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Abstract 

A gold-gold dual-plate microtrench electrode system based on two oppositely placed 

gold surfaces with 5 mm length, 17 m average depth, and 6 m inter-electrode gap is 

employed in generator-collector configuration in a four-electrode cell (counter 

electrode, reference electrode, and two independent working electrodes denoted 

“generator” – with scanning potential - and “collector” – with fixed potential). The 

dual-plate microtrench electrodes were investigated for (i) the reduction of Ru(NH3)6
3+, 

(ii) the oxidation of ferrocenemethanol, and (iii) the oxidation of iodide in aqueous 

media, all as a function of supporting electrolyte concentration. It is shown that due to 

the inter-electrode feedback character of the generator-collector currents, well-defined 

steady state sensor responses are obtained for the collector electrode even in the absence 

of added electrolyte. The variation in the mass transport limited steady state current 

(measured at the collector electrode) with addition/removal of supporting electrolyte 

remains low (compared to unexpectedly stronger effects caused by the switch between 

reduction and oxidation conditions at the collector electrode). Microtrench electrode 

systems are suggested for sensing applications without/with varying levels of 

supporting electrolyte. 

 

Keywords: ionic strength, diffusion, feedback, sensing, voltammetry. 

 

 

 

 

 

 



3 

 

 

 

Graphical Abstract: 

 

 

 

 



4 

 

1. Introduction 

Dual-plate microtrench electrode systems were introduced in 2013 [1] in an attempt to 

develop versatile sensor electrodes that allow amplification of redox current responses 

due to fast feedback via inter-electrode diffusion in a small gap similar to microgap 

electrode systems [2,3,4,5], but with the added advantage of a significantly smaller 

inter-electrode gap and immediate diffusional access of the sample solution into the 

open microtrench [6]. Subsequently, this type of electrode has been applied 

electroanalytically with a silver catalyst for nitrite/nitrate determination [7], with boron-

doped diamond electrodes for chloride [8] and sulphide detection [9], as gold-gold 

microtrench electrode system for cysteine-cystine detection [10], and for the 

proton/hydrogen redox couple with a platinum-platinum microtrench electrode system 

[11]. Some benefits of the microtrench electrode configuration are in (i) the application 

of two (rather than one) electrode potentials simultaneously to provide additional 

chemical selectivity and signal amplification, (ii) the rejection of irreversible electrode 

processes such as interfering oxygen reduction or ascorbate oxidation [6], and (iii) the 

control over the microtrench environment, for example, by in situ removal of oxygen 

and creation of anoxic sensing conditions for sulphide [9]. Most studies performed with 

dual-plate microtrench electrode systems to date have been carried out in generator-

collector feedback mode (with the generator electrode potential sweeping and the 

collector electrode potential fixed) and in aqueous media, although pulse methods [12] 

and applications in ionic liquids [13] have also been proposed. In this report, generator-

collector voltammetry at a gold-gold dual-plate microtrench electrode system is 

investigated in the absence of supporting electrolyte.  
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Generator-collector electrochemistry [14] is commonly applied and useful for a wide 

range of electroanalytical applications. Rotating ring-disk voltammetry has been 

frequently employed in catalyst development [15], and microfluidic generator-collector 

devices have been employed in analysis with hydrodynamic flow [16]. Generator-

collector nanogap devices, fabricated using multistep nanofabrication processes, have 

been developed based entirely on diffusional transport [17] or also coupled with 

electrokinetic/hydrodynamic flow [18]. Nanogap devices have been improved to the 

level that they now reach the limit of single molecule electrochemical detection [19]. 

They also allow the monitoring of bio-catalytic reactions at the single molecule/enzyme 

level [20]. Bohn and co-workers developed a generator-collector nanogap 

electrochemical device based on cylindrical pores with two closely-spaced embedded 

electrodes [21]. These types of nanopore array electrodes, when operated without 

supporting electrolyte, have recently been shown to result in current enhancements of 

up to three orders of magnitude possibly due to adsorption/accumulation of redox active 

species into the pores of the device [22].  

