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MARTINGALE OPTIMAL TRANSPORT WITH STOPPING

ERHAN BAYRAKTAR, ALEXANDER M. G. COX, AND YAVOR STOEV

Abstract. We solve the martingale optimal transport problem for cost functionals represented

by optimal stopping problems. The measure-valued martingale approach developed in [6] allows

us to obtain an equivalent infinite-dimensional controller-stopper problem. We use the stochastic

Perron’s method and characterize the finite dimensional approximation as a viscosity solution to

the corresponding HJB equation. It turns out that this solution is the concave envelope of the

cost function with respect to the atoms of the terminal law. We demonstrate the results by finding

explicit solutions for a class of cost functions.

1. Introduction

The aim of this article is to solve a class of martingale optimal transport problems for which the

cost functional can be represented as an optimal stopping problem of the underlying cost function.

Specifically, given a continuous and bounded cost function f : R → R we are interested in solving

the martingale optimal transport problem

sup
Pµ

P P(f) with P P(f) = sup
τ∈T0

E[f(Mτ )]. (1.1)

The outer supremum is taken over Pµ - the set of all pairs of filtered probability spaces

(Ω,F , (Ft)t≥0,P) and continuous martingales M = (Mt)t≥0 on them such that the filtration (Ft)t≥0

is generated by a Brownian motion and the terminal law is MT ∼ µ under P. The inner stopping

problem is over Ts - the set of all (Ft)-stopping times taking values in [s, T ] for s ∈ [0, T ] and some

fixed terminal time T > 0.

The duality between martingale optimal transport and robust pricing problems was studied in a

related setting in Dolinsky and Soner [8] for general path-dependent European-type cost functionals

(i.e. payoffs) and continuous models. Recently Bayraktar and Miller [1] and Beiglböck et al.

[5] obtained solutions to distribution-constrained optimal stopping problems by using dynamic

programming and martingale transport methods, respectively. In contrast to our setting, however,

the constraints in [1] and [5] are on the distribution of the stopping times and not on the marginal

distribution at the terminal time. By using the concept of measure-valued martingales Cox and

Kallbläd [6] studied the robust pricing of Asian-type options subject to a marginal distribution
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constraint. The authors cast the original problem into a control theoretic framework and obtained

a viscosity characterization of the solution.

Here we employ the control theoretic approach of [6] and [1] to analyze optimal martingale

transport problems with cost functionals which are of American type. The difficulty in our setting

is that we have an additional optimal stopping component. However, the fact that we optimize

over continuous models allows us to prove that the resulting value function is time-independent up

to the terminal time. Since the original problem is infinite dimensional we use the continuity with

respect to the terminal law to restrict it only to measures with finitely many atoms. Working in a

Brownian filtration allows us to recast this finite dimensional approximation as a recursive sequence

of controller-stopper problems with exit-time components. We prove that the value functions of

these problems are viscosity solutions to the corresponding sequence of elliptic obstacle problems

satisfying exact Dirichlet boundary conditions. We achieve this by applying the stochastic Perron’s

approach in the spirit of Bayraktar and Sirbu [4] where the obstacle problems are associated with

Dynkin games and Rokhlin [14] where an elliptic Dirichlet boundary problem arose from exit-time

stochastic control. We circumvent the potential difficulty of proving a strong comparison result

for viscosity sub/supersolutions satisfying generalized boundary conditions (see [14]) by using the

recursive structure of the problem to show the exact attainment of these boundary conditions.

The main result in this paper, Theorem 3.1, is the characterization of the value function of the

finite dimensional martingale transport problem as the concave envelope of the pay-off with respect

to the probability weights of the terminal law’s atoms. In this final step we use a recent result of

Oberman and Ruan [11] on characterizing convex envelopes as unique viscosity solutions to obstacle

problems with appropriate Dirichlet boundary conditions. One possible application of our results

is the robust pricing of American options. Indeed, the martingales over which we optimize can be

seen as different models for the stock price with a given marginal distribution at the terminal time.

The rest of the paper is organized as follows: In Section 2, we formulate the finite dimensional

approximation of the Martingale Optimal Transport problem, see (2.12). In Section 3, we employ

the stochastic Perron’s method to characterize the value function as the unique viscosity solution of

the corresponding Dirichlet obstacle problem and to show its concave envelope form in an appropri-

ate phase space. Section 4 illustrates how our results can be achieved in a probabilistic framework

and provides concrete examples.

2. Problem formulation

We define the set of measures P as

P := {µ ∈ B(R+) : µ(R+) = 1 and

∫
|x|µ(dx) <∞},

and suppose that the terminal law µ of the martingales in the optimal transport problem (1.1)

satisfies µ ∈ P. In the usual optimal transport framework we can regard the probability measures

P contained in Pµ as transporting the initial Dirac measure δM0 (i.e. the law of M0) to the terminal

law µ under the cost functional P P - both of these laws are known at time t = 0. On the other



3

hand, notice that the continuous martingale M satisfies

Mt = E[MT |Ft] =

∫
x ξt(dx) for t ∈ [0, T ], (2.1)

where ξt is the conditional law of MT given Ft under the measure P. In particular, we have that

ξ0 = µ and ξT = δMT
. Therefore, similarly to the method proposed in [6], we can rewrite (1.1) in

its measure-valued martingale formulation as

sup
(ξt)∈Ξ

sup
τ∈T0

E[f(Mτ )] subject to ξ0 = µ, (2.2)

where Ξ is the set of all terminating measure-valued (i.e. P-valued) martingales (see Definition 2.7

in [6]) such that (
∫
x ξt(dx))t≥0 is a continuous process a.s. with respect to the filtered probability

space (Ω,F , (Ft)t≥0,P) for all (ξt)t≥0 ∈ Ξ, where (Ft)t≥0 is a Brownian filtration. Moreover, as in [6],

we fix the probability space (Ω,F , (Ft)t≥0,P) which does not materially change our conclusions.

Let us write (2.2) in the Markovian form

U(t, ξ) = sup
(ξr)∈Ξ

sup
τ∈Tt

E[f(Mτ )|ξt = ξ], (2.3)

and note that we have the following variant of Lemma 3.1 in [6] the proof of which can be found in

the appendix:

Lemma 2.1. If f is non-negative and Lipschitz then the function U is continuous in ξ (in the

Wasserstein-1 topology) and independent of t for t ∈ [0, T ).

