languages. The Unity game engine was
then chosen over Unreal Engine for 2 key reasons. Firstly, whilst the documentation and
support for Google Daydream was sparse – the VR platform had only been announced in
recent months – an active community for Daydream developers exists on the Unity forums3.
If development assistance for this new platform was required, these forums could be used
for support. Secondly, we had extensive experience in C# which is the primary language
used by the Unity game engine.

A technical preview of Unity (Unity 5.4.2f-GVR13 ) was required to develop for Google
Daydream. Although Unity later added native support for Daydream starting with Unity
5.6, this had neither been announced nor released at the time of development. Consequently
the integration route is through the Daydream SDK, and the manual process of importing
SDK Prefabs and attaching SDK scripts to Unity GameObjects. The Daydream SDK
enables the essential building blocks for VR – head-tracking, and stereo rendering with
lens distortion. Furthermore, it also contains scripts for controller support and raycasters,
both of which are necessary for user interaction. Many of these scripts are simple starting
points, and as discussed in the following chapter, some required considerable modification
to meet the requirements of this project.

3.2 Requirements Elicitation

The exploratory nature of this project meant that a user-centered approach to determining
the full set of requirements was used. Prototyping was used to communicate initial ideas
to users, and their feedback influenced purposefully vague initial requirements. The initial

3https://forum.unity3d.com/forums/daydream-preview.116/
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requirements was based upon analysis of existing data visualisation systems, and Google
Daydream guidelines. The iterative prototyping process clarified the design direction of
our prototypes by scoping and refining requirements appropriately within the time period
available.

The initial requirements was split into functional and non-functional requirements, and
labelled as (FR-1, FR-2 . . . FR-N) and (NFR-1, NFR-2 . . . NFR-N) respectively. Each
requirement was assigned a priority through the MoSCoW technique: must, should and
could. An extensive contract-style list of requirements was not appropriate at this stage
as the exploratory system was not rigidly defined. This is in comparison to a traditional
software engineering project where system components are tightly specified and interac-
tion between components are strictly controlled. As a result, the requirements were kept
relatively concise and flexible, and the use of dependencies and success criteria was avoided.

A discussion follows on the initial requirement gathering within 3 areas: Platform Require-
ments, Existing VR System Requirements, and Visualisation Requirements.

3.2.1 Platform Requirements

Requirements analysis began at a platform level. The Google Daydream publishing require-
ments4 were almost exclusively used to populate the initial requirements in this section.
The official Daydream requirements are split into 4 sections: Design, Functionality, Perfor-
mance & Stability, and Publishing requirements. The Publishing requirements section was
dropped from our requirements analysis, as the app was not going to be publicly distributed
through the Google Play store5 and hence the requirements specified in this section were
not applicable.

22 requirements were determined at a Platform level from the remaining 3 sections. A full
list of platform requirements is available in Appendix A.1. Notable requirements include
FR-2: “The app must maintain head tracking” and FR-16: “The app must maintain high
performance and should not suffer from thermal throttling”.

Requirements were either adopted directly from the Daydream developer website, or adapted
from the website to fit the objectives of this project. For instance, FR-16 has a correspond-
ing non-functional requirement NFR-16: “The app must maintain high performance across
both Be The Data and Parallel Planes visualisations for at least 15 minutes. High perfor-
mance is defined as a consistently high frame-rate (60fps)”. This requirement applies the
60fps recommendation for VR platforms which was established earlier in Chapter 2.

Finally, for this section we also looked at specific requirements for the Google VR SDK,
Unity, and identified the minimum Android version which this prototype will support.
These are given in requirements NFR-1, NFR-2, and NFR-3 respectively. NFR-3 comes
with the caveat: “Daydream is only officially supported on specific Android 7.0 devices”. We
will expand on this further during section 4.2 when we discuss our prototyping environment.

4https://developers.google.com/vr/distribute/daydream/app-quality
5https://play.google.com/store
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This section contributed 18 functional requirements and 4 non-functional requirements.
These have largely been based on software characteristics, which stem from hardware spec-
ifications for powerful graphics processing and the inclusion of the Daydream controller.
The following section now looks at examples of existing data visualisation systems in VR
to elucidate further requirements. We will then conclude our requirements analysis by
exploring the requirements specific to our two chosen visualisations.

3.2.2 Requirements From Existing VR Data Visualisation Systems

In contrast to the previous section, the requirements identified in this section derive from
real-world implementations of VR applications. Given that there are no examples of what
a personal data visualisation may look like in VR, we look towards other forms of systems
for inspiration on data visualisations in immersive environments. The generalisability of
requirements gained from systems which only support non-domain experts may be prob-
lematic. Consequently, in this section we will only consider the characteristics of systems
directed towards the general population. In the following section we then consider a domain-
specific VR data visualisation tool to ensure that we are covering a wide range of potential
functionality. A fully fledged prototyping process will ensure that the functionality discov-
ered in this section, and indeed in the following section, is appropriate for the developed
system and its audience.

The NASDAQ Rollercoaster

The NASDAQ rollercoaster6 is the first existing system which we examined for suitable
design features (see Figure 3.1). Notable for being one of the first prominent examples
of VR used in the news, it is an award-winning visualisation in which the user ‘rides’ the
NASDAQ stock chart over a 20 year period.

Similar to our proposed Be The Data visualisation, the NASDAQ rollercoaster immerses
the user right within the data. The user is placed at the top of the chart and moves forward
as time progresses. This experience is supplemented by storytelling throughout, providing
additional contextual information around sudden peaks and troughs in the visualisation.
The user is able to look around 360◦in all angles. The axes design and explanatory text
is well considered – in particular, the axes labels are reduced only to the most significant
data points. This reduces an overload of information, keeping the visualisation simple and
increases the impact of the data itself.

This led to the identification of 9 functional and 2 non-functional requirements. Notable
requirements include FN-20: “There must be a smooth transition when moving from an
overview of the data to a detailed point inside it”. This has a corresponding non-functional
requirement NFR-6, which specifies that movement must follow a linear or bezier curve
between points. Additionally, FN-26 states that “Textual information should be avoided

6http://graphics.wsj.com/3d-nasdaq/
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Figure 3.1: Screenshot of “Is the Nasdaq in Another Bubble? A virtual reality guided tour
of 21 years of the Nasdaq” (Kenny and Asnes Becker, 2015)

where possible. Let the data do the speaking.”. This requirement stems from the reduced
textual information in the NASDAQ visualisation, and indeed in Chapter 2 where we found
that visual representations of data provide a “higher degree of confidence in the findings”
than textual information does (Keim, 2001, p.40). However, this was for scientific specialists
looking at large datasets. Therefore, at the design stage in our system we will initially give
preference to the data over textual representations, and verify that users do not need extra
textual information during the prototyping process.

Limitations of the NASDAQ visualisation also influenced our requirements. The objective
of the NASDAQ visualisation was to follow a rollercoaster-like path on top of the data
chart. However, this was a predetermined path and there was no ability to move off it
and view the data from a different angle in the environment. Accordingly, FN-27 was
devised, targeting the free movement of the user in the data exploration environment.
Furthermore, the NASDAQ visualisation did not include sound which was discussed in
Chapter 2 as an important factor for presence. Correspondingly, sound effects through
FN-28 was established as the final requirement emanating from this existing system.

Will the UK Brexit?

We then used a secondary VR system to validate our requirements. The target system
was named ‘Will the UK Brexit?’7, created by data journalists at Google News Lab (see
Figure 3.2). The visualisation allows users to highlight European Union countries and see
their population’s most searched Brexit-related questions in the runup to the UK’s EU
membership referendum in 2016.

7http://news-lab-brexit.appspot.com/vr/
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Figure 3.2: Screenshot of “Will the UK Brexit?” (Lab, 2016)

Again, the VR data visualisation contains little textual representations. Popular search
engine queries appear for each country only when the user has highlighted that specific
country. This further substantiates our findings for FN-26 around reducing the amount
of text where possible. A new set of requirements {FN-29, FN-30, NFR-7} extend this
data highlighting mechanism, adding the concept of a highlight colour and a data overlay
containing additional information about the data point (as seen in Figure 3.2). NFR-7
specifies FN-30 in that the “information overlay should fit entirely inside the VR stereo
rendering”. This requirement arose from our testing of this visualisation, where to fully
see certain search queries, we had to move our head away from the selected country. Our
final requirement for this section was inspired by the instructions which this visualisation
used should the user look behind them. These instructions point the user back towards
the main area of interest – the data visualisation. FN-31 therefore defines a low priority
requirement to use visual cues should the user stray too far from the data visualisation.

Two visualisations – ‘The NASDAQ Rollercoaster’ and ‘Will the UK Brexit?’ – were chosen
for requirements analysis for our system. With a sparse number of data visualisations in VR
aimed at the general population, these visualisations both came from the data journalism
field, and hence were selected due to their intended wide-reaching audience. The full list
of requirements identified in this section is listed in Appendix A.2. Having established
platform requirements, and having begun to identify more specific app requirements, the
next section considers the two data visualisations we will be implementing – Be The Data
and Parallel Planes – in greater detail.
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3.2.3 Visualisation Requirements

This section considers the requirements for the two visualisations which we will be imple-
menting. A number of requirements have already been discussed in the previous sections
which will serve as the foundation for the requirements explored here. We will also look at
the existing VR Parallel Planes literature and determine the functionality appropriate to
non-experts. Prototyping will enable these initial requirements to evolve to a scope suitable
for our exploratory study.

Be The Data

The Be The Data study by Chen et al. (2016) was introduced in Chapter 2. In their
study, Chen et al. placed students into a physical environment and each student became
an individual data point representing a point in a system. Students could then collaborate
with their immediate neighbours, and cluster or separate accordingly in response to data
exploration questions. Our proposed system differs in several respects to Chen et al.’s study.
Firstly, it will not be a collaborative system. Users will explore the data individually, rather
than alongside others. Secondly, the data exploration process will take place inside a virtual
environment, rather than a physical one. The fundamental idea which we are elaborating
on is one of data embodiment – becoming a single data point in a larger collection of data
points – and seeing whether this can positively benefit the users’ understanding of the
dataset.

Chen et al. give no indication on how this might be achieved in a virtual environment. As a
result, the requirements identified in this section largely build upon previously established
requirements, in the context of exploring a standard three-dimensional scatter plot in VR.
To start informing our thinking around prototype requirements for this visualisation, we
used Matlab to generate a 3D scatter plot with random data points.

Figure 3.3 shows our randomly generated graph. We identified 7 functional requirements
and 4 non-functional requirements by thinking about actions which a user might take when
exploring this form of graph in an immersive, VR environment. {FN-32 . . . FN-38} and
{NFR-8 . . . NFR10} are the non-exhaustive list of requirements for this section, with the
full list available at Appendix A.3. As we do not know what the needs of a user will be with
this visualisation, or their typical exploratory behaviour, these requirements are incomplete
estimations which will be validated during the prototyping process.

Nevertheless, this brought about some key requirements. Namely FN-32 and FN-33, which
state that the user’s movement must not be “constrained by the graph boundaries” and that
the user must be able to move outside of the graph through the axes. FN-38 extended ideas
on movement directions from the previous section, specifying that there should be at least
4 directions that the user can move in. Several requirements relevant to this visualisation
were already covered in previous sections, such as FN-28 and FN-30. Consequently, non-
functional requirements were detailed to constrain exactly how the system will achieve
these initial requirements.
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Figure 3.3: A randomly generated 3D scatter plot used to conceive initial requirements

With a small number of requirements evoked from the randomly generated graph, we had
an idea of the initial requirements for this visualisation. During the prototyping process,
when we get an improved idea of the mental models of users while interacting with this
system, we will refine these requirements appropriately.

Parallel Planes

Our second visualisation selected in Chapter 2 was the Parallel Planes visualisation. This
extends the traditional parallel coordinates visualisation technique by adding an extra di-
mension in the z axis. Figure 3.4 shows a visual representation of a data observation
through x1, x2 . . . xn. Brunhart-Lupo et al. (2016, p.2) describes this visualisation as a “se-
ries of scatter plots where the same observations are joined by a polyline”. Two additional
features extend these series of scatter plots in their visualisation system - specifically data
brushing, enabling observations to be highlighted amongst the entire dataset, and the run-
ning of additional simulations on the brushed region. Given that we will only be visualising
a pre-determined personal dataset, this latter feature of simulation is not applicable to our
system.

However, brushing is a compelling feature which we will be specifying for our Parallel
Planes visualisation system. The ability to select a subset of data observations passing
through particular regions has clear use cases. Our prototyping process will aim to make
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Figure 3.4: Parallel Planes visualisation of x1, x2 . . . xn (Brunhart-Lupo et al., 2016)

this feature intuitive and rewarding to use. Accordingly, {FN-41, FN-42, NFR-12} were
developed as brushing requirements. These requirements specify that the user must be able
to select “at least one” subset of the data, and that they should be able to select multiple
subsets. Once selected, the non-functional requirement stipulates that the selected subset
of lines must have a highlight colour, and that non-selected data observations should be
dimmed.

Additional requirements conforming to the structure of the visualisation were also prepared.
For example, FN-39 demonstrates that each new dimension of the personal dataset must be
represented on a new plane. Notably, this led to the development of a new requirement FN-
40, which stipulates that the dimension in the z axis of each plane must be kept constant.
With the Be The Data visualisation, we were restricted to displaying 3 dimensions of data
in each axis (though this could be extended to 5 dimensions by changing the shape and
colour of the data points). In the Parallel Planes visualisation, adding a new dimension is
completed by adding a new plane. Potentially this lets us represent n dimensions, though
in practice n would be low due to visual and cognitive limitations. Particularly given the
target audience of this system is not subject matter experts like in Brunhart-Lupo et al.’s
study, when working with a high-dimensionality of data, keeping the z axis a constant
dimension (such as the Day of the Week) should help to reduce the typical interpretation
challenges associated with multi-dimensional data.

With requirements for movement and sound in the VR environment recorded previously, a
total of 5 functional requirements and 1 non-function requirement were collected from this
section on Parallel Planes. The full set of initial requirements are available in Appendix
A.4.
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3.3 Chapter Summary

In this chapter we completed an exploration of the VR platforms suitable for the develop-
ment of our prototypes. Google Daydream was selected as the target platform, and Unity
and the Google SDK were chosen as tools to develop the visualisations with.

We gathered 43 functional requirements and 12 non-functional requirements through an
elicitation process covering platform requirements, analysis of existing systems and require-
ments specific to our two chosen visualisations. These requirements are neither exhaustive,
nor extensive, but are initial starting points for refinement during the prototyping process.

The next chapter considers the refinement of these requirements as the design of the visu-
alisations progresses through the prototyping process.



Chapter 4

Design

This chapter focuses on the key design considerations we made when developing the visu-
alisations as part of an iterative prototyping process. We begin by discussing the technique
used to pre-process the dataset represented in the final visualisations. The prototyping
process is then outlined and we build upon and refine the requirements established in the
previous chapter.

Design considerations such as axes representation and interaction in VR are highlighted in
terms of both visualisations. Multiple figures of early prototypes and the final prototype
are included to illustrate and support the decisions made as part of the prototyping process.

The manual swipe implementation for the Google Daydream controller is detailed, and the
chapter concludes with a discussion on design decisions made around realism and missing
data.

4.1 Data and Data Preparation

During Chapter 2, we reviewed the rise of personal data tracking and analytics. Through
literature by Jones and Kelly (2016), and Choe et al. (2014), we highlighted the cognitive
challenges of examining large, correlational datasets. The prototypes we develop over this
section use a multidimensional personal dataset, with the dataset visualised within an
immersive VR environment. Our insight-based evaluation will assess whether the qualities
of VR can reduce the interpretation challenges associated with multi-dimensional data.

Due to time constraints on the project, it was not feasible to collect several months worth
of data such that participants could later use their own data in the VR visualisation. This
limitation is discussed later in Chapter 8. Instead, Dr Simon Jones provided a dataset
containing tracked personal information about 19 participants. This dataset contained up
to 36 attributes about each participant tracked over a period of 2-3 months. Examples of
participant attributes include weather, productive minutes, steps, and events.

42
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The dataset we used was provided in the form of an SQL dump. Previously this database
had been used on the self-tracking data aggregation platform Exist.io1 and contained two
tables: attributes and correlations. The correlations table related two attributes together,
calculated a correlation strength, and generated natural language statements such as “You
get more steps when you listen to more music”. However, we were only interested in the raw
recorded data observations present in the attributes table. Accordingly, the correlations
table was manually discarded, and our focus turned to preparing the attributes table for
our prototype.

4.1.1 JSON Serialisation

We found it challenging to connect the Unity application with the local SQL database –
there was no native support for this offered by Unity. Instead we looked for alternative
solutions for getting the participant data into Unity. Our final technique involved using
a JSON format to represent the SQL database, and then using Unity’s JSONUtility to
serialise the database into C# objects.

The first step of this process involved converting our SQL database into a JSON text-
format. With no online tools available to do this job, we defined a JSON schema, and
wrote a text parser in Python to translate SQL statements into a JSON instance.

Listing 4.1: JSON Schema

{
”dbName” : ”<database name>”,
” p a r t i c i p a n t s ” : [{

” partic ipantName ” : ”<part ic ipant name >”,
” a t t r i b u t e s ” : [{

” attributeName ” : ”<attr ibute name >”,
” at t r ibuteData ” : [{

” date ” : ”<date>”,
” va lue ” : ”<value>”

} ,
{

” date ” : ”<date>”,
” va lue ” : ”<value>”

}
]}

]
}

]
}

1https://exist.io/
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Listing 4.1 defines the structure of the JSON schema which we used for our database. The
main database object contains an array of participants. Each participant has a name and
an array of trackedattributes. Each attribute has a name, and has an array of attribute data.
These objects contain the daily data observations pertaining to that specific attribute.

The Python parser accepts SQL statements, parses the input and organises the participants
and their recorded attribute data into a single JSON file. For instance, given a single
participant with two attributes, the Python script outputs the JSON object in Listing 4.3.

Listing 4.2: Example SQL Input

( ’ p a r t i c i p a n t 1 ’ , ’ d i s t r a c t i n g m i n ’ , ’ 2015−07−26 ’ , ’ 55 ’ ) ,
( ’ p a r t i c i p a n t 1 ’ , ’ d i s t r a c t i n g m i n ’ , ’ 2015−07−27 ’ , ’ 128 ’ ) ,
( ’ p a r t i c i p a n t 1 ’ , ’mood ’ , ’ 2015−07−26 ’ , ’ 5 ’ )

Listing 4.3: Example JSON Output

{”dbName” : ” simonsdata ” ,
” p a r t i c i p a n t s ” : [
{

” partic ipantName ” : ” p a r t i c i p a n t 1 ” ,
” a t t r i b u t e s ” : [
{

” attributeName ” : ” d i s t r a c t i n g m i n ” ,
” at t r ibuteData ” : [
{

” date ” : ”2015−07−26”,
” va lue ” : ”55”

} ,
{

” date ” : ”2015−07−27”,
” va lue ” : ”128”

}
]

} ,
{

” attributeName ” : ”mood” ,
” at t r ibuteData ” : [
{

” date ” : ”2015−07−26”,
” va lue ” : ”5”

}
]

}
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]
}

]
}

The Python script was run over the 35,000+ line SQL database containing 19 participants
and their tracked daily data points during a 2-3 month period. Significantly, this is a
one-time process, and so will not have any adverse effect on app startup time for the
prototypes. The output JSON formatted file contained a list of participants and their
associated attributes. With the data now in a format appropriate for use in Unity, Unity’s
JsonUtility class was used serialise the JSON instance into C# objects.

Listing 4.4: Participant Class

[ S e r i a l i z a b l e ]
public class Par t i c i pan t {

public s t r i n g partic ipantName ;
public List<Attr ibute> a t t r i b u t e s ;

}

Listing 4.4 shows one of four serialisable classes declared in our Unity code. Finally, the
JsonUtility function reads in the precomputed JSON instance at run time, and serialises
the data using these classes into C# objects. We are now able to access our data in an
object-oriented fashion. For example:

Listing 4.5: Example Data Access

// Get the f i r s t p a r t i c i p a n t
Par t i c i pan t a c t i v e = jsonDatabase . p a r t i c i p a n t s [ 0 ] ;

// Return the number o f p r o d u c t i v e minutes from t h e i r 29 th day
o f data l o g g i n g

return a c t i v e . a t t r i b u t e s [ 9 ] . a t t r ibuteData [ 2 9 ] . va lue ;

In the absence of native local database support, this object-oriented approach lent itself well
to the needs of our project. After serialising the dataset, we had the ability to pass around
objects within the Unity game engine, enabling the dataset to be adjusted as needed during
different runs of the prototype. The cuts of this dataset chosen for use in our visualisations
is discussed in greater detail during Chapter 6. A flow chart capturing the pre-processing
steps we took on our dataset is detailed in Figure 4.1.
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Figure 4.1: The Data Pre-Processing Steps

4.2 Prototyping Process

With our personal dataset now ready to use, we progressed onto designing the visuali-
sations in Unity. Having set out our initial requirements in Chapter 3, we built a basic
first prototype to gather feedback on usability and user experience goals. With the time
constraints considered, we planned a prototyping process in which we would be able to
evaluate the systems twice with test users, before releasing to our study participants. This
corresponds to two full cycles of Figure 4.2.

