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Abstract

The Gram-negative bacterium Bordetella pertussis is the causative agent of
whooping cough, a serious respiratory infection causing hundreds of
thousands of deaths annually worldwide. There are effective vaccines, but
their production requires growing large quantities of B. pertussis.
Unfortunately, B. pertussis has relatively slow growth in culture, with low
biomass yields and variable growth characteristics. B. pertussis also
requires a relatively expensive growth medium. We present a new, curated
flux balance analysis-based model of B. pertussis metabolism. We enhance
the model with an experimentally-determined biomass objective function,
and we perform extensive manual curation. We test the model’s predictions
with a genome-wide screen for essential genes using a transposon-directed
insertional sequencing (TraDIS) approach. We test its predictions of
growth for different carbon sources in the medium. The model predicts
essentiality with an accuracy of 83% and correctly predicts improvements
in growth under increased glutamate:fumarate ratios. We provide the
model in SBML format, along with gene essentiality predictions.

Author Summary

Metabolic flux models have been used to understand how organisms adapt 1

their metabolism under different growth conditions, and are finding 2

increasing application in synthetic biology and biotechnology. One barrier 3

to progress in this field is the construction and curation of metabolic flux 4
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models for new organisms. Here we present a curated genome-scale 5

metabolic flux model for Bordetella pertussis, the causative agent of 6

whooping cough. Producing vaccines against whooping cough requires 7

growing B. pertussis in large volumes. However, its growth is relatively 8

slow, final yields of biomass are relatively low and growth characteristics 9

can be variable. Understanding B. pertussis metabolism has applications 10

to improving vaccine production, as well as in understanding the basic 11

biology of this organism. 12

Introduction 13

B. pertussis is a Gram-negative bacterium that causes whooping cough, a 14

respiratory infection responsible for significant annual mortality 15

worldwide [1, 2], especially among infants and young children. B. pertussis 16

is described as a fastidious organism. It does not metabolise sugars as 17

carbon source as it does not possess an intact glycolysis pathway [3]. 18

Amino acids appear to be the primary carbon sources for growth. B. 19

pertussis can grow using most of the amino acids as a carbon source, 20

however alanine, proline and glutamate are utilized preferentially 21

suggesting that amino acids that are degraded to α-ketoglutarate or 22

pyruvate are oxidized rapidly. Several studies have demonstrated that 23

glutamate is by far the most efficiently metabolized and is considered to be 24

the main carbon source for growth of B. pertussis [3–5], which can be 25

grown in the lab using solely glutamate as a carbon source and cysteine as 26

a source of sulphur (along with salts and some vitamins). 27

It was a long-held view that the TCA cycle was not completely 28

functional in B. pertussis. This stemmed from the inability of B. pertussis 29

to utilise citrate as a carbon source along with observations of the build up 30

of poly-hydroxybutyrate and release of free fatty acids in batch cultures. 31

However, the B. pertussis genome contains genes that appear to encode a 32

complete pathway [6]. Recently, demonstration of citrate synthase, 33

aconitase and isocitrate dehydrogenase activities in B. pertussis gave a 34

clear indication that the TCA cycle is fully functional, although it remains 35

unclear why citrate does not support B. pertussis growth [7]. 36

Commonly used media for broth growth, such as Stainer-Scholte (SS) 37

broth [8], contain glutamate as the main carbon source. Modified SS broth 38

contains casamino acids and heptakis, and growth is enhanced by these 39

additions. Casamino acids probably increase the level of glutamate and 40

enable utilization of other amino acids. Heptakis, a cyclodextrin, absorbs 41

free fatty acids that are inhibitory towards B. pertussis growth [9]. 42

However, culture of B. pertussis in SS broth leads to an imbalance in N:C 43

ratios leading to the formation of ammonium which is inhibitory to growth, 44

resulting in relatively low final cell densities. 45
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Several studies have investigated parameters affecting the growth rate of 46

B. pertussis using either batch cultures or steady state cultures in 47

bioreactors (for example see [3, 5, 10,11]). These informative studies 48

revealed much of what is known about B. pertussis growth parameters, 49

identifying the importance of balancing N:C ratios, avoiding excessively 50

high substrate concentrations and the effect of salt concentrations for 51

attaining high biomass yields. 52

The slow growth and limited yields of B. pertussis in culture are 53

important limitations to the efficiency of B. pertussis vaccine production. 54

In particular, at least five times more culture volume is required to 55

generate one dose of an acellular pertussis vaccine compared to a whole 56

cell one. Expansion of B. pertussis vaccination programmes using acellular 57

vaccines, either into the developing world that for the most part use whole 58

cell vaccines, or to increase the use of booster doses for adolescents/adults 59

would place strain on global production of these vaccines. Increased 60

efficiency of B. pertussis culture would help to alleviate these strains but 61

this requires greater knowledge of the growth characteristics of B. pertussis. 62

