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From Qualitative to Quantitative Semantics
By Change of Base

J. Laird?

Department of Computer Science, University of Bath, UK

Abstract. We give a general description of the transition from qualita-
tive models of programming languages to quantitative ones, as a change of
base for enriched categories. This is induced by a monoidal functor from
the category of coherence spaces to the category of modules over a com-
plete semiring R. Using the properties of this functor, we characterise the
requirements for the change of base to preserve the structure of a Lafont
category (model of linear type theory with free exponential), and thus to
give an adequate semantics of erratic PCF with scalar weights from R.
Moreover, this model comes with a meaning-preserving functor from the
original, qualitative one, which we may use to interpret side-effects such
as state. As an example, we show that the game semantics of Idealized
Algol bears a natural enrichment over the category of coherence spaces,
and thus gives rise by change of base to a R-weighted model, which is
fully abstract. We relate this to existing categories of probabilistic games
and slot games.

1 Introduction

Game semantics have been used to successfully describe intensional models of a
wide variety of programming language features. With some notable (generally
ad-hoc) exceptions, these models are qualitative rather than quantitative in
character, possessing an order-theoretic structure which may be characterized as
a categorical enrichment over certain categories of domain (such as dI-domains,
qualitative domains and prime algebraic lattices). Our aim is to show that this
enriched category theory perspective may be used to systematically construct
quantitative models (and describe existing ones), using the notion of change
of base to vary the enrichment of the model, independently of its intensional
structure. Specifically, we describe a monoidal functor from a category of coherence
spaces to the category of R-weighted relations, where R is a complete semiring.
The change of base induced by this functor allows a semantic translation from
a qualitative model, enriched over coherence spaces, to a quantitative one in
which program denotations are weighted with values in R corresponding to (e.g.)
measures of probability, security, resource usage, etcetera. We illustrate this by
example, showing that the well-known games model of Idealized Algol [1] bears
a natural enrichment over coherence spaces, and describing the fully abstract
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semantics of R-weighted Idealized Algol which we obtain from it by change of
base.

Related Work The monoidal categories we use for enrichment are based on
existing, extensonal models of computation, and logic — on the qualitative side,
coherence spaces or qualitative domains [12]. On the quantitative side, we use
the category of weighted relations over a complete semiring R (equivalently, free
R-modules and linear functions). This was introduced as a model of linear logic
by Lamarche [21] and its computational properties studied in [20] via a semantics
of R-weighted PCF.

A more general categorical characterization of these quantitative models,
abstracting their key properties, was given in [18]: any model of intuitionistic
linear logic with a free exponential and (countably) infinite biproducts yields an
adequate model of PCF weighted over its internal semiring. To arrive at such
a category using the change of base, we need to show that it preserves the free
exponential. However, this is not an enriched functor: instead, we give conditions
under which the construction of the cofree commutative comonoid given in [22],
as a limit of symmetric tensor powers, is preserved.

Change of base thus provides a simple way to identify further examples of this
categorical model, with richer internal structure than sets and weighted relations.
This will allow more language features such as side effects to be captured, and
also provide a way to attack the full abstraction problem for these models (the
weighted relational models for PCF are shown not to be fully abstract in [20]).
As an illustrative example we study the games model introduced in [1]. We show
that a strictly linear (rather than affine) version of this category of games bears
a natural enrichment over coherence spaces — as foreshadowed by in [5] by a
projection into a category of (ordered) coherence spaces. Previous quantitative
models based on this category of games include Danos and Harmer’s probabilistic
games [8], in which strategies are defined by attaching probabilities to positions
of the game, and Ghica’s slot games [11], which attach resource weightings to
positions in a rather different way — by introducing a class of moves which
are persistent when other moves are hidden during composition, allowing the
cost of computation to be made explicit. We show that both may be viewed as
examples obtained by our change of base construction, and that the corresponding
programming languages (Algol weighted with probabilities, and resource costs)
may be subsumed into a version of Idealized Algol with weights from a complete
semiring, for which we describe a denotational semantics. Full abstraction for
this model follows from the result in [1] with very little effort.

1.1 Enriched Categories and Change of Base

Recall that if V is a monoidal category, then a V-category C is given by a set of its
objects, a V-object C(A,B) for each pair of C-objects A and B, and V-morphisms
compA,B,C : V(A,B) ⊗ V(B,C) → V(A,C) and idA : I → C(A,A) for each
A,B,C, satisfying the expected associativity and identity diagrams in V.



Intensional semantics such as games models may be represented as V-categories,
where V captures some relations or operations on morphisms such as partial
orders or algebraic structures. This gives an extensional characterization of the
model which can be studied independently of the intensional aspect. An example
is the notion of change of base [7], which uses a monoidal functor from V to W
to transform any model in a V-category to a model in a W-category satisfying
the same equational theory.

More precisely, given monoidal categories V and W any monoidal functor
(F,m) : V → W induces a change of base which takes each V-category C to
the W-category F∗(C) over the same objects, with F∗(C)(A,B) = F (C(A,B)),
and composition and identity morphisms mC(A,B),C(B,C);F (compA,B,C) and
mI ;F (idA). A simple example is the change of base induced by the monoidal
functor V(I, ) : V → Set, which sends each V-category C to its underlying
category C0. Note change of base induced by the monoidal functor F comes with
an identity-on objects, F -on-morphisms functor F0 : C0 → F∗(C)0.

