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Easy Generation of Facial Animation using Motion Graphs

D. W. Fellner†1,2 and S. Behnke2

1TU Darmstadt & Fraunhofer IGD, Germany
2Graz University of Technology, Institute of Computer Graphics and Knowledge Visualisation, Austria

Figure 1: Example of unique animations generated automatically using our motion graphs technique from the same sequence of input ex-
pression labels, namely fear, surprise and happy. These animations are extracted from the accompanying video and have different poses
and temporal dynamics.

Abstract
Facial animation is a time consuming and cumbersome task that requires years of experience and/or a complex and expensive
set-up. This becomes an issue especially when animating the multitude of secondary characters required e.g. in films or video-
games. We address this problem with our novel technique that relies on motion graphs to represent a landmarked database.
Separate graphs are created for different facial regions, allowing a reduced memory footprint compared to the original data.
The common poses are identified using a Euclidean-based similarity metric and merged into the same node. While this process
traditionally requires a manually chosen threshold, we simplify it by optimizing this value for the desired graph compression.
Motion synthesis occurs by traversing the graph using the Dijkstra’s algorithm, and coherent noise is introduced by swapping
some path nodes with their neighbors. The expression labels, extracted from the database, provide the control mechanism for
the animation. We present a way of creating facial animation with reduced input that automatically controls timing and pose
details. Also, our technique easily fits within video-game and crowd animation contexts, allowing the characters to be more
expressive with less effort. Furthermore, it provides a starting point for content creators aiming to bring more life into their
characters.

Categories and Subject Descriptors (according to ACM CCS): I.3.7 [Computer Graphics]: Three-Dimensional Graphics and
Realism—Animation

1. Introduction

Animating a character’s face is crucial to give it the illusion of a
thinking brain. In films and video-games, the audience (or player)
focuses mostly on main characters that naturally undertake most

† Chairman Eurographics Publications Board

artistic attention. Animation of secondary characters, such as the
ones seen in the street of game or in a crowd, does not have the
same attention to detail due to cost and time constraints. There-
fore, facial animation of secondary characters is reduced to a
small array of animations/expressions that are constantly played.
If the character is only seen once, this is not an issue, however
when that is not the case, the repetitions become noticeable and
may even hinder the immersion in the medium. Facial animations
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are currently produced using either key-frame and performance-
driven techniques, which despite producing very good quality re-
sults are either slow, or require special equipment and the addi-
tional actor. Procedural animation, i.e. motion generated by an al-
gorithm, is an alternative capable of producing unique results with
a low cost. However, most research has focused on body animation
(e.g. [HG07,CTGH12,HTCH15]), leaving facial animation seldom
studied. Algorithm based techniques require considerably less in-
put, hence they are particularly suited for generating animations for
the multitude of secondary characters present in video-games and
in crowds of films.

In this paper, we present a novel end-to-end procedural facial
animation system inspired by the motion graphs of Kovar et al.
[KGP02]. The proposed method achieves unique and on-the-fly
motion synthesis, controlled via a small number of parameters us-
ing a compact structure. The motion of each facial region is en-
coded in a separate motion graph obtained from the analysis of a
labeled and landmarked facial motion DataBase (DB). Each graph
is self-contained to avoid leakage, i.e. movement of one region in-
fluencing another. The graphs are created by comparing the poses
in the DB using a similarity metric that accounts for the positions
and velocities of the landmarks. When the value is below a certain
threshold, the poses are merged in the same graph node. The author
controls this threshold indirectly by specifying the desired graph
compression ratio. Each time a sample is analysed and merged into
the graph, the thresholds are individually optimized to match the
chosen compression. Additional data is stored in order to reduce the
information lost when merging multiple poses into a single node.
Motion synthesis occurs by using Dijkstra’s algorithm [Dij59] to
find the path that minimizes the similarity between a source and
sink/target node. The labels in the database allow finding the rele-
vant target nodes, providing an intuitive control interface. The in-
formation contained in each path node is then used to recover the
final animation. Uniqueness is achieved via a combination of noise
in the path and independently calculated region paths. Finally, the
generated motion is smoothed using the Savitzky-Golay window-
based filter [Orf96] and sigmoid fitting to remove any jitter in the
path. The main advantages of our method are:

• Compact representation the DB and intuitive control of the de-
sired compression;

• Fast generation of animations on-the-fly near real-time;
• Unique animations in each generation;
• Authoring of animation with a low number of input parameters;

These advantages make the method suitable for generation of
large quantities of facial animation, considerably reducing the cost
of animating secondary characters. The remainder of this paper
is organized as follows. We start by presenting the different ap-
proaches that use motion graphs in body animation, followed by
the challenges of applying these to the face, sec. 2. In section 3,
we present an overview of how the full method. In section 4, we
focus only on the creation of the different motion graphs from the
analysis of a motion database. The next section deals with extrac-
tion and recovery of the animation from the graph, and the process
of introducing coherent noise, sec. 5. In section 6, we present the
results, compare them with [ZSCS04], and discuss the limitations
and factors that influence the results. Finally, the conclusion and
future work are presented in section 7.

2. Related Work

Procedural animation approaches are different from performance-
driven and key-frame techniques since they are capable of gener-
ating an animation from discrete input. The author pre-configures
an algorithm which then generates the animation from discrete
parameters or events, effectively controlling the animation with-
out directly manipulating the model’s transformation/deformation.
Procedural animation techniques can be loosely divided into 3
classes: constraint or rule-based [PG96, Per97, BHPN01], where
rules impose limits and variations on the generated motion; sta-
tistical or knowledge-based [KGP02, HG07, SBR∗14, HTCH15],
with the motions learnt from examples; and finally behavior-based,
where the cognitive/emotional process is emulated [XMLD07]. In
the last, the character’s behavior is modeled to decide the anima-
tion, while statistical and constraint-based methods focus on the
actual motion. These still require an author to control the param-
eters that generate small animation sequences, which does not oc-
cur in behavioral techniques. Hybrid techniques also exist and in-
clude [AD07, BSG10, SBR∗14].