Develop 
Prototype System

User EvaluationEstablish/Adjust
Requirements

Final Prototype

Figure 4.2: The Prototype Process

The cycle began by establishing the initial requirements determined in Chapter 3. A
prototype was developed according to this requirements specification, and released to users
for evaluation. In our case we used 5 test users for both evaluation phases, with 3 users
constant between phases and 2 new users at each phase. These were formative evaluations,
but with respect to their structure, quite informal and qualitative in nature. At each phase
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we evaluated the prototype in an open and undirected way with the user. For instance, we
followed users’ typical navigation through the data exploration environment, and identified
typical tasks and paths which users undertook. Furthermore, we asked questions around
the presentation of the visualisations, and ensured that the users were able to get a grasp
of the environment in the 10 minute time period we allowed.

The evaluation feedback was then used to define new requirements, or indeed adjust and
rescope existing ones. After two phases of this feedback, we built our third and final
prototype which we used for our study.

4.2.1 Prototype Environment

Before characterising specific prototype features highlighted through user feedback, we will
describe the testing environment which we used during prototyping. In the first phase
of the prototyping process, we targeted the application we built at the Google Cardboard
platform. This enabled us to develop the prototype visualisations rapidly, and demonstrate
a basic working example of our application to users. This prototype covered all of our
initial requirements, with the exception of control-based requirements – these requirements
had been written with the Daydream controller in mind. Instead, for the first prototype,
interaction was initially completed through head gaze and a small capacitive button on the
Cardboard headset.

For the second and third prototype, we switched our target platform to Google Daydream.
This allowed us to add Daydream controller support, enabling users to point at objects
in the virtual environment with their hands, rather than searching through head gaze. In
our first phase prototype, we had already completed the groundwork for movement and
interaction with our Cardboard app. Building a Daydream app in the second and third
phases simply involved adding Daydream controller support on top of this integration.

Our testing smartphone across all phases was a Nexus 6P running Android 7.0 Nougat.
When we began to target the prototype at Google Daydream, an additional app-based
modification was required. This involved sideloading the Google Daydream Home APK2

and selecting Skip Entry VR Screens in the app settings. This enabled apps like our
prototype which target the Google Daydream VR platform to run on the Nexus 6P.

Officially the Nexus 6P does not support Google Daydream, although this phone was the
recommended development device for the platform before the release of officially supported
Daydream phones. The Daydream developer setup page3 comes with the caveat that the
Nexus 6P’s “thermal performance is not representative of the consumer Daydream-ready
devices”, which may lead to CPU and GPU throttling. However, in practice we found that
our visualisations were not technically demanding enough to have any adverse effect on
performance.

Having discussed the prototyping process, the following sections describe how we went

2https://play.google.com/store/apps/details?id=com.google.android.vr.home
3https://developers.google.com/vr/daydream/dev-kit-setup
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about addressing specific design challenges of visualising personal data in VR.

4.2.2 Axes and Label Representation

Feedback relating to the design and representation of axes and data labels was undoubtedly
the most numerous during our prototyping phases. Over this section we will cover the
various strategies we used to improve the axes in both of our visualisations, such that users
could read and interpret our visualisations clearly.

Be The Data

In our first prototype we included 3 partially transparent planes representing the axes along
the X,Y and Z components of the dataset. These 3 planes can be seen in Figure 4.3.

Figure 4.3: Early Prototype: 3 partially transparent planes (Stereoscopic View)

Figure 4.4: Early Prototype: Typical exploration path series (3 Separate Left-Eye Views)
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During the first phase of prototyping, we discovered that users generally followed a path
from their opening perspective, in which the axes played a crucial part. Figure 4.4 shows
a series of 3 images representing the typical path in which a user initally navigated though
the data. The leftmost image shows the opening position in which a user is placed on
entering the Be The Data visualisation. This is half-way down the X axis, and slightly
raised up looking down over the graph. This enables users to obtain an overview of the
entire graph and identify the major axis dimensions by looking to their right. The second
image in Figure 4.4 shows the position of the user after clicking on a data point in the
centre of the graph. Selecting a data point first, rather than moving freely around the
graph, was generally standard behaviour for our prototype participants.

At this point in the visualisation, the user is immersed in the data and can look down the
X axis in either direction, potentially to try and understand correlations in the data from
before and after their position in the environment. However, this is where our first prototype
became problematic. The second image in this series shows that a plane representing the
Y and Z axes is present at the X = max(x) position, but not in the third image where
X = min(x). From the evaluation feedback it was clear that two planes were required in
both positions, so that users could make 2D projections of the 3D data against each plane.
Consequently we added an additional plane at X = min(x) so that users could look both
up and down the X axis. Screenshots of this are available under Implementation Results
(Chapter 5).

The next design change we made as a result of prototype feedback was adding arrows to
illustrate the direction of magnitude of the axes labels in each dimension. This stemmed
from users being positioned at one end of the X axis and looking back down the axis. The
labels on the plane representing the Y&Z axis at the other end were often not clear enough,
purely due to the distance between the label and the user. While the user had the ability to
turn around 180 degrees and see the same axis at the end they were currently positioned at,
this exerted additional physical effort and switching from one visual context to another was
complex for participants. These arrows therefore let users understand general trends over
the breadth of the dataset, rather than a deep exploration of a single data point. Figure
4.5 shows how these arrows appeared alongside the axes in our final prototype.
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Figure 4.5: Final Prototype: Arrows in the direction of label magnitude

A challenge unique to this data exploration environment was that data labels could not
remain static as the user moved around in the environment. In particular, during our proto-
typing sessions users both looked over the data (Figure 4.6) and also immersed themselves
inside the dataset (Figure 4.7). In our first prototype, the data labels remained in the
same position regardless where the users placed themselves – either outside of the graph,
or inside of it. In the example screenshots, this meant that if the user looked back to the
X axis to read the date (as in Figure 4.7), the labels were out of view below the plane, and
also the wrong way around. In our final prototype, we made the labels dynamic so that
they responded to face the user’s position in the environment. Figure 4.6 and 4.7 shows
our solution for changing the position and rotation for all of the data labels along the X
axis.

Figure 4.6: Final Prototype: Dynamic Labels
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Figure 4.7: Final Prototype: Dynamic Labels

Listing 4.6: C# method for label rotation

// Rotate X l a b e l ( e . g when user c r o s s e s the Z=0 plane )
// S h i f t the l a b e l up and below the a x i s depending on p o s i t i o n
public void rotateXLabel ( f loat yRotation , f loat y S h i f t ) {

this . gameObject . trans form . GetChild (0 ) .
gameObject . trans form . r o t a t i o n = Quaternion . Euler (new

Vector3 (0 f , yRotation , 0 f ) ) ;

Vector3 newPos = new Vector3 (
this . gameObject . trans form . GetChild (0 ) .
gameObject . trans form . p o s i t i o n . x ,
ySh i f t ,
this . gameObject . trans form . GetChild

(0 ) . gameObject . trans form . p o s i t i o n . z ) ;

this . gameObject . trans form . GetChild
(0 ) . trans form . p o s i t i o n = newPos ;

}

When a change in the user’s Z position is detected involving a move across the Z = 0 plane,
the method in Listing 4.6 is called with suitable parameters and iteratively applied to a
data structure containing all the environment X labels.
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Figure 4.8: Final Prototype: Selection Emphasis (Non-VR View)

Left: No selection. Centre: Selection on visible label. Right: Selection on a previously
hidden label.

The final change we made to the Be The Data visualisation came after some participants
spoke about the difficulty of locating the position of a selected data point in the X axis
when viewed from certain angles. While the textual overlay which appears on selection
was useful in providing contextual information about the data point, what participants
wanted was a form of visual indication of where the data point sat along the X axis. To
achieve this, we emphasised the X axis label corresponding to the X dimension of the user
selected data point. A scaling animation grew the data label to a larger size, and switched
the label from transparent to opaque. Data labels surrounding the selected data label were
also hidden for added emphasis.

This prototype feedback did have a small conflict with requirement FN-24 which we had
implemented already. This requirement specified that “the number of axes labels should be
reduced where possible” and we were meeting this requirement by hiding every other axis
label. Therefore, we devised a solution which was able to highlight both hidden labels,
as well as already visible labels. Figure 4.8 shows the results of the user selecting a data
point which has a visible data label (centre image), and a different data point which has an
initially hidden label (right image). Ultimately this reduced inaccurate interpretations of
axis readings due to the angle the user was positioned at, and supported users in spatially
locating the data point in the data exploration environment.

Parallel Planes

Prototyping raised fewer axis-related points in the Parallel Planes visualisation, generally
because users did not move around in the environment as much compared to the Be The
Data visualisation. Nevertheless, there were two design changes which we made for this
visualisation as a result of prototype feedback.
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Figure 4.9: Early Prototype: Axes Incorrectly Scaled

The first of these changes relates to the maximum unit on each plane, and is a matter of
normalising the data on the plane appropriately. For example in Figure 4.9, the second
plane shows the Day of the Week in the X axis, against the number of productive hours
in the Y axis. The intersection of a line on the plane is the number of productive hours
on a certain day. In the dataset used on this early prototype, there was not a day where
the number of productive hours was greater than 6 hours. However, this plane has a
maximum unit of 10 productive hours, which results in the lines being tightly clustered at
the bottom of the plane. Prototyping feedback suggested that it was complex for users to
discern patterns in the dataset when the visualisation did not make use of the entire plane
to spread out the dataset.
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Figure 4.10: Final Prototype: Axes Correctly Scaled

Figure 4.10 shows the results of implementing user feedback on scaling the data appropri-
ately to the planes. Compared to Figure 4.9, the lines intersecting with the productivity
plane make better use of the space available (Note: The 3rd plane from Figure 4.9 has been
removed). It is now easier to comprehend which lines are outliers to the main cluster of
productivity due to the increased distance between distinct lines. This does raise a further
question of how best to deal with significant outliers which impact the scaling determined
on each axis, and lead to even tighter clusters of lines. One large outlier can completely
change the complexion of the visualisation. This is not just exclusive to our Parallel Planes
visualisation in VR – it also affects traditional 2D Parallel Coordinates visualisations as
well. Suggested future work relating to this design challenge is discussed in Chapter 8.

The second design change we made as a result of prototyping feedback was to increase the
transparency of the planes. While it was not general behaviour to look down the planes in
a side-on view, a few participants did interpret the data from this new perspective. How-
ever, the transparency of the axes prevented the observation of any meaningful patterns in
the data – successive plane backgrounds built up to build a single opaque plane in which
the lines could not be distinguished against. Consequently, as the number of dimensions
(planes) grows in the Parallel Planes visualisation, this angle of observing data could be-
come problematic. A temporary solution was put in place which enabled participants to
look down the planes and distinguish the lines against all the planes (Figure 4.11). Nev-
ertheless, should the number of dimensions rapidly increase a different solution would be
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necessary, should this viewing angle be required.

Figure 4.11: Final Prototype: Side-on view

4.2.3 Interaction: Movement and Selection

This section looks at the implementation of interactive controls in the visualisation environ-
ments. The development of our movement functionality will be explained in this section,
followed by a description of interaction with components of the data visualisations.

The earliest prototype was built for the Google Cardboard platform, and for this reason,
interaction in this environment was restricted to the basic head gaze technique. With this
technique, a small cursor named a ‘reticle’ sits in the centre of the user’s view, and expands
into a circle when the user looks over an object which has interactive properties. In our
Be The Data visualisation, prototype participants followed a typical path from their initial
starting point. This corresponds to the images from left to right in Figure 4.12.

• 1: Initial starting sweep – looking around for data points to interact with.

• 2: Identify target – reticle expands into a circle.

• 3: Click target – user accelerates towards the target

• 4: Look around from target – user positioned at the target
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Figure 4.12: Early Prototype: Head-Gaze Interaction Series

While this provided a quick way for the user to get immersed in the data, head gaze came
with several limitations. The user could only move between data points with this method
– they were not able to move freely in the world and view the data from different angles.
Thus, their movement in the environment was predetermined by the structure of the data.
Additionally, the ‘click’ was through a capacitive button on the Cardboard headset which
was not natural. The user had to reach to the headset every time they wanted to move.

Switching to the Daydream platform enabled us to use the more comfortable Daydream
headset and, significantly, the Daydream controller. The benefit of the controller is that
it is entirely separate to head movement. It appears independently in the environment (as
in Figure 4.13), acting as a laser pointer at objects. When the user moves the controller
in the real environment, the controllers movement is mimicked in the virtual environment.
Buttons on the device direct interaction with objects in the data visualisation. Several
prototyping participants who had experienced head gaze interaction previously commented
on how much the controller improved the VR experience, particularly for making the data
selection process “more natural”.
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Figure 4.13: Final Prototype: Daydream Controller Laser

Figure 4.13 shows the Daydream controller raised up into the user’s view. The controller
contains two small buttons (App and Home buttons) which we did not use in our prototype.
We did however make extensive use of the circular trackpad at the top. This trackpad
detects the position of a user’s touch, and can also be pressed inwards as a click. This
enabled users to aim at a data point using the controller, and then click on the touchpad
to move towards the target in the virtual world. Users could also swipe on the trackpad to
move forward and backwards, and strafe from side to side. Swiping was not built into the
Google SDK, and so this feature had to be implemented manually.

Figure 4.14: Daydream Controller: Swipe Implementation

The Google SDK returned a simple two-dimensional vector of the user’s latest touch posi-
tion on the trackpad. We recorded the user’s first touch position on the trackpad, and the
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final position on the trackpad before their finger was lifted off. These positions correspond
to v1 and v2 in Figure 4.14. We also recorded the elapsed time between v1 and v2 occurring.
This enabled us to calculate the velocity of the swipe between touch points, and adjust
the users position in the environment according to the speed of this swipe. Velocity was
calculated as:

v1 − v2
∆v1v2

. (4.1)

A low-pass filter was sourced from the Google SDK to improve the accuracy of the velocity,
and this was applied with Unity’s Vector2.Lerp method to linearly interpolate to the target
velocity vector. Finally, if ∆v1v2 > kClickThreshold – a predetermined threshold to prevent
the user moving when pressing the touchpad inwards as a click – the velocity is sent to
our method daydreamWorldPositionHandler() to determine the user’s new position. This
is based on the direction of the swipe (left, right, up, down), the velocity of the swipe, and
the user’s forward facing direction.

With the trackpad swipe giving a final position in the world through the calculations above,
we ensured that the user’s movement between the start and end positions was realistic. We
could not simply update the user’s position between two frames – the jump in positions
would be unrealistic, and likely nausea inducing. For a more natural effect, we showed the
user travelling between points over 1000 milliseconds. After trial and error, this was the
right balance between showing clear movement between points, but not frustrating the user
with movement which was too slow.

Initially we used a C# coroutine to linearly interpolate the camera frames between the
start and end vectors in the environment. However, the movement between positions did
not feel entirely natural – one participant commented that movement “felt robotic” as the
user did not slow down on drawing towards their final position. Consequently we adjusted
our C# routine to yield new camera positions between start and end vectors based on
sinusoidal interpolation: sin(0.5× π × t).

This is best visualised through Figure 4.15. With linear interpolation, at t = 0.5 the
user will be halfway between start and end positions. In comparison, with sinusoidal
interpolation they will have covered 70% of the path. Crucially, the sinusoidal function
contains a large amount of deceleration towards the end of the movement. This alleviated
the robotic nature of the original movement path, and resulted in a pleasant ‘ease out’
effect. An excerpt of the code used to enumerate camera positions based on sinusoidal
interpolation is included in Appendix D.
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Figure 4.15: Linear and Sinerp Interpolation Comparison

Figure 4.16: Final Prototype: Free movement in Be The Data

Free movement empowered users to view the graph in the Be The Data visualisation from
new angles. With movement not constrained by the dataset, users had the ability to fly
around the data, and make observations from a diverse number of perspectives. Figure
4.16 shows the view several participants took when making broader observations across
the whole dataset. Prototype users also focused in on certain data points by using the
controller to select and ‘become’ the data point. Typically this action resulted in local,
deeper observations in our prototyping sessions. Images of this experience are included in
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Chapter 5.

Free movement was also included in the Parallel Planes visualisation. Participants tended
to move around less in this visualisation compared to Be The Data, but interacted more
with the visualisation due to the brushing functionality which we developed.

Users had the ability to select multiple regions of the dataset to highlight certain data
patterns against the entire dataset. Figure 4.17 shows an example where the user has
selected all days where they had a mood rating of 5. Lines which intersect with the
selected regions change colour to a vibrant pink, and non-intersecting lines are dimmed.
This enables the user to identify if the brushed region – in this case days with an excellent
mood rating – have any correlation with the other tracked dimensions over the dataset.

Figure 4.17: Final Prototype: Selection in Parallel Planes

In Chapter 2 we found that interaction is one of the core principles which makes VR
an active learning experience, rather than a passive one. Through the movement and
selection techniques discussed in this section, we have evolved the visualisations through
prototyping towards “natural, human-like interaction” (Van Dam et al., 2000, p.41). The
aim of this project is to see whether this immersive, interactive approach to visualising
personal datasets will encourage new and different forms of user insight. The final section
of this chapter considers additional design changes we made to our final prototype, in
preparation for our user study in Chapter 6.
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4.2.4 Further Design Considerations

The final section of this chapter is brief, and focuses on realism in VR and the missing data
problem.

Realism

The Be The Data visualisation underwent many visual changes from the first to final pro-
totype. Initially the spheres representing data points were coloured a shade between pink
and blue, depending on their distance along the X axis. Our thoughts were that this may
support users to perceive distance when looking along the X axis. However, prototyping
feedback suggested that this caused confusion – some users believed that the colour of
the sphere represented another data dimension altogether. Consequently we switched to
a consistent vibrant pink for each data point. This complemented our next visual change
which was to switch from lighting portraying midday to sunset in the environment. The
pink colour popped well against the darker sunset background, making it clear for partici-
pants to delineate the data in the scene. This change was spurred on by a prototyping user
mistaking the light source in the scene – the midday sun – as a data point.

These changes are relevant because of the context in which they happened. The Parallel
Planes visualisation is not based in an environment with a form of natural light source.
Furthermore, it does not contain a horizon, which acts as a constant point of reference in
the Be The Data visualisation. The lighting and choice of environment affect the realism
of this scene – the Be The Data visualisation appears to take place in some form of world,
whereas there is no distinguishable world in the Parallel Planes visualisation. Through our
experimental design we will measure the effect, if any, that realism may have had on data
visualisation exploration for users.

Missing Data

The second design consideration to bring attention to is that of missing data. This is where
a tracked user activity, such as the amount of sleep, is not recorded for a day or more. This
has implications on the design of the visualisation, and how best to communicate unrecorded
data to users. Originally in our first prototype of the Be The Data visualisation we used
a non-sequential X axis recording date, where successive dates were not necessarily next
to each other as empty dates were simply discarded. Quickly we realised that this was
not easy to interpret, and in fact, the absence of a data point can often be an interesting
observation in itself. In our final prototype we rendered an empty space where the data
point for an empty date woudld have appeared.

Missing data was a more complex challenge for the Parallel Planes visualisation, and a
challenge which we have not fully answered within the scope of this project. A drawback
of the Parallel Planes visualisation is that as the number of dimensions increases, the
greater the possibility that missing data will occur. This has negative consequences for the
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visualisation because if just one dimension is missing, the entire line for that day is affected
– where does the line intersect with the plane for the missing dimension? A complex
solution may be to draw a dotted line between non-affected dimensions such that the line
can still travel across empty dimensions from the first plane to the last plane. However,
this potentially adds visual complexity and, in the context of this project, was not feasible
due to the additional development work. This solution was therefore not included in the
scope of this project.

Instead, where data points were empty, we used the median value of the dimension up until
that day. For instance, if sleep was not recorded on the 21st day of self-tracking, we used
the median sleep time from the first 20 days to represent the 21st day. The median value
was chosen over the mean, in the case that the dimension was not normally distributed
and to negate the effects of outliers. Furthermore, we only used the median where genuine
data was missing. For example, 0 music tracks played is not an instance of missing data –
it could well be an interesting data observation. Ultimately the decision to use the median
was a pragmatic one, made for the benefits of the user study in 6. We will be measuring
how the visualisation affects insight generation on participants using a personal dataset
which is not their own. Accuracy of the dataset would be more significant in a future
system where users are exploring their own personal dataset.

4.3 Chapter Summary

In this chapter we have examined the design decisions made during the prototype phase.
These prototypes build on the initial requirements list created during the previous chapter,
and these requirements were refined through an iterative prototyping process described in
this chapter.

We began by exploring dataset preprocessing, before discussing core design decisions with
regards to axes and label representation, movement and selection, and empty data rendering
within the visualisations.

Numerous figures were included throughout this chapter to elucidate these design decisions.
The next chapter is almost entirely graphical and adds several more figures to demonstrate
the working system which we will use during our empirical evaluation in Chapter 6.

Note: A code excerpt is included in Appendix D. All code is included in the zipped folder
submitted through Moodle.
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Implementation Results

The purpose of this chapter is to visually demonstrate the design and functionality of our
final prototypes. Screenshots of the visualisations are included to exhibit the systems which
users will be interacting with in Chapter 6. The visualisations have been developed from
the initial requirements list elicited in Chapter 3, and evolved through the prototyping
process described in Chapter 4. Supplementing the figures throughout the chapter are
general remarks on the fashion in which participants interacted with both visualisations
during prototyping sessions. These comments provide the foundation for the following
chapter in which we evaluate our visualisations systematically and more formally using an
insight-based methodology.

5.1 Be The Data Visualisation

5.1.1 Starting View and Additional Perspectives

Figure 5.1 shows the opening view which users are introduced to when the Be The Data
visualisation is started. The user is positioned outside the dataset, and half way down the
X axis looking into the graph. The entire graph is not included in the user’s field of view
initially. This encourages them to look to either side to perceive the whole dataset.