Change of base preserves enriched functors and natural transformations,
giving a 2-functor F∗ from the category of V-categories to the category of
W-categories. Thus, in particular, it preserves symmetric monoidal structure,
and symmetric monoidal closure (the existence of a natural V-isomorphism
C(A ⊗ B,C) ∼= C(A,B ( C). A second example: if V is symmetric monoidal
closed, and therefore enriched over itself, then any monoidal functor F : V → W
induces a change of base to a W-enriched symmetric monoidal closed category.

2 Coherence Spaces and Weighted Relations

We will describe a monoidal functor from the category of coherence spaces and
stable, continuous linear functions to the category of sets and weighted relations
(a.k.a. free R-modules). Examples of categories of intensional models which
may be enriched over coherence spaces or qualitative domains are common. For
instance any symmetric monoidal closed category with a monoidal functor into the
category of coherence spaces gives a coherence space enriched category as noted
above — examples include categories of hypercoherences [9], event structures
[24], concrete data structures [4] and games [5]. (However, the enriched category
of games that we describe does not arise in this way.)

A coherence space [12] D is a pair (|D|,¨D) where |D| is a set of atoms (the
web), and ¨D⊆ |D| × |D| is a symmetric and reflexive relation (coherence). A
clique X of D is a set of its atoms which is pairwise coherent: d, d′ ∈ X =⇒
d ¨D d′.

The symmetric monoidal (closed) category CSpace has coherence spaces as
objects: morphisms from D to E are cliques of the coherence space D ( E,
where |D ( E| = |D| × |E| and (d, e) ¨D(E (d′, e′) if d ¨D d′ implies e ¨E
e′ ∧ (d 6= d′ ∨ d = d′).
In other words, morphisms are certain relations between webs, and are composed
accordingly — if f : C → D and g : D → E then f ; g = {(c, e) ∈ |C| × |E| | ∃d ∈
D.(c, d) ∈ f ∧ (d, e) ∈ g}. Evidently, the identity relation is a clique. The tensor



product of coherence spaces is the cartesian product of their webs and coherence
relations — i.e. |D ⊗ E| = |D| × |E|, with (d, e) ¨D⊗E (d′, e′) if and only if
d ¨D d′ and e ¨E e′. The tensor unit is the singleton coherence space {∗}.

The cliques of a coherence space E form an atomistic (Scott) domain, and the
morphisms of CSpace correspond to linear, continuous and stable morphisms
between the corresponding domains (i.e. preserving suprema of all directed and
bounded sets, and infima of finite bounded sets).

Complete Semirings and Weighted Relations We now recall categories of weighted
relations, which will be used to characterise the structure of quantitative models.
They are based on monoids with an infinitary “sum” operation.

Definition 1. A complete monoid is a pair (S,Σ) of a set S with a sum operation
Σ on indexed families of elements of S, satisfying the axioms:

Partition Associativity For any partitioning of the set I into {Ij | j ∈ J},
Σi∈Iai = Σj∈JΣi∈Ijai.

Unary Sum Σi∈{j}ai = aj.

We write 0 for the sum of the empty family, which is a neutral element for the
sum by the above axioms.

Definition 2. A (commutative) complete semiring R is a tuple (|R|, Σ, ·, 1)
such that (|R|, Σ) is a complete monoid and (|R|, ·, 1) is a commutative monoid
which distributes over Σ — i.e. Σi∈I(a · bi) = a ·Σi∈Ibi.

A R-module is a monoidal action (“scalar multiplication”) of (|R|, ·, 1) on a
complete monoid (S,Σ), which is distributive on both sides — i.e. (Σi∈Iai).v =
Σi∈Iai.v and a.Σi∈Ivi = Σi∈Ia.vi.

For any complete semiring the forgetful functor from the category of R-modules
and their homomorphisms into the category of sets has a left adjoint, which
sends a set X to the “free semimodule” RX , which is the set of functions from
X into R, with the sum and scalar product defined pointwise. Resolving this
adjunction gives a commutative monad R on the category of sets and thus
a co-Kleisli category SetR with symmetric monoidal structure (given by the
product of sets). Morphisms from X to Y in this category correspond both to
R-module homomorphisms from RX to RY , and also to R-weighted relations,
with which we will henceforth identify them: maps from X×Y into R, composed
by setting (f ; g)(x, z) = Σy∈Y f(x, y) · g(y, z). The symmetric monoidal action
on weighted relations is (f ⊗ g)((u, v), (x, y)) = f(u, x) · g(v, y).

Relations weighted with continuous semirings are discussed in [20], with
examples including any complete lattice, the natural or positive real numbers
completed with a greatest element∞, and the so-called exotic semirings. Examples
of complete but not continuous semiring weights are considered in [18].

2.1 From Cliques to Weighted Relations

Note that composition of morphisms f : C → D and g : D → F in CSpace has
the following property, derived from stability.