Motion graphs fit within statistical procedural animation, and
have been widely used for body animation [KGP02, HG07,
CTGH12]. Kovar et al. [KGP02] defined motion graphs as a di-
rected graph capable of encoding motion data in a way that syn-
thesising movements is done by traversing the graph. The move-
ments can be encoded in the nodes or the edges. Motion graphs are
different from move trees [MBC01] as the latter is created manu-
ally, while the former is automatic [KGP02]. Using motion graphs
entails several aspects: defining the structure, creating the graph,
choosing the path and handling the transitions. Different struc-
tures include using the edges to store small motion clips [KGP02]
or place groups of animations in the nodes, i.e. parametric graphs
[HG07, CTGH12]. The latter makes path selection faster, allow-
ing for interactive rates [HG07], at the cost of more user interac-
tion. Graph creation usually consists of comparing all the frames
[KGP02] or nodes [HG07] and deciding, based on similarity met-
ric, if they should be connected or merged. These nodes, tradi-
tionally, have information on the model’s joints, however more re-
cently [HTCH15] stored actual meshes. Kovar et al. [KGP02] used
a Euclidean distance based metric, which considers frames around
the pair being analysed. With a poor similarity metric, the anima-
tion will jitter, thus producing disconnected results. Choosing the
path depends on the desired motion, [KGP02] chose the nodes that
minimize a pre-defined route. Heck and Gleicher [HG07] presented
approaches that: 1) keep the character moving to a location, 2)
best follow user requests, e.g. direction. Calculating transitions
between nodes is also important, as each node can have content
from different samples and directly concatenation can lead to jit-
ter. [KGP02] found the 2D transformation that converts joints posi-
tions from one edge to another. Gleicher et al. [GSKJ03] used a dis-
placement map to improve the smoothness. Casas et al. [CTGH12]
minimized a similarity metric based on the shape, motion and la-
tency. Parametric approaches face a more delicate problem as each
node generates a large amount of animations, e.g. [HG07] sampled
the parameter space and chose the best candidates. For more details
on motion graphs, the reader is referred to [Gle08]

The application of motion graphs to facial animation is scarce
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compared to body animation. As Orvalho et al. [OBP∗12] points
out, facial movements are more complex than body movements. Al-
though both are temporally non-linear, facial movements are also
non-linear in terms of shape. Both have issues with rigid align-
ment, the body due to different orientations, and the face due to
head movements. Most work on body motion synthesis has fo-
cused on tasks like locomotion or grabbing objects/fight, where
the constraints used, such as foot placement, are well understood.
This does not occur with non-verbal behaviors in both body and
facial motion synthesis. Besides, there is a considerable amount of
body motion data available to train procedural approaches, while
facial data is substantially scarcer. The only known exception is the
work of Zhang et al. [ZSCS04], which relies in a graph created by
connecting all poses in the training sequence, and each node con-
tains a facial mesh. The user specifies the source and destination
nodes, and the path is chosen by minimizing a L2-norm based sim-
ilarity metric. Variations are added by traversing the graph several
times for different parts of the face. The authors also introduced
the creation of a graph per facial region, with each used to find the
optimal in-betweens of manually defined key-poses. Our approach
shares some concepts with Zhang et al. [ZSCS04]. However, we
extract meaningful connections from the samples instead of con-
necting all nodes, which reduces the graph size considerably. Sim-
ilar to [ZSCS04], we also traverse each region graph, however, we
vary the chosen paths for coherent noise. Finally, expression labels
facilitate specifying the nodes, thus easing the control of the ani-
mation.

As for procedural facial motion, Arya and DiPaola [AD07] pre-
sented an approach that uses 4 independent spaces: knowledge, per-
sonality, mood and geometry. The first is controlled via a XML-
based language, the second and third have psychology bases, while
the last relies on a hierarchy to define the motions. Another hier-
archical approach was presented by Perlin [Per97], where the low-
est level relies coherent noise applied to joints’ motion, while the
highest specifies an emotion that is blended with the current pose.
Bidarra et al. [BSG10] modeled the character’s internal state us-
ing the PAD model [MR76], with emotions, mood and personal-
ity mapped to points in this space. The mood is updated using a
push and pull approach, which drives the choice of short anima-
tions placed in the PAD space, and blended according to the mood
proximity. Xue et al. [XMLD07] presented an approach that uses
fuzzy logic to combine existing expressions using parameters from
3 layers: social, emotional and physiological. While the expression
is generated by blending, the timing needs to be manually con-
trolled. Sagar et al. [SBR∗14] combined statistical and behavioral
models to create a generative model of facial expressions. They
simulated, using e.g. recurrent neural network models, the different
neurobiological systems that trigger the facial muscles. The ani-
mations are generated by activating precomputed biomechanically
simulated deformations that are associated to a physically based
model.

Most approaches [DDLT02] rely on some sort of hierarchy to
control the animation [Per97, AD07, XMLD07, BSG10], which
means there is an associated configuration cost. Motion graphs
can significantly reduce this step, since they are automatically cre-
ated and encode both timing and pose information. Sagar et al.
[SBR∗14] presented, arguably, the most advanced work on facial

animation generation, however this leads to a complex set-up, spe-
cially for behaviors not previously learned by the model. Therefore,
the novelties of our method are:

• Motion graphs based approach specifically tuned for facial an-
imation that achieves a compact representation of the original
motion. This requires a new node structure for encoding the orig-
inal motion in a smaller space;

• Novel approach to ease the choice of the thresholds based on
the desired compression. Most methods leave this choice to the
user, which is a slow and challenging task as the threshold is a
heuristic value that dependents on the similarity metric. Vary-
ing the threshold also tends to produce predictable results only
with large variations. Optimizing the thresholds for the amount
of information to keep in the graph considerably simplifies the
fine tuning of a graph. Additionally, a threshold affects merg-
ing of all poses and samples equally, which is not ideal given
that different sequences might have more subtle pose variations
than others. Therefore, a threshold for one sequence might be
too aggressive for another. Individual thresholds create graphs
that represent the DB motions better and lose less information
than with a global threshold;

• New method for introducing coherent noise in animation, by
varying the nodes in the path;

3. Method Pipeline

For a better readability, we now present a small list of the most
commonly used terms to refer to different aspects of our motion
graph-based technique.