63
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Figure 5.1: Be The Data: Starting Perspective

(a) Fully Zoomed Out (b) Looking Down The Graph

Figure 5.2: Be The Data: Overview Positions

Typically in our prototyping sessions, users would now take one of two paths through the
system. Each path involves making use of the swiping mechanism discussed in Chapter
4. Figure 5.2 (a) shows the first of these paths, where the user fully zooms out, allowing
the entire graph to be observed in their field of view. The second path in Figure 5.2 (b)
involves the user moving directly inside the graph and searching around in the visualisation
tighter to the data points.
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(a) From Below, Looking Up (b) From Above, Looking Down

Figure 5.3: Be The Data: Further Perspectives

Less common perspectives include moving directly above or below the graph and looking
back at it. Prototyping participants almost exclusively moved to these perspectives towards
the end of the prototyping sessions, if at all. Several participants realised that this in fact
resulted in a 2D projection of the dataset, such as in Figure 5.3.

5.1.2 Looking Down the X Axis

Figure 5.4: Be The Data: Looking Towards X = min(X)

A common task which prototyping users completed was to look down both directions in
the X axis, towards the minimum and maximum X values. Introducing a plane at both
ends of the X axis ensured that users were able to make 2D projections of the data against
these planes. For example, in Figure 5.5 the user is able to see how Productivity (in the
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Y axis) is related to Sleep (in the Z axis). By looking down the X axis which is plotting
the Date, the user is able to see how Productivity and Sleep are correlated over time –
represented by the distance of the X axis, or the depth of their forward-facing direction.
Prototyping participants often completed this process by moving to one end of the graph
and then moving forwards through the data. This enabled them to fly through the dataset,
and observe how the 2D projection changed over time.

Figure 5.5: Be The Data: Looking Towards X = max(X)

5.1.3 Becoming A Data Point

In Chapter 2 we reviewed the Be The Data technique by Chen et al., in which students
became data points in a physical environment. We identified requirements in Chapter 3
for users to become the data point in a virtual environment, and in turn that became the
central concept of this visualisation. Users have the ability to point at data points with
the Daydream controller (Figure 5.6) which produces an overlay about the selected data
point. Users can then click on the data point to move towards it (Figure 5.7) and finally
‘become’ the data point (Figure 5.8). Users can use this mechanism to immerse themselves
inside the data and travel between data points. Figure 5.8 shows some of the perspectives
which becoming the data point can lead users to discover.
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Figure 5.6: Be The Data: Data Point Selection

Figure 5.7: Be The Data: Travelling Towards The Data Point
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(a) Perspective 1 (b) Perspective 2

(c) Perspective 3 (d) Perspective 4

Figure 5.8: Be The Data: Looking Around From The Perspective Of The Data Point

5.2 Parallel Planes Visualisation

5.2.1 Starting View and Further Perspectives

The Parallel Planes visualisation begins with the entire dataset in view (Figure 5.9). Users
are able to freely move around in the environment and view the planes from new angles. In
our prototyping sessions we found that users typically did not move around a great deal,
particularly in comparison to the Be The Data visualisation. A few users ventured around
to directly face the planes (Figure 5.10(b)) and observed the dataset from this viewpoint.
However, perspectives similar to Figure 5.10(c) and 5.10(d) were rarely used.
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Figure 5.9: Parallel Planes: Starting Perspective

(a) Angled Perspective (b) Side-On View

(c) From Above, Looking Down (d) From Below, Looking Up

Figure 5.10: Parallel Planes: Different Perspectives
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5.2.2 Brushing via Selection

While the Be The Data visualisation encouraged movement, the Parallel Planes visualisa-
tion encouraged selection. Users were much more active in directly interacting with this
visualisation in our prototyping sessions. We allowed users to select specific lines in the
visualisation to see the distribution of the line over all dimensions. This used a similar
brushing technique to the one created for the Parallel Planes visualisation by Brunhart-
Lupo et al. (2016). However, our technique differed in that it allowed users to select and
deselect squares on planes, rather than using a brush-like tool to paint regions over an
entire plane. Figure 5.11(a) shows the result of hovering the Daydream controller over a
square in our implementation, and in Figure 5.11(b) lines intercepting with this region have
been highlighted after a controller click. This feature was compelling in our prototyping
sessions – participants frequently used the technique to draw out subsets of the data and
connect data observations together.

(a) Hover (b) Selection

Figure 5.11: Parallel Planes: Hover and Selection

We allowed users to make multiple selections, both on the same plane (Figure 5.12) and
across multiple planes (Figure 5.13). Prototyping participants regularly made use of this
ability to detect trends across all dimensions. For instance, the user could select regions
relating to days of the week and see how the distribution across the dataset is affected.
Similarly, the user could select across a data dimension. For instance, in Figure 5.12 badly
rated days with a Mood rating of 2 are highlighted, and the user can begin to see how a
bad day might affect other dimensions of data such as Sleep and Productivity.
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Figure 5.12: Parallel Planes: Multiple Selections

Figure 5.13: Parallel Planes: Multiple Selections Across Planes
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(a) Inside The Visualisation (b) Side-On View

Figure 5.14: Parallel Planes: Different Selection Views

Finally, users were able to move around the visualisation while the selection was active.
Several users used the side-on perspective at this point to confirm or reject ideas they had
about the selection region. Several prototyping participants even travelled inside the planes
(Figure 5.14(a)) and selected additional regions of interest. Nevertheless, observations
about the dataset were generally made from a perspective in the visualisation where the
entire dataset was in view (such as in Figure 5.12).

5.3 Chapter Summary

In this chapter we have given an outline of the typical approach in which prototyping
users experienced our two visualisations. The Be The Data visualisation encouraged our
prototyping participants to move around the graph for an overview of the dataset before
selecting specific data points where they could immerse themselves in the data. Users
traversed the dataset by selecting new data points, or by simply using the controller swiping
mechanism to fly through the graph. In general, prototyping participants tended to take
up positions in which they could observe the dataset in a 2D manner.

Comparatively, the Parallel Planes visualisation promoted the use of the selection function-
ality to pinpoint certain subsets of the dataset. Prototyping users moved around less in this
environment, but spent more time directly interacting with the visualisation and seeking
the discovery of correlations between new dimensions in the higher-dimension dataset.

With our prototyping process complete, and informal observations collected about the
general behaviour of users interacting with our visualisations, we progressed to designing a
study to thoroughly evaluate our implemented visualisations. In the following chapter we
will describe our insight-based approach to evaluating these visualisations as a medium for
personal data exploration.



Chapter 6

Experimental Design

This chapter will detail the approach we took to evaluate our visualisation in terms of three
dependent variables: presence, task workload, and insight. First, we revisit the literature in
order to compare different evaluation strategies, selecting questionnaires for presence and
task workload, and Saraiya et al.’s insight-based approach for measuring visualisations.

We formally state research questions and hypotheses, and then review the variables which
we measured and changed throughout our study. The design of the traditional 2D visu-
alisations is discussed, and our experimental procedure is refined through a pilot study.
Concluding this chapter is a summary of ethical and study materials, plus a description of
the participant demographic.

6.1 Usability Studies

We begin by revisiting the literature to consider how our high-level dependent variables
are traditionally evaluated. During the literature review we established that the principle
purpose of visualisation is insight. Visualisation should generate insights for users working
with existing hypotheses, and an effective visualisation will also support the identification
of new hypotheses. As the following sections will discuss, an insight-based methodology was
therefore required to evaluate the system successfully in terms of this criteria. Furthermore,
we will discuss the approaches we took towards evaluating presence and workload, such that
the study adopts several models of evaluation.

Presence

Presence – the sense of being in an environment – is very much associated with sensory,
cognitive and physical affordances, terms developed by Hartson (2003). In the literature
review, we argued that systems must maximise their influence along Sheridan (1992)’s prin-
cipal determinants of presence. Sensory affordances along these three axes build towards

73
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Figure 6.1: Example Presence Questionnaire Question (Witmer and Singer, 1998)

the notion of perfect presence. This enables users to see, feel, listen to and control various
human senses. Sensing cognitive affordances is therefore crucial for participants to under-
stand and reflect on their personal data, and sensing physical affordances is essential for
participants to act upon this understanding (Hartson, 2003).

However, cognitive processes which sit between the immersive properties of a system and the
users’ perceived level of presence can become a moderating factor. Directly measuring the
system would not yield an assessment of presence – presence is a psychological construct.
Similarly, an objective measure of presence is difficult to take. The mental concept of
perfect presence is not yet fully understood, and accordingly it is complex to quantify.
“Subjective report is the essential basic measurement” (Sheridan, 1992, p.3) and so our
assessment was completed through a questionnaire.

A users’ subjective experience of presence has typically been evaluated through question-
naires in prior literature which assesses presence. Witmer and Singer (1998) constructed
a questionnaire based upon previous literature, consisting of N = 32 questions (later re-
duced to N = 19 for reliability) using an adapted seven-point version of the semantic
differential scale format. A cluster analysis was completed on the questionnaire data, la-
belling the factors of interaction and immersion necessary for participants to experience
presence. A system resulting in 3 labels (Involvement/Control, Natural, Interface Quality)
was conceived. A sample question from this example study is included in Figure 6.1.

Lessiter et al. (2001) later taxonomised existing studies on presence, finding virtual environ-
ments had multi-dimensional labels of presence discerned through factor analysis. Indeed,
Schuemie et al. (2001, p.193) builds a comprehensive framework around existing studies of
presence, concluding that measuring presence is “almost exclusively” completed through
questionnaires.

After reviewing the presence questionnaires available to use, we chose the Igroup Presence
Questionnaire (IPQ) for use in our evaluation. This is a 14-item questionnaire which fits
closely with Sheridan’s principal determinants of presence. The questionnaire was also
chosen due to its length, which let us measure an appropriate amount of factors within
the time available to us. A factor analysis of the questionnaire shows dimensions of spatial
presence, involvement and experienced realism (Schubert et al., 2001), which we report our
results in terms of.
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Task Workload

A further comparison between 2D data visualisations and VR visualisations was made.
This measured the participants’ perceived workload of each system using the NASA Task
Load Index questionnaire. More specifically, the Raw TLX was used in our study. This
is the practice of dropping the second part of the questionnaire (Hart, 2006), which made
it simpler to apply within the time constraints of this project. According to Hart (2006)’s
meta-analysis, there is no definitive conclusion on the effect, if any, this has on the results of
the questionnaire – multiple studies have found it to be less, more, and equally as sensitive
as the full NASA-TLX. Accordingly we dropped the second part of the questionnaire,
allowing a measure of task workload to be recorded within the time available.

The first part of the questionnaire asks participants to rate their answers to questions along
six subscales: Mental Demand, Physical Demand, Temporal Demand, Overall Performance,
Frustration Level, and Effort. The ratings are combined to give the overall Task Load Index.
This is the participants subjective rating of their perceived workload when exploring the
system, and will be used to give an indication of the effectiveness of the visualisation and
its exploratory medium.

Insight

For the third evaluative approach, we used an insight-based methodology to quantita-
tively target participants interaction with the visualisations. While task performance is a
frequently used measure for evaluating visualisation systems, it can be argued that pre-
determined tasks do not capture real-world data exploration scenarios which are often less
guided and more exploratory. As a result, a task-based methodology was not used to
evaluate this system. Instead, an insight-based methodology was be used. This enabled
us to record and analyse insights during the participants open-ended exploration of the
visualisation.

Saraiya et al. (2005) developed the insight-based evaluation methodology allowing visuali-
sations to be measured beyond directed data analysis tasks. In particular, they defined an
insight as an individual observation of the data visualisation and recorded insights (through
a think-aloud protocol) as the participant discovered them. The insights were then anal-
ysed in terms of characteristics, producing 8 quantifiable attributes for each insight. While
the study took place in a biological context, the evaluation method was not domain specific
and so was applicable to this study. A list of insight characteristics determined by Saraiya
et al. (2005) is summarised below:

• Observation: The data finding made by the participant.

• Time: The time taken to reach this insight. Note: We dropped this measurement
during our evaluation due to time constraints.

• Domain Value: The significance or value of the insight. Saraiya et al. (2005)
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encoded domain values on a scale of 1 to 5. Trivial observations resulted in a small
domain value, and insights reasoning about new or existing hypothesis resulted in a
greater significance.

• Hypotheses: Insights may result in participants identifying new hypotheses.

• Directed vs Unexpected: A directed insight answers a specific question that
participants may have been asked to think about before starting the data exploration.
Unexpected insights are observations discovered without being specifically searched
for.

• Correctness: The correctness of the participants observation. Determined by do-
main experts.

• Breadth vs Depth: A breadth observation provides an overview of the entire
dataset. A depth observation is detailed, and concentrates on a small number of data
points. Determined by domain experts.

• Category: All insights should be analysed after collection and grouped appropri-
ately. During an initial prototype phase, Saraiya et al. (2005) determined 4 categories
for their domain: Overview, Patterns, Groups and Details.

Saraiya et al. (2005)’s insight-based approach was adopted in our study. Significantly, this
enabled us to count distinct insights from participants, categorise them and analyse them
quantitatively. This evaluative approach later enables us to reason about the effectiveness
of the visualisations, and the immersive tools used for interaction with the visualisations.
Rich, and more numerous, perceptions suggest an effective visualisation from which users
can gain new and meaningful insights. It did not moderate our evaluation to a closed set
of questions testing specific functionality of the system. Rather, it allowed participants to
open-endedly explore the visualisations, generate insights, and create new hypotheses to
investigate.

Our approach to the evaluation of our prototypes was therefore three-fold. Post-experiment
questionnaires were composed of the IPQ questionnaire measuring presence, and a raw ver-
sion of the NASA-TLX questionnaire measuring task workload. We evaluated the insights
and hypotheses generated by participants through an insight-based approach. Specifically,
this resulted in a quantitative measure of insight, instead of a measure of task perfor-
mance. This evaluation therefore used a mixture of strategies for evaluation, measuring
the extent to which the user understood and engaged with the personal dataset in the VR
environment.

The following section summarises the progress of the project up until this point, and for-
malises the aims and research questions which we took into our evaluation.
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6.2 Aims and Research Questions

The first part of this study set out to understand the motivations and challenges of personal
data collection. In Chapter 2 we found that motivations for collecting personal data were
directed by different types of goals, specific to many forms of data. Active user engagement
with collected data was critical for identifying correlations in the data, and reflection over
this data supports goal-setting.

However, one of the barriers to data reflection was that users did not find the level of
information traditional data visualisations provided to be enough. Research has therefore
looked towards including further data in the reflection process, such that users can ob-
tain more appealing inferences. Nevertheless, the introduction of extra data was found
to be overwhelming and complex to interpret in traditional, dashboard-based aggregation
platforms.

Consequently we explored distinct visualisation methods and identified the two visualisation
techniques which we developed in our final prototype systems: Be The Data, and Parallel
Planes. The Be The Data technique engages the user by immersing them as a data point
as part of a wider dataset – in this sense, the user ‘becomes’ the data point. Our second
prototype system, Parallel Planes, transforms a highly-dimensional dataset into a lower-
dimensional space in which the user can select subsets of the dataset. These visualisations
were chosen to target active, user engagement with the dataset and to explore whether
users could interpret a high-dimension dataset using the non-traditional reflection medium
of VR.

With insight identified as the principal purpose of visualisation, it was clear that the insight-
based methodology discussed in section 6.1 was required for the evaluation of these proto-
types. To provide a clear direction for this methodology we revisited our initial aim and
objectives, and refined them in terms of more specific questions which we were interested
in answering.

The high level project aim of ’Is Virtual Reality a suitable medium for exploring personal
datasets in? ’ was decomposed into a series of three research questions. Thus, the purpose
of the evaluation was to explore these three research questions through our user study and
discussion of results.

• RQ1: Is the perceived workload for data exploration in VR different to exploration
using traditional paradigms?

• RQ2: Does the use of VR in either Be The Data or Parallel Planes visualisations
affect the insight generation process?

• RQ3: Does the Parallel Planes visualisation support the interpretation of a high-
dimension dataset for non-expert users using VR?

To address these research questions, this chapter details how we evaluated our prototypes
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using the evaluation strategies listed in section 6.1. A wider discussion justifying the
appropriateness of these methods took place during this section.

Summary of Experimental Process

In summary, our evaluation used the following methods:

• Saraiya et al. (2005)’s Insight-Based Methodology

• The Raw NASA Task Load Index Questionnaire

• The Igroup Presence Questionnaire (IPQ)

We did not have any specific tasks which we asked users to complete during the experiment.
It was therefore an exploratory approach towards evaluation, well suited to Saraiya et al.’s
insight-based methodology. This process enabled us to capture and analyse insights from
users as they explored our prototype visualisations in an open-ended manner.

Two questionnaires were given to participants when they felt that they would not be able
to gain any additional insight from the visualisations. The NASA TLX questionnaire gave
an indication of the user’s perceived workload for the open-ended data exploration. The
resulting workload value was further divided into six separate subscales, which expressed
the factors leading to the final workload measure more precisely.

Finally, the IPQ questionnaire was given to participants who report along three subscales
of spatial presence, involvement, and experienced realism. There is a high factor loading
on spatial presence which we used as a very general indicator of the success of the VR
visualisations. This questionnaire was not given to participants in the control groups who
used equivalent, traditional 2D visualisations. Instead, we used the findings from the
VR experiments to contextualise and report on the results from both the insight-based
methodology and raw NASA TLX questionnaire.

With research questions stated explicitly, and the aims and methodology of the study
outlined, the following sections in this chapter presents further detail on how we evaluated
our prototypes.

6.3 Hypotheses

The following hypotheses were derived and used in our experiment. These hypotheses were
shaped by our choice of evaluation method and guided by our research questions.
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6.3.1 Experimental Hypotheses

• EH1: There is a significant difference between the Task Load Index for participants
in the VR visualisations and equivalent 2D visualisations.

• EH2: There is a significant difference between the number of insights generated by
participants in the VR visualisations and equivalent 2D visualisations.

• EH3: There is a significant difference between the number of correct insights gener-
ated by participants in the VR visualisations and equivalent 2D visualisations.

• EH4: There is a significant difference between the number of unexpected insights
generated by participants in the Be The Data visualisation and Parallel Planes visu-
alisation.

• EH5: There is a significant difference between the number of hypotheses generated
by participants in the Be The Data visualisation and Parallel Planes visualisation.

6.3.2 Null Hypotheses

The experimental hypotheses imply the following null hypotheses:

• NH1: There is no significant difference between the Task Load Index for participants
in the VR visualisations and equivalent 2D visualisations.

• NH2: There is no significant difference between the number of insights generated by
participants in the VR visualisations and equivalent 2D visualisations.

• NH3: There is no significant difference between the number of correct insights gen-
erated by participants in the VR visualisations and equivalent 2D visualisations.

• NH4: There is no significant difference between the number of unexpected insights
generated by participants in the Be The Data visualisation and Parallel Planes visu-
alisation.

• NH5: There is no significant difference between the number of hypotheses generated
by participants in the Be The Data visualisation and Parallel Planes visualisation.

All of our hypotheses are two-tailed. Based on theoretical work considered in Chapter 2,
which included a discussion of the immersive characteristics in VR and the multidimen-
sionality of the Parallel Planes visualisation, we predicted that there would be an effect
in all of our hypotheses. However, given that this study was exploratory, and with little
existing research to based our hypotheses upon, we were not confident enough to specify
direction through one-tailed hypotheses.

Accordingly, EH1 was chosen without a direction, and aimed to answer RQ1 – determining
whether the data exploration workload was different between exploration mediums. EH2
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and EH3 were chosen specifically with RQ2 in mind. The number of insights and the
number of correct insights are key indicators that the insight-generation process is different
between exploration mediums. The results from EH4 and EH5 will also be used to provide
additional context for EH2 and EH3.

EH4 and EH5 were chosen to answer RQ3. We constructed EH4 as we predicted that the
multidimensionality afforded by the Parallel Planes visualisation would lead to participants
observing correlations they may not have been looking for initially. Saraiya et al. (2005,
p.3) suggests that hypotheses are “are most critical because they suggest an in-depth data
understanding”, and furthermore that hypotheses lead analysts toward “continuing the
feedback loop of the experimental process”. For these reasons, EH4 and EH5 imply that
the participant can indeed interpret the visualisation, and has a deep understanding of the
dataset. Consequently, these experimental hypotheses were selected for RQ3.

Finally, we did not formulate any hypotheses relating to presence. Due to the study format,
only participants who interacted with the visualisations in VR received the IPQ question-
naire. As we predicted that we would not have enough results to perform statistical tests
for this dependent variable, we did not create any hypotheses and instead we report on
these results.

6.4 Variables

This section outlines the main variables which we focused on during the study. These are
the key variables which we defined, manipulated and measured.

6.4.1 Independent Variables

These are the variables which were changed over the course of the experiment. There are
two independent variables, each with two levels.

• Exploration Medium (Levels: Traditional 2D, VR)

• Visualisation (Levels: Be The Data, Parallel Planes)

6.4.2 Dependent Variables

These are the variables which were measured after changing the independent variables
defined above.

• Insight

• Task Workload

• Presence
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These variables are given at a conceptual abstraction level. Below we operationalise these
variables in terms of specific, measurable statements:

• Insight

– Breadth vs Depth – whether an observation provides an overview of the entire
dataset, or is concentrated on a small number of data points.

– Directed vs Unexpected – the insight may answer a specific question identified
before exploration, or it is an observation discovered without being specifically
searched for.

– Hypotheses – the insight may result in participants identifying new hypotheses.

– Domain Value – the significance or value of the insight. After analysing the
collected insights we established the following schema:

∗ 1: General Observation. e.g Mood is correlated with sleep.