The continuity in ξ allows us to apply the finite dimensional reduction from Section 3.2 in [6].

In particular, we introduce the set XN = {x0, . . . , xN} where 0 ≤ x0 < x1 < · · · < xN and let

PN = P ∩ M(XN ) and P(Xα) = P ∩ M(Xα) for any α ⊆ {0, 1, . . . , N}, where M(XN ) resp.

M(Xα) denote the sets of all measures on XN resp. Xα := {xi : i ∈ α}. We assume from now on

that the terminal law ξ (i.e. also µ) is an atomic measure and satisfies ξ ∈ PN . Since we work

in a Brownian filtration, by martingale representation for any terminating PN -valued martingale

(ξt)t≥0 it is true that the (nonnegative) martingales ξnt := ξt({xn}) solve an SDE of the form

dξnt = wnt dWt (2.4)

for t ≥ 0 and n = 0, . . . , N , where the vector of weights wt = (w0
t , . . . , w

N
t ) satisfies

∑N
n=0w

n
t = 0,

and ξnt ∈ {0, 1} implies that wnt = 0. The following result, by analogy to Corollary 3.6 in [6], follows

directly from Lemma 3.4 in [6] and allows us to work with a bounded set of controls:

Lemma 2.2. Under the above assumption that µ ∈ PN , the value function in (2.3) for t ∈ [0, T )

reduces to the value function

V (ξ) = sup
w∈A

sup
τ∈T0

E

f
 N∑
j=0

xj ξ
j

T−1
τ

 |ξ0 = ξ

 , (2.5)

where the admissible control set A is defined as

A := {(wr)r≥0 prog. meas. : wr ∈ cl(DN+1) , ξnr ∈ {0, 1} implies wnr = 0},



4

with the disk Dk+1 being the intersection of the open unit ball with the hyperplane z1 + · · ·+zk+1 = 0

in Rk+1, and T−1
r is the continuous inverse of

Tr :=

∫ r

0
λsds for r ≥ 0, (2.6)

where the strictly positive time change rate process λ = (λr)r≥0 satisfies

‖wr‖2 + λr = 1− I{ξr=δxi}I{Tr=T}. (2.7)

The role of the time change in (2.6) is to stretch/compress the original time scale so as to bound

the volatility of the state process (i.e. the control process w). Thus we avoid technical difficulties

arising from unbounded control sets later when proving the viscosity characterization of the value

function.

Now notice that the value function V (ξ) can be identified with ṼN (ξ) where for k = 1, . . . , N ,

and ξ ∈ P(Xα), with |α| = k + 1, we introduce the sequence of problems

Ṽk(ξ) = sup
w∈Aα

sup
τ∈T0

E
[
Ṽk−1(ξσ)I{Tσ≤τ} + f

( N∑
j=0

xj ξ
j

T−1
τ

)
I{Tσ>τ}|ξ0 = ξ

]
, (2.8)

with

Aα := {(wr)r≥0 prog. meas. : wr ∈ cl(DN+1) , (2.9)

wi ≡ 0 for any i ∈ {0, 1, . . . , N} \ α},

σ := inf{s ≥ 0 : ξs ∈ P(Xα′) for some α′ with |α′| ≤ k or Ts = T}, (2.10)

and Ṽ0(ξ) = f(xi) for ξ = δxi . From now on we will denote the time changed filtration as (Gt)t≥0 :=

(FTt)t≥0 and suppress its dependence on λ for notational purposes. The following lemma shows

that we can ignore controls which are small enough and that we can work with stopping times in

the time changed filtration.

Lemma 2.3. The value function Ṽk(ξ) can be written as

Ṽk(ξ) = sup
w∈int(Aαε )

sup
τ∈T

E
[
Ṽk−1(ξσ)I{σ≤τ} + f

( N∑
j=0

xj ξ
j
τ

)
I{σ>τ}|ξ0 = ξ

]
, (2.11)

where int(Aαε ) := {(wr)r≥0 ∈ Aα : wr ∈ DN+1, ξr 6= δxi implies ‖wr‖ ≥ ε} for any ε ∈ [0, 1) and

T is the set of all (Gt)-stopping times for an appropriately time changed filtration (Gt)t≥0.

Proof. For any time change rate λ we have λu > 0 for u ≥ 0 and from (2.7) it follows that ‖wu‖ < 1.

Moreover, since λ is strictly positive, we have that Tr and T−1
t are strictly increasing. It follows

immediately that if τ ∈ [0, T ] is an (Ft)-stopping time then T−1
τ ≥ 0 is a (Gt)-stopping time and,

conversely, if τ ≥ 0 is a (Gt)-stopping time then Tτ ∈ [0, T ] is an (Ft)-stopping time. Therefore in

(2.8) we can substitute T0 with T and τ with Tτ .

What is left is to prove that we can take the outer supremum in (2.8) over int(Aαε ) ⊂ int(Aα).

For 0 < ε < 1 and any w ∈ int(Aα)\ int(Aαε ) we can choose w̃ ∈ int(Aαε ) defined as w̃n
s :=

√
ε̄sw

n
φ(s)
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where

φ(s) =

∫ s

0
ε̄udu with ε̄s =

ε2

‖wφ(s)‖2
,

and φ(s) is the right-continuous inverse of the (non-strictly) increasing continuous function φ−1(s)

given by

φ−1(s) =

∫ s

0

‖wu‖2

ε2
du.

From (2.4) we see that ξnr (corresponding to the control w) has the same distribution as ξ̃nφ−1(r)

(corresponding to the control w̃). Hence, for any (Gt)-stopping time τ we have that τ̃ = φ−1(τ) is

a (Gφ(t))-stopping time such that ξnτ has the same law as ξ̃nτ̃ . We conclude from (2.8). �

Before going further we introduce some additional notation. Let α(ξ) be the subset of elements

in XN to which the atomic measure ξ ∈ PN prescribes nonzero probability and notice that we have

the consistency conditions

Ṽk(ξ) = Ṽ|α(ξ)|−1(ξ) for k ≥ |α(ξ)|.