Flux balance analysis (FBA) is an established approach for modelling 63

the metabolic networks of organisms at the genome scale, and is a 64

framework for integrating other ’omics data layers with metabolism [12–16]. 65

Briefly, the network of metabolic reactions in an organism is represented by 66

an m× n stoichiometric matrix, S. Each row of S represents a metabolite 67

and each column gives the stoichiometry for a particular metabolic 68

reaction. There are m metabolites and n reactions. The list of metabolites 69

includes both so-called ”internal metabolites”, which are not exchanged 70

with the growth medium or environment, and ”external metabolites”, 71

which are. External metabolites include nutrients in the modelled growth 72

medium, metabolites that diffuse in and out of the cell, and by-products of 73

growth that leave the cell. FBA models make the approximation that the 74

time scale of interest (hours or longer) is long enough that short-term 75

transients in the kinetics of individual reactions (which would usually 76

dissipate in seconds or minutes) will have largely passed, so that reactions 77

are running at steady state: there is no net production or consumption of 78

(internal) metabolites. Mathematically, each reaction is associated with a 79

flux v; the steady-state approximation is the constraint Sv = 0. The 80

specific growth medium and uptake rates mean that there are constraints 81

on how fast the influx of nutrients can be; mathematically, this means that 82

there are constraints on some or all of the reaction fluxes. Finally, FBA 83

models describe the growth capacity of an organism using an objective 84

function c: how much of the given objective could the metabolic network 85

possibly produce, at steady state, under the given constraints? The 86

objective is typically a biomass vector, c, describing the major components 87

of the dry weight of the cells. FBA models then approximate the 88

PLOS 3/23



metabolic network’s capacity to produce this biomass under various 89

conditions. FBA is performed by solving a linear programming problem: 90

max c · v (1)

s.t. Sv = 0

ar ≤ vr ≤ br.

where S is the stoichiometic matrix, v is a vector of reaction fluxes, c is the 91

objective function, and ar and br are vectors of length n describing lower 92

and upper constraints on the reaction fluxes. A growth medium is defined 93

by setting constraints so as not to allow uptake of nutrients that are not 94

present in the medium. 95

In principle, an FBA model can be constructed directly from an 96

annotated genome; where a gene’s enzymatic function is known, the 97

relevant reaction and metabolites can be added to the system and the 98

stoichiometric matrix can be constructed so as to capture the (usually 99

conserved) stoichiometries of the included reactions. In practice, genome 100

annotation and functional prediction is imperfect, and FBA models require 101

substantial curation [17]. This typically requires first constructing a draft 102

FBA model based on the annotation in an automated way, then examining 103

each reaction in S and determining whether it describes realistic 104

biochemistry, as well as examining the gene(s) associated with it, their 105

annotation in the organism and whether the gene-reaction relationship is 106

appropriate. This process requires considerable knowledge of the 107

organism’s biochemistry, and is labour intensive [17–20]. 108

Previously, dynamic models of limited compartments of B. pertussis 109

were developed and demonstrated the utility of this approach for 110

interrogating specific facets of B. pertussis metabolism. Here, we present 111

the first published genome-scale metabolic reconstruction for B. pertussis. 112

It is suited for flux balance analysis, and models B. pertussis ’ metabolic 113

reactions accordingly. We refer to this reconstruction as ”the model” or 114

”metabolic model” throughout. To demonstrate the use of the model to 115

interrogate B. pertussis growth, we used it to predict reactions that are 116

essential for growth on laboratory medium. We tested these predictions by 117

performing a genome-wide screen for essential genes using a 118

Transposon-directed Insertional Sequencing (TraDIS) approach [21] and 119

demonstrate a high degree of concordance between model predictions and 120

experimental observations. We used the model to investigate the reduction 121

of ammonia production that occurs during growth in standard medium, 122

and tested the predictions arising. The development of a genome-scale 123

model provides a valuable tool for investigating the growth of this 124

bacterium. 125
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Methods 126

Recent advances in theory and computational power have allowed 127

increasing automation in reconstructing full genome metabolic models. 128

While still requiring considerable manual work to refine them, draft models 129

can be produced rapidly and easily from annotated genomes. We used the 130

Model Seed framework as the starting point for our model. The Model 131

SEED integrates a range of existing approaches into a coherent pipeline, 132

accessed through a web interface [18,22]. 133

Our initial model was obtained from the SEED interface, uploading the 134

genome sequence of the Tohama I strain of B. pertussis (Genbank 135

accession number NC 002929.2). The genome sequence was then 136

reannotated by the integrated RAST annotation servers, before this 137

annotated version was used in the reconstruction of the model. The 138

process is fully automated, undertaking a series of steps to ensure the 139

resulting model is capable of producing the specified biomass vector under 140

FBA simulation. Details of the steps in the Model SEED reconstruction 141

are discussed below as pertinent to the steps in our manual curation, and 142

full details can be found in the paper by Henry et al. [18]. 143

Curation of the Metabolic Model 144

Biomass Objective Function. We performed experiments to 145

determine the composition of B. pertussis biomass and used the results to 146

define a biomass objective function for the model. The biomass objective 147

function (BOF) is a special reaction in FBA which defines key biomass 148

components, in specified ratios, that a metabolic network must produce in 149

order for the bacteria to grow. By default, the Model SEED produces an 150

organism-specific template biomass function, based on near-complete 151

BOFs for all the organisms examined in their original study. The template 152

reaction includes all universal biomass components. It also includes 153

non-universal components but only if criteria are satisfied that specify the 154

metabolic subsytems and functional roles a genome must contain for the 155

component to be added to the biomass reaction template [18]. Inevitably 156

this will not provide perfect results for new organisms, but provides a solid 157

starting point for organism-specific manual curation. Our model uses 158

SEED default single reactions to denote protein, RNA and DNA synthesis. 159

We adjusted the stoichiometry of the major biomass components to reflect 160

our experimental data. We also examined all components of the 161

automatically-created biomass objective to eliminate any obvious mistakes, 162

including spurious metabolites that were (incorrectly) required components 163

of any growth medium simply due to their presence in the objective. An 164

ATP cost is incorporated into the BOF to reflect the ATP costs of diverse 165

cellular functions that are necessary for growth but are not explicitly 166
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included in the model. 167