• Region Graphs: Motion graphs created for each facial area;
• Sample/Sequence: Sequence of poses/frames in the original DB;
• Sample Graph: Group of region graphs created from one sample,

Gsamp;
• Final Graph: Group of region graphs that results from merging

all sample graphs, G f ;
• Expression labels: Labels included in the DB samples. In the

present case they include the basic emotions.
• Node: A graph node contains the landmarks displacement and

additional data (sec. 4.4) used to reconstruct the motion (sec.
5.1);

• Landmark displacement: Difference between current landmarks
coordinates and the base pose landmark coordinates. The base
pose is the average of first frame/pose of all samples;

• Source Node: First node in a motion generation;
• Destination/Sink Node: Last node in a motion generation;
• Compression: % calculated based on the data difference between

a graph with a node per sample pose and the current final graph.

Our approach for motion synthesis relies on first creating the
region graphs from the analysis of the DB and second, traversing
these structures to synthesize the motion, according to user input.
This process is outlined in fig. 2. Motion Graph creation (sec. 4.1)
consists in comparing all poses, via a similarity metric (sec. 4.2),
from each DB sample to create a sample graph. The poses are
merged into a single node when the similarity is below a certain
threshold. All the sample graphs are then merged to create the final
region graphs, using the same compare-and-merge approach, but
in this case between nodes of the sample graphs. The thresholds,
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Figure 2: Overview of the procedural animation pipeline. The DB is analyzed to create a graph per facial region. As the samples are
analysed to create the graphs and then merged, their compression values are compared against the desired compression, and, if the value
differs, the process is repeated with another threshold. Motion synthesis occurs by using the input expression label to find a path in the
graph that allows recovering the final motion.)

used when creating sample graphs and when merging them, are au-
tomatically determined via optimization for a desired compression
(sec. 4.3). The author controls motion synthesis by using the same
expression labels as the ones associated to DB samples. These la-
bels are used to determine the next destination node, which then
allows finding the minimum distance path that connects the current
displayed facial expression and the next (sec. 5). The in-betweens
and timing of the final motion are then obtained by analysing the
path nodes (sec. 5.1). Coherent noise is introduced by varying the
path to generate unique sequences (sec. 5.2).

4. Motion Graph Generation

The creation of the region motion graphs starts with a dynamic
2D/3D sparse DB, whose samples need to be aligned to remove
influences of identity and head movements. The choice of the DB
followed the requirements of having: sparse landmarks, expression
labels, multiple samples per label and most intense poses identi-
fied, i.e. peak-poses. While dense data provides more information,
sparsity is more lightweight and considerably reduces leakage of
motion from one facial region to another. We selected the Cohn-
Kanade (CK and CK+) data set [KCT00,LCK∗10] because it fits all
the requirements in spite of not being originally intended for mo-
tion synthesis. Alternatives include [ZYC∗14, LCP∗11], however
the first is not free and the second does not have enough expression
labels. CK/CK+ expression labels are associated to the emotions
of: happiness, sadness, disgust, surprise, anger, fear, contempt plus
neutral. All samples follow the structure: neutral-to-peak expres-
sion, with each pose containing 68 landmarks. CK/CK+ requires
pre-processing to reduce errors/jitter and to remove the identity and
head movements (important for accurate similarity values). There-
fore, we clean the data manually, and then fit a sigmoid to each
landmark displacement, per sample. This process smooths the mo-
tion while keeping its individual variations and timings. The sig-
moid function (defined in eq. 1) was chosen as it incorporates the
acceleration variations of human motion. The sigmoid is controlled
by: b1, curve’s maximum value; b2, steepness; and b3 translation.

Least squares (eq. 2) is employed to find the optimal parameters for
each sample data, with m being the number of points in the curve.

gb1,b2,b3 =
b1

1+ e−b2(x−b3)
(1)

min
b1,b2,b3

m

∑
i=1
‖yi−gb1,b2,b3 (xi)‖2 (2)

Finally, the number of landmarks is reduced (fig. 3) to lower the
overhead of graph creation, motion synthesis and errors in similar-
ity calculation. Pose alignment is done using Procrustes analysis
in two stages. First, for each sample, all poses are rigidly aligned
with their first (neutral) pose using landmarks of nose and eyes cor-
ners. Secondly, for each sample and each region, the first pose is
aligned with the average neutral expression of all the samples, and
this transformation is applied to all sample poses. This results in
"non-rigid" alignment where the regions are individually aligned,
thus reducing the effect of different proportions. The landmarks
used in this second stage can be seen in fig. 3.

Figure 3: On the left, the original 68 landmarks; On the middle,
the reduced set used to create the graph; On the right, markers
used for "non-rigid" alignment of the face regions, grouped by
colors: blue for eyebrows; different greens for eyes, cyan for nose,
red for mouth and magenta for jaw and cheeks

The proposed method relies in region graphs instead of the holis-
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tic approach with only one graph. This allows more accurate sim-
ilarity values where the motion of one region does not affect the
similarity value of another. It also leads to more compression, as
each graph only stores its most significant motions. Additionally,
the holistic approach makes the thresholds considerably harder to
control, and would require for a finer grained optimization (sec.
4.3). The regions chosen for this paper are: eyes, eyebrows, nose,
mouth, with the cheeks and jaw grouped into another. This choice
is based on observation of the samples’ movements, although other
configurations are possible.

4.1. Graph Creation

Graph creation is the same irrespective of the region. It first con-
verts each sample into a sample graph, Gsamp. The connections be-
tween adjacent nodes/poses are established here, hence storing the
temporal dynamics. As a result, the order in which the poses oc-
cur becomes part of the sample graph in the form of edges. After-
wards, the sample graphs are merged to create the final graphs, G f
(shown in fig. 4. Similar nodes are identified, and serve as transition
points, effectively bridging one sample to another. As both stages
are similar, we now describe the process of creating a sample graph
(algorithm 1). The differences between stages are highlighted af-
terwards. Calculating the similarity between two poses/nodes and
finding the optimal thresholds are described in the following sec-
tions.

Figure 4: Example of what happens to a sample through the
whole graph creation process (only shown for one region graph).
The sequence is first converted to a sample graph and is then
merged into the final graph. Sample nodes containing poses P1 to
P8 are all merged into existing final graph nodes. Double circle
nodes represent destination nodes, and contain peak expressions.