For every ξ ∈ PN with |α(ξ)| = k+ 1 it is true that ξ =
∑k

j=0 ξ
ijδxij where α(ξ) = {xi0 , . . . , xik} ⊆

XN . Hence, we can identify every ξ ∈ PN with the vector ξα := (ξi0 , ξi1 , . . . , ξik) ∈ int(∆k+1) where

α = {i0, . . . , ik} and ∆k+1 := {z ∈ Rk+1
≥0 :

∑
zi = 1}. We let

Vα(ξα) = Ṽ|α(ξ)|−1(ξ), f̄(ξα) = f(xα · ξα), (2.12)

where xα := (xi0 , . . . , xik). For any r ≥ 0 and w = (w0, . . . , wN ) ∈ int(Aα) we also let ξw,r,ξ
α

u :=

(ξi0,w
i0 ,r

u , ξi1,w
i1 ,r

u , . . . , ξik,w
ik ,r

u ), where ξ
ij ,w

ij ,r
u is the unique strong solution to (2.4) with control

wij and initial condition ξ
ij ,w

ij ,r
u = ξij for u ≤ r. Denote by ξw,r,ξ

α
the PN -valued martingale

corresponding to ξw,r,ξ
α
, i.e. ξw,r,ξ

α

u :=
∑k

j=0 ξ
ij ,w

ij ,r
u δxij . For short we let ξw,ξ

α
:= ξw,0,ξ

α
and

ξw,ξ
α

:= ξw,0,ξ
α
.

3. Viscosity characterization of the value function using stochastic Perron’s

method

We want to obtain the viscosity characterization of the value function Vα. Fix 0 < c < 1 and

α ⊆ {0, . . . , N} with |α| = k+ 1 ≥ 2 for some integer k ≥ 1. Using (2.12) rewrite the value function

from (2.11) as

Vα(ξα) = sup
w∈int(Aαc )

sup
τ∈T

E
[
Ṽk−1(ξw,r,ξ

α

σ )I{σ≤τ} + f̄(ξw,r,ξ
α

τ )I{σ>τ}

]
, (3.1)

where ξα ∈ ∆k+1. Our aim is to show that Vα is the unique viscosity solution (see e.g. Definition

7.4 in [7]) to the associated Dirichlet obstacle problem given by

min
{
− sup

w∈Dk+1
c

1

2
tr(ww′D2

ξVα), Vα − f̄
}

= 0 on int(∆k+1), (3.2)

Vα(ξα) = g(ξα) := Vα′(ξ
α′) on ∂∆k+1, (3.3)
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where ξα
′

and α′ correspond to the nonzero components of ξα and α, and Dk+1
c := {w ∈ Dk+1 :

‖w‖ > c}. The derivative D2
ξ is to be understood in the directional sense - i.e. we restrict ourselves

to second directional derivatives tr(ww′D2
ξ) w.r.t. directions lying in the set Dk+1

c .

We are now ready to state the main result of the paper - its proof relies on the stochastic Perron’s

method and we present it in the next section.

Theorem 3.1. The function Vα : ∆k+1 → R defined in (3.1) is the unique continuous viscosity

solution of the obstacle problem (3.2) satisfying the Dirichlet boundary condition (3.3). Moreover,

Vα is the concave envelope of f̄ on ∆k+1 - i.e. denoting the projection of ∆k+1 onto Rk≥0 by ∆̃k

and the projected functions Ṽα, f̃ : ∆̃k → R as

Ṽα(z0, . . . , zk−1) := Vα

(
z0, . . . , zk−1, 1−

k−1∑
i=1

zi

)
, (3.4)

f̃(z0, . . . , zk−1) := f̄
(
z0, . . . , zk−1, 1−

k−1∑
i=1

zi

)
, (3.5)

the function Ṽα is the concave envelope of f̃ .

3.1. Proof of Theorem 3.1. We begin by introducing the notions of stochastic sub- and super-

solutions.

Definition 3.1. The set of stochastic subsolutions to the PDE (3.2) with the boundary condition

(3.3), denoted by V−, is the set of functions v : ∆k+1 → R that have the following properties:

(i) They are continuous and bounded, and satisfy the boundary condition

v(ξα) ≤ g(ξα) on ∂∆k+1. (3.6)

(ii) For each τ ∈ T and ξ ∈ Gτ with P(ξ ∈ ∆k+1) = 1 there exists a control w ∈ int(Aα) such

that for any ρ ∈ T with ρ ∈ [τ, σ(τ, ξ,w)] we have a.s. that

v(ξ) ≤ E[v(ξw,τ,ξρ∧τ∗(v))|Gτ ], (3.7)

where the (Gt)-stopping times σ(τ, ξ,w) and τ∗(v) are defined as

σ(τ, ξ,w) := inf{s ≥ τ : ξw,τ,ξs /∈ int(∆k+1)}, (3.8)

τ∗(v) ≡ τ∗(v; τ, ξ,w) := inf{s ≥ τ : v(ξw,τ,ξs ) ≤ f̄(ξw,τ,ξs )}. (3.9)

Definition 3.2. The set of stochastic supersolutions to the PDE (3.2) with the boundary condition

(3.3), denoted by V+, is the set of functions v : ∆k+1 → R that have the following properties:

(i) They are continuous and bounded, and satisfy the boundary condition

v(ξα) ≥ g(ξα) on ∂∆k+1. (3.10)

(ii) For each τ ∈ T and ξ ∈ Gτ with P(ξ ∈ ∆k+1) = 1, for any control w ∈ int(Aαc ) and any

ρ ∈ T with ρ ∈ [τ, σ(τ, ξ,w)] we have a.s. that

v(ξ) ≥ E[v(ξw,τ,ξρ )|Gτ ], (3.11)

where σ(τ, ξ,w) is defined as in (3.8).
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Clearly V− (resp. V+) is nonempty since f̄ is bounded from below (resp. above) and any constant

which is small (large) enough belongs to V− (resp. V+). Actually, we can easily verify that f̄ ∈ V−.

The following lemma proves an important property of the sets V− and V+.

Lemma 3.1. For any two v1, v2 ∈ V− we have that v1 ∨ v2 ∈ V−. For any two v1, v2 ∈ V+ we

have that v1 ∧ v2 ∈ V+.

Proof. We will only prove the first part of the lemma - the second part follows in a similar way.