Lemma 1. (c, e) ∈ f ; g if and only if there exists a unique d ∈ D such that
(c, d) ∈ f and (d, e) ∈ g.

Proof. Existence holds by definition. For uniqueness, suppose (c, d), (c, d′) ∈ f
and (d, e), (d′, e) ∈ g. Then d ¨D d′ and hence d = d′.

We define a functor ΦR : CSpace → SetR which sends each object to its
underlying set, and each morphism from D to E to its characteristic function —
i.e. ΦR(f)(c, d) = 1, if (c, d) ∈ f ; ΦR(f)(c, d) = 0, otherwise.

By definition, ΦR(idD) is the identity on |D| in SetR. Thus functoriality
follows from Lemma 1.

Lemma 2. ΦR(f);ΦR(g) = ΦR(f) : ΦR(g).

Proof. Suppose ΦR(f ; g)(c, e) = 1 — i.e. (c, e) ∈ f ; g. By Lemma 1 there exists a
unique d ∈ D such that (c, d) ∈ f and (d, e) ∈ g. Thus ΦR(f)(c, d′).ΦR(f)(c, d′) =
1 if d = d′ and ΦR(f)(c, d′).ΦR(f)(c, d′) = 0 otherwise. Hence ΦR(f);ΦR(g)(c, e) =
Σd∈DΦ

R(f)(c, d).ΦR(g)(d, e) = 1.
Otherwise ΦR(f ; g)(c, e) = 0 — i.e. (c, e) 6∈ f ; g, so that for all d ∈ D, either

(c, d) 6∈ f or (d, e) 6∈ g and so ΦR(f)(c, d).ΦR(f)(c, d) = 0. Then ΦR(f);ΦR(g)(c, e) =
Σd∈DΦ

R(f)(c, d).ΦR(g)(d, e).

Evidently, ΦR is strict monoidal — ΦR(I) = I and ΦR(D⊗E) = ΦR(D)⊗ΦR(E),
and faithful. Thus, by change of base, for each ordered complete semiring R we
have a 2-functor ΦR∗ from the category of (symmetric monoidal closed) CSpace-
categories to the category of (symmetric monoidal closed) SetR-categories, with
a faithful functor ΦR0 : C0 → ΦR∗ (C)0 for each CSpace-category C.

Remark 1. If R is idempotent (ai = a for all i ∈ I (non-empty) implies Σi∈Iai)
then functoriality no longer depends on Lemma 1 and thus the stability of
morphisms. Hence we may define a monoidal functor from the category of sets
and relations to the category of R-weighted relations which sends each relation
to its characteristic function, yielding a change of base from Rel-enriched to
SetR enriched categories whenever R is idempotent.

3 An Example: Games and History-Sensitive Strategies

We illustrate by describing an example of a family of quantitative games models
obtained by change of basis applied to a symmetric monoidal category of games
and “knowing” strategies enriched over coherence spaces. Its underlying category
is essentially the games model of Idealized Algol (IA) introduced by Abramsky and
McCusker in [1] and obtained by relaxing the innocence constraint on strategies
in the Hyland-Ong games model of PCF [14]. More precisely, we define a different
“linear decomposition” of this model into a category in which morphisms are truly
linear, rather than affine. We also ignore the requirement of even-prefix-closure
on strategies — this does not change the denotation of programs in the model,
nor its full abstraction property.



Definition 3. The arena for a game A is a labelled, bipartite directed acyclic
graph, given as a tuple (MA,M

I
A,`A, λA) — where MA is a set of moves (nodes),

M I
A ⊆MA is a specified set of initial moves (source nodes), `A⊆MA×(MA\M I

A)
is the enabling (edge) relation and λA : MA → {O,P} × {Q,A} is a function
partitioning the moves between Player or Opponent, and labelling them as either
questions or answers, such that initial moves belong to Opponent and each answer
is enabled by a question.

A justified sequence s over A is a sequence over MA, together with a pointer from
each non-initial move b in s to some preceding move a in s such that a ` b. The
set LA of legal sequences over A consists of alternating justified sequences s on A
which satisfy visibility and well-bracketing as defined in [1]. (Details are omitted
as nothing here depends on thiese particular conditions, which may be relaxed
or modified in various ways to model different combinations of computational
effects.) A game A is a pair (GA, PA) of an arena GA and a set of justified
sequences PA ⊆ LA. The key constructions are:

– A⊗B = (GA ]GB , {s ∈ LA]B | s�A ∈ PA ∧ s�B ∈ PB}), where GA ]GB is
the disjoint union of arenas — (MA +MB ,M

I
A +M I

B ,`A + ` BB , [λA, λB ]).
– A( B = (GA ( GB , {s ∈ LA(B | s�A ∈ PA ∧ s�B ∈ PB}), where GA (
GB is the graft of A onto the root nodes of B — MA +MB , inr(M I

B), (`A
+ `B) ∪ inr(M I

B)× inl(M I
A), [λA, λB ])..