 

In contrast to many single working electrode electroanalytical techniques that have been 

well-studied and for which there are powerful numerical data analysis software 

packages, for dual-plate dual-working electrode electroanalytical techniques (in a four-

electrode cell) in microtrench devices, there is still a need for better understanding and 

for theory to be developed. It has been suggested that dual-plate microgap generator-

collector electrode experiments can be performed in the absence of intentionally added 

supporting electrolyte [23] and further theoretical analysis of the simplified case of a 

closed microgap electrode experiment (configured as a two-electrode cell [24]) led to 
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the conclusion that complex behaviour can emerge, with mathematical complexity 

currently preventing access to practical analytical expressions. 

 

In this study, voltammetric experiments are performed with a relatively shallow gold-

gold dual-plate microtrench electrode system (the aspect ratio of trench depth: trench 

width is only 3:1 to avoid additional resistivity from having a deeper trench) immersed 

in aqueous electrolyte media in the presence of redox-active species. It is shown that 

for this type of electrode system significant effects from diffusional exchange between 

the microtrench interior and bulk exterior solution occur. These effects go beyond those 

observed when adding or removing supporting electrolyte. The Ru(NH3)6
3+/2+, 

ferrocenemethanol+/0, and iodide/tri-iodide/iodine redox systems are investigated and 

in all cases the effect of supporting electrolyte is evaluated. The effect of supporting 

electrolyte on the mass transport controlled limiting current appears minor and, as a 

result, it is proposed that the dual-plate microtrench sensor configuration is relatively 

insensitive to changes in supporting electrolyte concentration. 

 

 

2. Experimental 

2.1. Reagents. Hydrogen peroxide (30 wt.% in water), ferrocenemethanol (98 %), NaI 

(>99 %), Na2SO4 (anhydrous >99%), and sulfuric acid (≥95–98 %), hydrochloric acid 

(HCl, 37 %), nitric acid (HNO3, 70%) from Sigma Aldrich, KCl >99 % from Acros 

Organics, hexaammineruthenium(III)chloride (Ru(NH3)6Cl3, 99%) from Strem 

Chemicals, and SU-8 2002 series negative photoresist from Microchem Corporation 

were used as received. Aqueous solutions were prepared using ultrapure water 
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(demineralised and filtered water taken from a Millipore water purification system) 

with 18.2 MΩcm resistivity. 

 

2.2. Instrumentation. Electrochemical measurements were performed using a 

bipotentiostat (CH Instruments CHI910B). A four-electrode cell was employed with a 

Pt wire counter electrode, Hg/Hg2SO4 (sat. K2SO4) or Ag/AgCl (1 M KCl) reference 

electrode, and the two independent working electrodes of the gold-gold microtrench. 

Measurements were performed at 20 ± 2 °C. A WS-650 Mz-23NPP (Laurell 

Technologies) spin coater was used to spin photoresist. Scanning electron microscopy 

(SEM) images were taken with a Hitachi S3000N microscope.  

 

2.3. Electrode Fabrication. The gold-gold dual-plate microtrench electrode was 

prepared based on the photoresist method developed in previous work for tin-doped 

indium oxide electrodes [25]. A gold coated (100 nm thickness) glass slide with a 

titanium adhesion layer (Sigma Aldrich) was cut into two 10 mm × 25 mm pieces. A 

central 5 mm × 25 mm strip was masked on each substrate using Kapton tape (Farnell, 

UK) before etching the exposed metal using a solution of aqua regia (1:3 v/v HNO3: 

HCl; WARNING: this solution is highly aggressive) for 3 min. After rinsing of the 

samples in ultrapure water, removing the mask, then drying with a stream of nitrogen, 

the gold slides were heated at 500 °C for 30 min in air and then cooled to room 

temperature (the heating destroys the remaining titanium metal film). The gold slides 

were subsequently spin-coated with a single coat of SU-8 2002 epoxy using a first spin 

step at 500 rpm (5 s) and a second spin step at 3000 rpm (15 s). The two gold-coated 

substrates were pressed together face-to-face (see Figure 1). The substrates were placed 

on a hot-plate pre-heated to 90 °C for 2 min then heated to 160 °C for 5 min. This 
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effectively glued the two gold surfaces together. After cooling to room temperature the 

end of the gold-gold electrode system was cut with a diamond blade to reveal the gold-

epoxy-gold sandwich. In order to create the microtrench, the epoxy layer is etched away 

(see Figure 1A) using a piranha etch solution (5:1 sulphuric acid : hydrogen peroxide; 

caution, this is a highly aggressive reagent), and the contacts prepared as previously 

reported [25]. The duration of the etching process defines the depth of the microtrench. 