∗ 2: Weighted or Specific Observation. e.g Mood is positively correlated with
sleep in these two weeks.

∗ 3: Explained Observation. e.g The lack of pattern in sleep suggests they
have a consistent amount of sleep, which also suggests that they go to bed
at a reasonable time.

∗ 4: Hypothesis. e.g I wonder if you do more steps, are you happier? (Given
when participants identify a new hypothesis, or when answering a previously
identified hypothesis not included in their initial exploration questions)

– Correctness – the correctness of the observation. We labelled insights as Correct,
Neutral, or Incorrect. Certain observations were marked as neutral due to
subjectivity, and also in cases where hypotheses were identified.

– Category – insights are grouped according to their type. We reused the cat-
egories provided by Saraiya et al. (2005) as they fitted our collected insights
appropriately. These are Overview, Pattern, Group, and Detail.

– Note: Due to projects constraints we are not including timing measurements for
each insight in our data analysis.

• Task Workload
As per the NASA TLX questionnaire, we measured task workload along the following
six subscales.

– Mental Demand

– Physical Demand

– Temporal Demand

– Performance

– Effort

– Frustration Level
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• Presence
The 14 items included in the IPQ questionnaire can be seen in Appendix I.2. Most
generally these items measured presence along the following subscales:

– Spatial Presence

– Involvement

– Experienced Realism

6.4.3 Control Variables

In order to preserve the validity of the experiment we identified potential confounding
variables. Our aim was to reduce the effect of these confounding variables such that bias
and variance on our dependent variables was either reduced or eliminated.

Dataset

The major control variable in this experiment was the dataset used in the visualisations.
The choice of dataset could completely change the complexion of the visualisations, so
we kept the dataset consistent between different mediums to avoid positive or negative
confounding. The dataset for each visualisation was therefore the same between the ex-
ploratory mediums – a participant interacting with a VR visualisation saw the same dataset
as a participant interacting with a traditional 2D medium. For reasons explained shortly,
we used a training session before the main test. Consequently, we also ensured that the
dataset experienced on both mediums was the same during the training sessions.

The datasets used between visualisations was different. With the research aims of this
study, it would not have been appropriate to represent the high-dimensional dataset used
in the Parallel Planes visualisation in the Be The Data visualisation. Therefore the dataset
used in the Parallel Planes visualisation was different to the one represented in the Be The
Data visualisation. Our research questions and hypotheses were driven with this in mind,
and the results are analysed in the context of these different datasets. A discussion of the
datasets used in the visualisations continues in section 6.5.

Environment and Equipment

The use of VR required additional attention in terms of the environment used by partic-
ipants. VR does encourage participants to move within their environment, rather than
remain stationary. Accordingly, our experiments took place where participants were not
restricted by the amount of physical space they used. In addition, all participants were
afforded a comparable amount of physical space for the VR experiments.

Similarly, the physical lighting conditions was equivalent between participants because
bright lighting conditions could have caused light leakage inside the VR headset. We
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made sure that each participant received a comparable VR experience. Likewise, we kept
environmental noise levels to a minimum – not only for the VR exploration medium, but
also for the traditional 2D medium.

The traditional 2D visualisations were displayed on the same device for all participants.
This was a laptop with a 13.3” screen (2560x1600 resolution). The use of a mobile device
to display the control visualisations was considered, but ultimately rejected. The lack of
screen estate would have likely had a considerable confounding effect on the results of this
experiment. The VR visualisations were displayed using the same headset, controller and
phone for all participants. This ensured that each participant interacted with visualisations
displayed on the same phone with a comparable resolution (2560x1440) and consistent
running performance.

Participants and Training Session

Participants did not require any technical background to be involved in this study. In our
study format we included a training session to allow participants to get familiar with the
exploration medium controls – whether that was through the VR headset and controller, or
on the laptop for the traditional 2D visualisations. This was introduced to control the effects
of participants who were already familiar with VR headsets, such that all participants were
able to start from a more balanced position. Furthermore, this enabled participants to get
accustomed to interpreting a dataset through the initial training visualisations.

We strove to consider a diverse and balanced mix of participants for our study. How-
ever, given the constraints of a university project, we collected several personal details
about participants. This allowed us to place the study results in the context of the par-
ticipants involved. Namely these personal details are: age, gender, and highest achieved
mathematical-related grade.

Format and Ordering

In order to prevent ordering effects confounding the study, our post-insight experiment
questionnaires were counterbalanced with each other. This was only applicable to the VR
exploration medium, where participants were required to complete two questionnaires on
task workload and presence. Half the number of participants for each visualisation in VR
completed the TLX questionnaire followed by the Presence questionnaire, and vice versa.

6.5 Experimental Data

This section describes the process of selecting the data to display in our visualisations.
We had four different experiments, each with a training phase. Therefore we required four
different cuts of our database (D1, D2, T1, T2) which were assigned as follows:
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• Be The Data Training: T1 (2D, VR)

• Be The Data: D1 (2D, VR)

• Parallel Planes Training: T2 (2D, VR)

• Parallel Planes: D2 (2D, VR)

Each visualisation had one dataset for its training session, and one dataset for the main ex-
periment. This was consistent between the exploration mediums. As previously mentioned,
there was a distinction between the datasets used in the Be The Data and Parallel Planes
visualisations – T2 and D2 contained two and three additional dimensions respectively.

A limitation of this project was that participants were not interacting with their own self-
tracked data. However, to some extent this made our experiment fairer – participants
interacted with the same collection of datasets. Our strategy for selecting these datasets to
display was not an entirely random process. The manual approach involved the following
steps:

• Our database contained tracked data about 19 participants. We first filtered this
down to participants who had tracked the most data attributes (e.g sleep, tracks,
steps) for at least two months.

• We then filtered these potential candidates into those with the least empty data
points, allowing us to use the most complete and accurate dataset as possible.

• We limited the length of the remaining candidate datasets to the first two months
of self-tracked data. The initial two month period tended to be data-rich for all
candidate datasets, with only sporadic tracking beyond approximately 60 days.

We were left with three candidates to use for our experimental data. For our visualisations
we selected just one candidate, and used their data across the Be The Data visualisation
and the Parallel Planes visualisation. Where data points were missing, in the Be The Data
visualisation we spatially represented this. In contrast, for the Parallel Planes visualisation
we calculated the median along this dimension up to the missing data point (see section
4.2.4 in Chapter 4). Finally, we curated a number of attributes which we felt participants
may want to identify potential correlations between and chose these for our visualisations.

To conclude, the self-tracked dimensions which participants explored in each visualisation:

• T1 - Steps, Tracks

• D1 - Sleep, Productivity

• T2 - Active Step Time, Distracting Time, Sleep Awakenings, Tracks

• D2 - Mood, Productivity, Steps, Sleep, Tracks
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6.6 Traditional 2D Visualisations

After selecting the datasets above to be used in our VR visualisations, we began develop-
ment of the visualisation to be used by the control group. These 2D visualisations were
evaluated alongside the VR visualisations.

6.6.1 Traditional 2D – Be The Data

Our final 2D Be The Data visualisation consists of three standard graphs on a single PDF.
The training and experiment visualisations are included in Appendix E. We used the T1
and D1 datasets defined above, imported them in a CSV style into Microsoft Excel, and
exported three different scatter graphs for each dataset. For instance, for theD1 dataset this
was Daily Sleep, Daily Productivity, Sleep vs Productivity. These graphs were exported and
combined into a single vector PDF which was then displayed full screen on a laptop. The
significance of having a vector PDF, rather than a rasterised version, was that participants
were able to use the pinch-to-zoom gesture to magnify parts of the visualisation without a
reduction in quality.

The 2D visualisation was tightly comparable with our Be The Data VR visualisation.
The 2D scatter graphs were directly available for each dimension in the dataset, much
like how the prototyping participants made 2D projections against each plane in the VR
visualisation. Study participants were also able to pinch and zoom into each graph in a
similar manner to the swiping functionality in the VR environment. To the best of our
knowledge, the 2D and VR representations of the datasets were informationally equivalent.
Our evaluation procedure explored whether they were computationally equivalent (Payne,
2003).

6.6.2 Traditional 2D – Parallel Planes

The 2D Parallel Planes visualisation contained five parallel coordinate visualisations rep-
resenting each weekday, and side-on views for each dimension in T2 and D2. These were
placed on a webpage implemented through a combination of HTML, CSS and the D3.js1

Javascript library for the parallel coordinate visualisations. Each parallel coordinate vi-
sualisation represented the dataset dimensions for a particular weekday (e.g Sleep, Mood,
Productivity on Monday). This meant that the coordinates were informationally equivalent
– each parallel coordinate represented a unit of depth in the Z axis in VR. The parallel
coordinates were displayed through an IFrame which enabled the participants to brush
multiple visualisations separately.

For the side-on views, we wrote a Matlab script to plot a figure for each dimension in T2
and D2 against day of the week (Appendix F.1). The figures were then exported as images
and included on the webpage. The justification for their inclusion was that in VR the

1https://d3js.org/
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participant was able to move around in the environment and observe the Parallel Planes
visualisation from the side. Each of our generated images was a flat representation of each
plane in VR, generated to make the visualisations equivalent in information.

The Matlab and D3.js scripts read the T2 and D2 datasets in a CSV format. Similarly
to the Parallel Planes visualisation where there is missing data, we calculated the median
up to the current missing data point on the dimension. As a result, the datasets used
between the 2D and VR Parallel Planes visualisations were identical. Finally the training
and experiment webpages are shown to participants using a web browser in full screen mode
– we used Python’s SimpleHTTPServer2 to serve these pages over a local web server.

(a) Example Parallel Coordinates (including brushing
selection)

(b) Example Side-On View

Figure 6.2: Excerpts from the 2D Parallel Planes Experiment Webpage

The full training and experiment webpages are included in Appendix F. The study partic-
ipant was able to pinch and zoom to specific visualisations on the webpage– for instance,
the visualisations highlighted in Figure 6.2. Individual parallel coordinate visualisations
could be brushed, much like how our Parallel Planes visualisation supported selecting and
highlighting different subsets of the data. Functionally the only difference was that the
brushing slider could be dragged up and down the axis on the 2D webpages, whereas in
the Parallel Planes visualisation individual squares had to be clicked.

Appendix F shows that on the D2 dataset, ten separate visualisations were required to
represent the same amount of information in 2D as in our VR environment. Purely due to
the structure of the data visualisations, it was not feasible to show all of these visualisations
above the fold initially on the webpage. Consequently, there was a short scroll to view two
additional visualisations, which are below the fold. Indeed, on a smartphone with even less
screen estate, there would have been a great deal more scrolling. Our solution was the
closest comparative solution which we were able to reach without significantly confounding

2https://docs.python.org/2/library/simplehttpserver.html
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the experiment.

6.7 Experiment Setup

6.7.1 Format

We chose a randomised block design for this experiment, with the blocks determined by the
participant’s gender. This was not chosen with post-results data analysis in mind, rather
to reduce variance across the results. In the scope of this project, we were not expecting
to entirely remove gender as a potential extraneous variable due to the realistic number
of participants we would be able to recruit. Nevertheless it did allow us to reduce data
variance in a minor, peripheral way.

Each participant was assigned a unique identifier and explored one visualisation in this
study. The following groups were identified to which participants were assigned:

• 2D Be The Data

• 2D Parallel Planes

• VR Be The Data – Presence then TLX questionnaire

• VR Be The Data – TLX then Presence questionnaire

• VR Parallel Planes – Presence then TLX questionnaire

• VR Parallel Planes – TLX then Presence questionnaire

These groups took into account the aforementioned counterbalancing of post-exploration
questionnaires. Given that we required an equal number of participants to complete the
experiments in 2D and in VR, this meant that the number of participants in the study could
only be a multiple of 8. After being split into blocks, participants were randomly assigned
to each group above and were only involved with a single condition. Repeated measures
would not have been suitable for this study due to ordering effects. Most noticeably this
would have been fatigue, and also participants becoming competent with the think-aloud
insight-based approach.

6.7.2 Pilot Study

A short pilot study was conducted with 4 participants (2 Male, 2 Female). The pilot
participants had not been part of the prototyping phase, so like future study participants,
they were experiencing the visualisations for the first time. Each participant was assigned
to an exploration medium (2D or VR) and a visualisation (Be The Data or Parallel Planes).
The purpose of completing a pilot study was to validate our traditional 2D visualisations
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and final VR prototypes. Furthermore, to refine the study design and evaluation process
such that we we would be able to effectively test our hypotheses.

After the execution of our pilot study, and subsequent data analysis, there were only minor
changes which we made to our study structure and visualisations. These are summarised
below:

• Visual modification to the 2D Parallel Planes visualisation. The pilot participant
assigned to this experiment found it challenging to differentiate between the 5 different
graphs for each weekday. Consequently we added unique, light background colours
to each parallel coordinates visualisation on the webpage.

• No audio recording of the training sessions. Initially we recorded audio over the
entire experiment, in line with the insight-based methodology outlined by Saraiya
et al. (2005). However, transcribing each participant’s observations into insights was
a time-consuming process, particularly when both the training and main experiment
stages were included. To reduce a potentially overwhelming amount of audio analysis,
we limited the amount of audio we recorded to just the main experiment.

• Verbally emphasise the questionnaires are about the main experiment. After complet-
ing both the training and main experiments, when filling out the questionnaires two
pilot participants clarified whether they were being asked about the training session
and main experiment, or just the main experiment. In the main study we made it
explicitly clear that the questionnaires were about the main experiment only.

The refined study method is laid out in the next section. This is the final procedure which
we used during our main study.

6.7.3 Study Procedure

The following bullet point list was intended for use by the researcher in charge of the
experiment. The study was split into four stages, and detailed below as to ensure the
consistent running of the experiment between participants.

Participant Brief

• Show the participants the consent form. Explain the contents of the brief and an-
swer and potential questions. Gather information on age, education, gender, and
mathematical level.

• Explain each stage of the experiment. In particular, an informal explanation of the
think aloud protocol.
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Training Stage

• Explain the exploratory medium controls to the participant

– If VR: Adjust the Daydream headset to the participant’s head size and introduce
them to the Daydream controller buttons.

– If 2D: Explain the pinch to zoom gesture.

• Show participant the dimensions included in the training dataset and give a back-
ground description on each one (e.g unit, how it was measured).

– Be The Data Training: Steps, Tracks

– Parallel Planes Training: Active Step Time, Distracting Time, Sleep Awaken-
ings, Tracks

• Get the participant to think of 3 questions they wish to ask of this dataset. State
that these are only initial starting points for exploration.

• Introduce the exploratory medium, and state that there are no time limits for explo-
ration. The participant should finish when they feel they will not be able to gain any
additional insight.

• Periodically ask the participant for an estimate of how much of the total potential
insight they feel they have obtained so far.

• Finish when the participant is not able to gain any additional insight. Ask the
participant for a final total insight measurement.

• Make sure that the participant is comfortable with the controls of the exploratory
medium.

• Briefly take away the exploratory medium. Switch from the training visualisation to
the experiment visualisation.

• Talk through the training experience and make sure that they understand the inter-
action tools (e.g brushing in the Parallel Planes visualisation)

Main Stage

• Show participant the dimensions included in the experiment dataset and give a back-
ground description on each one. (e.g unit, how it was measured).

– Be The Data: Sleep, Productivity

– Parallel Planes: Mood, Productivity, Sleep, Tracks, Steps

• Get the participant to think of 3 questions they wish to ask of this dataset. State
that these are only initial starting points for exploration.
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• Start audio recording

• Introduce the exploratory medium, and state that there are no time limits for explo-
ration. The participant should finish when they feel they will not be able to gain any
additional insight.

• Periodically ask the participant for an estimate of how much of the total potential
insight they feel they have obtained so far.

• Finish when the participant is not able to gain any additional insight. Ask the partic-
ipant for a final total insight measurement, and any additional qualitative comments.

• Stop audio recording

• Take away the exploratory medium.

• If VR: In the required order for this participant, complete the Presence and NASA
TLX Questionnaires.

• If 2D: Complete the NASA TLX Questionnaire only.

Participant Debrief

• Explain the objectives of the study and the questions we are asking. Answer any
further questions which the participants may have

• Finally, thank them for their time.

(a) (b) (c)

Figure 6.3: Study participants in VR using the Daydream headset and controller
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6.7.4 Ethics and Study Materials

The departmental 13-point ethics checklist was discussed with Dr Simon Jones, project
supervisor, and is attached in Appendix G. This supported the creation of the consent
forms, which also acted as briefing forms for participants. Two separate consent forms
with a requirement for the participant’s signature were created – one for traditional 2D
visualisations, one for VR – and are included in Appendix H. The study procedure discussed
in Section 6.7.3 was also printed to support the researcher running the experiment.

The multi-dimensional NASA TLX scale is included at Appendix I.1. This was provided to
participants when they could not get any further insight from the visualisations, alongside
a sheet containing definitions for each scale (Appendix I.1.1). Participants were asked to
mark along each scale on the paper scale with the pen provided. The NASA TLX scale
was obtained from the NASA website (Hart and Staveland, 1988b) and the explanatory
definitions from the seminal paper (Hart and Staveland, 1988a).

The IPQ presence questionnaire was counterbalanced with the TLX questionnaire to avoid
order effects confounding the experiment. The primary reference for the IPQ is (Witmer
and Singer, 1998) and Schubert et al. (2001). The Igroup website3 contains the 14 items
which make up the questionnaire, including the Likert scale anchors. A Google Form4

was created with the 14 items, and the participant filled in the questionnaire on a laptop
after exploring their assigned visualisation. The presence questionnaire which participants
completed is included at Appendix I.2.

6.8 Participant Breakdown

Our experiment used two blocks of 8 participants, resulting in a total of 16 participants.
The sample was relatively young (M = 21.6, SD = 0.60) and was formed entirely of under-
graduate students. 13 participants had achieved a Grade A∗ or A at A Level Mathematics,
or equivalent. The distribution of gender was 8 Female, 7 Male and 1 Prefer Not To Say.
Accordingly, we split the participants into two equal blocks (Female, Male + Prefer Not To
Say) and randomly assigned the participants in each block to an experimental condition.

The participants we recruited had not been part of our prototyping process, nor had they
been part of the pilot study. Therefore, during the main study, participants would experi-
ence the visualisations for the first time.

In total, 8 presence questionnaires, 16 task workload forms, and 288 insights were collected
from our participants. Each insight was analysed in terms of the 6 measurable attributes
defined in Section 6.4.2.

3http://www.igroup.org/pq/ipq/download.php
4https://www.google.co.uk/forms/about/
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6.9 Chapter Summary

During this chapter we revisited the literature in order to consider and design the three-fold
approach used to evaluate our prototype visualisations. Specifically, we selected the IPQ
questionnaire for measuring presence, the raw version of NASA’s task workload question-
naire, and Saraiya et al.’s insight-based methodology for visualisation evaluation.

We then explicitly stated our research questions, and highlighted hypotheses, and indepen-
dent, dependent and control variables. The datasets used in the study were detailed, and
the designs of the traditional 2D visualisations were discussed. We concluded by review-
ing the study procedure refined through our pilot study, explaining how participants were
assigned to experiments using a randomised block design.

The next chapter contains the results from our study, alongside analysis, in order to fully
evaluate the hypotheses we identified during this chapter.



Chapter 7

Results and Analysis

This chapter contains the results of our empirical evaluation. It is split into three sections
corresponding to our three conceptual dependent variables: presence, task workload, and
insight. The presence results are reported in order to contextualise the results on task
workload and insight, which are statistically analysed in terms of our hypotheses. The
chapter concludes by reviewing qualitative feedback from participants, organised by the
visualisation and themes which appeared during the study.

Due to the size of the empirical evaluation, the discussion is split over this chapter and
the following chapter. This chapter presents the results and analyses their implications at
a low level of detail. The following chapter puts the results into the context of research
question outcomes, and details the future research potential of the visualisations.

7.1 Presence Results

8 questionnaires were collected from participants who explored the VR Be The Data and VR
Parallel Planes visualisations. The IPQ questionnaire has 3 subscales on its 14 questions
which were identified through a factor analysis during its construction by Schubert et al.
(2001). These are spatial presence, involvement and experienced realism. We will therefore
report our results in terms of these factors.

We will not extensively analyse these results due to the limited sample size of 4 participants
per experiment. The purpose of reporting these results is to capture an indication of the
users’ perceived presence and the potential influence this may have had on task workload
and insight generation.

The IPQ questionnaire itself is available in Appendix I.2 and the raw results gathered are
in Appendix K.1.

93
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Spatial Presence

Q2-Q6 in Figure 7.1 indicate the range of responses for the spatial presence factor of
the questionnaire. Q1 is included in this figure, but it is the exceptional item in this
questionnaire. It is a general item added by the IPQ creators and it is not specific to one
factor. It is loaded along all three subscales according to their factor analysis1 – Q3 is
reverse-coded on the Likert scale, which is why the response to this item stands apart from
the other items.

Experiment
VR Parallel PlanesVR Be The Data

7

6

5

4

3

2

1

Q6
Q5
Q4
Q3
Q2
Q1

Page 3

Figure 7.1: Spatial Presence Box Plot – Experiment Comparison

Q2-Q6 report similar results in terms of spatial presence between the two visualisations.
On average, the Be The Data visualisation had a greater score on the Likert scale in every
question, with the exception of Q5. This question was: “I had a sense of acting in the
virtual space, rather than operating something from outside”. We anticipate that this was
due to the proactive role which users took to brush the dataset in order to change its visual
appearance.