3.1 Coherence Space Enrichment of Games

We will now define a CSpace-category of games, for which the underlying
category is similar to that described in [1] etc. The fact that the inclusion order
on strategies provides the latter with an enrichment over the category of cpos
and continuous functions was already used in [1], as in other games models, to
construct fixed points. Our results amount to showing that strategies form a
dI-domain under inclusion, and composition is a bilinear and stable function.
Enrichment of a category of games with coherence spaces, or similar categories, is
also implicit in earlier work, such as the definition in [5] of a monoidal functor from
a similar category of games into a category of ordered coherence spaces. However,
this depends on a number of particular features — notably the reconstruction
of a strategy on A( B from its projections on A and B, which is not always
possible, so CSpace-enrichment may be seen as a more general property.

For any game A let Coh(A) be the coherence space (PEA ,¨A), where PEA is
the set of even-length sequences in PA and s ¨A t if their greatest common prefix
su t is even length. A strategy on A is a morphism from I to Coh(A) in CSpace,
corresponding to a clique of Coh(A) — an even-branching subset of PEA . We
define a CSpace-category in which objects are games, and the coherence space
of morphisms from A to B is Coh(A( B).

Definition 4. For S ⊆ PA(B and T ⊆ PB(C , let S|T be the set of sequences
u on A+B +C such that u�A( B ∈ S and u�B( C ∈ T . Then compA,B,C =
{((r, s), t) ∈ |Coh(A( B)| × |Coh(B ( C)| × |Coh(A( C)| | ∃u ∈ {r}|{s}.u�
A( C = t}.



The identity idA : I → CSpace(A( A) is the copycat strategy on A consisting
of the sequences on PA(A for which each even prefix projects to the same (legal)
sequence on both components.

Given strategies σ : I → Coh(A ( B) and τ : I → Coh(B ( C), let σ; τ
be the relational composition of σ ⊗ τ with compA,B,C . This corresponds to
the parallel composition plus hiding of strategies defined in [1], and so by well-
pointedness of CSpace, satisfies the diagrams for associativity and identity. So
it remains to show that comp is stable, for which we require a further key fact
about composition — for any t ∈ σ; τ , the “interaction sequence” in σ|τ which
restricts to t is unique. This is essentially a version of the “zipping lemma” of [2].

Lemma 3. compA,B,C is a clique of Coh(A( B)⊗ Coh(B( C)( Coh(A(
C)

We define CSpace-enriched symmetric monoidal (closed) structure on G,
given by the operation ⊗ with unit I (the game over the empty arena, with
PI = {ε}) and the morphism tensorA,B,C,D = {((r, s), t) ∈ |Coh(A ( C) ⊗
Coh(B ( D)| × |Coh(A⊗ B ( C ⊗D)| | r = t�A( C ∧ s = t�B ( D}. This
corresponds to the action of ⊗ on the underlying category of games defined in [1],
giving associator, unitor and twist maps making the relevant diagrams commute.
The (natural) isomorphism Coh(A⊗B,C) ∼= Coh(A,B( C) in CSpace yields
symmetric monoidal closure.

Note that unlike [1] and many similar models, the underlying symetric
monoidal category of games is not affine — the unit for the tensor is not a
terminal object — there are two morphisms from I to itself, one empty, the
other containing the empty sequence. This is a necessary consequence of CSpace-
enrichment.

For any complete semiring R, change of base yields a symmetric monoidal
closed category GR , ΦR∗ (G) enriched in SetR. Concretely, a morphism φ : A→
B in GR0 is a R-weighted strategy — a map from even-length plays on A( B
into R. These are composed by setting

(φ;ψ)(t) = Σ{φ(u�A( B) · ψ(u�B( C) | u ∈ LA(B |LB→C ∧ u�A( C = t}

The tensor product ofR-weighted strategies φ : A→ C,ψ : B → D is (φ⊗ψ)(s) =
φ(s�A( C) · ψ(s�B( D).

The faithful, identity-on-objects, monoidal functor ΦR0 : G0 → GR0 sends
each deterministic strategy σ : A → B to the R-weighted strategy σR with
ΦR0 (σ)(s) = 1 if s ∈ σ and ΦR0 (σ)(s) = 0 otherwise.

By choosing particular semirings we may relate this category to examples in
the literature. For instance, if R is the two-element Boolean ring then morphisms
in GR0 correspond to sets of legal sequences — i.e. non-deterministic strategies,
as in the model of may-testing studied in [13] and [19].

If R is the probability semiring, (R∞+ , Σ, ·, 1), then R-weighted strategies
correspond precisely to the “probabilistic pre-strategies”, introduced by Danos
and Harmer [8]. These are refined further by imposing more specfic constraints,
although the precursor model is already fully abstract for Probabilistic Algol.