Biomass composition assays. B. pertussis strain BP536 was used in 168

these studies. BP536 is a streptomycin resistant derivative of the genome 169

sequence strain Tohama I; they contain the same metabolic gene repertoire 170

and metabolic network. Bacteria were grown in 100 mls of SS broth, 171

supplemented with heptakis at 1g/L, for 48 hours. The OD600 of the 172

cultures were recorded and the bacteria were pelleted by centrifugation in 173

a microfuge from an appropriate volume of culture to give the equivalent 174

cells for 20mLs of an OD600=1.0. These cells were freeze dried in 175

preweighed tubes to enable measurement of the dry weight of cells in this 176

culture volume. Appropriate volumes of culture were processed for 177

measurement of DNA, RNA, protein, lipid and carbohydrate. Genomic 178

DNA was extracted using a GenElute® Genomic DNA kit (Sigma, Poole, 179

UK). DNA was eluted using seven elution steps with 200µL of water each 180

time. Optimisation trials demonstrated that DNA was eluted for up to 7 181

elution steps. Eluate was collected in a preweighed tube to enable accurate 182

measurement of the total elution volume. RNA was extracted using 183

stabilization with RNAprotect Bacteria reagent (Qiagen Ltd, Manchester, 184

U.K.) and extraction using the RNeasy extraction kit (Qiagen Ltd). RNA 185

was eluted using 250µL of water into preweighed tubes to allow accurate 186

measurement of eluate volume. DNA and RNA were quantitated using a 187

Qubit (Life Technologies Inc, Paisley, U.K.). Protein was measured using 188

an assay based on the Bradford assay: the Bio-Rad Protein Assay 189

(Bio-Rad Laboratories, Hemel Hempstead, UK) using BSA as the protein 190

standard. Carbohydrate was measured using a phenol-sulphuric acid assay 191

using glucose as the standard [23]. Total lipid was extracted using the 192

Bligh-Dyer method [24]. The measurements were converted to percentage 193

of dry cell weight. Triplicate samples were processed for each assay, and 194

the experiment repeated three times. 195

Gap Filling The SEED algorithm [18] engages in automated filling of 196

gaps in pathways, systematically plugging holes until a viable model is 197

achieved. The pipeline adds the minimal number of missing reactions 198

required to fill gaps that prevent synthesis of the specified biomass 199

components. The added reactions are selected from a database that 200

comprises all of the biochemistry represented by the KEGG database. We 201

inspected each gap-filled reaction in the preliminary model. In the case of 202

B. pertussis these checks are particularly important, since it has evolved 203

through a process of genome reduction meaning that remnants of pathways 204

may be encoded by the genome [6]. 205
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Known Growth Conditions Part of the process of model curation is 206

to ensure it can recreate known behaviour. We curated the model to 207

ensure that its ability to grow on previously-defined media was correct. We 208

compiled data on viable and non-viable growth media 209

formulations [3, 4, 8, 25]. We then simulated growth on these media by 210

specifying the exchange reaction constraints to model the media, and using 211

FBA to determine whether the model could produce biomass under those 212

constraints. Where necessary, the model was adjusted to bring it in line 213

with experimental results. In some cases this involved corrections to the 214

exchange reactions present in the model, and in others the removal of key 215

reactions to disable pathways that made spurious use of metabolites such 216

as glucose. 217

Thermodynamic Viability Electrons, in the form of H- hydride ions, 218

are passed along the electron transport chain in a particular sequence. 219

Although in principle every step of the chain is reversible, in practice 220

problems arise if it is allowed to run in both directions. Energetically 221

unfavourable reaction sequences are able to occur, leading to the possibility 222

of free ATP production. These manifest themselves as sets of reactions 223

that ‘freewheel’, feeding into one another and running at a rate much 224

higher than the baseline level for the particular flux state. These loops can 225

provide free sources of energy to the cell, and hence must be removed in 226

order to ensure realistic results. As addressed in Thiele et al. [26], 227

problems with the electron transport chain can often be traced back to 228

reactions that use quinones as electron receptors. We examined all such 229

reactions, and where necessary we altered their direction and reversibility 230

to control any thermodynamically infeasible loops. 231

KEGG Associations The SEED Model included associations between 232

reactions in the model and KEGG reactions. We manually examined the 233

KEGG associations and used homology searches using BLAST algorithms 234

to update associations. A number of these appeared to be associating 235

different reactions to the same enzyme, for example similar reactions but 236

operating in different pathways. These wrong associations arose from the 237

annotation ascribing an incorrect (or too specific) EC number to an 238

enzyme, or from misannotation of enzyme function. In total 170 KEGG 239

associations were corrected (Supplemental Table S1). 240

Pseudogenes Pseudogenes are genes that have suffered a disabling 241

mutation (for example a single nucleotide mutation that introduces a 242

premature stop codon, or a single base pair deletion that causes a 243

frame-shift mutation) rendering the gene non-functional; this has occurred 244

recently enough for the coding sequence to be unchanged from the 245
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functional version except for the mutation. B. pertussis is noteworthy for 246