At this point, it should be noted that all DB sequences need to
start with the same/equivalent pose, Peq, which is neutral in the case
of CK/CK+. While how each sample unfolds is not relevant, this
pose is the common denominator between all samples, allowing
the landmark displacement to be calculated. This displacement is
required for the similarity computation (sec. 4.4 for the reasoning).

We additionally average the landmarks of the equivalent pose of all
the samples, Peq. A sample motion graph is then generated follow-
ing these steps for each pose: 1) calculate the displacement, Dcur,
between current pose landmarks, Pcur, and the sample’s first pose
P1st ; 2) add Dcur to Peq to create Pnew; This converts the sample’s
displacement/landmarks into their counterparts in the final graph.
The Pnew is used to 3) calculate the similarity to all the current
sample-graph nodes, < S1...Sn > and choose the lowest value, Slow;
if 4) Slow is below the threshold, merge Pnew with the lowest simi-
larity node Nlow; Otherwise, 5) create a new node, Nnew, and append
it to the sample graph,. In both cases, a connection is established to
the previous iteration node.

Algorithm 1 Sample Motion Graph Creation
1: procedure CREATESEQUENCESUBGRAPH

2: Avg all equivalent sample poses >> Peq
3: for all sample frames do
4: Pcur−P1st >> Dcur
5: Dcur + P̄eq >> Pnew
6: CalcSimilarity(Pnew, Gsamp) >>< S1...Sn >
7: ChooseLowestValueNode(< S1...Sn >) >> Slow,Nlow
8: if Slow < threshold then
9: Merge Pnew with Nlow

10: else
11: Create node w/ Pnew and Dcur >> Nnew
12: Add Nnew to Gsamp

13: Connect Nlow/Nnew to prev. analysed node

Creating the final graph is an iterative process seeded with a ran-
dom sample graph. Merging a sample graph with the final graph
again follows the same comparing-and-merge approach. However,
when the nodes are merged, we additionally use Procrustes Anal-
ysis to align the sample graph node with the absorbing final graph
node using the same groups as in fig. 3. Uniform scaling is not con-
sidered to reduce changes in the shape. We additionally apply this
transformation to all following sample nodes, since this will gen-
erally improve the similarity calculations when these are compared
after the current merging. As the alignment is applied to the sam-
ple, there is no need to store or compute the transformations when
synthesising motion.

4.2. Similarity Metric

The chosen similarity metric, eq. 3, takes into account both spa-
tial location of the landmarks and their instantaneous velocity,
with lower values representing higher similarity. When compar-
ing two different poses a and b, we define that each pose/frame
Pa is composed by n number of landmarks < PaL1...PaLn >.
Thereby, the distance between two poses for the same landmark

i is given by dist(PaLi,PbLi) =
√

∑
dimensions
j=1 (PaLi, j−PbLi, j)2.

The instantaneous velocity of a landmark i for the Pa is given by
~V (PaLi) = PaLi−PaprevLi, where PaprevLi is the position of Li in
the pose/frame immediately before Pa. On top of this, we calcu-
late the velocity’s influence, vin f l , which is a scalar that represents
how similar are the velocities of a landmark i in two poses. This
is given by vin f l(PaLi,PbLi) = 1−|~V (PaLi) ·~V (PbLi)|. vin f l varies
between [0, ..,1]: 0, if the two vectors are the same, independently
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of the direction; 1, if they form +/−90◦. If both vectors are close
to opposite, we argue they represent onset or offset phases, thus the
influence should be the same. This is achieved using the absolute
value. The final similarity value is obtained via:

sim(Pa,Pb) =
n

∑
i=1

dist(PaLi,PbLi)(1+λvin f l(PaLi,PbLi)) (3)

λ controls the influence of the velocity (smoothness) in the result.
For the implementation we have set the λ to 1. When this metric is
computed between two nodes in graph(s), the instantaneous veloc-
ity is calculated for each incoming edge, and the lowest similarity
is chosen as the representative value. The similarity metric is used
both when identifying the similar nodes to be merged and to set
the graph edge weights. These weights are only obtained on the fi-
nalised graph, due to the similarity metric requiring all incoming
velocities of each node.

4.3. Optimizing for Compression

The author controls the graph by specifying the desired compres-
sion and the acceptable margin, e.g. 90% compression with 10% of
tolerance, which are used to compare the number of nodes present
after each stage. It is by varying these values that the author con-
trols the trade-off between motion quality (smoothness) and flexi-
bility of the graph (compactness). Lower compression values lead
to more information being kept, since less nodes are merged. The
different thresholds are independently optimized for the stages of
sample graph creation and sample graph merging. When creating
the sample graph, the number of sample nodes is compared with
the original number of sample poses. When merging, the number
of nodes that increase in the final graph is compared with the sam-
ple graph nodes. This determines whether the desired compression
has been achieved or, if not, choose how to update the threshold.
If the latter, the stage is repeated until the compression is obtained
or it is no longer possible to update the threshold, since we follow
discrete values. A discrete space is sufficient to discriminate well
the poses given the used similarity metric and the database ranges.
While the method could also work in a continuous space, via an
additional ending condition, it is not guaranteed there exists an op-
timal threshold that achieves strictly the desired compression. This
happens because a small change in the threshold can lead to several
nodes being merged. The downside of this approach is that, if a very
small tolerance is specified, the compression may not be met. Nev-
ertheless, as each optimization approximates the defined goals, the
final compression approximates the desired values. The presented
method locally optimizes the thresholds for each stage/sequence,
with the goal of achieving a global compression. This prevents the
case where a threshold is too aggressive for one sequence but too
lenient in another, which is the case of global threshold methods.
Still, it is possible to configure our method to work with a global
threshold, by setting the compression to 50% and tolerance to 50%.
This means the initial threshold is used and any comparison be-
tween the number of nodes is valid.

On top of the compression goal, the author needs to provide an
initial threshold and how it will initially vary, i.e. a step. There-
fore, the main question is: how is the step updated? This process
is based on the obtained compression, where if it is lower than de-
sired, the threshold value is increased by the step. A higher thresh-

old means more nodes will be merged, hence the compression will
increase. If the compression is higher than the desired, then the
number of nodes has been reduced too much. Hence, the threshold
is decreased. The step itself will remain the same while the addition
or subtraction operation can be repeated. After there is an change
of the operation, each time the step is added or subtracted, it is di-
vided by two. This will continue until the desired compression is
obtained or the step is 1.