Denote v = v1∨ v2 and notice that item (i) in Definition 3.1 is clearly satisfied by v. Now fix τ ∈ T
and ξ ∈ Gτ as in item (ii) of Definition 3.1 and introduce the sequence of stopping time, control

and state process triples (γn,w
n, ξn)n≥−1 defined recursively as follows:

(γ−1,w
−1, ξ−1) ≡ (γ0,w

0, ξ0) := (τ,1{v1(ξ)≥v2(ξ)}w
0,1 + 1{v1(ξ)<v2(ξ)}w

0,2, ξw
0,τ,ξ)

where w0,1,w0,2 are the controls corresponding to the stochastic subsolutions v1, v2 starting at the

pair (τ, ξ), and for n = 0, 1, 2 . . . :

(i) if v(ξnγn) ≤ f̄(ξnγn) then we set

(γn+1,w
n+1, ξn+1) := (γn,w

n, ξn).

(ii) if v(ξnγn) = vi(ξnγn) > f̄(ξnγn) for i ∈ {1, 2} then we set

γn+1 := σ(γn, ξ
n
γn ,w

n) ∧ τ∗(vi; γn, ξnγn ,w
n)

wn+1 := wn+1,i, ξn+1 := ξ
wn+1,i,γn+1,ξnγn+1 ,

where wn+1,i is the control process corresponding to the stochastic subsolution vi starting

at the pair (γn+1, ξ
n
γn+1

), and τ∗(v
i; γn, ξ

n
γn ,w

n) is defined as in (3.9).

Define the control w by

ws :=
∞∑
n=1

1{s∈[γn,γn+1)}w
n
s

and notice that by construction ξns = ξw,τ,ξs for s ∈ [γn, γn+1] and any n ≥ 0. For any stopping time

ρ ∈ [τ, σ(τ, ξ,w)] denote ρ ∧ γn = ρn. By the definition of the sequence (γn,w
n, ξn) we get that

v(ξnρn) = (1{v1≥v2}v
1 + 1{v1<v2}v

2)(ξnρn)

≤ E[(1{v1(ξnρn )≥v2(ξnρn )}v
1 + 1{v1(ξnρn )<v2(ξnρn )}v

2)(ξn+1
ρn+1

)|Gρn ]

≤ E[v(ξn+1
ρn+1

)|Gρn ],

and by iterating the above we conclude that

v(ξ) ≤ E[v(ξn+1
ρn+1

)|Gτ ] = E[v(ξw,τ,ξρn+1
)|Gτ ], (3.12)

for any n ≥ 0. Now we apply the same reasoning as in the proof of Lemma 2.3 in [4] to conclude

that

lim
n→∞

γn = σ(τ, ξ,w) ∧ τ∗(v; τ, ξ,w) a.s.
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By taking n → ∞ in (3.12) and using the bounded convergence theorem we finally obtain that v

satisfies (3.7) and, hence, is a stochastic subsolution. �

We introduce the assumption:

Assumption 3.1. The boundary function g is continuous on ∂∆k+1.

Proposition 3.1. Under Assumption 3.1 the lower stochastic envelope v− := supv∈V− v ≤ Vα is

a viscosity supersolution and the upper stochastic envelope v+ := infv∈V+ v ≥ Vα is a viscosity

subsolution of (3.2) and (3.3).

Proof. The proof uses ideas from Theorem 3.1 (and Theorem 4.1) in [3] and Theorem 2 in [14]. We

repeat the key steps for the lower stochastic envelope v−.

Denote for short V ≡ Vα. It is clear that v− ≤ V since in item (ii) of Definition 3.1 we can

choose τ = 0, a constant ξ ∈ ∆k+1 and ρ = σ(τ, ξ,w) for some control w ∈ int(Aα), and use the

condition (3.6) and (3.9).

We will prove the viscosity supersolution property of v− by contradiction. Take a C2 test function

ϕ : ∆k+1 → R such that v− − ϕ achieves a strict local minimum equal to 0 at some boundary

point ξ0 ∈ ∂∆k+1 (the case when ξ0 ∈ int(∆k+1) is simpler). Assume that v− is not a viscosity

supersolution and hence

max
{

(− sup
w∈Dk+1

c

Lwϕ)(ξ0), (ϕ− g)(ξ0)
}
< 0,

where

(Lwϕ)(ξ) :=
1

2
tr(ww′D2

ξϕ(ξ)).

It follows that there exists w̃ ∈ Dk+1
c such that

(−Lw̃ϕ)(ξ0) < 0. (3.13)

By the continuity of ϕ, g and the lower semicontinuity of v− we can find a small enough open ball

B(ξ0, ε) and a small enough δ > 0 such that

(−Lw̃ϕ)(ξ) < 0, ξ ∈ B(ξ0, ε) ∩∆k+1,

ϕ < g, on B(ξ0, ε) ∩ ∂∆k+1,

ϕ(ξ) < v−(ξ), ξ ∈ B(ξ0, ε) ∩∆k+1 \ {ξ0},

v− − δ ≥ ϕ on (B(ξ0, ε) \B(ξ0, ε/2)) ∩∆k+1.

Using Proposition 4.1 in [2] together with Lemma 3.1 above, we obtain an increasing sequence of

stochastic subsolutions vn ∈ V− with vn ↗ v−. In particular, since ϕ and the vn’s are continuous

we can use an argument identical to the one in Lemma 2.4 in [4] to obtain for any fixed δ′ ∈ (0, δ)

a corresponding v = vn ∈ V− such that

v − δ′ ≥ ϕ on (B(ξ0, ε) \B(ξ0, ε/2)) ∩∆k+1.
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Now we can choose η ∈ (0, δ′) small enough such that ϕη := ϕ+ η satisfies

(−Lw̃ϕη)(ξ) < 0, ξ ∈ B(ξ0, ε) ∩∆k+1,

ϕη < g, on B(ξ0, ε) ∩ ∂∆k+1,

ϕη < v on (B(ξ0, ε) \B(ξ0, ε/2)) ∩∆k+1.

We define

vη =

v ∨ ϕη on B(ξ0, ε) ∩∆k+1,

v otherwise,

and notice that vη is continuous and vη(ξ0) = v−(ξ0) + η > v−(ξ0). Since condition (3.6) clearly

also holds, we see that vη satisfies item (i) of Definition 3.1. What is left is to check item (ii) in

Definition 3.1 and obtain vη ∈ V− which will lead to a contradiction since vη(ξ0) > v−(ξ0).