The responses for Q2 had a larger range in the Parallel Planes visualisation. This item
asked participants to indicate their agreement with the statement: “Somehow I felt that the
virtual world surrounded me”. A reason for the variation in responses is perhaps due to the
relative lack of movement in the Parallel Planes visualisation. We observed participants in

1http://www.igroup.org/pq/ipq/factor.php
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the Parallel Planes visualisation remaining static, and exploring the dataset from a single
vantage point throughout the experiment. Comparatively, participants actively moved
around inside the Be The Data visualisation. In this experiment, participants looked around
in all directions from several positions in the virtual world . In particular, when participants
were inside the graph, the data was literally surrounding them in all directions, as opposed
to a single perspective view for the Parallel Planes visualisation.

Involvement

Case Processing Summary

Experiment

Cases
Valid Missing Total

N Percent N Percent N Percent

Q7 VR Be The Data
VR Parallel Planes

Q8 VR Be The Data
VR Parallel Planes

Q9 VR Be The Data
VR Parallel Planes

Q10 VR Be The Data
VR Parallel Planes

4 100.0% 0 0.0% 4 100.0%
4 100.0% 0 0.0% 4 100.0%
4 100.0% 0 0.0% 4 100.0%
4 100.0% 0 0.0% 4 100.0%
4 100.0% 0 0.0% 4 100.0%
4 100.0% 0 0.0% 4 100.0%
4 100.0% 0 0.0% 4 100.0%
4 100.0% 0 0.0% 4 100.0%

Experiment
VR Parallel PlanesVR Be The Data

7

6
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Q10
Q9
Q8
Q7
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Figure 7.2: Involvement Box Plot – Experiment Comparison

The IPQ questionnaire makes the distinction between an attention component of presence,
and a spatial cognitive component. The previous section reported on this latter component
– this section will report on the attention component of Involvement given by Q7-Q10
(Note: Q9 is reverse-coded)

In general, participants reported that the Be The Data visualisation performed better on
the Involvement factor. The questions asked participants about their attention (Q8: “I was
not aware of my real environment.”) and the extent to which the visualisation engaged
them (Q10: “I was completely captivated by the virtual world.”).

The cause of the difference between the two visualisations is not clear, although one may
look towards the way in which the virtual scenes are presented in VR. The Be The Data
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visualisation is set in a world with a horizon, with a distinguishable ground and sky. Com-
paratively, the Parallel Planes visualisation does not contain any recognisable landscape.
Instead, participants explore the dataset with a continuous dark purple background, and no
reference to a horizon. The difference in results may have been affected by the participants
ability to enter a state of psychological presence due to the appearance of the scenes in VR.

Realism

Case Processing Summary

Experiment

Cases
Valid Missing Total

N Percent N Percent N Percent

Q11 VR Be The Data
VR Parallel Planes

Q12 VR Be The Data
VR Parallel Planes

Q13 VR Be The Data
VR Parallel Planes

Q14 VR Be The Data
VR Parallel Planes

4 100.0% 0 0.0% 4 100.0%
4 100.0% 0 0.0% 4 100.0%
4 100.0% 0 0.0% 4 100.0%
4 100.0% 0 0.0% 4 100.0%
4 100.0% 0 0.0% 4 100.0%
4 100.0% 0 0.0% 4 100.0%
4 100.0% 0 0.0% 4 100.0%
4 100.0% 0 0.0% 4 100.0%
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Figure 7.3: Realism Box Plot – Experiment Comparison

Participant’s responses to questionnaire items had generally been above-average on the
7-point Likert scale for factors of spatial presence and involvement. However, for the final
factor of realism, responses fell below average for both experiments.

Four questions relating to realism were asked to participants (Q11-Q14, with Q11 reverse-
coded). Notably the Be The Data visualisation elicited a poor response in terms of items
such as “How real did the virtual world seem to you?” and “The virtual world seemed more
realistic than the real world”.

The visualisations presented to participants during the experiments did not rate well for
realism. In Chapter 2, we discussed Witmer and Singer (1998)’s suggestion that consistency
in information in virtual worlds and the real world leads to a gain in presence. One could
hypothesise about the importance of realism in the data visualisation domain, particularly
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when designing such systems. As a design factor, should realism be placed at a similar level
of importance as is done for VR systems across simulation and exposure therapy domains?
With a lack of literature in our research area, it is not clear whether the poor realism
results will affect our findings in the context of data visualisation analysis. Nevertheless, this
limitation will be considered when analysing our other dependent variables of task workload
and insight. Furthermore, this finding will be highlighted as part of our contribution in
Chapter 8.

Further Discussion

Although the IPQ questionnaire results have shown that our visualisations are limited
in terms of realism, our system performs well in the other factors of presence: spatial
presence and involvement. In order to ensure that we had indeed measured the concepts of
presence we wished to discuss, we calculated Cronbach’s Alpha for each factor of the IPQ
questionnaire. Q3, Q9 and Q11 were reverse scored to account for their initial scoring on
the 7-point Likert scale.

The purpose of calculating these values was to verify that the presence questionnaire was a
suitable evaluation method for our data visualisations. Cronbach’s Alpha were calculated
separately for dimensions of spatial presence (5 items; α = .69), involvement (4 items; α =
.73), and realism (4 items; α = .74). The combination of relatively strong a coefficients and
comparable results on each subscale with example studies2 indicated that the questionnaire
items were consistent in measuring the concepts we were targeting.

We calculated the mean composite scores of presence of 60.3 (SD = 3.0) and 61 (SD = 4.95)
for the Be The Data and Parallel Planes visualisations respectively. For these calculations
we did not transform reverse-coded questions. This enabled us to compare our presence
results against other VR systems in the literature (Morina et al., 2014; Zlomuzica et al.,
2016; van Gelder et al., 2016). We found that our system performed favourably in terms
of creating a sense of presence in comparison to existing systems who had also measured
presence using the Igroup Presence Questionnaire. Nevertheless we were not able to make a
true comparison in our research domain. An exhaustive search of the literature did not yield
measures of presence for data visualisation in VR, let alone personal data visualisation.

Our final presence results show a close similarity for the participants’ experienced presence
in both the Be The Data and Parallel Planes visualisations. Participants in the Be The
Data visualisation felt more involved in the virtual environment and paid less attention on
average to the real world. Both visualisations performed poorly on the realism factor, but
in spite of this had favourable overall presence measurements when compared with other
VR systems in the literature.

2http://www.igroup.org/pq/ipq/factor.php



CHAPTER 7. RESULTS AND ANALYSIS 98

7.2 Task Workload Results

7.2.1 Testing EH1: Overall Task Workload

Our first hypothesis predicted that there would be a significant difference between the
NASA Task Workload Index for participants in the VR visualisations and equivalent 2D
visualisations. To test this, we combined participants across both visualisations into two
groups of 8 participants each. This enabled us to evaluate the task workload significance
across 2D and VR groups through a two-way ANOVA.

Three assumptions had to be assessed before we completed the two-way ANOVA. These
were:

• Assumption of Independence: As defined by the randomised block design, par-
ticipants were assigned to one experimental treatment only.

• Assumption of Normality: Data was formally tested for normality through the
Shapiro-Wilk test on 2D Be The Data (W = 0.870, dF = 4, p= 0.296), 2D Parallel
Planes (W = 0.861, dF = 4, p= 0.264), VR Be The Data (W = 0.912, dF = 4,
p=0.492), and VR Parallel Planes (W = 0.985, dF = 4, p= 0.933). The Shapiro-
Wilk significance values were all greater than 0.05 which allowed us to conclude that
the data was normally distributed.

• Homogeneity of Variance: We used Levene’s Test for Equality to check that the
variances of our four groups were equal. Levene’s Test was not significant: F (3,12)
= 2.208, p = 0.140 at the 0.05 alpha level. Thus we concluded that the homogeneity
of variance assumption was met.

Since none of these assumptions were violated, we ran a two-way ANOVA to examine the
effect of exploration medium and visualisation on task load index.

There was no statistically significant interaction between exploration medium and visuali-
sation, F (1, 12) = 0.03, p = 0.956, nor was there a statistical difference on task load index
due to the visualisation used in the experiment (α = 0.5). Similarly, there was no statisti-
cally significant difference by exploration medium, F (1, 12) = 0.104, p = 0.753. Therefore
the results for the 2D visualisations (M = 36.46, SD = 8.05) and the VR visualisations
(M = 38.23, SD = 12.01) were not significant. Hence, we failed to reject NH1 given that
p > 0.05 between 2D and VR mediums.

Since we failed to reject NH1, we were able to conclude that in our study that there was no
significant difference between the task load index for participants in the VR visualisations
and equivalent 2D visualisations. However, the use of a scalar measurement to represent
a multidimensional measurement of task workload has been questioned by researchers pre-
viously (Hendy et al., 1993; Salvendy, 2012) and many studies analyse the task workload
subscales individually, in addition to an overall measurement (Hart, 2006).
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We therefore ran the two-way ANOVA on each subscale measurement of the NASA-TLX
questionnaire results. We screened the results for the same assumptions as before, and
eliminated the Temporal Demand subscale as it did not meet the Homogeneity of Variance
assumption. The remaining subscales of Effort, Frustration and Mental Demand were not
significant between 2D and VR mediums. However, there was a significant difference for
Performance, F (1, 12) = 13.816, p = 0.003, and also for Physical Demand, F (1, 12) =
10.026, p = 0.008.

Simple main effects analysis therefore shows that there was a significant difference between
Physical Demand in 2D (M = 8.13, SD = 5.94) and VR (M = 33.75 SD = 21.21) in
our study. The physical activities of movement and body rotation in VR logically support
this result. Similarly, there was a significant difference between the participant’s reported
Performance in 2D (M = 54.38, SD = 16.13) and in VR (M = 28.75, SD = 10.26).
This result suggests that participants both felt more successful, and more satisfied, after
completing data exploration tasks in VR than in 2D.
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The complete set of results for this hypothesis is available in Appendix K.2 (including raw
results, tests for normality, and Levene’s test for equality).

7.3 Insight Results

7.3.1 Testing EH2: Number of Insights

Our second hypothesis predicted that there would be a significant difference between the
number of insights generated by participants in the VR visualisations and equivalent 2D
visualisations. This hypothesis was prompted by RQ2, which looked to compare the insight
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generation process in both exploration mediums. Similarly to our process for EH1, we
combined participants across both visualisations and evaluated EH2 through a two-way
ANOVA.

The assumption of independence holds for this hypothesis and all remaining hypotheses.
We tested for data normality for EH2 using the Shapiro-Wilk test (Appendix K.3.1). p
values for each group were greater than 0.05 which suggested that the data was normally
distributed. Furthermore, Levene’s Test for Equality was not significant for the number
of insights generated by participants (Appendix K.3.2). We therefore concluded that all
assumptions were met.

A two-way ANOVA was conducted to investigate the effect of exploration medium and
visualisation on the number of insights generated by participants. There was a statistically
significant interaction between exploration medium and visualisation on the number of
insights, F (1, 12) = 6.387, p = 0.027. There was a significant difference by visualisation,
F (1, 12) = 71.461, p <0.001, but there was not a statistically significant difference by
exploration medium, F (1, 12) = 0.919, p = 0.357. Hence, we failed to reject NH2.

We concluded that there was no significant difference between the number of insights gener-
ated by participants in 2D (M = 18.63 SD = 8.60) and VR (M = 17.25 SD = 5.63) during
our study. There was a significant difference in the number of insights between Be The Data
(M = 11.84 SD = 2.03) and Parallel Planes (M = 24.00 SD = 4.31), which suggested that
participants were able to make a greater number of observations about the dataset with
the Parallel Planes visualisations. However, this was in the context of the main interaction
between exploration medium and visualisation which meant that we were unable to draw
any definitive conclusions. Partial eta-squared values for exploration medium (η2p = 0.357),
visualisation (η2p = 0.856), and their interaction (η2p = 0.347)), gives an indication of the
large effect size of visualisation and the number of insights in our restricted population size.

7.3.2 Testing EH3: Number of Correct Insights

Our third hypothesis predicted that there would be a significant difference between the
number of correct insights generated by participants in the VR visualisations and equiv-
alent 2D visualisations. As with EH1 and EH2, we combined participants across both
visualisations and evaluated EH3 with a two-way ANOVA. The data met all assumptions
for normality and homogeneity of variance (Appendix K.3.1, K.3.2).

There was not a statistically significant interaction between exploration medium and visu-
alisation on the number of correct insights, F (1, 12) = 3.309, p = 0.107. Simple main effects
analysis showed that there was also not a significant difference on exploration medium for
our hypothesis EH3, F (1, 12) = 3.488, p = 0.086. Hence, we failed to reject NH3. Nev-
ertheless, there was a significant difference for the number of correct insights between Be
The Data (M = 6.38 SD = 4.50) and Parallel Planes (M = 17.88 SD = 4.73), F (1, 12) =
32.806, p <0.001.

Following the suggestion from EH2 that participants will make a greater number of insights
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in the Parallel Planes visualisation, the statistical significance of a greater number of correct
insights in this visualisation as well is perhaps a rational conclusion. In order to account
for disparity in the underlying insight population between groups, Figure 7.4 shows the
relative frequency of correct, neutral, and incorrect insights. The number of insights was
149, 138, 95 and 192 for the combined groups of 2D, VR, Be The Data, and Parallel Planes
respectively.
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Figure 7.4: Relative Frequency Of Correctness Insights

As previously stated, the number of correct insights between the combined 2D and VR
groups was not statistically significant (p = 0.086) and as a result we failed to reject NH3.
However, focusing purely on correct insights does not give an indication of the number of
incorrect insights, as we have added a measure for neutral insights on our nominal scale.
We report that our study suggests that participants have fewer incorrect insights in VR
(M = 0.63 SD = 0.52) compared to 2D (M = 3.38 SD = 1.85). Furthermore, participants
were more likely to make an incorrect observation in the Parallel Planes visualisation (M
= 1.38 SD = 1.19) than in the Be The Data visualisation (M = 2.63 SD = 2.39). This last
statement should be interpreted with the consideration that the visualisations displayed
different datasets.
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7.3.3 Testing EH4: Number of Unexpected Insights

Our penultimate hypothesis predicted that there would be a significant difference between
the number of unexpected insights generated by participants in the Be The Data visu-
alisation and Parallel Planes visualisation. The data met assumptions for normality and
homogeneity of variance (Appendix K.3.1, K.3.2) and so we evaluated EH4 using a two-way
ANOVA.

There was not a statistically significant interaction between exploration medium and visu-
alisation on the number of unexpected insights, nor was there a significant difference for
the exploration medium, F (1, 12) = 0.753, p = 0.403. There was a statistically significant
difference for the visualisation main effect, F (1, 12) = 26.610, p <0.001, and consequently
we rejected NH4.

Participants were more likely to deviate from their initial exploration questions in the
Parallel Planes visualisation (M = 9.00 SD = 4.78), than in the Be The Data visualisation
(M = 0.25 SD = 0.463). This suggests the additional dimensionality of the Parallel Planes
visualisation leads to participants discovering observations without explicitly searching for
them. It may also imply that the number of new hypotheses generated by participants is
higher during this visualisation. This will be verified during the analysis of EH5.

With results to support EH4, we analysed participant’s initial exploration questions to
supplement our findings. A frequency analysis of questions is included in Tables 7.1 and
7.2. For the Be The Data visualisation, every participant had at least one question relating
to the correlation between sleep and productivity. Other questions for this visualisation
were more specific, and often only considered one dimension.

In contrast, the dimensionality of the Parallel Planes visualisation allowed participants
to consider a larger number of dimensions in their initial exploratory questions. For the
majority of questions participants chose to compare a simple correlation of two dimensions,
rather than devising deeper, more specific questions similar to the ones for the Be The Data
visualisation.

This may have had some bearing on the number of unexpected insights between visualisa-
tions. Anecdotally, we had observed participants struggling to form additional questions
for the Be The Data visualisation after writing down ‘Correlation between Sleep and Pro-
ductivity’. For the Parallel Planes visualisation, participants picked combinations of the
five dimensions with relative ease. One possible interpretation of EH4 is that participants
who had spent greater effort deliberating over initial questions may have been more focused
on answering them. Conversely, participants who were not as attached to their initial ques-
tions were more likely to deviate from them, resulting in a greater number of unexpected
insights.
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Questions for Be The Data /24

Correlation between Sleep and Productivity 9

Does certain Sleep one day mean certain Productivity the next day? 4

Is there a pattern in Productivity/Sleep? 4

Is there an optimum level of Sleep for Productivity? 2

Does the weekend affect either Sleep or Productivity? 1

Do you Sleep more on certain days? 1

Do you Sleep better after Productive days? 1

Deviance of Sleep and Productivity 1

Comparing personal Sleep habits 1

Table 7.1: Exploration questions for the Be The Data visualisation

Questions for Parallel Planes /24

Correlation between Sleep and Productivity 5

Correlation between Sleep and Mood 4

Correlation between Sleep and Steps 3

Correlation between Productivity and Mood 2

Correlation between Productivity and Tracks 2

Correlation between Steps and Mood 2

Does Mood/Productivity change throughout the week? 2

Correlation between Tracks and Mood 1

Correlation between Productivity and Steps 1

Correlation between Sleep and all others 1

Does the data change throughout the week? 1

Table 7.2: Exploration questions for the Parallel Planes visualisation

7.3.4 Testing EH5: Number of Hypotheses

Our final hypothesis predicted that there would be a significant difference between the
number of hypotheses generated by participants in the Be The Data visualisation and
Parallel Planes visualisation. We first screened the data for violations of homoscedasticity
and normality, but found that the data was not normally distributed for the Be The Data
visualisation.

We looked to normalise the number of hypotheses over the entire dataset, but the inclusion
of zero-data in the Be The Data groups made this challenging. Box and Cox (1964) cite
the Kleczkowski transform suitable for normalisation as follows:

z = log(x+ c)

where c is an arbitrary constant. We applied this transform over our data with c = 0.5,
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half the minimum observation value, rechecked the assumption for homogeneity of variance
and then ran the two-way ANOVA.

Given that the transform we applied fundamentally changed our data, the statistical sig-
nificance of the two-way ANOVA should be interpreted with caution. Nevertheless, there
was not a statistically significant interaction between exploration medium and visualisa-
tion on the number of hypotheses, nor was there a significant difference for the exploration
medium, F (1, 12) = 0.046, p = 0.834. There was a statistically significant different for the
visualisation, F (1, 12) = 36.891, p <0.001. Consequently we rejected NH5.

The results support EH5, which suggests that the Parallel Planes visualisation (M = 5
SD = 1.927) encouraged participants to both create and answer questions of the data.
Comparatively, the Be The Data visualisation (M = 0.5 SD = 0.926) was not as successful
at supporting the creation of hypotheses for participants.

Relation To Depth-Based Insights

We were interested in seeing if an increase in hypotheses also corresponded to an increase
in the depths of observations made between visualisations. The act of questioning the data
could perhaps imply a deep level of understanding about the data and its characteristics.
After checking that the assumptions of normality and homogeneity of variance were met,
we ran a follow-up two-way ANOVA on insights labelled as depth insights.

There was a statistically significant interaction between exploration medium and visuali-
sation on the number of depth insights, F (1, 12) = 18.151, p = 0.001. There was also a
statistically significant difference on both main effects of medium, F (1, 12) = 4.856, p =
0.048, and the visualisation, F (1, 12) = 121.403, p <0.001.

These results suggest that, as well generating a larger number of hypotheses, the insights
which participants had in the Parallel Planes visualisation were deeper (M = 11.75 SD =
3.495) in comparison to the Be The Data visualisation (M = 2.38 SD = 1.506). They also
suggest that the use of VR did not result in as many depth-based insights (M = 6.13 SD
= 3.482) as the traditional 2D visualisations (M = 8.00 SD = 7.111).

One possible interpretation of the difference between the Be The Data and Parallel Planes
visualisations is that participants were more comfortable questioning the dataset once they
had a deeper understanding of it. The multidimensionality of the Parallel Planes visualisa-
tion and its interactivity enabled participants to pick out small subsets of the distribution
and reason about their shape. We had assumed that the selection of individual data points
in the Be The Data visualisation would support depth-based reasoning as well, but in fact
breadth-based insights significantly outweighed depth-based insights for all participants in
traditional 2D and in VR (Appendix K.3.3).



CHAPTER 7. RESULTS AND ANALYSIS 105

Relation To Insights With Valuable Domain Values

During our data analysis we also labelled insights by domain values which we report through
Figures 7.5 and 7.6. This allowed us to interpret the number of hypotheses measured by
EH5 in the context of more valuable insights with domain values such as DV3 and DV4 (DV
1 : General Observation; DV 2 : Weighted Observation; DV 3 : Explained Observation; DV
4 : Explicit Hypothesis).

When testing EH2, we had found that there was not a significant difference between the
number of insights between mediums, but there was a significant difference between vi-
sualisations in the context of the interaction. Figure 7.5 now visualises this clearly with
insights broken down by their domain values. Figure 7.6 represents the domain values of
insights as a percentage of the total number of insights for the particular visualisation, or
medium.
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Figure 7.6: Domain Value Breakdown Between Each Visualisation And Medium

The traditional 2D medium did result in a larger, statistically significant number of depth-
based insights than VR, but there was no significant difference between the number of
hypotheses created between exploration mediums. However, in terms of domain values VR
had a larger number of DV4 insights. This suggests that participants established a greater
number of explicit hypotheses in VR than in 2D. In contrast, there were a greater number
of hypotheses which were deemed to be part of the DV3 category in 2D. For instance,
a DV3 hypothetical insight of “On Thursday [tracks] peaks again, so maybe they need
that full productivity for all of those tracks” is not as valuable as DV4 insight “Sleep isn’t
really related to mood, they seem tangential – I wonder if sleep and steps are correlated?”.
Nevertheless, the domain value results in particular should be interpreted cautiously due
to the subjective way in which DV3 and DV4 insights can be categorised.