If R is the tropical semiring (N∞,
⋃
,+, 0) then GR0 corresponds to a sequen-

tial version of Ghica’s category of slot games [10]. This was introduced as a
model quantifying resources used in stateful and concurrent computation, in a
presentation rather different to weighted strategies, but equivalent to it. Assuming
a distinguished token $©, which does not occur in the set of moves of any arena,
we may define a sequence with costs on the game A to be an interleaving of a
sequence s ∈ PA of A with a sequence of $© moves: a strategy-with-costs on a
A is a set of such sequences. Strategies with costs σ : A → B and τ : B → C
are composed by parallel composition with hiding of moves in B, so that all slot
moves of σ and τ propagate to σ; τ . Taking the weight of a sequence with costs
to be the number of slot moves it contains, this is equivalent to the notion of
composition for T-weighted strategies — i.e. the category of strategies with costs
is isomorphic to the category GT. The original category of slot games defined
in [10] is based on a category (an interleaving model of concurrency, without
the alternation condition) which does not, in fact enrich over the category of
coherence spaces but does enrich over the category of relations. Thus we may
change the base of this model only to free semimodules over an idempotent
semiring — of which the tropical semiring is an instance.

4 Additives and Exponentials

We now describe how this change of base can be used to obtain a quantitative
semantics of higher-order computation — specifically, an (intuitionistic) Lafont
category [16] (a symmetric monoidal closed category C with a “free exponential”)
with countable biproducts. This notion of categorical model was shown in [18] to
yield an adequate model of PCF extended with R-module structure, as described
in Section 5.

A category C has set-indexed biproducts if it has all set-indexed products
and coproducts, and these are naturally isomorphic — i.e. for for any family
J , there is a natural isomorphism (which we may assume to be the identity)
between the J-indexed functors Πj∈J and

∐
j∈J . Any category with infinite

biproducts bears an enrichment over the category of complete monoids and their
homomorphisms: Given a family of morphisms {fj : A→ B | j ∈ J}, let Σj∈Jfj =
∆J
A;

⊕
j∈J fj ;∇JA, where ∆A

J : A →
⊕

j∈J A and ∇JA :
⊕

j∈J A → A are the
diagonal and co-diagonal. Jf C is a symmetric monoidal closed category, then the
tensor distributes over biproducts — i.e. (

⊕
i∈J Aj) ⊗ B =

⊕
j∈J(Aj ⊗ B), as

they are colimits. The complete monoid enrichment thus extends to the monoidal
structure — i.e. the tensor is an enriched functor. Moreover, the endomorphisms
on the unit I form a complete, commutative semiring RC = (C(I, I), Σ,⊗, I) —
the internal semiring of C.

Conversely, any complete monoid enriched category may be completed with
biproducts.

Definition 5. If C is complete monoid enriched, let CΠ be the category in which
objects are set-indexed families of objects of C, and morphisms from {Ai | i ∈ I} to
{Bj | j ∈ J} are I×J-indexed sets of morphisms {fi,j : Ai → Bj | 〈i, j〉 ∈ I×J},



composed by setting (f ; g)ik = Σj∈J(fij ; gjk).
If C is a complete monoid enriched symmetric monoidal category, then we may
define the (distributive) tensor product on CΠ : {Ai |i ∈ I} ⊗ {Bj | j ∈ J} =
{Ai ⊗Bj |〈i, j〉 ∈ I × J}, with (f ⊗ g)ikjl = fij ⊗ gkl.

Note that the biproduct completion of a complete commutative semiring R
(regarded as a one-object SMCC) is the category SetR.

4.1 The Cofree Commutative Comonoid

A cofree commutative comonoid on an object B in a symmetric monoidal category
C is an object (!B, δ, ε) in comon(C) (the category of commutative commonoids
and comonoid morphisms of C) with a (natural in A) isomorphism between
C(A,B) and comon(C)(A, !B) for each commutative comonoid (A, δA, εA). Thus
C has (all) cofree commutative comonoids if and only if the forgetful functor
from comon(C) into C has a right adjoint. This (monoidal) adjunction resolves a
monoidal comonad (the free exponential) ! : C → C.

How can we relate the free exponential to change of base? In general, the
category of comonoids of a V-category is not itself V-enriched, so there is no
V-adjunction giving rise to a V-enriched free exponential. Moreover, although the
categories CSpace and SetR possess cofree commutative comonoids, these are
not preserved by ΦR (see discussion below). Instead, we describe properties of a
CSpace-enriched category which allow the construction of a free exponential on
the underlying categories, and their preservation by the functor ΦR0 . These are
based on the existence of symmetric tensor powers:

Definition 6. A family of objects {Bi | i ∈ N} in a symmetric monoidal category
are symmetric tensor powers of B if:

– For each n there is a morphism eqn : Bn → B⊗n such that (Bn, eqn) is
an equalizer for the group G of automorphisms on B⊗n derived from the
permutations on {1, . . . , n}.

– These equalizers are preserved by the tensor product — i.e. (Bm⊗Bn, eqm⊗
eqn) is an equalizer for the products of pairs of permutation automorphisms.

The category of coherence spaces has equalizers for any group G of automorphisms
on an object D. Let ∼G be the equivalence relation on |D| induced by G — i.e.
d∼Gd′ if there exists g ∈ G with (d, d′) ∈ g. Then the equalizer for G in CSpace
is the coherence space consisting of those equivalence classes of ∼G in which all
members are coherent — {[d]G ∈ D/∼G | d∼Gd′ =⇒ d ¨D d′}— with coherence
[d] ¨E [d′] if there exists d′′ ∈ |D| such that d∼Gd′′

The category of sets and weighted relations also has equalizers for automor-
phism groups — in this case given by the set of all equivalence classes of ∼G.
Say that an automorphism group G : D ⇒ D in CSpace is coherent whenever
∼G ⊆¨A.