Choose τ ∈ T and ξ ∈ Gτ with P(ξ ∈ ∆k+1) = 1, and, similarly to the proof of Lemma 3.1 above,

introduce the sequence of stopping time, control and state process triples (γn,w
n, ξn)n≥−1 defined

recursively as follows:

(γ−1,w
−1, ξ−1) ≡ (γ0,w

0, ξ0) := (τ, w̃1A + w̄01Ac , ξ
w0,τ,ξ),

where w̄0 is the control corresponding to the stochastic subsolution v starting at the pair (τ, ξ),

the event A is given by

A = A(ξ) := {ξ ∈ B(ξ0, ε/2) ∩∆k+1 and ϕη(ξ) > v(ξ)}

and for n = 0, 1, 2 . . . :

(i) if vη(ξnγn) ≤ f̄(ξnγn) then we set

(γn+1,w
n+1, ξn+1) := (γn,w

n, ξn).

(ii) if A(ξnγn) holds then we set

γn+1 := σ(γn, ξ
n
γn ,w

n) ∧ τ1(γn, ξ
n
γn ,w

n) ∧ τ∗(ϕη; γn, ξnγn ,w
n),

wn+1 := w̃, ξn+1 := ξ
w̃,γn+1,ξnγn+1 ,

where the Gt-stopping time τ1 is defined by

τ1(τ, ξ,w) := inf{s ≥ τ : ξw,τ,ξs ∈ ∂B(ξ0, ε/2)},

and τ∗ is defined as in (3.9).

(iii) otherwise we set

γn+1 := σ(γn, ξ
n
γn ,w

n) ∧ τ∗(v; γn, ξ
n
γn ,w

n)

ξn+1 := ξ
wn+1,γn+1,ξnγn+1 ,

where wn+1 is the control process corresponding to the stochastic subsolution v starting at

the pair (γn+1, ξ
n
γn+1

).
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By construction we have that γn ≤ τ∗(vη; τ, ξ,w) where the control w ∈ int(Aαc ) is defined as

ws :=
∞∑
n=1

1{s∈[γn,γn+1)}w
n
s .

Introduce the event

B := {γn < τ∗(v
η; τ, ξ,w) ∧ σ(τ, ξ,w) for all n ∈ N}

and notice that for each ω ∈ B there exists n0(ω) such that

ϕη(ξn0+2l+1
γn0+2l+1

) ≤ f̄(ξn0+2l+1
γn0+2l+1

) (3.14)

if τ∗(ϕ
η; γn0+2l, ξ

n0+2l
γn0+2l

,wn0+2l) < τ1(γn0+2l, ξ
n0+2l
γn0+2l

,wn0+2l),

vη(ξn0+2l+1
γn0+2l+1

) = v(ξn0+2l+1
γn0+2l+1

) (3.15)

if τ∗(ϕ
η; γn0+2l, ξ

n0+2l
γn0+2l

,wn0+2l) ≥ τ1(γn0+2l, ξ
n0+2l
γn0+2l

,wn0+2l),

v(ξn0+2l+1
γn0+2l+1

) ≤ f̄(ξn0+2l+1
γn0+2l+1

), (3.16)

for l ≥ 0. Denoting γ∞ := limn γn and noticing that ξw,τ,ξs = ξns for s ∈ [γn, γn+1) we take the limit

in (3.16) to obtain

v(ξw,τ,ξγ∞ ) ≤ f̄(ξw,τ,ξγ∞ ). (3.17)

Now assume there exists C ⊆ B such that for each ω ∈ C we have

ϕη(ξw,τ,ξγ∞ ) > f̄(ξw,τ,ξγ∞ ),

and conclude from (3.14)-(3.15) that there exists large enough positive integer M(ω) such that for

all n ≥M we have

vη(ξnγn) = v(ξnγn).

By taking n→∞ above we get vη(ξw,τ,ξγ∞ ) = v(ξw,τ,ξγ∞ ) on C. Hence, by using (3.17) we see that

vη(ξw,τ,ξγ∞ ) ≤ f̄(ξw,τ,ξγ∞ )

on C. On the other hand, on B \ C we have

ϕη(ξw,τ,ξγ∞ ) ≤ f̄(ξw,τ,ξγ∞ )

and again from (3.17) we get

vη(ξw,τ,ξγ∞ ) ≤ f̄(ξw,τ,ξγ∞ )

on B \ C. It follows that γ∞ ≥ τ∗(v
η; τ, ξ,w) on B and from the definition of B we conclude that

γ∞ = τ∗(v
η; τ, ξ,w) ∧ σ(τ, ξ,w).

Now take any ρ ∈ T with ρ ∈ [τ, σ(τ, ξ,w)], let ρ ∧ γn = ρn and notice that, by Itô’s formula

applied to ϕη and the subsolution property of v, we have

vη(ξnρn) = (1Aϕ
η + 1Acv)(ξnρn)

≤ E[(1A(ξnρn )ϕ
η + 1A(ξnρn )cv)(ξn+1

ρn+1
)|Gρn ] ≤ E[vη(ξn+1

ρn+1
)|Gρn ],
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and by iterating the above we conclude that

v(ξ) ≤ E[v(ξn+1
ρn+1

)|Gτ ] = E[ξw,τ,ξρn+1
)|Gτ ]. (3.18)

By taking n → ∞ in (3.18) and using the bounded convergence theorem we obtain that vη satis-

fies item (ii) in Definition 3.1 Hence vη ∈ V− and we obtain contradiction and consequently the

supersolution property of v−. �

Assumption 3.2. The boundary function g is the concave envelope of f̄ on the simplex faces

{z ∈ ∆k+1 : zj = 0} for all j = 0, . . . , k + 1.

Proposition 3.2. Under Assumption 3.2 we have that v− = v+ = g on ∂∆k+1.

Proof. Let v be the concave envelope of f̄ on the whole of ∆k+1. From Assumption 3.2 it follows

that v = g on ∂∆k+1 and v satisfies item (i) of Definition 3.2. Now take any τ ∈ T , ξ ∈ Gτ
with P(ξ ∈ ∆k+1) = 1, w ∈ int(Aαc ) and ρ ∈ T with ρ ∈ [τ, σ(τ, ξ,w)], and notice that, by the

Itô-Tanaka formula (see e.g. Theorem VI.1.5 in [13]) applied to the concave function v we have

E[v(ξw,τ,ξρ )|Gτ ] = E[v(ξ) +

∫ ρ

τ
v′(ξw,τ,ξs )dξw,τ,ξs +

∫
∆k+1

Laρ v
′′(da)|Gτ ] ≤ v(ξ),

where v′ is the left derivative, the second derivative v′′ is understood in the sense of a negative

measure and La is the local time at a of the process ξw,τ,ξ. Hence, item (ii) of Definition 3.2 is also

satisfied and v is a stochastic supersolution. Since v+ satisfies (3.10) and v+ ≤ v it follows that

v+ = g on ∂∆k+1.