The suggestion from these results is that the Parallel Planes visualisation supported a far
greater depth-based exploration of the dataset, enabling participants to interpret more
significant and valuable insights. Non-expert participants understood the visualisation and
were comfortable brushing subsets of the data, allowing them to answer and create new
hypotheses. In comparison, the Be The Data visualisation was not as successful with
hypotheses generation. We suggest that this may be due to the visualisation resulting in
more breadth-based insights, rather than depth-based insights.

The following section supplements our findings for the experimental hypotheses with com-
ments from study participants which occurred during and after the study.

7.4 Participant Feedback

We collected a diverse set of comments during the study. Participants were most enthused
by the Parallel Planes visualisation, whereas feedback was more mixed for the Be The Data
visualisation. This section will summarise the specific feedback we received around each
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visualisation, as well as outlining more general comments on the exploratory data process.

7.4.1 Parallel Planes

Common feedback for the Parallel Planes visualisation was centered around the number of
lines between the planes. One participant commented that most lines “weren’t relevant”
and that if they had to “simplify it after looking at it, you might as well simplify it before
delivering it”. A separate participant expanded upon this by stating that “it would be
easier if you had an average line for each day”. Our observations of participants gravitating
towards selecting outliers in the Parallel Planes visualisation emphasise these comments.
Participants typically focused on edges cases, rather than lines in an average grouping for
each day.

This feedback indicates that participants may have felt overwhelmed by the amount of lines
along the planes that was presented to them, or that there was additional cognitive effort
required to extract the meaningful insights they were interested in. This is consistent with
findings by Choe et al. (2014) and Jones and Kelly (2016).

Choe et al. suggest that variables that do not seem to correlate with anything should
be removed early in the stage-based model of personal informatics. The feedback and
behaviour of participants in our study suggests an alternative approach. The absence of
correlation in the Parallel Planes visualisation was often an area of interest – participants
were interested in uncorrelated variables, as well as the distribution of an average day
across the planes. However, participants were not interested in the observations between
the average and the outliers. We anticipate that reducing the number of lines to a single
average case, and retaining specific outliers, would enhance the insight-generation process
and reduce the cognitive effort required to interpret the visualisation.

The highlighting interaction received positive feedback. Participants commented that it
was intuitive to understand and essential for detecting the shape of a day across differ-
ent dimensions in the visualisation – both in the traditional 2D visualisation and in VR.
In terms of dimensionality, the multiple parallel coordinate visualisation was complex for
participants to comprehend. Several participants commented on the difficulty of interpret-
ing the webpage with multiple parallel coordinates: “Having graphs for different days felt
quite disjointed ... navigating between them and recalling what I was last on was a little
challenging”.

The additional z axis in VR meant that the Parallel Planes visualisation did not have
this challenge. The visualisation was not disjointed – participants were able to interpret
the dataset across the recorded dimensions in a day, or in the z axis along the weekdays.
The visualisation supported participants to interpret a previously disconnected dataset in
a combined manner. One participant commented that “having the multidimensional stuff
is great. It forces you think think through things a bit more in terms of causality”. The
nature of the visualisation in VR therefore meant that participants were able to obtain a
holistic overview of the dataset through a single visualisation.
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7.4.2 Be The Data

We transformed the concept of becoming a data point into a VR environment from the
initial work of Chen et al. (2016). Yet, in our study, participants generally did not use this
functionality as part of their main data exploration process. One participant commented
that they preferred to be positioned at “the end or in the middle, rather than being at a
specific point” in the graph. In fact, we had observed all participants making 2D projections
of the data from ends of the graph. This form of orthographic projection reduced the
dimensionality of the three-dimensional graph into two dimensions, which resulted in the
number of breadth-based insights far outweighing depth-based insights.

One participant offered a potential reason for this: “We were always taught at school not
to use 3D charts... you’re not used to analysing data in a 3D way”. Another participant
explicitly noticed their behaviour and commented “I feel like it almost defeats the point ...
I have a 3D dataset and one of the first things I’m drawn to do is look at it from one-end,
or top-down, to get different 2D sets”. It was therefore not clear whether the use of VR
and a three-dimensional chart offered many benefits over a standard two-dimensional graph
in terms of the participant’s data understanding. Nevertheless, participants were engaged
during the data exploration. This could be due to participants having to focus harder to
interpret the dataset in three-dimensions, the additional interaction techniques provided
by VR, or merely because the visualisation and VR was a new experience. Ultimately, the
novel VR visualisation did engross participants, and on average scored better in terms of
frustration and perceived performance in task workload subscales comparative to its 2D
equivalent (Appendix K.6).

Feedback we received for this visualisation emphasised that the prototyping process only
informed the direction of design decisions, and was not able to capture the level of feedback
we received in the main study. For instance, in both the 2D and VR implementations of Be
The Data, participants commented that displaying the date in a format such as ‘29-08-16’
was not as useful as seeing ‘Monday’. The abstraction of the dataset was a common theme
in both Be The Data and Parallel Planes visualisations – participants wanted to see further
detail about data points or lines when they had been selected, but they did not want this
information to be available immediately. This form of feedback shows the importance of
conducting wider studies to capture additional observations from participants. Given the
demographic in this study (N = 16, 13/16 with A/A∗ in A Level Mathematics), until the
visualisation is released to a wider and more diverse population, it is not possible to obtain
representative opinions on the design and functionality of both visualisations.

7.4.3 Inital Exploration Questions

In section 7.3.3 we touched upon the difficulty which participants had formulating questions
to ask of the dataset, particularly when the data had a smaller number of dimensions.
Initially this was not unsurprising. A limitation in our study was that participants were
not interacting with their own tracked data, and so may not have been able to compose
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questions around the dimensions they were interested in. In spite of this, we observed
participants constructing questions with relative ease for the Parallel Planes visualisation.
We discussed how this may have resulted in a greater number of undirected insights in
section 7.3.3.

Participants did find it challenging to construct questions for the Be The Data visualisation
– we believe that this was due to the reduction in dimensionality. In the Parallel Planes
visualisation, there were an additional three dimensions, causing one participant to pro-
claim: “You could sit here for hours talking about this graph but I don’t really want to!”. The
greater dimensionality led to a large amount of potential insight in this visualisation, which
we suspect made it easier for participants to devise questions during the initial exploratory
phase . Our findings therefore imply an open challenge for participants tracking a smaller
number of dimensions – how can personal informatic systems best frame a self-tracked
dataset with a smaller number of dimensions to support and encourage reflection?

7.4.4 Presence And Realism

Given that both visualisations did not perform well for realism, participant feedback con-
cerning this is of particular interest to us. In section 7.1 we discussed how realism was
one of three factors of our questionnaire’s measurement of presence. Indeed, realism is
often considered to be an integral part of presence across the literature (Welch et al., 1996;
Khanna et al., 2006). However, to the best of our knowledge, presence has not been mea-
sured previously for data visualisation – a domain which realism typically does not lend
itself to. This was reflected in the design of our visualisations, and through the low ratings
of realism recorded through the IPQ questionnaires.

The implications arising from this are two-fold. Firstly, presence is often used as a success
criteria for the evaluation of VR systems – in Chapter 2 we quoted a study where presence
was the “defining factor in the success” of their system (Hodges et al., 1994, p.10). Is
presence therefore an appropriate method for evaluating immersive data visualisations?

Through our experimental hypotheses we explored how the data exploration process was
comparatively similar between mediums, with the exception of further analysis in EH5 and
individual subscales for task workload. This data exploration process followed one of the
key purposes of visualisation – insight – which is more representative of the purpose in
which participants used these visualisations. We therefore argue that the measurement of
presence is perhaps not as applicable in the data visualisation domain, as it is to other
domains such as exposure therapy. If the purpose of visualisation is insight, then presence
does not represent an evaluative measure for this, nor does it represent a defining factor of
success.

Secondly, is realism necessary for data visualisation? Our presence questionnaire broke the
factor of realism down into a behavioural form (Q12: How much did your experience in the
virtual environment seem consistent with your real world experience? ) and a visual form
(Q13: How real did the virtual world seem to you? ). Both of these questions had varied, but
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generally low ratings for realism which suggests that in our study there was little difference
between behavioural and visual realism when evaluated for data visualisation.

Participants performed similarly in VR compared to the traditional 2D visualisations, sug-
gesting that neither behavioural nor visual realism was required for participants to make
a success of the data exploration process in Parallel Planes. One participant commented
that “a scene would not have helped with doing the task... (no scene) makes you focus on
the data without any distractions”. This indicates that realism is perhaps not required in
order for participants to perform well in the VR data visualisation.

Nevertheless, the same participant also concluded that the lack of a scene in the Parallel
Planes visualisation “doesn’t necessarily make it more fun”. This hints at the question
of habituation – something which we were not able to answer in our limited scope study.
Although the participant had concluded that a scene would not have helped them with the
data exploration process, they stated that “in terms of should I use VR again, then a scene
probably would”. This is particularly pertinent, given the key abandonment challenges faced
by personal informatics discussed in Chapter 2. For commercial smartphone applications,
whose business models are often defined by their ability to retain users, this indicates that
a scene may be necessary in VR to keep users engaged. Further research is needed to
pinpoint whether a scene should be visually realistic, or the visualisation behaviourally
realistic, in order to balance preventing abandonment and presenting an interpretable data
visualisation.

7.5 Evaluation Summary

This chapter has covered the three methods we used to evaluate our system: the IPQ
questionnaire for presence, the NASA-TLX questionnaire for task workload, and Saraiya
et al. (2005)’s insight based methodology.

We reported the results for the presence questionnaire, finding that our visualisations per-
formed well in terms of spatial presence and involvement. For the third factor of presence
– realism – our visualisations were clearly limited. Nevertheless, we were able to make a
comparison to other VR systems in the literature, concluding that both of our visualisations
performed favourably in terms of presence.

We failed to reject NH1; that there would not be a difference between participant’s task
workload in 2D and in VR. However, multiple two-way ANOVAs on each subscale mea-
surement of the TLX-scale yielded two statistically significant differences between physical
demand and performance in 2D and VR. These results suggested that there was not a
difference in the overall task workload for both exploration mediums, but that participants
felt more successful, and more satisfied, after the data exploration process in VR.

There was not a statistically significant difference between the number of insights gener-
ated in 2D and VR and hence we failed to reject NH2. However, main effects analysis
determined a significant difference between the number of insights generated between the
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two visualisations – the Parallel Planes visualisation was the most powerful in terms of
number of insights generated. With more than double the number of insights on average,
this visualisation clearly supported participants to reflect on a high-dimensionality dataset.

Our next hypothesis, EH3, focused on the correctness of these insights. There was not a
significant difference between 2D and VR, and we therefore failed to reject NH3. Never-
theless there was a significant difference between the number of correct insights between
visualisations. With the disparity in frequency of insights accounted for between visual-
isations, we reported that participants were more likely to make a correct insight in the
Parallel Planes visualisation than in the Be The Data visualisation.

We found evidence to support EH4 (p <0.001, α = 0.5); that there would be a significant
difference between the number of unexpected insights in each visualisation. Participants
were more likely to deviate from their initial questions in the Parallel Planes visualisation
(M = 9.00 SD = 4.78), than in the Be The Data visualisation (M = 0.25 SD = 0.463). An
analysis of initial exploration questions followed, where we suggested that the ease at which
participants created questions for the Parallel Planes visualisation with a multidimensional
dataset led to them being less attached to their initial questions.

We also found evidence to support our final hypothesis (p <0.001, α = 0.5), which predicted
that there would be a difference between the number of hypotheses generated between
visualisations. Analysis followed in which we discussed the relation to depth-based insights
and insights with valuable domain values. Our results suggested that the Parallel Planes
visualisation supported a depth-based exploration of the dataset, enabling participants to
ask and answer questions, and interpret more valuable insights.

The chapter concluded with a discussion of participant’s informal feedback with regards to
both visualisations. The strengths and limitations of the visualisations, as well as initial
exploration questions and realism, were placed in the context of feedback from participants.

The next chapter will define the contribution of our visualisations and evaluation, and
formally detail the limitations to our study. We finally outline extensions to this work in
the form of future research directions.



Chapter 8

Discussion and Conclusion

The discussion continues in this chapter, with the implications of our results discussed
in the context of research question outcomes. Limitations of our empirical evaluation are
reviewed, and we make suggestions for future research which adopts Saraiya et al.’s insight-
based methodology as an evaluation approach. Finally, the contribution of this dissertation
is summarised, and we outline future research directions for the Be The Data and Parallel
Planes visualisation techniques

8.1 Research Question Outcomes

In Chapter 6 we formalised the three following research questions:

• RQ1: Is the perceived workload for data exploration in VR different to exploration
using traditional paradigms?

• RQ2: Does the use of VR in either Be The Data or Parallel Planes visualisations
affect the insight generation process?

• RQ3: Does the Parallel Planes visualisation support the interpretation of a high-
dimension dataset for non-expert users using VR?

Through our empirical evaluation we found evidence that supported a selection of our
experimental hypotheses, and evidence which meant we were failed to reject certain null
hypotheses. Multiple hypotheses were derived from our research questions, allowing us
to answer these research questions using a variety of metrics. The following sections will
communicate the outcome of each research question.

112
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RQ1

For our first research question, we measured participant’s perceived task workload through
the NASA task workload questionnaire. The same dataset was compared between a tradi-
tional 2D paradigm and a VR visualisation developed for the Google Daydream platform.
The headline outcome for RQ1 was that there were not a significant difference for task
workload between data exploration in a traditional visualisation and in VR.

This in itself was a notable finding, because it suggested that there was no reduction
or increase in overall task workload, despite the clear visual and functional distinctions
between traditional and VR paradigms. Our evaluation therefore focused on analysing
workload at a greater granularity of individual workload subscales.

We found a significant difference between physical demand in 2D and VR, logically showing
that the additional physical movement and rotation in VR had a significant effect on this
subscale. We also found that participants felt more successful and satisfied after completing
the data exploration in VR than in 2D. These results have interesting implications, suggest-
ing that although participants had to work physically harder, they felt more accomplished
after completing the data exploration in VR.

Section 8.2 places these granular findings into the context of potential limitations, such as
the novelty of the VR visualisation on participant’s perceived workload. Nevertheless, we
did not find a significant difference for overall task workload for data exploration between
VR and traditional 2D paradigms.

RQ2

RQ2 questioned whether the use of VR in either visualisation would affect the insight
generation process. Through our insight-based methodology, four hypotheses were tested
with multiple two-way ANOVAs. We found several differences in the insight generation
process, but suggest that this question would benefit from further research due to the
differences between the Be The Data and Parallel Planes visualisations.

In EH2 and EH3, we did not find a significant difference between the number of insights
and the number of correct insights generated in 2D and VR respectively. Similarly, there
was not a significant difference between the number of unexpected insights and the number
of hypotheses generated in 2D and VR (EH4, EH5).

Nevertheless in our study we reported that participants were more likely to have fewer
incorrect insights, and fewer neutral insights, in VR than in 2D. Furthermore, our results
indicated that participants obtained more valuable insights in VR, though neither of these
claims were statistically proven. Finally, and conversely, we found a significant difference
between the number of depth-based insights, suggesting that participants made more depth-
based observations over the two visualisations in the traditional 2D format.

Due to disparity in the final insight metrics for each visualisation, and the limited sample
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size in our study, we suggest the need for a larger study which does not combine visual-
isations during analysis, and enables a single visualisation to be fully compared between
exploration mediums.

Based on the measures of insight in our hypotheses, there was a difference in the insight
generation process according to the exploration medium used. However, only one of these
differences was statistically proven, and so we are unable to give a definitive answer for
RQ2. We therefore report these results, which illustrate the similarities and differences on
the insight generation process between exploration mediums.

RQ3

Our final research question explored whether the Parallel Planes visualisation supported
users to interpret a highly-dimensional dataset. Our findings in EH2, EH3, EH4 and EH5
imply that the Parallel Planes visualisation was a successful technique for the exploration
of a multi-faceted dataset for non-expert users.

During our empirical evaluation, we found statistically significant results for the Parallel
Planes visualisation relating to the number of: insights, correct insights, unexpected in-
sights, depth-based insights and hypotheses. Furthermore, we reported that participants
were able to extract more valuable insights using the Parallel Planes visualisation.

The results collected during this study strongly suggest that the Parallel Planes visualisa-
tion enabled users to interpret a multidimensional dataset successfully. The visualisation
chained together separate dimensions of the dataset, enabling participants to view a com-
prehensive representation of connections between multiple variables. Participants arrived
at significant discoveries by conducting a depth-based exploration of the visualisation, se-
lecting subsets of the dataset and reasoning about it. Our evaluative approach captured
this behaviour, and indicates that the Parallel Planes visualisation technique positively
supported users to interpret a multidimensional dataset.

8.2 Limitations

There were multiple limitations to this project which we cover over the two following
sections. Firstly, the scope of empirical evaluation was restricted, and we did not consider
the data reflection process as part of a wider, more-detailed study. Secondly, Saraiya et al.’s
insight-based methodology was extensive, and we make suggestions for improving the scope
and accuracy of this approach in the future. After reviewing limitations, we then detail
the contributions of this dissertation.
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8.2.1 Scope of Empirical Evaluation

One of the main limitations of this study was the limited scope of the empirical evaluation.
The use of these visualisations was considered only in isolation by participants – purely
as mediums for reflecting on personal data. Li et al. (2010) show this to be just one of
five stages of the personal informatics model, which our study exclusively evaluated. A
longer-term study would assess this model with an end-to-end process to see if there are
implications for goal-setting and behavioural change after data exploration in VR.

Indeed, a longer term study would account for participants both collecting and reflecting
on their own tracked data, rather than reflecting on the tracked data of others. While
this was beneficial for allowing us to fairly compare participants between experiments, we
anticipate that the insight generation process could change due to the additional context
which participants may be able to bring to a real dataset of their own.

Additionally, our evaluation did not consider habituation, and how this could affect the
long-term use of the visualisations and VR in supporting reflection of personal data. In a
longer-term study we would therefore explore the effects on measures such as task workload.
For instance, our evaluation found that participants felt more successful and satisfied after
data exploration in VR. However, it is not clear whether the novelty of completing this
task with an unfamiliar technology had any bearing on this perceived measure of workload,
and whether similar participant responses would remain consistent or decrease over time.

Finally the participants in the study must be considered. We used a randomised block
design to distribute participants by gender over experiments, achieving a relatively fair
balance of two groups (8 Female, 7 Male + 1 Prefer Not To Say). Nevertheless, this design
did not consider the demographic of participants – all undergraduates at the University
of Bath (M = 21.6), and the majority (13/16) with Grade A∗ or A equivalent at A Level
Mathematics. The mathematical background of our participants should be considered when
interpreting the contributions of our project as their backgrounds may indicate a stronger
ability to interpret the visualisations than a sample from a wider demographic. This is a
limitation which could be resolved through further evaluation, with participants selected
from a diverse range of technical and non-technical backgrounds.

8.2.2 Insight-Based Evaluation Methodology

We adopted Saraiya et al. (2005)’s insight-based approach for evaluating our visualisations
in VR. While this methodology enabled us to capture an extensive amount of insight-related
results, it came with several drawbacks which we summarise and make recommendations
for below.
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Target Select Criteria

The data analysis process to first extract insights which participants got from the visual-
isations and then code them was intensive and time-consuming even for our limited size
study (N = 16). This involved transcribing recordings for each participant, extracting all
applicable insight from the transcriptions, the categorisation and coding of 6 attributes for
each insight, and then checking the correctness of each insight against the visualisations.
Saraiya et al. do note that their methodology is labour intensive, and suggest that self-
reporting could be a solution. However, we do not believe that self-reporting would have
been able to capture both the extent of information and also the diversity of information
analysed in our study.

Instead we suggest that studies looking to adopt this evaluation methodology should re-
duce the scope of post-transcription categorisation and coding of insights into targeted
attributes only. For instance, in our analysis we captured information about the category
of each insight and a measure of the participant’s perceived total insight for the visuali-
sation. However, these measures were not included in the analysis of results as they were
either not relevant to the focus of the hypotheses, or there was not a wide enough range of
participants to make firm conclusions about the findings. Therefore, we recommend that
studies analyse insights using chosen and applicable criteria, rather than the full evalu-
ation criteria proposed by Saraiya et al.. The categorisation and coding process can be
retrospectively revisited if additional analysis is required.

Determine Strict Guidelines Through Preprocessing

The subjectivity of the data analysis process was also a limitation to this study. For
instance, the act of determining individual insights – when one insight ends, and another
insight begins. In addition, identifying the value of an insight in terms of its domain
value was challenging, and the subjectivity of our judgements may have had an impact
on the accuracy of our insight findings. We recommend that for future evaluations a pool
of insights is taken before the main data analysis begins, and preprocessed in order to
determine how insights should be separated.

Furthermore, strict guidelines should be formulated to help guide the data analyst to
correctly label insights in terms of the domain value. After our piloting process we identified
a schema in section 6.4.2 to address this, but this was still open to interpretation for insights
that sat between domain values. A more rigid specification would have supported the
analyst’s decision making and ensured better accuracy in the results.

Visualise And Verbalise

Furthermore, in terms of accuracy, our evaluation was not able to verify whether partici-
pants verbal comments were matching with their actions in the virtual environment. We
were able to attain an indication of accuracy by comparing the think-aloud protocol with
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the participant’s forward-facing direction and head orientation in VR. Nevertheless, the
use of the think-aloud protocol was the main indicator which we had for each participant,
with accuracy determined later during data analysis.