containing an unusually high number (358) of pseudogenes arising during 247

its evolution via genome reduction (Parkhill et al, 2003). Many genome 248

annotations contain the full amino acid sequence of the pseudogene and 249

the SEED model included these as functional enzymes. We removed 250

reactions assigned to pseudogenes from the model. 251

Maintenance ATP Costs The model allows for both 252

growth-associated (GAM) and non-growth-associated (NGAM) 253

maintenance ATP costs, to capture the energy use of processes that are 254

not explicitly described in the model [26,27]. In our gene essentiality 255

computations we model the GAM as a flux of 40 units ATP per unit 256

biomass and we do not require an NGAM ATP flux. Gene essentiality 257

results are unmodified if the NGAM is constant; as ATP is required for 258

biomass growth, its requirement in the NGAM does not change whether 259

reactions are deemed essential. In principle, the ATP costs can be 260

calculated experimentally by measuring substrate uptake as a function of 261

growth rate, usually done using chemostat cultures. This approach has 262

proved particularly difficult for B. pertussis, as the growth rate is relatively 263

insensitive to carbon source concentrations, with final yield of biomass 264

varying rather than growth rate, for example [3, 11]. This suggests that 265

uncharacterized regulatory mechanisms, or non-metabolic control, are 266

operating. Thus, the ATP cost used here, which is standard in other 267

metabolic models, is a sensible compromise. 268

Experimental Determination of Essential Genes 269

Essential genes were identified using Transposon Directed Insertion-Site 270

Sequencing (TraDIS) [21]. Saturated transposon libraries were constructed 271

using the pBAM1 delivery vector [28], modified with PmeI restriction sites 272

for digestion of vector-derived amplicons prior to sequencing. The details 273

of construction of the transposon library, sequencing of insertion sites and 274

analysis of insertion site frequency followed the approaches described 275

previously for TraDIS [29]. Three independent transposon libraries were 276

made. Each were plated on charcoal agar (Oxoid) supplemented with 277

50µg/mL kanamycin and incubated at 37°C for 72 hours. Between 300 000 278

and 500 000 transposon mutants were harvested per library and processed 279

for TraDIS. Insertion indexes were calculated for each gene and essentiality 280

calculated using the cut off point described previously [21]. 281

In Silico Essentiality Predictions The FBA modelling approach 282

allows the manipulation of a metabolic network of the cell to make 283

predictions about what impact these interventions will have on growth rate. 284
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In particular, the link between reactions in the model and their catalysing 285

proteins can be used to predict which genes will be fatal if knocked out 286

from the genome. Comparing predictions about essentiality from the 287

model with experimental essentiality data from real-world experiments 288

allows a valuable test of the model [18]. This test was performed with the 289

B. pertussis model. 290

We simulated growth of the B. pertussis model on a rich growth 291

medium, modelled on the charcoal agar used in the TraDIS experiment. To 292

simulate the protein-rich growth environment we enhanced the minimal 293

medium based on glutamate growth with free uptake of the full range of 294

amino acids. We then ran through each gene in turn and removed all 295

reactions from the model where annotations indicated the gene was 296

required to catalyse the reaction. Optimizing for the biomass objective 297

function, we ran FBA and normalised the achieved flux (c · v), dividing by 298

that seen in the unmodified (wild type; all reactions present) network. 299

This resulted in a relative growth rate for each knockout, ranging from 1 300

(indicating that the gene’s removal has no impact on growth) to 0 (removal 301

of this gene meant there were no feasible solutions to the optimization; 302

growth not possible). 303

Results from the TraDIS experiment represent the best indicator of gene 304

essentiality in B. pertussis, and in assessing the quality of the model’s 305

performance, we treat this data as the ”ground truth”. Our computational 306

modelling of essentiality can be viewed as a classifier, giving each gene a 307

score as to how essential it is. To convert this into a binary 308

essential/non-essential classification, we need to choose a threshold on the 309

relative growth rate. The standard approach to assessing performance of 310

such classifiers is the Receiver Operating Characteristic (ROC) curve. If 311

the threshold is smoothly varied, we can calculate the True Positive Rate 312

(TPR) and False Positive Rate (FPR) for each point, and these are then 313

plotted. The total area under this curve is an indication of the 314

performance of the classifier. 315

Measuring ammonia production during growth on different 316

glutamate:fumarate ratios. Media were prepared containing different 317

ratios of glutamate:fumarate (5:1, 2:1, 1:2 and 1:5) in terms of contribution 318

of carbon atoms. SS broth was used as the basal media for this. Plate 319

grown B. pertussis were resuspended in SS broth. This suspension was 320

used to seed two 30mls cultures in 250mls flasks. These were grown for 24 321

hours at 37oC with shaking. At this point cells were pelleted by 322

centrifugation and washed in PBS. Cells were then resuspended in the 323

various media at an OD600 of 0.1. Ten wells of 250uls of suspension in 324

each media were seeded into a round bottom 96 well plate and grown at 325

37oC with shaking in a Fluostar Omega plate reader (BMG Labtech, 326
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Aylesbury, UK) until stationary phase was reached. The OD600 was 327