Fix a constant control w ∈ int(Aαc ) and define the function v : ∆k+1 → R by

v(ξα) = sup
τ̄∈T

E
[
Ṽk−1(ξw,ξ

α

σ )I{σ≤τ̄} + f̄(ξw,ξ
α

τ̄ )I{σ>τ̄}

]
. (3.19)

The continuity of v(ξα) follows from the boundedness of the control w and standard results on

optimal stopping problems (see e.g. Theorem 3.1.5 in [9]). We have that v(ξα) = Vα′(ξ
α′) = g(ξα)

for ξα ∈ ∂∆k+1 and we obtain that item (i) of Definition 3.1 is satisfied. Moreover, the optimal

stopping time in (3.19) exists and is equal to τ∗ = σ ∧ τ∗(v; 0, ξα,w) and it follows that v(ξw,ξ
α

t∧τ∗ )

is a martingale (see e.g. Theorems I.2.4 and I.2.7 in [12]). This means that (3.7) is satisfied with

equality and v is a stochastic subsolution. By definition we know that v− ≤ g on ∂∆k+1 and v ≤ v−.

Hence, we conclude that v− = g on ∂∆k+1. �

Proof of Theorem 3.1. It is clear that if |α| = 1 then Vα(ξα) = f̄(ξα) where ξ = δxi for some i

and ξα = 1. We continue by induction and assume that we have proven the statement for all

k′ < k. By the induction hypothesis Vα′(ξ
α′) is the concave envelope of f̄ on the corresponding

to α′ simplex face and hence Assumption 3.2 is satisfied. Moreover, value functions coincide on

the intersection of their corresponding simplex faces, and therefore Assumpton 3.1 is also satisfied.

Define the Hamiltonian H as

H(A) := − sup
w∈Dk+1

c

1

2
tr(ww′A) for A ∈ R(k+1)×(k+1),
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and notice that for small enough c the set Dk+1
c contains all directions in Rk. On the other hand,

Vα is a viscosity solution to (3.2) on int(∆k+1) if and only if the projected function Ṽα defined in

(3.4) is a viscosity solution of

min
{
− sup

w∈D̃kc

1

2
tr(ww′D2

ξṼα), Ṽα − f̃
}

= 0 (3.20)

on int(∆̃k), where D̃kc is the projection of Dk+1
c onto Rk. Hence, the function Vα is a viscosity

solution to H(D2
ξVα) ≥ 0 if and only if Ṽα is a viscosity solution to −λk[Ṽα] ≥ 0, where λk[Ṽα] is

the largest eigenvalue of the Hessian D2
ξṼα. Therefore we can apply Theorem 1 in [10] to obtain

that any continuous viscosity solution to (3.20) is concave. Moreover, uniqueness of the solution to

(3.20) together with the projected boundary condition

Ṽα(ξα) = Ṽα′(ξ
α′), (3.21)

follows from the comparison principle for Dirichlet problems stated in Theorem 2.10 of [11]. This

leads to uniqueness and comparison principle for our original problem (3.2)-(3.3). In particular, by

Propositions 3.1 and 3.2 we have that v+ ≤ v− on int(∆k+1). On the other hand, by Proposition

3.1 we also have v− ≤ Vα ≤ v+ on ∆k+1. Therefore, we can conclude that v− = Vα = v+ on ∆k+1

and Vα is the unique viscosity solution of (3.2) with the boundary condition (3.3), and the same is

true for the projected versions.

Finally, from Theorem 2 in [10] we have that the concave envelope of the projected cost function

f̃ solves (3.20), and since it also clearly satisfies (3.21) we conclude from the uniqueness that Ṽα is

the concave envelope of f̃ . �

Remark 3.1. The value function Vα can be regarded as the concave envelope on the simplex ∆k+1

of the modified cost function f̄ . Indeed, we can ignore one direction in the state space vector ξ

due to the fact that ∆k+1 is a k-dimensional simplex and any concave function on a k-dimensional

simplex in Rk+1 is concave in any k of its variables (and vice versa). Note that the optimal control

weight vector w∗ may not be unique. It is determined by the direction on the simplex ∆k+1 for

which the second directional derivative of the value function Vα is zero - if the value function is

linear at a point then clearly many directions satisfy this condition.

Remark 3.2. When applying the stochastic Perron method to controlled exit time problems one

needs a comparison result for the corresponding PDE in order to characterize the value function

as a viscosity solution (see e.g. Definition 2 and Remark 1 in [14]). These comparison results

are of a slightly different nature than the standard ones of e.g. Theorems 7.9 and 8.2 in [7] - the

latter require an apriori knowledge of the behaviour of the stochastic semisolutions at the boundary.

We were able to exploit the specific structure of our exit time problem in Proposition 3.2 to obtain

the behaviour at the boundary of the stochastic semisolutions. This allowed the application of the

comparison result in [11].
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4. Examples

Let us first provide some intuition behind the choice of optimal controls and stopping times.

We will consider a general class of cost functions - namely all bounded, non-negative Lipschitz

continuous functions f : R → R. This is the class for which Theorem 3.1 holds. We will use our

concave envelope characterization to choose the optimal controls and verify that Brownian exit

times are optimal.

We abuse notation and regard f̄ as a function on the projected set of probability vectors ∆̃N :=

{z ∈ RN≥0 :
∑
zi ≤ 1}. Denote by conc(f̄) the concave envelope of f̄ on ∆̃N . For any initial

probability vector z ∈ ∆̃N corresponding to some terminal law µ, e.g.

µ =
N∑
i=1

ziδxi + (1−
N∑
i=1

zi)δx0 ,

we will find a candidate optimal control weight process (wr)r≥0 taking values in the projected

admissible set D̃Nc (i.e. the projection of DN+1
c onto RN ) and a candidate optimal stopping time τ∗

such that the resulting value function will be conc(f̄).