Proposition 1. ΦR preserves the equalizer of G if and only if it is coherent.



Note that unless ¨D= |D|×|D|, the group of permutations on D⊗n in CSpace is
not coherent — e.g. if d 6¨D d′ then (d, d′) 6¨A⊗2 (d′, d). So ΦR does not preserve
symmetric tensor powers (and for essentially the same reason does notin general
preserve cofree commutative comonoids).

Given an automorphism group G : A ⇒ A in a CSpace-category, and
object B, let hB(G) = {hB(g) : C(B,A) → C(B,A) | g ∈ G} be the group of
automorphisms on C(A,B) in CSpace induced by Yoneda embedding. Say that
G is coherent if hB(G) is coherent for every B.

For instance, in our category of games the group of permutations on A⊗n is
coherent: an atom of Coh(B ( A⊗n) is a justified sequence over MB ] (MA ×
{1, . . . , n}), and the equivalence on these sequences induced by the permutation
isomorphisms on A⊗n is simply that induced by permuting the tags on moves in
A. This is coherent because it is Opponent who always plays the first move with
any given tag.

Proposition 2. ΦR0 : C0 → CR0 preserves equalizers for coherent groups.

Proof. Suppose (E, eq : E → A) is an equalizer for a group G : A⇒ A. Evidently,
ΦR0 (eq);ΦR0 (g) = ΦR0 (eq) for all g ∈ G so it remains to show the universal property.
Let B be any object of CR0 (thus an object of C0). Then hB(eq);hB(g) = hB(g) for
all g ∈ G and for any f : I → C(B,A) in CSpace such that f ;hB(g) = f for all
g ∈ G, there exists a unique morphism u : I → C(B,E) such that u;hB(eq) = f .
Observe (by well-pointedness of CSpace) that this implies that (hB(E), hB(eq))
is the equalizer for hB(G) in CSpace.

Thus (ΦR(hB(E)), ΦR(hB(eq))) is an equalizer for ΦR(hB(G)) in SetR, and
so for any f : B → E in ΦR∗ (C), there exists a unique morphism u : B → E such
that u; eq = f as required.

If our SetR-enriched model possesses symmetric tensor powers and infinite,
distributive biproducts, this is sufficient to obtain the free exponential as the
biproduct of all symmetric tensor powers of B (the Lafont exponential) — i.e.
!B =

⊕
n∈NB

n, which is equipped with commutative comonoid structure by
defining ε!B :!B → I = π0 and δ!B :!B →!B⊗!B = 〈πm+n; δm,n | m,n ∈ N〉,
where δm,n : Bm+n → Bm ⊗ Bn is the unique morphism such that eqm+n =
δm,n; (eqm ⊗ eqn).

Proposition 3. If C has symmetric tensor powers, then its biproduct completion
CΠ has symmetric tensor powers.

Proof. For A = {Ai | i ∈ I}, An = {AX | X ∈Mn(I)}, where if X has support

i1, . . . , ik then AX = A
X(1)
i1

⊗ . . .⊗AX(ik)
ik

.

Thus, given any CSpace-enriched category with symmetric tensor powers and
consistent permutation groups, we may obtain a Lafont category by changing
its base to SetR, and completing with biproducts. In the case of the CSpace-
category of games, G, we have already argued that the group of permutations
on each tensor power A⊗n is consistent, and therefore change of base preserves
symmetric tensor powers, if they exist. One way to define them is by decomposing



the tensor product in G using the sequoid [17, 6]. The sequoid A�B is the game
(GA ] GB , {t ∈ PA⊗B | ∀s v t.s�B = ε =⇒ s�A = ε}) — i.e. it is a subgame
of A⊗ B in which the first move (if any) is always in A. Let An be the n-fold
sequoid on A — i.e. A0 = I, An+1 = A � An, so that plays in A consist of n
interleaved plays of A, opened in a fixed order.

Proposition 4. An is an n-ary symmetric tensor power.

This is established using the categorical structure underlying the sequoid — it
is a monoidal action of C upon its subcategory of strict morphisms (strategies
on A( B such that every opening move in A is followed by a move in B) —
and the fact that the tensor decomposes into the sequoid (A⊗B is the cartesian
product of A�B and B �A).1

4.2 Preservation of Cofree Commutative Comonoids

In order to lift the functor between underlying categories which is implicit in the
change of base to a functor of CCCs between the co-Kleisli categories of the free
exponential (preserving the meaning of types and terms in the λ-calculus) it is
necessary for it to preserve cofree commutative comonoids. We give conditions
for this to hold based on the construction of the latter described in [22] — i.e.
(putting it in a nutshell) as the limit of the diagram:

I
p0← A•

p1← A2
• . . . A

i
•
pi← (A•)

i+1 . . .

where A• is the product A×I (more precisely, the “free pointed object” on A) and
pi : (A×I)i+1 → (A×I)i is the unique morphism given by the universal property
of the symmetric tensor power such that pi; eqi : A•i+1 → •⊗i = eqi+1; (A⊗i• ⊗πr).