 

 

 

Figure 1. (A) Schematic drawing of the dual-plate gold-gold microtrench electrode 

system based on two 100 nm gold coated glass slides facing each other. (B,C) Scanning 

electron microscopy images of the 6 m wide microtrench.  

 

 

The 4-electrode electrochemical cell was based on a Pt wire counter electrode, either a 

Hg/Hg2SO4 (with a potential of 0.654 V vs. NHE) or a Ag/AgCl 1 M KCl (with a 

potential of 0.235 V vs. NHE) reference electrode and a dual-plate gold-gold working 

electrode combination. If not stated otherwise in cyclic voltammetry experiments, a 

scan rate of 25 mV s-1 was employed and aqueous Na2SO4 or KCl was used as 

supporting electrolyte at varied concentrations (from 0.0 M up to 0.1 M for each 

supporting electrolyte). The cell volume was 7-8 cm3 and solutions were thoroughly 

deoxygenated with a flow of argon (due to hydrophilic gold surfaces there is no problem 
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with gas bubbles entering the microtrench). The dual-plate gold-gold working electrode 

system was pre-treated by performing 25 potential cycles in aqueous 0.5 M H2SO4 in a 

potential range from -0.15 to 1.55 V vs. AgCl/Ag (1 M KCl) to clean and recondition 

the surface. 

 

2.4. Electrode Geometry Calibration. Due to the difficulty of directly measuring the 

depth of the microtrench, a voltammetric experiment was performed to obtain an 

estimate. Analysis of the limiting current for the reduction of 1 mM Ru(NH3)6
3+ in 

aqueous 0.1 M Na2SO4 was employed to calibrate the dual-plate microtrench geometry 

based on a known diffusion coefficient of 0.91 × 10-9 m2 s-1 [26]. From SEM images 

the inter-electrode gap is estimated as L = 6 m and the trench length is known to be 5 

mm. With equation (1) and a measured limiting current of Ilim,supported = 1.26 A 

(collector limiting current, vide infra) this suggests an average microtrench depth of 

approximately 17 m (consistent with an aspect ratio of microtrench depth to inter-

electrode gap of approximately 3:1).  

 

L

nFADc
I

0

supportedlim,                                                                                   (1) 

 

Equation 1 describes the steady state diffusional flux between two equidistant planes 

with gap L, area A (= width × depth), Faraday constant F, number of electrons 

transferred per molecule diffusing to the electrode surface n, diffusion coefficient D, 

and concentration difference c0 based on a simple Nernst diffusion layer [27]. This 

expression can be used to provide a reference point and as an approximate description 

of the limiting current for a dual-plate microtrench electrode system (the equation is 
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strictly valid only for a high aspect ratio of trench depth to inter-electrode gap L). The 

value of the aspect ratio here is relatively low or shallow and as a result the generator 

current responses in this study often show significant transient current features in 

addition to the desired steady state current. Nevertheless, the collector current responses 

show steady-state characteristics and are well-defined and useful for electroanalytical 

purposes. 

 

3. Results and Discussion 

3.1. Supporting Electrolyte Effects on Dual-Plate Sensor Signal I.: Reduction of 

Ru(NH3)6
3+ 

The Ru(NH3)6
3+/2+ redox system offers a well-defined one-electron redox system to 

calibrate the microtrench electrode geometry (vide supra) and to explore supporting 

electrolyte effects (equation 2). 

 

Ru(NH3)6
3+     +     e-            Ru(NH3)6

2+                                            (2) 

 

Voltammetric data are summarised in Figure 2. All E1/2 values (here defined as E1/2 = 

½ Ep,ox + ½ Ep,red) values are observed at -0.64 V vs. Hg/Hg2SO4 with or without added 

Na2SO4 electrolyte at different concentrations. The left hand column shows the cyclic 

voltammmogram recorded at only one working electrode with the second working 

electrode disconnected. Peak features are observed, which are likely to be dominated 

by diffusion of redox active species from the bulk solution into the microtrench. When 

comparing data in Figure 2A (no added Na2SO4) and Figure 2D (with 0.1 M Na2SO4), 

resistivity effects (Ohmic distortion) at lower supporting electrolyte level are observed. 