The usual characterization of optimal stopping times leads us to choose the candidate τ∗ as

τ∗ := inf{r ≥ 0 : conc(f̄)(ξw,zr ) = f̄(ξw,zr )}. (4.1)

In particular, if the initial probability vector z is such that conc(f̄)(z) = f̄(z) we can simply

set τ∗ = 0. Assume now that conc(f̄)(z) > f̄(z) and note that the point (z, conc(f̄)(z)) be-

longs to a planar region of the graph of conc(f̄)(z) that contains a point (z(1), conc(f̄)(z(1))) such

that conc(f̄)(z(1)) = f̄(z(1)). In other words, all points on the line between (z, conc(f̄)(z)) and

(z(1), conc(f̄)(z(1))) are also part of the graph of conc(f̄). We choose the control weight process as

a constant vector in the direction of z − z(1), i.e. wr ≡ c1(z − z(1)), where the constant c1 is such

that w is admissible. Therefore the probability vector process (ξw,zr )r≥0 evolves along the direction

z − z(1) and either hits the point z(1) or hits the boundary of ∆̃N at some point z(2). The point

z(2) can be regarded as belonging to a lower dimensional projected set ∆̃N̄ := {z ∈ RN̄≥0 :
∑
zi ≤ 1}

where N̄ < N . If conc(f̄)(z(2)) > f̄(z(2)), we repeat the same procedure when choosing a control

on this lower dimensional set - clearly this can happen at most N times.

For simplicity’s sake assume that conc(f̄)(z(2)) = f̄(z(2)). In other words, by looking at (2.4) and

(4.1), we get that τ∗ is the first exit time of a Brownian motion from the interval with endpoints

v1 =
z
(1)
0 −z0

c1(z0−z′0)
and v2 =

z
(2)
0 −z0

c1(z0−z′0)
. Using the formula for the Brownian exit times from an interval

we obtain that the projected value function as defined in (3.4) satisfies

Ṽα(z) =
v2

v2 − v1
f̄(z(1)) +

−v1

v2 − v1
f̄(z(2))

and the point (z, Ṽα(z)) lies on the line going through (z, conc(f̄)(z)) and (z′, conc(f̄)(z′)), hence

Ṽα(z) = conc(f̄)(z). Similar calculation is valid for the case conc(f̄)(z(2)) > f̄(z(2)).

Finally, by application of the Itô-Tanaka formula as in the proof of Proposition 3.2 we conclude

that conc(f̄) bounds the value function from above, and therefore the two coincide.
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Remark 4.1 (Generalized Put options). In fact, if the cost function is of the form

f(s) = (g(s))+,

for some concave function g, by direct calculation we can check that the candidate control and

stopping time described above are optimal among those controls that follow a fixed direction and

those stopping times that are Brownian exit times from an interval. By applying Theorem 3.1 we

see that optimization over this class is sufficient.

In what follows, using the observations above, we will construct the optimal controls and stopping

times explicitly for a piece-wise linear cost function which can be thought of as a call option spread.

4.1. Call option spread. We let f take the form

f(s) = (s−K1)+ − (s−K2)+

for K1 ∈ (−1, 1), K2 ∈ (0, 1) and K1 < K2, which can be seen as a bull call spread. Set N = 2,

XN = {−1, 0, 1} and assume that the law of MT is given by

µ = (1− γ − β)δ−1 + βδ0 + γδ1,

for 0 < γ, β < 1 such that 0 < γ + β < 1. Therefore, the initial probability vector is

ξα ≡ (ξ0
0 , ξ

1
0 , ξ

2
0) = (1− γ − β, β, γ) ∈ int(∆3)

where α = {0, 1, 2}. From the definition of the process M in (2.1) it follows that

Mt = γT−1
t
− (1− γT−1

t
− βT−1

t
) = 2γT−1

t
+ βT−1

t
− 1 for t ∈ [0, T ], (4.2)

where βr = ξ1
r and γr = ξ2

r for r ≥ 0. We introduce the constants s−101 = 2γ + β − 1, s01 = γ
γ+β ,

s1 = 1 and s0 = 0 corresponding to the value of M0 taking various atoms of XN into account. We

use the notation Vα(β, γ) := Vα(ξα) and f̄(β, γ) := f̄(ξα).

We will now describe how to obtain a guess for the value function which, as expected, will turn

out to be the concave envelope of the modified cost function f̄ . Notice that f is nondecreasing

and achieves its maximum for any s ≥ K2 and its minimum for any s ≤ K1. Therefore, for the

martingale state process ξw,ξ
α

(or equivalently the law process ξw,ξ
α
), we want to offset any decrease

of probability mass on the interval (K2,∞) with a corresponding decrease on the interval (−∞,K1).

We consider the following cases:

(1) Assume M0 ≡ s−101 ≥ K2. Then it is optimal to stop immediately, i.e. choose an optimal

stopping time τ∗ = 0 and obtain Vα(β, γ) = K2 −K1.

(2) Assume s01 ≥ K2 > s−101 and let the constant η ∈ [0, 1− γ − β) be such that γ−η
γ+β+η = K2.

Then it is optimal to choose a stopping time τ∗ and a control process wr ≡ (w0
r , w

1
r , w

2
r) =

(−c1 − β
γ c1,

β
γ c1, c1) for any r ∈ [0, τ∗], where the constant c1 > 0 is such that w is an

admissible control and the optimal stopping time τ∗ is the first exit time of γr from the

interval (0, γ
γ+β+η ). Note that this choice of w is not unique.
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Equivalently, by using (4.2), we see that τ∗ is the first exit time of MTr from the interval

(−1,K2). This corresponds to letting the law ξw,ξ
α

evolve until the stopping time τ∗ when

it separates into two measures of the form

ξw,ξ
α

τ∗ =


γδ1+βδ0+ηδ−1

γ+β+η with probability γ + β + η,

δ−1 with probability 1− (γ + β + η).

By the definition of η we have that γ+β+η = 2γ+β
K2+1 and therefore Vα(β, γ) = 2γ+β

K2+1(K2−K1).

(3) Assume K2 > s01 and let the constant η ∈ (0, β) be such that γ
γ+η = K2. Then we choose a

stopping timeR1 and a control process wr ≡ (w0
r , w

1
r , w

2
r) = (−c1−η−β(γ+η)

γ−γ(γ+η)c1,
η−β(γ+η)
γ−γ(γ+η)c1, c1)

for any r ∈ [0, R1], where the constant c1 > 0 is such that w is an admissible control and

the stopping time R1 is the first exit time of γr from the interval (0, γ
γ+η ). Equivalently, by

using (4.2), we see that R1 is the first exit time of MTr from the interval
(
− 1−γ−β

1−γ−η ,K2

)
.