4.4. Graph Structure

The core structure of our approach is a directed graph, where each
node contains the average landmarks displacement of all poses
merged in it and each edge has a similarity value. The displace-
ment was chosen, as opposed to the landmarks positions, to miti-
gate errors in alignment and effects of each person’s proportions.
The neutral pose of two people has different landmark positions
but same displacement values. The first node created in the final
graph additionally contains the average landmarks of all DB neu-
tral poses, Peq. This results from the first node of all the samples
being always associated to a displacement of 0, thus containing the
base pose. This information is added to the displacement of a given
node to create the actual coordinates of the landmarks. Each graph
node also contains all expression labels from the sequences whose
nodes were merged in it. We store additional information in the
nodes to allow for better motion recovery (sec. 5.1). This informa-
tion is calculated from all the poses merged in each node.

• Average number of consecutive merged nodes and their respec-
tive landmarks velocities. Consecutive refers to, when merging
a sample graph into the final graph, a node from the latter might
absorb consecutive n sample graph nodes. Both n and the respec-
tive landmarks velocities are stored. After the graph is created,
these values are averaged;

• For destination nodes, i.e. nodes with at least one peak expres-
sion, we store the average number of frames from neutral-to-
peak expressions and respective standard deviation;

5. Motion Synthesis

Generating new motion (as shown in fig. 5) now becomes a task of
traversing the graph, choosing the nodes relevant to the desired fa-
cial behavior. The author can directly choose both the sources and
sinks/destinations in all graphs, which provides very fine control.
However, this approach requires deep knowledge of the graph. As
an alternative, we assume the nodes containing peak, or apex, ex-
pressions, previously identified in DB samples, are the most desir-
able to animate a character. These nodes are flagged and associated
to the respective expression label. By specifying the label, we con-
trol the next sink by randomly sampling a valid peak node. In a long
animation, the current sink node becomes the source for the next
iteration. The first source of the sequence is manually specified,
which can be easily done if the pose is a peak or neutral node. The
path is chosen using Dijkstra’s algorithm [Dij59] that minimizes the
similarity values between the source and sink nodes. This is done
for all region graphs to create a full facial behavior. While the path
is the basis for motion, the actual landmark movements still need to
be extracted (sec. 5.1). The path cannot be used directly as the tem-
poral dynamics were partially lost, e.g. a sequence with 10 poses
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Figure 5: Overview of the synthesis process. Expression labels
allow finding the desired sinks in each graph, with motions gener-
ated by path finding. Each node’s information is used to recover
the landmarks positions. After, all the region motions are assem-
bled and smoothed to obtain the final animation.)

might be represented with only 3 nodes. Additionally, creating ani-
mations for multiple characters requires uniqueness. Therefore, we
explore the structure of the graphs to add this extra variation (sec.
5.2).

5.1. Reconstructing motion from path

The data contained in each node (sec. 4.4) allows partially recov-
ering the information lost when the poses were merged. This pro-
cess starts with the Dijkstra’s path nodes from where the core poses
and dynamics are determined (step 1). Afterwards, these are ex-
tended to achieve a more realistic motion (steps 2 and 3) and fi-
nally smoothing removes any existing jitter (step 4). These steps
rely primarily on basic operations that require a small amount of
data, which keeps the stored data to a minimum.

1. Control the number of poses the node generates using the av-
erage of consecutive merged nodes, and extract each pose dis-
placement from the average landmarks’ velocity. This is crucial
to adequately recover non-linear aspects of motion. Applying
velocity depends on the number of poses. Only one pose means
no velocity is applied, since the pose is represented by the node’s
displacement. With more poses, the node’s displacement is used
as the central point to which either the velocity, or its inverse,
is added. This happens as poses are respectively created in the
direction of the next or the previous node. Poses created this
way are clamped to the poses present in the previous and next
nodes, e.g. in a middle node of a neutral to smile motion, a smile
created from the velocity application cannot be wider than the
smile present in the following node. Nevertheless, this is an ap-
proximation that will produce linear motions in the limit, which
is the case with a desired compression too high. This leads the
graph to no longer represent the dynamics of facial behaviors.

2. Use the peak nodes average duration as the sequence length.
The current displacement is stretched or shrunk accordingly us-

ing linear interpolation. While the previous step recovers the
shape of the temporal dynamics, the final duration is usually too
short as the nodes contain information from several samples.
This allows a more realistic synthesis particularly in neutral-to-
peak animations. Peak-to-peak transitions are also important, as
such, we estimate their duration using the node of the path clos-
est to the first graph node as a reference. The number of nodes
between this node and both, the source and sink, are used as
weighting factors of the respective peak durations. As an exam-
ple, for a path of 10 nodes, if the closest node is the third starting
from the source, they weights of the respective peak durations
will be 0.3 and 07.

3. Normalize the displacements of each facial region. As each path
is created independently, the lengths of the region paths tend to
be different. The motions are normalized, via linear interpola-
tion, by finding the longest and stretching the others to match its
size. Linear interpolation is used here and in the previous step,
however only for the in-betweens of the motion curve formed in
the step 1. As a result, the motion as a whole does not become
linear and keeps its core motion properties.