This is a refinement of Lafont’s construction (in categories with biproducts, the
above limit is

⊕
i∈NA

i). To show that it is preserved by ΦR∗ , we make the further
assumption that for each pi there is a corresponding morphism ei : Ai• → Ai+1

• ,
forming an embedding projection (e-p) pair (ei, pi) : Ai �Bi — i.e. ei; pi = idAi

•
and pi; ei ≤ idAi+1 .

Given an e-p pair from D to E in the category of coherence spaces (which
corresponds to a coherence preserving injection from |D| into |E|), define p• ⊆
|E•| × |D•| by {(inl(e), inl(d)) | (d, e) ∈ p} ∪ {(e, inr(∗)) | e = inr(∗)∨ 6 ∃d ∈
D.(d, e) ∈ p}.

CSpace has limits for any chain of such pairs D0

e0,p0
� D1

e1,p1
� . . . |

⊔
D| =

{x ∈ Πi<ω|(Di)•| | ∃i.xi 6= inr(∗) ∧ ∀i ∈ ω.(xi+1, xi) ∈ (pi)•}, with x ¨⊔
D y if

xi ¨ yi for all i. This is also the limit for D0

ΦR(e0),Φ
R(p0)

� D1

ΦR(e1),Φ
R(p1)

� . . . in
SetR — i.e. ΦR preserves limits for all e-p chains. As in the case of equalizers,
we can use this fact, to show that they are preserved by ΦR0 .

1 This structure may all be be given in enriched form, and is therefore preserved by
change of base.



Proposition 5. If
⊔
A is a limit for the chain A0

e0,p0
� A1

e1,p1
� . . . in a CSpace-

category C, then it is a limit in CR for the chain A0

Φ(e0,p0)

� A1

ΦR(e1,p1)

� . . .

Proof. The universal property is established as in Prop. 2 — for any B, C(B,
⊔
A)

is a limit in CSpace for the e-p chain C(B,A0) � C(B,A) � . . ., and thus
ΦR(C(B,

⊔
A)) is a limit for ΦR(C(B,A0))�ΦR(C(B,A2))� . . ., and hence

⊔
A

is a limit for A0 �A1 � . . . in CR.

Any cartesian product in C0 is a cartesian product in CR0 (since ΦR preserves
products) and so in particular A × I is the free pointed object on A in CR0 .

Hence, if ! is a limit for I
p0← A•

p1← . . . Ai•
p2← . . . in C0 then it is a limit for

I
ΦR(p0)← A•

ΦR(p1)← . . . in CR0 .
As we have observed, our category of games G0 has all symmetric tensor

powers. We also have an embedding-projection pair from An to An+1 for each n
— viz e0 = ⊥I,A, en+1 = A� en.

G does not have all products, however. In particular, the free pointed object
A × I does not exist in general — e.g. we may show that there is no object
I × I such that G(I, I × I) ∼= G(I, I) × G(I, I). However we may identify a
full subcategory of G (i.e. a collection of objects — the well-opened games) for
which products exist. A game A is well-opened if PA consists only of sequences
containing exactly one initial move. If A and B are well-opened then their
product A×B consists of the well-opened sequences in A⊗B. Moreover, if A
is well-opened then the free pointed object on A is (GA, PA ∪ ε), and the limit

!A for the chain I
p0← A•

p1← . . . is the game consisting of all legal interleavings of
sequences in PA. Note also that if B is well opened then !A( B is well-opened.
Hence the “co-Kleisli” category G! in which objects are well-opened games, and
morphisms from A to B are morphisms from !A to B in G is Cartesian closed.
This is equivalent to the cartesian closed category of games constructed in [1], etc.
(less the even-prefix-closure condition on strategies). Since ΦR0 (!A) is the cofree
commutative comonoid in GR0 for each well-opened game, we have a cartesian
closed category of well-opened games and R-weighted strategies, GR! with a
cartesian closed functor ΦR! : G! → GR! .

5 R-Weighted Idealized Algol

By the results in [1] we know that G! furnishes a semantics of Reynolds’ Idealized
Algol — an applied, simply-typed λ-calculus which may be considered as an
extension of PCF with integer state (conservative with respect to the operational
semantics). So applying the functor ΦR0 : G0 → GR0 gives us a semantics of
Idealized Algol in GR! . Since the biproduct completion of GR0 is an example of
the categorical model described in [18] (a Lafont category with biproducts) we
also have a semantics of R-weighted PCF in GR! . This agrees with the semantics
of Idealized Algol on their common part (the operations and constants of PCF)
and so we may combine both models, to give an interpretation of IAR— erratic



Idealized Algol with scalar weights from R. Moreover — unlike the weighted
relational semantics of PCFR— this model is fully abstract, a property it inherits
directly from the qualitative version.

Types of Idealized Algol are formed from ground types nat, com (commands)
and var (integer references). Terms are formed by extending the λ-calculus with
fixed points, with the following constants2:

– Arithmetic, conditionals: 0 : nat, succ, pred : nat→ nat, Ifz : nat→ nat.
– Imperative programming: seq : com→ B → B (sequential composition) and

new : (var → B) → B (new variable declaration) where B ∈ {com, nat},
assn : nat → var → com, deref : var → nat, and mkvar : nat → (nat →
com)→ var (“bad variable” construction).