We did consider capturing a screen recording of the participant’s exploration in VR, but this
functionality caused a reduction in frame rate when we tested this alongside VR. A solution
which was not feasible within the resource constraints of this project would have been to
cast1 the smartphone screen to a separate monitor. This would require additional hardware,
and a smartphone which could handle both VR and the casting process simultaneously.
However, this would let analysts observe the accuracy of participant’s observations in real-
time, rather than post-experiment. Furthermore, it would allow analysts to record insights
which participants may not have verbalised.

Extension Metrics

A significant limitation during our application of Saraiya et al.’s insight-based methodology
was that we did not label insights by the time at which they occurred – this was a decision
made due to the timing constraints of the project. Future studies could record this attribute
and make timing analyses such as ‘Average time to first hypotheses’, Average time recognise
first cluster’. Timing insights indicate that users get immersed in the dataset more quickly,
suggesting a faster visualisation learning time (Saraiya et al., 2005).

A further metric which this study did not measure was the confidence of insights which
participants were making. By observation, participants seemed to be less encouraged to
think-aloud for the traditional 2D Be The Data visualisation compared to the VR Be
The Data visualisation where participants made confident assertions about the dataset.
There did not seem to be a difference in our anecdotal observations of the Parallel Planes
visualisation between mediums.

This phenomenon may of course be representative of our limited study size, and the demo-
graphic randomly assigned to the 2D Be The Data group. However, this could also repre-
sent a distinction between mediums, in particular for the lower dimensionality dataset. An
extension of the insight-based methodology could consider confidence retrospectively by
parsing and rating confidence for key phrases such as ‘I think, it seems like, I can definitely
see that...’. Alternatively, participants could be directly asked how confident they were
about individual observations made during the experimental process itself. A significant
difference in the confidence of insights between mediums could be quantified, with confident
observations perhaps implying a deeper level of understanding of the dataset, which may
lead to a greater number of hypotheses put forward by the participant.

The following section will summarise our contributions to the personal informatics, visual-
isation and virtual reality fields.

1https://www.google.com/chromecast/built-in/
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8.3 Summary of Contributions

During this dissertation we have introduced the first applications of immersive data visual-
isations to support users to reflect on their collected personal data. These visualisations sit
firmly in the reflection stage of Li et al. (2010)’s stage-based model, enabling the discovery
of patterns and correlations in datasets of varying dimensionality. Our three-part approach
to the empirical evaluation of these visualisations shows particular promise for the Parallel
Planes visualisation, which allowed participants to successfully navigate a multi-faceted
dataset and extract valuable insights.

The Be The Data visualisation applies the physical concept of becoming a data point by
Chen et al. (2016) to a virtual world. Users can fly around in this world, interpreting the
three-dimensional scatter plot visualisation from a number of perspectives including the per-
spective of a data point. Our evaluation found that this experience absorbed participant’s
attention in terms of the involvement factor of presence, but did not significantly change
the resultant insight characteristics in comparison to a traditional 2D visualisation. In fact,
our observations of participants indicate that they were making orthographic projections
to interpret the three-dimensional VR visualisation in a similar fashion to traditional 2D
visualisations.

The Parallel Planes visualisation is an extension of a conventional parallel coordinates vi-
sualisation, allowing participants to reflect on multidimensional datasets in an immersive
setting. We built on research by Brunhart-Lupo et al. (2016) who added a z axis to each
coordinate to transform them into planes in the visualisation. The visualisation integrates
a disconnected dataset and enables users to perceive a holistic overview of interrelated
dimensions. Our evaluation focused on whether this form of visualisation could be under-
stood by non-experts to gather insights from a multi-faceted personal dataset. We found
that participants used the interaction techniques to conduct a depth-based exploration of
the visualisation, arriving at compelling and meaningful discoveries.

Our final contribution is the evaluation of both visualisations with regards to presence,
task workload, and insight. Significantly, we suggest that presence may not be the most
appropriate evaluation method for assessing data visualisations in VR due to its close ties
to realism. We also make recommendations for future studies looking to use Saraiya et al.
(2005)’s insight-based evaluation approach. Our full results indicate that overall task work-
load between 2D and VR is similar, but that participants feel more successful and satisfied
after exploring datasets in VR. Furthermore, that the Parallel Planes visualisation supports
the interpretation of a multi-faceted dataset, enhancing the data reflection process through
the discovery of valuable insights, a significant increase in the number of hypotheses, and
deeper unexpected observations.
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8.4 Future Research Directions

During section 7.4 we described the challenges of evaluating data visualisations using pres-
ence. We also explored where realism fits into this process, and whether the inclusion of
a scene could lead to longer-term engagement in VR, identifying a research gap in the
literature. Alongside section 8.2 which discussed the limitations of Saraiya et al.’s insight-
based methodology for evaluation, both of these sections form recommendations for future
research into empirical evaluations of data visualisations in VR.

In this final section, we outline theoretical and technical extensions to the two visualisations
evaluated during this study.

8.4.1 Be The Data

Predefined Viewpoints

During our study, participants navigated in the virtual environment such that they could
interpret the Be The Data visualisation in two-dimensions, through orthographic projec-
tions. Several participants commented that they were not sure if their position was centrally
aligned on the axes while looking back down the dataset, which may have had an impact
on the accuracy of their inferences. Given that we found evidence to support that users
in VR felt more satisfied and successful during data exploration than in traditional 2D
paradigms, future functionality should further enhance the exploration process to support
navigation of the virtual world.

Predefined viewpoints could be visible in the world, both inside the graph, and centrally at
either end of the axes. Users could click on these viewpoints and be transported to them,
knowing that observations made from these positions would not be skewed or affected by
minor variations along the axes which occur during normal swipe-based movement. This
would be an example of mixed-initiative interaction discussed in Chapter 2, where system
and user agents work together, supporting the discovery and reflection of accurate data
insights.

Dynamic And Predicted Data Representation

The Be The Data visualisation displayed a static version of the personal dataset. The
dataset was represented using a scatter plot, and the data points in the visualisation did
not move during data exploration. One extension to this visualisation would be to reduce
the number of days visualised to one week, rather than several months, and allow the user
to swipe between weeks from the perspective of a data point.

For instance, from the perspective of a data point situated at ‘Monday’ in the visualisation,
the user could look down the graph and swipe on the controller to move to the next week
of data. Variations in the dataset would cause the user to move as the data point within
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the virtual world, and observe the changes happening in the data surrounding them from
week to week.

This could be further extended to partially complete weeks of the dataset, where users
view predictions of where their week is heading based on past behaviour. Smartphone
applications such as Fitbit could propose goals modelled using historical data, in order to
engage users to reflect on their current behaviour and promote positive changes in behaviour
through weekly goals.

Triggers For Engagement

Unlike the Parallel Planes visualisation, we do not envisage the Be The Data visualisation
as a replacement for existing data reflection tools. Rather, we view it as a complement
to existing visualisations presented in dashboards, such as natural language statements
like ‘You are more productive when you sleep more’. During Chapter 2 we discussed the
separation of high-level and low-level data in the dashboard paradigm. Much like this
separation, we anticipate natural language statements as a high-level summary of the visu-
alisation, with a route into virtual worlds where participants can reflect upon this summary
in greater detail.

To accompany this method of personal data reflection in smartphone applications, optional
notifications could be included. For instance, push notifications to encourage users to
reflect on their behaviour in VR at specified intervals. The tension between offering too
many notifications and the dataset not changing enough between separate data reflection
sessions would have to be balanced. Nevertheless, this could stimulate users to periodically
reflect on their personal data, which is particularly applicable to those with goals in mind
for behavioural change. Significantly, a single smartphone could be used for collection of
personal data and providing the motivation for users to also reflect upon this data in VR.

8.4.2 Parallel Planes

Filtering Observations

In their paper describing the original application of the Parallel Planes visualisation,
Brunhart-Lupo et al. (2016, p.1) state that the transformation of parallel coordinates from
a surface to a volume “alleviates the over-plotting problem”. However, for our participants
who initially viewed a large quantity of lines across the plane, we found that not all were
comfortable interpreting this amount of information. This may be reflective of the differ-
ent audiences which interacted with each visualisation – Brunhart-Lupo et al.’s research
focused on the visualisation’s utility with simulation experts.

This finding was consistent with sensemaking challenges identified by Jones and Kelly
(2016) for two-dimensional graphical visualisations – in particular, that the quantity of
personal information can overwhelm users. The use of VR as the exploration medium did
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not change this, and we therefore recommend that the amount of lines shown in the Parallel
Planes visualisation is filtered initially. Further research is required to determine the extent
of filtering. Participant feedback and anecdotal observations of typical behaviour during
our study indicate that the average observation for each dimension should be included, as
well as a selection of outliers. Choosing the outliers then becomes an elaborate challenge
when the lowest and highest observations need to be considered across multiple dimensions
of the dataset, and relating to a single observation across all planes.

Data Abstraction

Future work could explore the integration of more granular dimensions into the Parallel
Planes visualisation. In our study, one participant wanted more information about sleep
because “the amount of sleep isn’t the same as quality of sleep”. There are opportunities
in the visualisation to introduce subdimensions of sleep, such as sleep start and end times,
sleep depth, and sleep awakenings. One approach could be to overlay this information once
an observation has been selected. Alternatively, the visualisation could be opened up when
an observation is selected, and the sleep plane replaced by a series of smaller sub-planes
representing these more granular details. This could support users to draw inferences based
on definitive low-level data observations, pinpointing them towards specific lifestyle changes
they could make.

Extreme Observations And Visualisation Structure

A design constraint discussed during Chapter 4 was that outliers could change the com-
plexion of the Parallel Planes visualisation. Our dataset was normalised to the planes, but
extreme values caused tighter clustering of average observations, and a flattened structure
which was harder to interpret. This is an open challenge for the parallel coordinates vi-
sualisation, and is not just exclusive to the Parallel Planes visualisation evaluated during
this study.

One solution in VR could involve restricting the plane to surround only the average cluster
of observations in each dimension, or an acceptable range around this average. Outliers
could be added in after the construction of the planes, and would be free to leave the
boundaries of the plane, observable in VR by looking beneath or above the visualisation.
This technique would enable the preservation of the visualisation structure for the majority
of observations.

Furthermore, Johansson et al. (2005) explore the use of textures to preserve structure in a
parallel coordinates context. They use clustering algorithms to generate textures for the
visualisation structure, which distinguish outliers and sub-clusters, supporting analysts to
detect patterns across the multiple dimensions. An implementation of this in VR would
also reduce the over-plotting challenges previously discussed, but care would need to be
taken around the selection of colour, ensuring that appropriate accessibility guidelines were
met, and that lines could be distinguished by depth over the z dimension.
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The ordering of planes is also an important topic when considering the structure of the
multidimensional visualisation. One participant aptly mentioned that the structure of
the visualisation “isn’t a feature of the data, it’s a feature of the way it’s presented”. To
some extent this is true – the ordering of the dataset dimensions can dramatically change
connections between planes from horizontal lines to steep angles given the normalised data.
An approach to ordering could look towards automatically analysing the dataset to find
attractive and interpretable shapes between planes. To supplement this, the development
of new interaction techniques in VR could provide additional functionality for manual
reordering by users.

Through the Parallel Planes visualisation we discovered that chaining the dimensions in
a multi-faceted dataset led users to discover valuable, unexpected insights. The holistic
overview of the dataset enabled users to correlate a number of the dimensions, and hy-
pothesise and reflect upon the characteristics of the data. This section has set out future
research directions, providing new opportunities for both of our visualisation techniques,
and indicates exciting research potential for visualising multidimensional personal datasets
in VR moving forward.
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Appendix A

Initial Requirements List

A.1 Platform Requirements

• FR-1: Users must be able to focus on objects and read textual information.

• FR-2: The app must maintain head tracking.

• FR-3: The app must keep a stable horizon line when a horizon is used.

• FR-4: Camera movement must be user-initiated.

• FR-5: The app must not interfere with Daydream-level recentering behaviour.

• FR-6: The app should recenter with respect to the experience.

• FR-7: The forward direction of app movement must be consistent with the Daydream
global forward direction.

• FR-8: The app should use the (Daydream SDK-provided) neck model.

• FR-9: The app must stay in 3D and not display 2D views (e.g Dialogs).

• FR-10: A model of the Daydream controller must be rendered in the VR environ-
ment.

• FR-11: The Daydream controller should be used to click on targets.

• FR-12: Head gaze could be used to click on targets.

• FR-13: Swiping on the Daydream controller must be used to support movement in
the environment.

• FR-14: The app must hide the Android system status and navigation bars while in
VR.
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• FR-15: The app should run without crashing to a 2D dialog in VR.

• FR-16: The app must maintain high performance and should not suffer from ther-
mal throttling.

• FR-17: The app must not exhibit characteristics of unexpected distortion when
viewed through the Daydream headset.

• FR-18 A loading indicator for the splash screen could be added while waiting for the
visualisation scenes to load.

• NFR-1: The Google VR SDK for Unity 1.20 should be used for development pur-
poses.

• NFR-2: The Unity technical preview for Google Daydream must be used. This is
currently 5.4.2f-GVR13.

• NFR-3: The app must target Android 7.0 smartphones to enable Daydream platform
compatibility. Note: Daydream is only officially supported on specific Android 7.0
devices.

• NFR-4: The app must maintain high performance across both Be The Data and
Parallel Planes visualisations for at least 15 minutes. High performance is defined as
a consistently high frame-rate (60fps).

A.2 Existing System Requirements

• FN-19: The app controls must make it easy for a user to move ’inside’ the dataset.

• FN-20: There must be a smooth transition when moving from an overview of the
data to a detailed point inside it.

• FN-21: The app could use storytelling to help explain aspects of the dataset.

• FN-22: The user must be able to look around in all directions from their vantage
point.

• FN-23: The axes labels must be spatially separated and must not overlap.

• FN-24: The number of axes labels should be reduced where possible. Significant
axes labels must still be shown.

• FN-25: Textual information should be clear and a distinct colour from the data.

• FN-26: Textual information should be avoided where possible. Let the data do the
speaking.
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• FN-27: The user must be able to freely move to any position within the data explo-
ration environment.

• FN-28: Sound effects must be played when the user clicks on objects within the data
exploration environment.

• FN-29: An object which can be selected should change colour when clicked by the
user.

• FN-30: Extra information about the selected data point should overlay the screen
when the object is either selected or hovered over.

• FN-31: Visual cues could be provided should the user stray too far from the data
visualisation.

• NFR-5: It must take less than 3 clicks for the user to get ’inside’ the dataset from
their initial starting point.

• NFR-6: Movement inside the environment must follow either a linear or bezier curve.

• NFR-7: A data point’s information overlay should fit entirely inside the VR stereo
rendering. They should not have to move their head from the selection to gather all
of the information.

A.3 Be The Data Requirements

• FN-32: The user must be able to move outside of the graph and view it from a
distance. They must not be constrained by the graph boundaries.

• FN-33: The user must be able to move through the axis.

• FN-34: The graph could be placed in an environment or scene. e.g In a rolling hill,
on top of a skyscraper.

• FN-35: The user must be able to hover over a data point and an information overlay
will appear, displaying additional information about the current selection.

• FN-36: On clicking the data point, the user must be transported to the current
position of the selected data point in the environment.

• FN-37: The graph axes must be clearly labelled with their main dimension (e.g
Sleep) and units along this dimension (e.g 1, 2, 3 hours)

• FN-38: The user should be able to move freely around the environment in at least
4 directions relative to their forward-facing position.
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• NFR-8: The graph must have transparent axes so the user is able to look through
them and discern the dataset.

• NFR-9: Data points in the graph must be represented by spheres. These should be
approximately a quarter graph unit in diameter.

• NFR-10: A subtle colour change could be used on the spheres along one axis, with
the shift in colour representing distance along the axis.

• NFR-11: The data information overlay should detail the data point’s values in all 3
dimensions.

A.4 Parallel Plane Requirements

• FN-39: Each new dimension in the dataset must be represented on a new plane.

• FN-40: The dimension in the z axis on each plane should be kept constant.

• FN-41: The user must be able to select and deselect a subset of data observations.

• FN-42: The user should be able to select and deselect multiple subsets of data
observations.

• FN-43: Data observations across dimensions must be connected using a polyline. Its
value on each plane is its intersection on that particular plane.

• NFR-12: When a subset of data is highlighted, it must appear in a highlighted
colour. The rest of the dataset should be dimmed.



Appendix B

Privacy Challenges

The privacy challenges emanating from the collection of personal data were not considered
to be within the scope of this project. Nevertheless, a short discussion continues below,
characterising some of the recent research into big data and personal data.

“The accumulation of personal data has an incremental adverse effect on privacy” – Tene
and Polonetsky (2012, p.251). Big data is increasingly used as a means for predictive
analysis. Most recently, the insurance company Admiral was forced to abandon plans
to analyse the social media history of car owners to set the price of insurance policies.
Digital rights campaigners expressed concern about algorithms purposely biasing decisions
“based on race, gender, religion or sexuality”, and how this may encourage users to “self-
censor” to affect future predictions made on big data sets (Killock, 2016). There are a
vast number of papers and books written around the privacy challenges which big data
presents (Thierer, 2015; Boyd and Crawford, 2011; Horvitz and Mulligan, 2015), particu-
larly around health systems Mittelstadt and Floridi (2016). Self-tracking injects increasing
amounts of personal data into big data systems, with specific concerns around technology
enabling the recall of historical data (Nunan and Di Domenico, 2013) and anonymisation
(Mittelstadt and Floridi, 2016). For instance, Fitbit’s privacy policy1 explicitly states that
‘de-identified data’ may be sold to interested audiences. However, research by Narayanan
and Shmatikov (2008) shows that it is possible to combine large datasets and reidentify
previously anonymised records.

A further privacy issue is related to data sharing and privacy policies. Given that self-
tracking can involve deeply physiological data, it is essential that people know precisely
which metrics are shared with companies. A 2016 study by the Future of Privacy Forum
discovered that only 61% of the top health and fitness apps linked to a privacy policy from
the app store listing page - 10% lower than apps present across all other categories. The
study noted that although privacy policies are only a “starting point for protecting indi-
vidual’s privacy, it is an important baseline standard around the world” (Bates, 2016, p.3).
Indeed, both iOS and Android have made ground in forcing people to actively participate

1https://www.fitbit.com/uk/privacy
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with privacy, using granular permission controls and system dialogs prompting for access
to specific sensors2. It follows that users would feel more control of their personal data
with this method of participation. Nevertheless, Brandimarte et al. (2013) found that by
providing people with more privacy controls, it encouraged users to publish more sensitive
data. Paradoxically, this reduced the users level of privacy protection.

2https://developer.android.com/training/permissions/requesting.html



Appendix C

Project Plan

Figure C.1: Project Gantt Chart

A Gantt chart was prepared at the beginning of the project to structure the work we
completed for this project in terms of the major deadlines. The overall structure was
followed throughout, and provided a useful guide for visualising the dependencies between
different tasks. Nevertheless, the project was typically about 1-2 weeks behind, with the
exception of work relating to the Demonstration of Progress. The extensive amount of
literature read for the Literature Review pushed us back a week in November, and the
preparation of the format and materials for the User Study added another week later in
March. In the future, we would add a task for Results Analysis after User Study, as this
also took up a considerable amount of time.
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Non-Linear Swipe-Based
Movement Excerpt

Listing D.1: Movement via non-linear interpolation

// Al lows f o r synchronous i ty wi th asynchronous c h i l d methods +
d e c e l e r a t i o n

// D i s a b l e the gameobject once reach ing i t to e nab l e r a y c a s t e r
to g e t out o f the data p o i n t

private IEnumerator moveToWorldPositionCaller ( f loat
movementTime , Vector3 s t a r t P o s i t i o n , Vector3 endPos i t ion ) {

e n a b l e C o l l i d i n g ( ) ;
y i e l d return i n t e r p o l a t e P o s i t i o n s (movementTime ,

s t a r t P o s i t i o n , endPos it ion , true ) ;
d i s a b l e C o l l i d i n g ( ) ;

}

// Coroutine to y i e l d new camera p o s i t i o n s over time
private IEnumerator i n t e r p o l a t e P o s i t i o n s ( f loat movementTime ,

Vector3 s t a r t P o s i t i o n , Vector3 endPos it ion , bool
dece l e ra t i onEnab l ed = fa l se ) {

f loat i = 0 .0 f ; // s t a r t i n g f r a c t i o n
f loat r a t e = 1 .0 f / movementTime ; // r a t e at which i

p r o g r e s s e s from 0 to 1
while ( i < 1 .0 f ) {

// i n c r e m e n t a l l y add to movement f r a c t i o n : time
o f l a s t frame r a t e product ion ∗ r a t e o f i

i += Time . deltaTime ∗ r a t e ;
// New camera p o s i t i o n s based on chosen

i n t e r p o l a t i o n method
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i f ( dece l e ra t i onEnab l ed ) {
y i e l d return this . t rans form . parent .
trans form . p o s i t i o n = Sinerp

( s t a r t P o s i t i o n , endPos it ion , i ) ;
} else {

y i e l d return this . t rans form . parent .
trans form . p o s i t i o n = Vector3 . Lerp

( s t a r t P o s i t i o n , endPos it ion , i ) ;
}

}
}

// Enables non−l i n e a r i n t e r p o l a t i o n . Sinerp i s a curve wi th a
sma l l d e c e l e r a t i o n .

public stat ic Vector3 Sinerp ( Vector3 s ta r t , Vector3 end , f loat
percentage ) {

// Clamp to the range 0−1
percentage = Mathf . Clamp01 ( percentage ) ;
// Fol low s i n e r p i n s t e a d o f s tandard l e r p f o r

d e c e l e r a t i o n
percentage = Mathf . Sin ( percentage ∗ Mathf . PI ∗ 0 .5 f ) ;
return s t a r t + ( end − s t a r t ) ∗ percentage ;

}

All code is included in the zipped file submitted on Moodle. A readme is included which
discusses the structure of the Unity code, and highlights the significant files we used.