measured every 15 minutes. At the end of growth, the culture was removed 328

from five of the wells for each medium and the bacteria were pelleted in a 329

microcentrifuge. The supernatant was removed and stored at -80°C. The 330

concentration of ammonium in the supernatants was measured using an 331

assay kit (Product number AB83360, Abcam, Cambridge, UK) as 332

described in the manufacturer’s protocol. 333

Results 334

The final model consists of 1152 reactions and 1191 metabolites, which are 335

described in table 1. We note that the raw (non-curated) model was 336

unable to generate biomass when the components of standard growth 337

medium for B. pertussis (SS broth) were used to specify the available 338

exchange reactions. 339

Curation of the preliminary model Extensive curation of the 340

preliminary model was performed. Key changes are discussed below. The 341

initial ModelSEED model file and a detailed curation history file are 342

included as supplemental files to allow specific aspects of our curation and 343

the effects of alternative curations to be investigated. 344

Gap-filled reactions Reactions that were automatically gap-filled were 345

analysed. Based on known behaviours of B. pertussis, gap-filled reactions 346

were removed to create true gaps (e.g. nicotinate, cysteine 347

auxotrophy [30]), removed as the reactions do not occur in B. pertussis 348

(e.g. 11 reactions specific to synthesis of E. coli rather than B. pertussis 349

LPS), or genes identified that encode the probably missing function. This 350

process left only 10 gap-filled reactions for which no gene assignment exists. 351

These reactions are listed in Supplemental Table S2. 352

Pyridoxal phosphate (PLP) biosynthesis PLP is an essential 353

cofactor. The SEED model included two gap-filled enzymes corresponding 354

to the PdxT/PdxS catalysed generation of PLP from 355

glyceraldehyde-3-phosphate and ribulose-5-phosphate, as characterised in 356

B. subtilis. However, there are no homologs of pdxT or pdxS in B. 357

pertussis. An alternative well characterised pathway for PLP synthesis can 358

occur via the activities of PdxB, PdxA and PdxJ. Clear homologs of both 359

pdxA and pdxJ are evident in B. pertussis. PdxB is 4-phosphoerythronate 360

dehydrogenase, an oxido-reductase enzyme. These enzymes generally show 361

low levels of sequence conservation between homologs. Using BlastP of the 362

E. coli PdxB sequence against the B. pertussis genome identified 4 putative 363
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dehydrogenases with scores in the range of 3e-10 to 5e-15. Thus, it was 364

concluded that there are potential PdxB candidates in B. pertussis and as 365

PLP synthesis is expected to be essential, gap-filling of the PdxB-catalysed 366

reaction was more logical than that of the PdxT/PdxS reaction. 367

Quinolinate synthase The SEED model filled gaps in the reactions 368

catalyzed by quinolinate synthase, encoded by nadA and L-aspartate 369

oxidase, encoded by nadB. There are no clear homologs of nadA or nadB 370

in B. pertussis and this bacterium is auxotrophic for nicotinate, which is a 371

component of the B. pertussis growth media. Thus, it is expected that the 372

nicotinate synthesis pathway is incomplete in B. pertussis. These reactions 373

were changed to true gaps in the model. 374

Protoporphyrinogen-IXoxygen oxidoreductase The reaction 375

catalyzed by this enzyme is a critical step in the synthesis of the cofactor 376

heme. In B. pertussis there are no identifiable homologs of genes encoding 377

the HemG or HemY members of this family of enzymes, although the 378

remainder of the pathway appears to be present. In some other bacteria 379

missing HemG/Y an alternative gene, hemJ, encodes this activity. BP2372 380

was identified as a potential hemJ homologue and was not associated with 381

any other reaction in the model. Thus, the model was curated to include 382

BP2372 as performing this step. 383

Thiamine phosphate biosynthesis Thiamine phosphate is a crucial 384

cofactor. The SEED model contained thiamine phosphate biosynthesis 385

based on the pathways described in E. coli in which ThiH catalyses the 386

production of 4-hydroxy-benzylalcohol from tyrosine. However, in the 387

model, 4-hydroxy-benzylalcohol is a dead-end metabolite, as it is not used 388

in any pathway and the model constrains all fluxes producing dead-end 389

metabolites to zero. There is no obvious homologue of ThiH in B. 390

pertussis. It was reasoned that the biosynthesis more closely resembles the 391

pathway described in B. subtilis involving ThiS, ThiF and ThiG for which 392

there are obvious homologs in B. pertussis (encoded by BP3690, BP0610 393

and BP3597 respectively) along with thiazole tautomerase, TenI (BP3809) 394

and ThiE (BP0316). The model was curated to include this biosynthetic 395

pathway. 396

LPS biosynthesis The SEED metabolic models include LPS 397

biosynthesis based on the E. coli LPS structure. The structure of B. 398

pertussis LPS is known, and the genetics of its biosynthesis is 399

well-characterised [31–33]. Reactions for synthesis and assembly of the B. 400

pertussis LPS molecule were substituted for the E. coli -based reactions, 401

and the associated B. pertussis genes were assigned to these reactions. 402
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This involved modifying the reactants and products of two reactions, the 403