Data in Figure 2B and 2C are consistent with those in Figure 2A and Figure 2D.  
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When working with both working electrodes (the generator electrode potential scanning 

and the collector electrode potential fixed) in generator-collector mode, there are two 

simultaneous current responses shown in black for the generator electrode and shown 

in red for the collector electrode. Both currents are presented here superimposed into a 

single plot, but note that the potential scale shows the generator potential with the 

collector potential being fixed. Generally, for the microtrench electrode system there 

are two current components due to (i) flow of charge from the microtrench interior to 

the outside bulk solution (whereby the current flow is “in line” with the external 

reference electrode and therefore potentially affected by high solution resistivity) and 

(ii) flow of charge only between the generator and collector (whereby the current flow 

is “perpendicular” to the reference electrode position and therefore less affected by 

resistivity). A capacitive current component is observed only for the generator electrode 

subjected to potential cycling and not for the collector electrode at fixed potential. The 

steady state current responses recorded here at the collector electrode should be 

relatively insensitive to solution resistance and free of capacitive effects. 

 

Data shown in the second and third column of Figure 2 correspond to the cases of the 

collector electrode either being fixed at a potential sufficiently positive to oxidise (at -

0.35 V vs. Hg/Hg2SO4, forming Ru(NH3)6
3+) or fixed at sufficiently negative potential 

to reduce (at -0.75 V vs. Hg/Hg2SO4, forming Ru(NH3)6
2+), respectively. 
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Figure 2. Cyclic voltammograms (scan rate 25 mV s-1; four consecutive potential 

cycles) for a gold-gold dual-plate microtrench electrode immersed in 1 mM 

Ru(NH3)6Cl3 in aqueous (A) 0, (B) 5, (C) 20, and (D) 100 mM Na2SO4. The generator 

electrode potential is scanning and the collector electrode potential is either floating 

(left column), set to the positive limit (-0.35 V vs. Hg/Hg2SO4, middle column), or set 

to the negative limit (-0.75 V vs. Hg/Hg2SO4, right column).  

 

 

When holding the collector potential positive (see middle column), the steady state 

limiting current response is typically 1.26 A, with high supporting electrolyte 
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concentration, and reduced to 1.02 A in the absence of added electrolyte. When 

holding the collector potential negative (see right column) the resulting limiting current 

changes from -1.32 A at high electrolyte level to -1.15 A at zero added electrolyte 

concentration. A significant change of ca. 20% in the limiting current appears to occur 

only at very low supporting electrolyte levels (changing from 5 mM to 0 mM Na2SO4). 

The reason for this change is likely to be connected to migration effects. A further 

significant effect can be observed when comparing the magnitude of the generator and 

collector current signals. The generator current always is significantly higher and 

associated with transient features compared to the collector current, which is smaller 

and consistent with a steady state response. The main reason for this behaviour is that 

the fixed potential on the collector electrode causes a “pre-electrolysis” effect 

associated with a change in the ratio of oxidised to reduced form (Ru(NH3)6
3+/2+) in the 

bulk solution in the vicinity of the microtrench. Due to the generator electrode potential 

being continuously scanned, there will always be a “pool” of redox species in the 

vicinity of the microtrench determined by the fixed collector potential. Therefore, 

significant differences in steady state voltammetric responses in column 2 and column 

3 are seen, and the generator current responses appear higher and more transient 

compared to the collector current responses, which appear to remain closer to steady 

state. This also makes the collection efficiency, which is usually defined as the collector 

limiting current divided by the generator limiting current, ill-defined under these 

conditions.  

 

3.2. Supporting Electrolyte Effects on Dual-Plate Sensor Signal II.: Oxidation of 

Ferrocenemethanol 
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The oxidation of 1 mM ferrocenemethanol was performed in aqueous solution without 

and with increasing amounts of KCl added as supporting electrolyte. The reversible 

potential or E1/2 value for the one-electron oxidation of ferrocenemethanol [28] 

(equation 3) is at 0.20 V vs. Ag/AgCl.  