Appendix E

Traditional 2D – Be The Data
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Figure E.1: Be The Data – 2D Training Visualisation
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Figure E.2: Be The Data – 2D Experiment Visualisation
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Figure F.1: Parallel Coordinates – 2D Training Visualisation
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Figure F.2: Parallel Coordinates – 2D Experiment Visualisation (Includes brushing on Wednesday)
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F.1 Matlab

Listing F.1: Code to create a scatter plot of a Parallel Plane for a selected dimension

disp ( ‘ ‘ Creat ing s ide−on p e r s p e c t i v e o f P a r a l l e l Planes
v i s u a l i s a t i o n ’ ’ ) ;

t a b l e = readtab l e ( ’ 2ddata . csv ’ , ’ De l im i t e r ’ , ’ , ’ ,
’ ReadVariableNames ’ , f a l s e ) ;

% Set to column of the dimension r e q u i r e d to p l o t
dimension = 5 ;
% Set to 1 i f keep ing 0 va lued data i s important
% Note : This w i l l not work wi th non−p o s i t i v e d a t a s e t s
r e t a i n z e r o = 1 ;

% Holds the f i n a l v a l u e s to p l o t
x = zeros ( he ight ( t a b l e ) , 1) ;
y = zeros ( he ight ( t a b l e ) , 1) ;

% S t a r t from the second row to s k i p the column headers
for i = 2 : he ight ( t a b l e )

i f t a b l e { i , 1} == ‘ ‘ Saturday ’ ’ | | t a b l e { i , 1} == ‘ ‘ Sunday ’ ’
cont inue % Ignore weekends

e l s e
% Determine weekday and add to X vecto r
i f t a b l e { i , 1} == ‘ ‘Monday ’ ’

x ( i ) = 1 ;
e l s e i f t a b l e { i , 1} == ‘ ‘ Tuesday ’ ’

x ( i ) = 2 ;
e l s e i f t a b l e { i , 1} == ‘ ‘ Wednesday ’ ’

x ( i ) = 3 ;
e l s e i f t a b l e { i , 1} == ‘ ‘ Thursday ’ ’

x ( i ) = 4 ;
e l s e i f t a b l e { i , 1} == ‘ ‘ Friday ’ ’

x ( i ) = 5 ;
end

% Determine the value on that weekday and add to Y vecto r
y ( i ) = st r2doub l e ( t a b l e { i , dimension }) ;

% S p e c i a l case f o r meaningful 0 data in a column
% Overwrites 0 s to −1s . Converts back to 0 a f t e r the loop
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i f r e t a i n z e r o == 1 && str2doub l e ( t ab l e { i , dimension })
== 0

y ( i ) = −1;
end

end
end

% Remove weekends in ve c to r s
x ( x==0) = [ ] ;
y ( y==0) = [ ] ;

i f r e t a i n z e r o == 1
y ( y==−1) = 0 ;

end

% Now p lo t on a s c a t t e r graph
s c a t t e r (x , y ) ;



Appendix G

13-Point Ethics Checklist

1. Have you prepared a briefing script for volunteers? Yes. The briefing script
is included as part of the consent form which participants sign at the beginning. This
makes clear what personal data we are collecting about them.

2. Will the participants be using any non-standard hardware? Yes. The Day-
dream headset is a VR headset which may result in nausea, motion sickness, or general
discomfort. The consent form states this, and tells participants to remove the headset
immediately if this occurs. They then have the opportunity to take a break, or leave
the experiment if they do not wish to continue.

We also make clear that participants must be aware of their surrounding environment
while wearing the headset. We will also ensure that the participant is placed in an
environment with an appropriate amount of physical space.

3. Is there any intentional deception of the participants? There is no intentional
deception of participants.

In the 2D visualisation we do not state that the study is about VR until the participant
debrief. Nevertheless we assert that participants are unlikely to object or show unease
when debriefed with this information.

4. How will participants voluntarily give consent?

We will use our consent form to record the participant’s signature. If appropriate,
this enables the results to be used beyond this study.

5. Will the participants be exposed to any risks greater than those encoun-
tered in their normal work life? No.

6. Are you offering any incentive to the participants? No.

7. Are any of your participants under the age of 16? No.
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8. Do any of your participants have an impairment that will limit their un-
derstanding or communication? No.

9. Are you in a position of authority or influence over any of your partici-
pants? No.

10. Will the participants be informed that they could withdraw at any time?

Yes, this is included on the consent form and will be repeated verbally.

11. Will the participants be informed of your contact details? Yes, this is in-
cluded on the consent form.

12. Will participants be de-briefed? Yes. An overview of the aims of the experiment
will be provided and how their involvement supports these aims.

13. Will the data collected from the participants be stored in an anonymous
form? Yes.

Name: Patrick Millais

Supervisor: Dr Simon Jones

Project Title: Visualisation and Exploration of Personal Data in Virtual Reality

Date: 02/03/2017
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Participant Consent Forms

H.1 Traditional 2D Consent Form

The purpose of this experiment is to capture user insight resulting from interaction with
various data visualisations. In turn, this will enable us to measure the effectiveness of
specific visualisations and tools at supporting users to explore and arrive at insights. Please
note that this experiment is not testing your personal intelligence! We value your honest
feedback.

The experiment consists of the following parts: Participant Brief, Training Stage, Main
Stage, Participant Debrief

The following participant data will be recorded at the beginning of the experiment: Age,
Gender, Education Level, GCSE/A Level Maths.
All data will be stored securely, anonymously and only accessible by the main researcher
and supervisor. Audio will also be recorded during the training and main stages.

If you are interested in the results of this study, or would like to get in touch with the
researcher, you can contact Patrick Millais (pm515bath.ac.uk).

Your participation in this study is completely voluntary and you are free to withdraw at
any time, without giving a reason and without any consequences.

You now have the opportunity to ask questions and discuss the experiment further with
the researcher.

Your signature indicates that you have read the above, and that you have received enough
information about this study and consent to participating. Your participation is voluntary
and can be withdrawn at any time.

Signed Date:

Researcher: Patrick Millais
Project Supervisor: Dr Simon Jones
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H.2 VR Consent Form

The purpose of this experiment is to capture user insight resulting from interaction with a
data visualisation in Virtual Reality. In turn, this will enable us to measure the effectiveness
of specific visualisations and tools at supporting users to explore and arrive at insights.
Please note that this experiment is not testing your personal intelligence! We value your
honest feedback.

The experiment consists of the following parts: Participant Brief, Training Stage, Main
Stage, Participant Debrief

The following participant data will be recorded at the beginning of the experiment: Age,
Gender, Education Level, GCSE/A Level Maths.
All data will be stored securely, anonymously and only accessible by the main researcher
and supervisor. Audio will also be recorded during the training and main stages.

If you are interested in the results of this study, or would like to get in touch with the
researcher, you can contact Patrick Millais (pm515bath.ac.uk).

Your participation in this study is completely voluntary and you are free to withdraw at
any time, without giving a reason and without any consequences.

This study uses a Virtual Reality headset and controller to display data visualisations. The
use of this hardware may result in nausea, motion sickness or general discomfort. If this
occurs, remove the headset immediately and take a break. If you do not feel comfortable
continuing, please inform the researcher and the experiment will be stopped. Please also
be aware of the surrounding environment when in VR.

You now have the opportunity to ask questions and discuss the experiment further with
the researcher.

Your signature indicates that you have read the above, and that you have received enough
information about this study and consent to participating. Your participation is voluntary
and can be withdrawn at any time.

Signed Date:

Researcher: Patrick Millais
Project Supervisor: Dr Simon Jones
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I.1 NASA Task Load Index (NASA-TLX)

Name   Task    Date

   Mental Demand How mentally demanding was the task?

   Physical Demand How physically demanding was the task?

   Temporal Demand How hurried or rushed was the pace of the task?

   Performance How successful were you in accomplishing what
you were asked to do?

   Effort How hard did you have to work to  accomplish
your level of performance?

   Frustration How insecure, discouraged, irritated, stressed,
and annoyed wereyou?

Figure 8.6

NASA Task Load Index
Hart and Staveland’s NASA Task Load Index (TLX) method assesses
work load on five 7-point scales. Increments of high, medium and low
estimates for each point result in 21 gradations on the scales.

Very Low Very High

Very Low Very High

Very Low Very High

Very Low Very High

Perfect     Failure

Very Low Very High

Figure I.1: NASA-TLX Scales
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I.1.1 NASA-TLX Definitions

Mental Demand (Low/High)
How much mental and perceptual activity was required (for example, thinking, deciding,
calculating, remembering, looking, searching, etc.)? Was the task easy or demanding,
simple or complex, forgiving or exacting?

Physical Demand (Low/High)
How much physical activity was required (for example, pushing, pulling, turning, control-
ling, activating, etc.)? Was the task easy or demanding, slow or brisk, slack or strenuous,
restful or laborious?

Temporal Demand (Low/High)
How much time pressure did you feel due to the rate or pace at which the tasks or task
elements occurred? Was the pace slow and leisurely or rapid and frantic?

Performance (Good/Poor)
How successful do you think you were in accomplishing the goals of the task set by the
experimenter (or yourself)? How satisfied were you with your performance in accomplishing
these goals?

Effort (Low/High)
How hard did you have to work (mentally and physically) to accomplish your level of
performance?

Frustration Level (Low/High)
How insecure, discouraged, irritated, stressed, and annoyed versus secure, gratified, content,
relaxed and complacent did you feel during the task?
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I.2 IPQ – Presence Questionnaire
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Figure I.2: IPQ – Presence Questionnaire



Appendix J

Example Data Analysis

During our empirical evaluation we analysed transcribed and analysed 16 recordings of
participants interacting with 2D and VR data visualisations. The recordings, transcripts,
and full analysis for all 16 participants are included in the zipped folder submitted on
Moodle.

A short excerpt from one participant’s data analysis is submitted here as an example. Table
J.1 was for Participant 16 who interacted with the VR Parallel Planes experiment. Their
initial exploratory questions were:

• Correlation between Mood vs. Steps

• Correlation between Productivity vs. Sleep

• Correlation between Sleep and all others

This table forms a small section of the number of insights which this participant gave. Their
full results, alongside analysis for all other participants, are included in the submitted zip
file on Moodle.
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Table J.1: Participant 16 Analysis Excerpt

Observation Breadth
or
Depth

Directed or
Unexpected

HypothesesDomain
Value

Correctness Category

General pattern is down up down up Breadth Unexpected 1 Correct Pattern

So I’ve selected an outlier with a
high number of tracks, with a mid-
dling number of steps, quite a high
sleep, really high productivity, and
middling mood. This person lis-
tened to a lot of music and was quite
productive on that day.

Depth Unexpected 2 Correct Detail

Another day with high sleep, but
productivity is low and their music
is low. So that’s completely oppo-
site. So you either sleep or listen to
loads of music to be productive.

Depth Unexpected Yes 3 Correct Pattern

Productivity to sleep is strongly cor-
related

Breadth Directed 2 Correct Pattern

The tracks just seems quite a ran-
dom thing in relation to all the oth-
ers

Breadth Unexpected 2 Correct Pattern

I’m now looking at really low tracks,
just to see if I can find anything. Be-
cause there’s some which are right at
the bottom and that has some of the
least step days actually. Some of the
lowest sleeps days as well actually

Depth Unexpected Yes 4 Correct Group

Less music = less sleep, which is
a bit weird because you probably
want to listen to music when you are
awake more

Breadth Directed 3 Correct Pattern
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K.1 Presence Results

Table K.1: Raw Igroup Presence Questionnaire (IPQ) Results

ID Experiment Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Q11 Q12 Q13 Q14 T T*

1 VR Be The Data 7 6 2 7 5 7 6 6 1 6 6 1 1 1 62 68

5 VR Parallel Planes 7 7 1 6 7 6 4 6 2 5 4 6 5 2 68 78

7 VR Be The Data 6 7 1 7 3 7 6 6 1 6 2 3 3 1 59 75

10 VR Be The Data 6 5 3 6 3 5 3 5 4 5 3 3 3 2 56 60

11 VR Be The Data 5 6 2 6 6 6 7 7 2 5 5 3 3 1 64 70

12 VR Parallel Planes 5 4 2 6 4 6 6 5 3 3 6 2 1 1 54 56

13 VR Parallel Planes 6 7 2 6 6 6 4 4 2 3 6 4 4 1 61 65

16 VR Parallel Planes 5 3 3 6 4 6 5 6 4 5 4 5 2 3 61 63

T is the composite score for the 14 questions.
T* is the composite score which accounts for reverse coded questions.
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K.2 Task Workload Results

K.2.1 Raw Results

Table K.2: Raw NASA-TLX Results

TLX Subscale

ID Experiment Mental Physical Temporal Performance Effort Frustration Overall

1 VR Be The Data 40 70 5 10 45 30 33.3

2 2D Parallel Planes 70 15 20 80 55 20 43.3

3 2D Parallel Planes 65 5 25 45 50 25 35.8

4 2D Be The Data 55 5 5 30 30 5 21.7

5 VR Parallel Planes 25 5 15 20 25 5 15.8

6 2D Be The Data 70 5 15 70 35 65 43.3

7 VR Be The Data 90 25 5 25 85 15 40.8

8 2D Be The Data 50 5 15 60 55 55 40.0

9 2D Parallel Planes 70 5 10 60 60 55 43.3

10 VR Be The Data 45 25 30 30 60 25 35.8

11 VR Be The Data 50 40 55 30 45 20 40.0

12 VR Parallel Planes 50 60 35 40 45 45 45.8

13 VR Parallel Planes 35 20 20 35 50 55 35.8

14 2D Parallel Planes 25 20 25 45 40 10 27.5

15 2D Be The Data 35 5 25 45 50 60 36.7

16 VR Parallel Planes 95 25 50 40 80 60 58.3
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K.2.2 Normality Tests

Table K.3: TLX Subscale Normality Tests

Variable W df Sig.

Task Work Load Index

2D - Be The Data 0.87 4 0.296

2D - Parallel Planes 0.861 4 0.264

VR - Be The Data 0.912 4 0.492

VR - Parallel Planes 0.985 4 0.933

Effort

2D - Be The Data 0.911 4 0.488

2D - Parallel Planes 0.971 4 0.85

VR - Be The Data 0.841 4 0.199

VR - Parallel Planes 0.963 4 0.797

Frustration

2D - Be The Data 0.763 4 0.051

2D - Parallel Planes 0.897 4 0.414

VR - Be The Data 0.993 4 0.972

VR - Parallel Planes 0.833 4 0.177

Mental

2D - Be The Data 0.991 4 0.962

2D - Parallel Planes 0.708 4 0.014

VR - Be The Data 0.79 4 0.085

VR - Parallel Planes 0.893 4 0.395

Performance

2D - Be The Data 0.979 4 0.894

2D - Parallel Planes 0.854 4 0.241

VR - Be The Data 0.791 4 0.086

VR - Parallel Planes 0.791 4 0.086

Physical

2D - Be The Data - - -

2D - Parallel Planes 0.849 4 0.224

VR - Be The Data 0.827 4 0.161

VR - Parallel Planes 0.918 4 0.528

Temporal

2D - Be The Data 0.945 4 0.683

2D - Parallel Planes 0.827 4 0.161

VR - Be The Data 0.863 4 0.272

VR - Parallel Planes 0.94 4 0.653
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K.2.3 Levene’s Test of Equality

F df1 df2 Sig.

Overall TLX 2.208 3 12 0.14

Effort 0.714 3 12 0.562

Frustration 1.445 3 12 0.279

MentalDemand 0.575 3 12 0.642

Performance 1.222 3 12 0.344

PhysicalDemand 2.739 3 12 0.09

TemporalDemand 3.606 3 12 0.046

Table K.4: TLX Test of Equality

K.2.4 Overall Task Load Index Mean & Standard Deviation

Medium Mean Std. Deviation N

2D Be The Data 35.4167 9.56217 4

Parallel Planes 37.5000 7.54615 4

Total 36.4583 8.05179 8

VR Be The Data 37.5000 3.53553 4

Parallel Planes 38.9583 17.95538 4

Total 38.2292 12.00560 8

Total Be The Data 36.4583 6.76637 8

Parallel Planes 38.2292 12.77427 8

Total 37.3437 9.91734 16

Table K.5: Overall Task Load Index Mean & Standard Deviation
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K.2.5 Subscale Means of Task Workload

Mental Physical Temporal Performance Effort Frustration Overall

2D
BTD The Data 52.5 5 15 51.25 42.5 46.25 35.42
Parallel Planes 57.5 11.25 20 57.5 51.25 27.5 37.5

Combined 55 8.13 17.5 54.38 46.88 36.88 36.46

VR
Be The Data 56.25 40 23.75 23.75 58.75 22.5 37.5
Parallel Planes 51.25 27.5 30 33.75 50 41.25 38.96

Combined 53.75 33.75 26.88 28.75 54.38 31.88 38.23

Table K.6: Analysis of means on individual task workload subscales
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K.3 Insight Results

K.3.1 Normality Tests

Shapiro-Wilk W dF p

2D Be The Data 0.848 4 0.22

Number of Insights 2D Parallel Planes 0.993 4 0.972

EH2 VR Be The Data 0.945 4 0.683

VR Parallel Planes 0.982 4 0.911

2D Be The Data 0.801 4 0.103

Number of Correct Insights 2D Parallel Planes 0.96 4 0.78

EH3 VR Be The Data 0.773 4 0.062

VR Parallel Planes 0.827 4 0.161

2D Be The Data 0.863 4 0.272

Number of Incorrect Insights 2D Parallel Planes 0.827 4 0.161

EH3 VR Be The Data 0.729 4 0.024

VR Parallel Planes 0.63 4 0.001

Number of Unexpected 2D 0.732 8 0.005

EH4 VR 0.816 8 0.042

Depth Insights 2D Be The Data 0.993 4 0.972

EH5 2D Parallel Planes 0.863 4 0.272

VR Be The Data 0.895 4 0.406

VR Parallel Planes 0.927 4 0.577

Table K.7: Shapiro-Wilk Tests for Assumption of Normality

K.3.2 Levene’s Test of Equality

F df1 df2 Sig.

Number of Insights 2.546 3 12 0.105

Correct Insights 2.303 3 12 0.129

Incorrect Insights 1.372 3 12 0.298

Unexpected Insights 5.661 3 12 0.012

Hypotheses 1.418 3 12 0.286

Depth Insights 0.535 3 12 0.667

Table K.8: Levene’s Test of Equality for dependent insight variables
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K.3.3 Analysis of Insights

2D Be The Data VR Be The Data
ID 4 ID 6 ID 8 ID 15 ID 1 ID 7 ID 10 ID 11

Number of Insights 9 11 9 14 12 13 13 14

Breadth Insights 7 8 9 13 9 11 10 9

Depth Insights 2 3 0 1 3 2 3 5

Directed Insights 9 11 9 13 11 13 13 14

Unexpected Insights 0 0 0 1 1 0 0 0

Hypotheses 0 0 0 2 2 0 0 0

Domain Value = 1 2 4 4 1 4 6 6 6

Domain Value = 2 5 7 5 9 4 7 7 8

Domain Value = 3 2 0 0 4 2 0 0 0

Domain Value = 4 0 0 0 0 2 0 0 0

Mean Domain Value 3.0 9.0 7.0 11.0 2.2 1.5 1.5 1.6

Correctness = Correct 6 2 1 2 9 9 8 14

Correctness = Neutral 0 0 1 1 3 3 4 0

Correctness = Incorrect 4 5 4 6 0 1 1 0

Category = Overview 2 3 3 8 4 5 4 4

Category = Pattern 1 1 2 0 5 6 7 6

Category = Group 0 2 0 0 1 1 1 1

Category = Detail 0 2 0 0 2 1 1 3

Table K.9: Insight Matrix – Part 1/2
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2D Parallel Planes VR Parallel Planes

ID 2 ID 3 ID 9 ID 14 ID 5 ID 12 ID 13 ID 16

Number of Insights 27 25 26 28 27 21 15 23

Breadth Insights 13 9 10 16 18 14 7 11

Depth Insights 14 16 16 12 9 7 8 12

Directed Insights 23 22 20 11 15 12 7 10

Unexpected Insights 4 3 6 17 12 9 8 13

Hypotheses 7 2 4 6 4 8 4 5

Domain Value = 1 7 6 7 5 3 3 0 1

Domain Value = 2 13 17 16 17 19 10 10 16

Domain Value = 3 7 1 2 4 5 2 4 5

Domain Value = 4 0 1 1 2 0 6 1 1

Mean Domain Value 2.0 1.9 1.9 2.1 2.1 2.5 2.4 2.3

Correctness = Correct 11 24 15 21 21 18 12 21

Correctness = Neutral 14 0 7 6 5 3 2 1

Correctness = Incorrect 2 1 4 1 1 0 1 1

Category = Overview 9 4 5 11 2 4 1 0

Category = Pattern 13 9 8 7 16 10 7 15

Category = Group 2 1 0 0 5 2 1 3

Category = Detail 3 11 13 10 4 5 6 5

Table K.10: Insight Matrix – Part 2/2
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