4. Smooth the sequences using the Savitzky-Golay window-based
filter [Orf96] and sigmoid fitting (sec. 4). These approaches
complement each other, as the first removes drastic motions,
preventing the sigmoid to be too sharp, and the second removes
any left zigzag. This tends to occur when generating sequences
not in the DB or when path noise is introduced (sec. 5.2). Sig-
moid curves are associated to motions with slow in and out,
which is the case of most movements of facial regions. However,
it can approximate linear motions, such as blinking, as long as
the compression does not make the blinking nodes merge with
other labels nodes;

5.2. Introducing Variation

Synthesizing animations that share a common label, but are slightly
different, is a crucial requirement for our method. It allows cre-
ating an animation of a crowd that can react, e.g. to a joke, with
the same core emotion but slightly different and idiosyncratic mo-
tions. Our approach inherently introduces noise, as each facial re-
gion has its own motion graph and respective path. Thus, a new se-
quence is composed by movements originated from different sam-
ples. We force additional variations in the sequences length and
the chosen path. The first, relies on the standard deviation, stored
per peak node, to define a normal distribution. We randomly sam-
ple this space and stretch/shrink the displacement accordingly. The
path variations build on top of Dijkstra’s path (sec. 5) by randomly
replacing path nodes with their neighbours. These connect to the
original path nodes and, as such, contain poses similar to the ones
being replaced. To reduce the chance of selecting a completely dif-
ferent pose, we only consider neighbors that share at least one label
with the current source or sink nodes. Noise is controlled by the
percentage of the original path that can be changed and the number
of neighbor hops from which a node can be selected. Thus, coher-
ent noise is added without disrupting the whole sequence. Never-
theless, depending on the graph, the resemblance of nodes might
be broken with more than 2 hops, making the noise random. With
these two approaches, enough samples in the DB, and the inherent
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Generation
Time

(seconds)

Input Compress.
Seq. Creation

(%)

Input Compress.
Seq. Merge

(%)

Nodes
Compress.

(%)

Data
Compress.

(%)

Seq. Duration
+/- Deviation

(fps)

Landmark Diff.
+/- Deviation

(pixels)

Angle Vel. Diff.
+/- Deviation

(%)

Synth. Times
+/- Deviation

(seconds)
3411,1 0,1+/-0,1 0,2+/-0,2 -54.07 22.74 0+/-0 1,43+/-1,96 14,49+/-13,49 0,39+/-0,45
5560,3 0,1+/-0,1 0,3+/-0,2 -10,27 44,22 0+/-0 1,67+/-1,967 14,85+/-13,77 0,49+/-0,60
4973.2 0,1+/-0,1 0,4+/-0,2 8,37 53,02 0+/-0 1,84+/-2,17 15,06+/-13,96 0,55+/-0,57
2859,6 0,2+/-0,1 0,5+/-0,3 38 66,8 0+/-0 2,09+/-2,40 15,64+/-14,37 0,72+/-0,57
1575 0,2+/-0,1 0,6+/-0,3 56,36 74,36 0,03+/-0,17 2,33+/-2,5 16,75+/-15,24 0,89+/-0,70

1280,4 0,2+/-0,1 0,7+/-0,3 58,76 75,66 0,029+/-0,17 2,39+/-2,62 16,83+/-15,25 0,90+/-0,74
1892,1 0,2+/-0,1 0,7+/-0,2 57,59 75,54 0,014+/-0,11 2,37+/-2,62 16,61+/-15,04 0,88+/-0,75
2253,8 0,2+/-0,1 0,8+/-0,2 60,94 77,66 0,043+/-0,21 2,46+/-2,61 16,89+/-15,37 0,91+/-0,73
1227,5 0,3+/-0,1 0,6+/-0,3 57,92 75,5 0,029+/-0,168 2,33+/-2,41 17,07+/-15,62 0,87+/-0,80
1038,2 0,4+/-0,1 0,6+/-0,3 60,38 77 0,057+/-0,293 2,30+/-2,58 16,40+/-15,14 0,84+/-0,71
887,5 0,5+/-0,1 0,6+/-0,3 62,5 78,2 0,043+/-0,27 2,12+/-2,29 16,54+/-15,4 0,88+/-0,76

1576,6 0,5+/-0,1 0,8+/-0,1 65 80,3 0.057+/-0,294 2,26+/-2,66 16,63+/-15,17 0,96+/-0,85
951,4 0,6+/-0,1 0,7+/-0,2 67,5 81,6 0,014+/-0,119 2,07+/-2,13 16,25+/-14,91 0,98+/-0,82
814,7 0,7+/-0,1 0,7+/-0,2 73,8 85,3 0.014+/-0,119 1,91+/-1,82 16,16+/-14,4 0,96+/-0,72
905,1 0,7+/-0,1 0,8+/-0,1 75,1 85,99 0,11+/-0,54 2+/-1,82 16,42+/-14,61 1,02+/-0,79

Table 1: Comparison between multiple graphs and quality of the sequences generated

variation of the graph, the number of unique sequences generated
from minimum input is almost limitless.

6. Results & Discussion

We have implemented our procedural approach in Matlab© and
tested it in a laptop with an i7-4720HQ and a NVidia GTX 970M.
The landmarks sequences are imported in Autodesk Maya 2011©

and applied to two 3D blendshaped face models using the direct
manipulation technique [LA10] as described in sec. A. Neverthe-
less, the 3D animation results of the accompanying video should
serve only as a rough approximation of how the final animation
could look like, with better results achievable artistic help. We
analyse facial motion graphs quantitatively in terms of compres-
sion, and by comparing the new animation against the original se-
quences. We additionally discuss how the proposed method relates
with the work of Zhang et al. [ZSCS04] and with a traditional facial
motion capture approach (sec. A). Accompanying video shows sev-
eral samples generated using the proposed approach, from where
fig. 6 was extracted. The video contains animations in two differ-
ent blendshaped models that serve as practical examples where the
motion graphs could be used. As more models are used, it becomes
even harder to identify similarities in generated motions.

The motion graphs were created from 70 sequences of ~20 sub-
jects of the CK/CK+ [KCT00, LCK∗10] DB. We have compared
the training samples, i.e. baseline, against the synthesized equiva-
lent and found that, even for high compression ratios, the proposed
technique is capable of synthesising motion similar to the original
data. Compression ratio refers to the memory footprint gains com-
pared to a graph with a node per pose of the DB. As a reference,
this base graph has 1792 nodes. The results can be seen in table
5.1, whose columns are: 1) motion graph creation time; 2) and 3)
contain the different inputs used in the compression optimization
respectively for the stages of sample graph creation and merging;
4) and 5) show the compression ratios in regard to number of nodes
and in terms of data, i.e. landmarks and numerical values associ-
ated to motion recovery; 6) duration difference and respective de-
viation, between each new sequence and its counterpart in the DB;
7) landmark distances, and deviation, between each sample pose
and respective synthesized pose; 8) angle difference, and respec-
tive deviation, between instantaneous velocities calculated for the

same poses as the previous column. The results are obtained using
the dot product and converted to % for easier interpretation. A per-
fect match corresponds to 0% and 90° to 100%; 9) synthesis times,
and their deviation, required to generate a new sequence.