This corresponds to letting the law ξw,ξ
α

evolve until time R1 when it separates into two

measures of the form

ξw,ξ
α

R1
=


γδ1+ηδ0
γ+η with probability γ + η,

(β−η)δ0+(1−β−γ)δ−1

1−γ−η with probability 1− (γ + η).

In addition, if s0 ≤ K1, we choose the optimal stopping time as τ∗ ≡ R1 and we have

Vα(β, γ) = γ
K2

(K2 −K1). This is due to the fact that if γR1 = 0 (i.e. the atom {1} dies)

it is not worth to evolve the law ξw,ξ
α

further because the cost function f will be 0 under

any combination of the atoms {0,−1}. In other words we gain nothing from transferring

probability mass between the atoms 0 and −1.

On the other hand, if we also have that s0 > K1, on the event A := {γR1 = 0} we let the

control process be wr = (−w1
R1
, w1

R1
, 0) for r ∈ (R1, R2] and set the optimal stopping time

τ∗ = R11Ac +R21A,

where the stopping time R2 is the first exit time of βu from the interval (0, 1) for u > R1.

Equivalently, by using (4.2), we see that R2 is the first exit time of MTr from the interval(
−1, 0

)
for r > R1. This corresponds to further evolving the law ξw,ξ

α
until at the stopping

time R2 > R1 it splits into three measures of the form

ξw,ξ
α

R2
=


γδ1+ηδ0
γ+η with probability γ + η,

δ0 with probability β − η,

δ−1 with probability 1− β − γ.

Therefore we have

Vα(β, γ) =
γ

K2
(K2 −K1) + (β − η)(−K1) = γ(1−K1)− βK1.
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Figure 1. The modified cost function f̄(β, γ) on the left plotted together with the

projected value function Vα(β, γ) on the right for K1 = −0.1 and K2 = 0.5. The

three triangular planar regions correspond to the three cases above. It is evident

that Vα(β, γ) is the concave envelope of f̄(β, γ).

The candidate value function Vα(β, γ) is given by

Vα(β, γ) =



K2 −K1 (i) s−101 ≥ K2

2γ+β
K2+1(K2 −K1) (ii) s01 ≥ K2 > s−101

γ
K2

(K2 −K1) (iii) K2 > s01, s0 ≤ K1

γ(1−K1)− βK1 (iv) K2 > s01, s0 > K1

and it is the concave envelope of f̄(β, γ) (see Figure 1).

Appendix A. Proof of Lemma 2.1

Proof. In order to prove the independence in the t variable we choose 0 ≤ t1 < t2 < T and notice

that U(t1, ξ) ≥ U(t2, ξ). Indeed, the supremum in (2.3) corresponding to U(t1, ξ) is taken over a

larger set of stopping times than the one corresponding to U(t2, ξ). Conversely, for any ξ ∈ Ξ and

τ ∈ Tt1 we can choose ξ̃ ∈ Ξ and τ̃ ∈ T̃t2 such that

τ̃ = aτ + b, ξ̃at+b = ξt

with a = T−t2
T−t1 and b = T (t2−t1)

T−t1 . This choice leads to∫
x ξτ (dx) =

∫
x ξ̃τ̃ (dx)

which allows us to conclude that U(t2, ξ) ≥ U(t1, ξ) and hence U(t2, ξ) = U(t1, ξ) and we have

independence in t for t ∈ [0, T ).

To prove the continuity in ξ we first observe (e.g. see Lemma 3.1 in [6]) that if (ξr)r≥0 ∈ Ξ with

ξt = ξ and dW1(ξt, ξ
′) < ε (here dW1 is the Wasserstein-1 metric) then there is (ξ′r)r≥0 ∈ Ξ with
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ξ′t = ξ′ such that E[|
∫
x ξτ (dx) −

∫
x ξ′τ (dx)||Ft] < ε for all τ ∈ Tt with some fixed λ ∈ Λ. Indeed,

we know that ξs = E[ξT |Fs] and we can define

ξ′s(dy) = E
[∫

ξT (dx)m(x, dy)|Fs
]
, s ≥ t,

where the Borel family of probability measures m(x, dy) is obtained by the disintegration of the

transport plan Γ(dx, dy) = ξt(dx)m(x, dy) such that Γ(R+, dy) = ξ′(dy), Γ(dx,R+) = ξt(dx) and∫ ∫
|x− y|Γ(dx, dy) < ε. By optional stopping we get∣∣∣∣∫ x ξτ (dx)−

∫
x ξ′τ (dx)

∣∣∣∣ ≤ E
[∫ ∫

|x− y|ξT (dx)m(x, dy)|Fτ
]

and hence

E
[∣∣∣∣∫ x ξτ (dx)−

∫
x ξ′τ (dx)

∣∣∣∣ ∣∣∣Ft] ≤ ∫ ∫ |x− y|Γ(dx, dy) < ε.

Denote by M ξ the process corresponding to the measure-valued martingale (ξr)r≥0 from (2.1). By

the Lipschitz property of f and the above inequality we get

E
[∣∣∣f(M ξ′

τ

)
− f

(
M ξ
τ

)∣∣∣ |Ft] < ε.

Now fix ε′ > 0 and consider ξ, ξ′ ∈ P such that dW1(ξ, ξ′) < ε′/2. From the reasoning above, we can

choose (ξr)r≥0, (ξ
′
r)r≥0 ∈ Ξ with ξt = ξ and ξ′t = ξ′ such that U(t, ξ) ≤ supτ∈Tt E[f

(
M ξ
τ

)
|Ft] + ε′/2

and E
[∣∣∣f(M ξ′

τ

)
− f

(
M ξ
τ

)∣∣∣ |Ft] < ε′/2. Therefore we obtain

U(t, ξ) ≤ sup
τ∈Tt

E[f(M ξ
τ )|Ft] + ε′/2 ≤ sup

τ∈Tt
E[f(M ξ′

τ )|Ft] + ε′ ≤ U(t, ξ′) + ε′,

and by symmetry we get |U(t, ξ)− U(t, ξ′)| ≤ ε′ and continuity follows.
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