addition of nine new reactions and removing thirteen of the E. coli 404

LPS-specific reactions. LPS is most abundant molecule in the outer leaflet 405

of the outer membrane of gram negative bacteria. Constructing an accurate 406

B. pertussis LPS biomass component enhances the accuracy of the model. 407

Freewheeling reactions Several reactions involving electron transfer 408

were set by ModelSEED to operate in the opposite direction to the 409

thermodynamically feasible direction for electron transport, producing 410

unfeasibly large fluxes at no energetic cost. The direction of these transfers 411

was reversed, Supplemental Table S3. 412

Tuning to known growth media Previous studies have identified a 413

number of carbon sources that either can or can not be metabolised by B. 414

pertussis [3, 4, 8, 25]. Exchange reactions were modified to include the 415

uptake of the metabolisable carbon sources, along with ammonia that can 416

be used as a source of nitrogen by B. pertussis : pyruvate, L-aspartate, 417

L-arginine’, L-alanine, L-glycine, L-histidine, 2-oxoglutarate, malate, 418

L-lactate, ammonia. 419

Blocked reactions/dead end metabolites The requirement that all 420

metabolites remain at a constant concentration is a central approximation 421

in FBA, and this places a basic limit that all metabolites must appear at 422

least twice in the model if they are to take an active part in any fluxes. As 423

a direct consequence, any reaction that contains a singularly-appearing 424

metabolite (a dead-end metabolite) has its flux constrained to zero, 425

regardless of the state of the rest of the network. Removing these 426

metabolites and reactions from the model entirely has no impact on the 427

model’s results. Our curated B. pertussis model contains 301 singleton 428

metabolites, which take part in a total of 199 reactions, consequently all 429

blocked. Assuming the annotations and associated genes are correct, their 430

presence points to further missing reactions, completing the pathways from 431

which they come. Alternatively, these reactions are the remnants of 432

pathways from which enzymes are missing due to the extensive gene loss 433

that has been a feature of B. pertussis evolution [6]. This extensive gene 434

loss may have produced an unusually high number of degraded pathways. 435

In this scenario, the reactions may be occuring but be producing dead-end 436

metabolites. Given this uncertainty, they have been left in the model, but 437

indicated with the note annotation blocked:True. 438

Tuning BOF using biomass composition measurements The 439

biomass composition of B. pertussis was measured using triplicate cultures 440

(see Methods): as percentage of dry cell weight, 53.9 (+/- 2.7) protein, 5.5 441
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Table 1. Breakdown of the reactions and metabolites found in
both the original and curated model. The curation process involved
both the removal and addition of elements in the model, and we show how
the final set of reactions and metabolite break down into categories within
the cell.

Reactions Metabolites

Initial 1203 1143
Removed 110 3

Added 59 54

Exchange 99 -
Transport 72 -

Cytoplasm - 993
External - 99

Boundary - 99

Blocked 199 301

Final 1152 1191

(+/- 1.9) carbohydrate, 4 (+/- 0.5) DNA, 3.5 (+/- 0.5) RNA and 9.5 (+/- 442

1) lipids. The BOF was tuned to incorporate these proportions of 443

macromolecules. 444

Gene Essentiality 445

Gene essentiality was determined using the TraDIS approach. Three 446

independent transposon libraries containing 300 000 – 500 000 colonies 447

each were constructed. Insertion indices were calculated for each genes as 448

described previously [21] (see Methods). This identified 415 genes as 449

essential for growth under these conditions. A further 26 genes were 450

ambiguous in terms of their essentiality but were not classed as essential in 451

these studies. However, only 11 of the ambiguous genes appear in the 452

model (Supplemental Table S4). One (BP3151) is associated with a 453

singleton metabolite and thus a blocked reaction, and six others are part of 454

multigene complexes (ribosomes, NADH dehydrogenase, DNA replication) 455

formed by other essential genes and thus are associated with essential 456

pathways/reactions, resulting in just four reactions associated with 457

ambiguously essential genes appearing in the model. 458

Figure 1 shows ROC curves for FBA classification of gene essentiality, 459

comparing model predictions of essentiality with experimentally defined 460

essential genes. The AUC score demonstrates good classification. Figure 1 461

also shows as a red dot the selected threshold, chosen as the closest point 462
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Figure 1. ROC curve showing performance of FBA essentiality
predictions with variation of the the growth rate threshold. We
treat the TraDIS results as the ground truth for essentiality of genes, and
explore the prediction accuracy achieved by FBA simulation when the
cutoff for simulated growth rate is varied.