This table provides different insights on how motion graph cre-
ation and animation synthesis behave. Regarding the first, data
compression ratio falls typically within the boundaries defined by
the user input, however it is near impossible to predict the actual
values since this is highly dependent on the content of the DB.
The nodes’ compression value can be a "misleading" measure as
it accounts for the nodes of all the region graphs. Therefore, these
nodes easily surpass the number of nodes of the baseline for lower
compression values. However, even with more nodes, similar land-
marks have been merged into the same node, and as a result data
compression already exists. Additionally, the structure representing
the connections, which traditionally is a matrix, grows exponen-
tially with the number of nodes of the graph. Therefore significant
savings occur by creating a smaller matrix for each region graph
instead of a matrix that connects all DB poses. The processes of
creating and using the motion graphs are also subject to local min-
ima, whose impact can be seen almost in all columns. An example
is the case of the data compression of 85.3%, that recovers mo-
tions more similar to the DB than other lower compression cases.
Here, the structure of the graph represents the core poses better,
which leads to a motion recovery better than other structures with
lower compression. Nevertheless, a lower data compression will
generally represent the motion better and require more time to be
created. This behaviour will be similar with larger DBs, i.e. more
samples will lead to longer generation times, with the size of the
graph following the desired compression.

Regarding the differences between original and synthesised se-
quences, the duration shows almost no loss of information, which
is explained by the choice of storing the peak duration. Differences
in the landmarks position have an error ~2-4 pixels, which is ac-
ceptable given the range of landmarks positions, ~270 pixels in the
x axis, and ~380 pixels in the y axis. Finally, the velocity error
ranges between 10 to 30%, which we consider acceptable given the
achieved compression. An interesting consequence of our method
is that for the lowest compression levels data recovery is still not
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complete. This results from some information being lost in merged
poses. This would be only possible with extremely low compres-
sion values, in which the extra data (sec. 4.4) would lead to more
space being used than the original data. These results confirm the
method significantly reduces the DB size while keeping the lost in-
formation to a minimum. Also relevant is the synthesis time that
is reduced as the graph size increases. This occurs due to bigger
graphs requiring less time to recover information since sigmoid fit-
ting converges faster. Additionally, the path finding time for this
type of graphs and sizes is negligible. In larger graphs that origi-
nate from more comprehensive DBs, the path finding will start im-
pacting the synthesis time, however we expect the results to still be
acceptable. This results from Dijkstra’s algorithm [Dij59] perform-
ing well in sparse graphs with a complexity of O(Elog(N)), where
E is the number of edges and N the number of nodes [CLRS09].
Which is the case of the created graphs due to the nature of facial
poses that connect and are followed only by similar poses. With the
present graph, synthesis performs near real-time and as a result we
believe that porting this technique to a game engine would easily
surpass this constraint.

The approach closer to ours is the face graph of Zhang et
al. [ZSCS04]. In terms of the quality of motions, the results are
similar with different issues, as seen in the accompanying video.
Face graphs produce motions that occasionally have distinguish-
able phases, i.e. there is a mid expression, usually neutral, when
going from expression A to B. Our approach sometimes produces
distinguishable region timings, which would also occur in Zhang’s
[ZSCS04] approach if a graph per region would be created. Both
can occasionally generate an exaggerated pose jump. The proposed
method’s main advantage is the compression, as a face graph is
created by connecting all poses with all other. This indeed fully re-
covers the motions from the DB, however it also leads to a longer
path finding, usually taking ~1.9 seconds. We have also compared
our approach with a more traditional take on animation (sec. A).
We markerlessly capture the performance of a person executing
the same order of expression labels as the equivalent synthesised
sequence. In this context, face capture tends to provide more ex-
pressive and natural results, with the actor making poses that better
match the model shapes. This comes at the cost of noise that leads
to strange motions. Our method produces considerably more well-
defined motion that is smooth. However, this also leads to more
stiff motion. Generation via motion graphs is also limited to the
poses present in the DB, which does not occur with performance
capture. On the other hand, our approach requires far less input to
create an animation, eliminates the need for additional equipment
and the actor. Performance capture and procedural animation share
some challenges, such as pose alignment, however these are sig-
nificantly different with distinct requirements and constraints. As a
result, our goal with this comparison is just to provide a reference
point on how both fare.

The chosen DB and its impact on the results also need be re-
ferred. The main reasons for the choice of CK/CK+ are presented in
sec. 4, however it is less than ideal. It was not created for facial ani-
mation, the poses are sometimes too small to be applied to a model,
leading to animations that are hard to recognize. The landmarks are
either not enough or properly placed, and contain some jitter even
after cleaning. It only has motions from neutral-to-peak, whose di-

rect use would lead to a graph that only generates paths to peak
expressions, i.e. dead-ends. This issue is "bypassed" by appending
to the end of a sample, its own reversed copy. Nevertheless, facial
behaviors have different onsets and offsets [ACR09], thus ideally
the full behaviors should be used. Only having neutral-peak-neutral
transitions proves that our method can learn the dynamics of tran-
sitions, but it does not mean these are the most correct ones.

The main limitations of the presented method include its heavy
reliance on well defined peak expressions, which is not always the
case, such as in subtle motions. More complex motions such as vi-
sual speech might require an extremely large graph. Our approach
to align and reduce the effects of individuality, via Procrustes’ anal-
ysis, is also not sufficient to completely remove all the effects of
different proportions, and can sometimes introduce peculiar mo-
tions. High compression values can result in peak expressions of
different labels merged in the same peak node. This translates into
the character displaying the same pose for multiple expression la-
bels. When recovering data, using sigmoid fitting to smooth the
results can also lead to excessive removal of the individual varia-
tions, hence removing a layer of uniqueness. Facial behaviors also
include not only facial expressions, but gaze and head movements
as well, which cannot be represented with the current graph struc-
ture. Finally, while not a limitation, a seed sequence is randomly se-
lected and used as the starting graph. This makes the graph slightly
different each time it is generated.