 

  +     e-                                                        (3) 

 

Cyclic voltammetry data are presented in Figure 3. In the presence of excess supporting 

electrolyte (Figure 3D) well-defined voltammetric signals are obtained with a collector 

limiting current of approximately 2.08 A. With the help of equation 1 the diffusion 

coefficient can be estimated as 1.4 × 10-9 m2s-1, which is slightly high compared to 

literature values 0.8 × 10-9 m2s-1 [29]. The reason for this discrepancy is currently 

unknown, but may be linked to aggregate formation in the solution phase. 
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Figure 3. Cyclic voltammograms (scan rate 25 mV s-1, four consecutive potential 

cycles) for a gold-gold dual-plate microtrench electrode immersed in 1 mM 

ferrocenemethanol in aqueous (A) 0, (B) 5, (C) 20, and (D) 100 mM KCl. The generator 

electrode potential is scanning and the collector electrode potential is either floating 

(left column), set to the negative limit (-0.2 V vs. Ag/AgCl, middle column), or set to 

the positive limit (+0.5 V vs. Ag/AgCl, right column). 

 

 

When lowering the concentration of the supporting electrolyte, limiting current values 

are slightly lowered (just as in the case of the reduction of Ru(NH3)6
3+, see Figure 2). 

However, limiting current values (as determined at the collector electrode) generally 
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remain very similar. When the anodic process occurs at the collector electrode (with 

Ecol = 0.4 V vs. Ag/AgCl; 3rd column), limiting currents seem slightly lower compared 

to the case of the cathodic process occurring at the collector (with Ecol = -0.1 V vs. 

Ag/AgCl; 2nd column). This trend seems opposite to that seen for reduction of 

Ru(NH3)6
3+, but for both systems the lower current is associated with the electrode 

reaction producing the more highly charged species. The lower diffusion coefficient of 

the more highly charged species in combination with the more complex diffusion 

geometry in the shallow (only 17 m deep) microtrench are likely to be responsible for 

the observed effects.  

 

Next, the oxidation of ferrocenemethanol was investigated in the presence of Na2SO4 

electrolyte. Figure 4A to 4D show data for increasing amounts of added supporting 

electrolyte. Perhaps surprisingly, in this case the limiting currents in the presence of 

excess electrolyte are lower compared to those in the absence of intentionally added 

electrolyte. This implies an effect of the electrolyte anion (here doubly charged 

sulphate). Limiting currents in the absence of supporting electrolyte agree between the 

two sets of experiments (although for the neutral ferrocenemethanol without electrolyte 

potentially trace salt impurities may have to be considered), but with added electrolyte 

the opposite trends are seen compared to the Ru(NH3)6
3+/2+ redox system. Initial 

transient behaviour of the collector electrode during consecutive potential cycles (when 

positive potentials are applied at the collector) are linked to non-steady state processes 

and diffusion of species from the bulk solution outside of the microtrench into the inter-

electrode gap. Overall, limiting currents remain similar as the level of electrolyte is 

altered (to within 20 %). 
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Figure 4. Cyclic voltammograms (scan rate 25 mV s-1, four consecutive potential 

cycles) for a gold-gold dual-plate microtrench electrode immersed in 1 mM 

ferrocenemethanol in aqueous (A) 0, (B) 5, (C) 20, and (D) 100 mM Na2SO4. The 

generator electrode potential is scanning and the collector electrode potential is either 

floating (left column), set to the negative limit (-0.3 V vs. Hg/Hg2SO4, middle column), 

or set to the positive limit (-0.05 V vs. Hg/Hg2SO4, right column). 

 

3.3. Supporting Electrolyte Effects on Dual-Plate Sensor Signal III.: Oxidation of 

Iodide to Iodine  
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The iodide/iodine redox system in aqueous Na2SO4 offers a more complex chemical 

system with formation of a neutral product (in contrast to the ferrocenemethanol where 

the neutral molecule is converted into a cation, for example). The oxidation of iodide 

is known to proceed in two steps with a tri-iodide, I3
-, intermediate that can often be 

detected [30]. Here, the iodide oxidation is dominated by the direct formation of I2 with 

only little direct voltammetric evidence for intermediate species (apart from a more 

complicated wave shape). Therefore, the reaction equation is simplified as shown in 

equation 4. 