Curated Model score = 0.83

TP = 226 FP = 92
FN = 44 TN = 430

Table 2. Comparison of essentiality predictions with TraDIS
results. TP/TN: true positive/true negative. FP/FN: false positive/false
negative.

to the perfect performance of (0,1). 463

In table 2 we give the raw scores for the chosen threshold, divided into 464

true and false positives and negatives. We present the results in a standard 465

contingency table, identifying the types of errors made, as well as giving an 466

overall accuracy score (calculated as 467

(TP + TN)/(TP + FP + TN + FN)). The reactions for each of these 468

categories are listed in Supplemental Table S5. 469

When applying the FBA knockout approach to our network of 470

metabolic reactions and associated genes, we achieve an accuracy of 83% in 471

predicting the experimental essentiality. This compares well with scores 472

achieved by other published metabolic models, and a perfect score is not to 473

be expected, due both to experimental and theoretical considerations. 474

While TraDIS is a state of the art approach, we cannot expect perfect 475

results from TraDIS due to limitations in detecting extremely slow growing 476
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(but viable) mutants, and while our metabolic model reflects the current 477

state of knowledge for B. pertussis metabolism, there remain 478

uncharacterised proteins that may impact the performance of the network. 479

Even accounting for errors in both TraDIS and the model, furthermore, 480

FBA is an approach focused solely on the metabolic capabilities of an 481

organism. There are regulatory and kinetic considerations that are beyond 482

the scope of the FBA approach, but will nonetheless play a key role in the 483

viability of knockout mutants. These considerations are likely to make 484

perfect prediction an infeasible goal. Information on essential genes was 485

used to refine some gene assignments for reactions. A number of reactions 486

predicted to be essential had more than one possible gene assigned to them 487

where it was not clear which gene was the correct assignment. In cases 488

where one of the genes was shown to be essential, gene assignments were 489

amended to show only this gene, as genes assigned to essential reactions 490

also should be essential (Supplemental Table S6). 491

Testing the Model 492

A key use of metabolic models is to be able to make predictions of 493

organism metabolism that can be investigated experimentally. To test our 494

model, we sought to make predictions of changes to media formulations 495

that decrease the production of growth inhibiting ammonia, without 496

diminishing predicted growth rate. Ammonia production is thought to 497

arise from an imbalanced N:C ratio when B. pertussis utilises glutamate as 498

its sole carbon source [3]. To investigate this, we modelled the effect of 499

shifting from growth on glutamate towards growth using glutamine (Figure 500

2a). Glutamine contains two amino groups compared to the one of 501

glutamate. The model predicts that growth rate is unaffected whereas 502

production of ammonia increases as the metabolism of glutamine over 503

glutamte increases. 504

Next, we modelled the effect of metabolising different ratios of 505

glutamate and fumarate (Figure 2b). Fumarate is an alternative carbon 506

source but does not contain nitrogen. B. pertussis requires a nitrogen 507

source to grow. If the uptake of ammonia as a source of nitrogen is 508

prohibited then there is no growth in the model. However, as an increasing 509

amount of glutamate is metabolised, with the corresponding decrease in 510

fumarate metabolism, growth rate increases up to a point and the 511

production of ammonia increases once a threshold ratio of 512

glutamate:fumarate metabolised is reached. If this analysis is repeated 513

allowing free uptake of ammonia, then the growth rate is unaffected by the 514

ratio of glutamate:fumarate but ammonia is consumed up to a point when 515

the metabolism of glutamate provides sufficient nitrogen, and ammonia is 516

produced when the ratio of glutamate:fumarate metabolised reaches the 517
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Figure 2. The flux of biomass production and ammonia production was
modeled for B. pertussis growth using different ratios of (a)
glutamate:glutamine, (b) glutamate:fumarate while constraining ammonia
uptake and (c) glutamate:fumarate while allowing free uptake of ammonia.
A glutamate:fumarate ratio of 1:2 (with regards to contribution of carbon
atoms) was predicted to prevent production of ammonia while not
affecting the growth rate.

point of imbalance between N:C (Figure 2c). This identified an 518

approximate 1:2 ratio of glutamate to fumarate (in terms of contribution of 519

carbon atoms rather than molecular mass) as an N:C balance at which 520

ammonia production was minimised, but growth rate was unaffected, when 521

the medium does not contain available ammonia. 522

We tested this prediction experimentally by growing B. pertussis in 523

different SS medium formulations in which carbon was provided by 524

different ratios of glutamate:fumarate. The growth of B. pertussis was 525

followed by measuring the absorbance of the culture (Figure 3a) and the 526

concentration of ammonia was measured in cultures at the end point of 527

growth (Figure 3b). Growth in media using solely glutamate as a carbon 528

source resulted in relatively poor biomass yield and a relatively slow 529

growth rate compared to media containing fumarate as a replacement for 530

at least some of the glutamate. A glutamate:fumarate ratio of 5:1 produced 531

moderate improvements in both rate and yield. Ratios of 2:1, 1:2 and 1:5 532

all gave dramatic improvements in rate and yield. The total amount of 533

carbon in each medium was the same, suggesting that differences in 534

biomass yields between cultures was most likely due to differing levels of 535

inhibition of growth as opposed to nutrient limitation. Interestingly, 536

replacement of some of the glutamate in the medium with fumarate 537

resulted in a significant reduction in the level of ammonia produced by B. 538

pertussis, on a ammonia per OD unit basis. A glutamate:fumarate ratio of 539

5:1 gave the greatest reduction while other ratios resulted in similar levels 540

of ammonia. We suggest that the poor growth of the culture growing solely 541

on glutamate was due to inhibition of growth by the resulting ammonia 542

that was produced. The data demonstrate the model prediction to be 543

largely correct in that balancing N:C ratios by the addition of fumarate 544

reduced the production of ammonia, but that additional factors are evident 545
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Figure 3. B. pertussis growth and production of ammonia in media with
different glutamate:fumarate ratios. A) The growth of B. pertussis was
monitored by measuring the increase in OD600 of cultures over time. The
average OD of 10 replicate cultures is shown. B) Ammonia production was
measured in the supernatants of 5 cultures for each medium at the end of
growth. The average for each medium type is shown.