7. Conclusion

In this paper, we proposed a procedural method that relies on mo-
tion graphs, created for each facial region, to represent and syn-
thesize facial behaviors. This method can generate non-repetitive,
on-the fly animations with minimum input, namely the expression
label. The label is used to find destination nodes associated to most
intense expressions. The path is calculated by minimizing the simi-
larity metric between the source and destination nodes. Our method
is capable of generating almost an limitless number of unique se-
quences, due to the choice of having separate motion graphs for
each region, and by introducing small variations in the minimum
distance path. The author controls how much information should
be kept in the graphs, with the thresholds optimized to achieve
the desired compression. This makes the specification of a motion
graph considerably easier, and allows for motion graphs to better
represent the DB data, as each sample had its own individual op-
timal threshold. Additionally, the proposed approach is capable of
representing the DB in much smaller memory footprint, with a re-
duced loss of information. An existing graph is also easily extensi-
ble, since a new sample can just be merged into the graph as long
as it follows the same landmarks configuration, and has the same
reference pose.

Our priorities for the future include extending the motion graph
to support gaze and head motions, which is required for attaining
more realistic facial behaviors. In the same sense, we intend to
explore how to represent more complex movements such as nod-
ding, expressing pain and speech without increasing the complex-
ity or the size of the graph exponentially. Also, facial region graphs
are treated separately, which sometimes leads the disconnected re-
gion movements. Solving this is required to achieve more credible
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Figure 6: Example sequences generated from applying the synthesised landmarks onto a 3D facial model. In the first row it is possible to
observe the actual landmarks associated to the following two model sequences. All the poses were extracted from the accompanying videos.

motions. The proposed method is particularly useful for animating
non-playable characters (NPC) that interact with the player or be-
tween themselves, in crowds of both video-games and films. In a
game, the characters can rely on behavior rules to trigger expres-
sion labels associated to the motion graph, thus creating a new ani-
mation on each interaction, as is shown in [SOC16]. In crowds, the
same approach can be used, or as an alternative, the user can di-
rectly author the crowd behavior. In both cases, the required input
is greatly reduced compared to both key-frame and performance-
driven animation. Main characters of films and video-games can
also be animated, at least on a basic level. The two main reasons for

such being: the proposed method relies on a DB that may not have
the desired motion expressed in the desired way, and, as the results
still contain some errors, fine-tune is necessary. Motion graphs have
a wide range of applications. and although their use is not a new
idea, their application in facial animation remains under-exploited.
Therefore, we hope to propel new research in this particular area.
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Appendix A: Video Generation

We now describe the processes used to generate the animations in
both Victor and Oldman facial models from Faceware© present in
the accompanying videos. All sequences, with the exception of the
performance capture, are generated using the approach described
in sec. A. The facial capture sequences are generated using the ap-
proach described in sec. A.

Direct Manipulation of Blendshapes

Our method connects to the blendshape direct manipulation method
[LA10]. The mapping for generating the animation is created with
14 landmarks associated to the manipulators via parent constraint.
We manually re-scale the landmarks to keep them proportional to
the model, using the neutral pose as a reference. These manipula-
tors are placed on the surface of the model, and allow updating the
underlying blendshape weights by using a "pin-and-drag" opera-
tion. Theoretically, the blendshape model is the summation of the
linear vectors of the defined target shapes [LAR∗14] (equation 4):
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F = ∑
i

biwi (4)

where F is the final face in vector form, which includes all vec-
tor positions of the face model in an arbitrary order of xyz, bi is
the vector of each blendshape target, and wi is the correspond-
ing weight. According to the original mathematical framework
of [LA10], there is a direct relationship between the blendshape
weights (w) and the moved manipulators. After all the manipula-
tors are located and moved on the surface of the face, the mathe-
matical framework keeps the resultant face model as close as pos-
sible to the moved manipulator. This relationship can be explained
as m = Bw, where m is the moved manipulator, B is the blendshape
matrix which includes all blendshape target vectors. Therefore, by
following [LA10], a regularized least square form is employed to
create interactive weight updates to demonstrate our visual results
(equation 5),

min
w
‖Bw−m‖2 +α‖w‖2 (5)

where α is the regularization term which should be small number
such as 0.0001. As a result of equation 5, our weight update equa-
tion is:

w = (BT B+αI)−1BT m (6)

Equation 6 updates the facial poses during the movements of each
manipulator. Besides, we enhance the framework by adding an in-
teractive feature which enables to calculate equation 6, and demon-
strate the corresponding face movements simultaneously. There-
fore, after the manipulators and locators are applied, the animator
can visually follow the face movements with the movements of the
manipulators.

Face Capture

Our face capture results were generated using a monocular blend-
shape based tracking approach. We first obtain the 3D mesh rep-
resenting the neutral face of the actor, scanned using a 3D scanner
– Artec Eva [Art]. An existing template neutral mesh and respec-
tive topology is then deformed to match the scanned mesh using
the non-rigid ICP algorithm of [ARV07] The deformation transfer
approach of [SP04] is then used to automatically generate person
specific blendshapes with an existing template of blendshapes as a
basis. This provides the set of blendshapes with desired topology
that we then use to solve for animation parameters.

For tracking the actor’s performance, we capture the monocular
video of the actor. We then track 68 distinctive landmark points on
the face, on a frame by frame basis using the dlib library [Kin09].
From these, we choose landmarks equivalent to the ones used in
the direct manipulation approach. These landmarks are then man-
ually matched with points in the 3D mesh. Finally, we solve for
the optimal blendshape weights for each frame by minimizing the
following energy term:

E =
N

∑
l=1
‖ΠQ(M(B0 +

NB

∑
i=1

αiBi)
(vl))−q(l)‖2

where:

• N is the number of landmarks
• ΠQ is the camera projection matrix
• M is the rigid transform from object space to camera coordinates
• B0 is the neutral expression blendshape
• αi is the weight associated with blendshape i
• Bi corresponds to the i-th blendshape
• vl represents the vertex corresponding to landmark l
• q(l) represents the l-th 2D landmark point in the image

The per-frame landmark detection can induce noise in the result,
so we smooth the obtained blendshape weights over the sequence
using a moving average filter to obtain our final animation weights.

© 2016 The Author(s)
Computer Graphics Forum © 2016 The Eurographics Association and John Wiley & Sons Ltd.