 

I2     +     2 e-            2  I-                                                                   (4) 

 

Figure 5 shows voltammetric data for a floating microtrench (only one electrode 

connected), for a negative collector potential (Ecol = -0.20 V vs. Hg/Hg2SO4; 2nd 

column), and for a positive collector potential (Ecol = 0.25 V vs. Hg/Hg2SO4; 3rd 

column). With the collector held at negative potentials, the limiting current is typically 

2.7 A, independent of added supporting electrolyte levels. This corresponds to an 

estimated diffusion coefficient (based on equation 1) of 1.9 × 10-9 m2s-1, which is in 

good agreement compared to the literature value for iodide (2.0 × 10-9 m2s-1 [31]). Also 

note the change in shape of the generator current responses, which are closer to steady 

state due to the faster rate of diffusion. However, when investigating the case for the 

collector potential held positive, the limiting currents are consistently higher at 4.1 A 

(independent of supporting electrolyte concentration). This increase is significant and 

again associated with the positive potential being applied to the collector electrode. The 

diffusion coefficient for I2 (1.3 × 10-9 m2s-1 [32]) can be expected to be much lower 

compared to that for I-. Therefore, an effect associated with a change in the diffusion 
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behaviour in combination with the complicated geometry of the shallow microtrench 

has to be considered. 

 

 

Figure 5. Cyclic voltammograms (scan rate 25 mV s-1, four consecutive potential 

cycles) for a gold-gold dual-plate microtrench electrode immersed in 1 mM NaI in 

aqueous (A) 0, (B) 5, (C) 20, and (D) 100 mM Na2SO4. The generator electrode 

potential is scanning and the collector electrode potential is either floating (left column), 

set to the negative limit (-0.2 V vs. Hg/Hg2SO4, middle column), or set to the positive 

limit (0.25 V vs. Hg/Hg2SO4, right column). 
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When comparing the relative magnitude of generator and collector currents in the data 

shown in Figure 5, it can be observed that in all cases non-steady state behaviour is seen 

(mainly at the generator) and the collector current appears always lower compared to 

the generator current. Similar trends were also observed in the data for the reduction of 

Ru(NH3)6
3+ and for the oxidation of ferrocenemethanol. The reason for this trend is the 

pre-electrolysis of bulk solution outside of the microtrench at the fixed collector 

potential and a process at the generator electrode that is always working against this 

pre-electrolysis. That is, for the case of iodide/iodine the bulk solution phase outside of 

the microtrench is dominated by iodide for Ecol = -0.2 V vs. Hg/Hg2SO4 and dominated 

by iodine and triiodide for Ecol = 0.25 V vs. Hg/Hg2SO4. Diffusional processes 

associated with the shallow microtrench geometry clearly outweigh any effects due to 

supporting electrolyte. A more quantitative understanding of the steady state limiting 

currents will require more experimental work including chronoamperometry to reach 

longer time domains, and simulation of diffusion-migration processes taking into 

account both dual-plate microtrench inter-electrode transport and transport from the 

bulk solution outside of the microtrench. 

 

 

4. Conclusions 

It has been demonstrated that a dual-plate microtrench electrode system based on two 

gold coated glass slides with 6 m gap, 17 m depth, and with 5 mm length offers a 

robust electroanalysis tool potentially useful, for example, for detection of 

physiological analytes of interest such as iodide without intentional addition of 

supporting electrolyte. In particular, the shallow microtrench can be suggested to be 

associated with significant levels of diffusional exchange between the microtrench 



21 

 

interior and with the exterior bulk solution, and additional complexity in signals when 

comparing data obtained with fixed collector potentials set at positive and negative 

potentials for oxidation and for reduction, respectively. Deeper microtrenches will 

provide a better/more stable apparent steady state (although diffusional exchange with 

the outside solution will take longer) and could be studied in future to further optimise 

sensor performance. Depending on the type of analysis task, it may also be beneficial 

to employ other types of electrode materials. The effect of supporting electrolyte has 

been investigated and, although some detrimental effects of low support ratios on the 

generator signal were apparent, well-defined steady state collector current responses 

were observed in all cases. The effects of varying/removing the supporting electrolyte 

appeared to remain relatively small.   

 

In future, it will be interesting to apply this type of generator-collector electrode for 

sensing in physiological samples and also in sensors operating in resistive non-aqueous 

media. Development of improved experiments (with deeper microtrench devices) and 

quantitative theory based on advanced numerical simulation methods will be possible. 

Microtrench electrode systems could provide an interesting alternative to conventional 

electrode systems also in organic/oil biphasic systems. When lowering the inter-

electrode gap towards nanotrench systems, electroanalysis at extremely low 

concentration levels for example in oils could become feasible. 
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