as the growth of the cultures were clearly different from each other. This 546

highlights the need for development of genome scale metabolic modeling to 547

incorporate regulatory and non-metabolic constraints on growth. 548

Discussion 549

We have developed and curated the first published genome-scale FBA 550

model for B. pertussis, and have included an experimentally-determined 551

biomass. The model predicts essential genes with 83% accuracy, compared 552

with the state-of-the-art determination of essential genes with the TraDIS 553

technique. The model and related computations are available in python in 554

the pyabolism module. In contrast with our curated model, the automated 555

SEED model based on the annotated B. pertussis genome cannot produce 556

biomass on the standard growth medium for B. pertussis (SS broth). 557

Extensive curation is typically required for genome-scale metabolic 558

models [17], and in our case, this curation made fundamental differences to 559

the model metabolism, enabling both growth on SS broth and accurate 560
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classification of essential genes. 561

While FBA models have extensive potential for applications, there are 562

several remaining challenges. In particular, while genome annotation and 563

function prediction are improving, the presence of genes classed as 564

’hypothetical protein’ or with unknown function, and the presence of 565

mis-classified genes, means that even with curation the accuracy of 566

reconstructed models can be limited. This is a particular challenge for 567

less-studied organisms; FBA models perform extremely well for 568

well-characterized organisms such as E. coli. [20]. Even if the stoichiometric 569

matrix were able to perfectly capture the metabolic reactions in an 570

organism, there are reaction kinetics, regulatory interactions, the dynamics 571

of transcription and translation and other important processes that are not 572

captured in constraint-based models. Despite these limitations, the number 573

of interesting applications in diverse micro-organisms has grown 574

tremendously in recent years [34–38]. For this field to yield the results that 575

have been promised, it is essential that the community develop and curate 576

FBA models for more organisms - as we have done here. 577

B. pertussis presents some unique challenges and opportunities for 578

constraint-based metabolic modeling. For example, B. pertussis evolved 579

from its ancestor (B. bronchiseptica, or a B. bronchiseptica-like relative) by 580

a process of genome reduction and rearrangement [6]. This has resulted in 581

a large number of pseudogenes, which were not always recognised as being 582

non-functional by the automated model construction. Also, gene loss has 583

resulted in a number of incomplete, presumably remnant, metabolic 584

pathways which automated gap filling attempts to ’correct’ by adding 585

missing functions, on the assumption that a pathway that was mostly 586

present must be fully functional. The raw SEED model was unable to 587

produce biomass when simulations were run using the components of the 588

standard growth medium for B. pertussis, SS broth, as inputs. Thus, the 589

production of a metabolic model that mimics the known characteristics of 590

the organism required extensive and laborious manual curation. 591

B. pertussis is considered a re-emerging pathogen, with pertussis disease 592

resurgent in numerous countries [39]. This has been associated with a 593

change from the use of first generation, whole cell to second-generation, 594

acellular pertussis vaccines. This resurgence has generated renewed interest 595

in understanding the physiology and infection biology of B. pertussis . 596

Understanding the basic growth of the bacterium is key to this, and a 597

genome scale metabolic model is a widely applicable tool towards this goal. 598

In addition, millions of doses of pertussis vaccines are used globally each 599

year. An increase in demand for these vaccines, through either replacement 600

of whole cell with acellular vaccines in more parts of the world, or 601

expanded use of booster vaccinations to combat resurgence, will generate 602

considerable strain on the global vaccine supply. Enhancement of the 603
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vaccine production process through shorter production times and increased 604

yields from production will be important to meeting any increased demand. 605

Understanding, and the ability to manipulate, B. pertussis growth 606

characteristics is important towards this aim. The genome-scale metabolic 607

model described here provides a novel tool to investigate B. pertussis 608

growth and physiology. In particular, it allows the effects of altered 609

medium formulations or genetic manipulation of metabolism to be 610

investigated in silico, enabling much more targeted experimental 611

investigations than are currently possible. The alteration of B. pertussis 612

growth by substituting fumarate for some of the glutamate in standard 613

media demonstrate the validity of this approach. 614

Supplementary files 615

Supplemental Data files zip contains the curated SBML model 616

(Bp iNF792.xml), the original SEED model (Seed257313.1.xml), the true 617

and false positive predictions for essentiality (false negatives.csv, 618

false positives.csv, true negatives.csv, true positives.csv) 619

Supplemental Table S1. Reactions in the model for which KEGG 620

associtions were manually corrected. 621

Supplemental Table S2. Gap filled reactions without an associated gene 622

remaining in the model. 623

Supplemental Table S3. Reactions for which directionality was 624

constrained. 625

Supplemental Table S4. Ambiguously essential genes and the associated 626

reactions contained in the model. 627

Supplemental Table S5. Essential gene predictions with associated 628

reactions. These can also be queried directly in the SBML, for example by 629

looking at all reactions associated with a specific gene. Genes are 630

categorised as either True Positives, True Negatives, False Positives or 631

False Negatives. 632

Supplemental Table S6. Reactions for which gene associations were 633

amended based on essential gene data. 634
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