– R-module structure — a nondeterministic choice operator or : B → B → B
and scalar multiplication scl(k) : B → B for each k ∈ R.

The operational semantics for IAR extends that given for PCFR [20], just as
Idealized Algol extends PCF. We define a labelled transition system in which
states are configurations — pairs (P,S) of a (ground-type) program and a store
(a sequence (a1, n1), . . . , (an, nk) of pairs of a location name and integer value).
Labels are elements of the monoid (u, a) ∈ {l, r}∗ ×R and actions take the form

E[M ],S u,a−→ E[M ′],S ′, where E[ ] is an evaluation context, given by the grammar:
E ::= [ ] | E M | succE | predE | IfzE | seqE | assnE | (assn n)E | derefE
and M,S u,a−→M ′,S ′ is an instance of one of the following rules:

(λx.M)N,S ε,1−→M [N/x],S µx.M,S ε,1−→M [µx.M/x],S
or ,S l,1−→ λx.λy.x,S or ,S r,1−→ λx.λy.y,S
seq skip,S ε,1−→ λx.x,S newm P,S ε,1−→ P a,S, (a,m)

(assn n) (mkvarM N),S ε,1−→ N n,S (assn n) a,S ε,1−→ skip,S[ai 7→ n]

Ifz n + 1,S ε,1−→ λx.λy.y,S pred n + 1,S ε,1−→ n,S
deref(mkvarM N),S ε,1−→M,S Ifz 0,S ε,1−→ λx.λy.x,S
deref a,S[(a, n)

ε,1−→ n,S scl(k),S ε,k−→ λx.x,S

The relation
u,a−→ is deterministic, and so we may define the weight in R of

each configuration with respect to a sequence u ∈ {l, r}∗ of branching choices:

wu(P,S) = a if P,S u1,a1−→ . . .
un,an−→ skip,S ′, where (u, a) = (u1 ·. . . un, a1 ·. . .·an),

wu(P,S ′) = 0 if there is no such sequence of reductions.
The total weight of a configuration in R is given by summing the weights

over all possible paths: w(P,S) , Σu∈{l,r}∗wu(P,S), and w(P ) = w(P, ). From
this notion of testing we derive a notion of equivalence: P ≈ Q if for any closing
compatible context C[ ] : com, w(C[P ]) = w(C[Q]).

As discussed in [20] for PCF, the computational meaning of IAR depends
on the choice of semiring — it may be regarded as a metalanguage for a family

2 We consider the variant of IA with active expressions and bad variables as in [1].



of “resource-sensitive” imperative programming languages and their semantics.
The weighted games models discussed previously may be viewed as instances
of this. Probabilistic games [8] are used to interpret Idealized Algol extended
with a constant coin : nat which reduces to either 0 or 1, both with probability
0.5. Thus we may interpret probabilistic Algol inside IAR by defining coin ,
(scl(0.5) 0) or (scl(0.5) 1).

Slot games are used to give an interpretation of Idealized Concurrent Algol
which is sound with respect to an operational semantics which keeps track of the
(time, memory, etc.) costs of evaluation as a natural number — each reduction
rule is decorated with such a cost, and the worst-case cost is assigned to each
program. Setting R to be the tropical semiring, we may define a translation
of non-deterministic IA into IARwhich is sound with respect to this notion of
evaluation, by applying a weighting to each operation corresponding to the cost
of its evaluation.

5.1 Denotational Semantics

We interpret IAR in the category of games andR-weighted strategies by extending
the semantics of PCFR [20] with the image under ΦR0 of the semantics of the
types and constants of of Idealized Algol defined in [1]. (We use the version in
which each game consists of only complete sequences, in which every question
is answered.) The types com, nat and var denote the (well-opened) games Σ
(with a single question and answer) N (with a single Opponent question and
Player answers for each value n ∈ N3) and the product N ×Σω, respectively. The
arrow type S → T denotes the well-opened game ![[S]]( [[T ]]. Terms-in context
x1 : S1, . . . , x :n: Sn `M : T are interpreted as morphisms from [[S1]]× . . .× [[Sn]]
to [[T ]] in GR! . Each of the constants C : T of Idealized Algol denotes a strategy
in G!, and thus a R-weighted strategy in GR! .

This leaves the interpretation of the fixed point operator, which takes a term
Γ, x : T `M : T to its fixed point Γ ` µx.M : T . Semantically, this corresponds
to a parameterised fixed point operator on our cartesian closed category of
games — a map taking each endomorphism f ∈ C(B × A,A) to a morphism
fixB(f) ∈ C!(B,A) satisfying fix(f) = 〈B, fix(f)〉; f . As G! is cpo-enriched, this
may defined as (parameterised) least fixedpoint. If R is not continuously ordered,
then this construction is not available but we may adopt the alternative, described
in [18], based on the existence of a bifree algebra for the free exponential in (GR0 )Π

— the object
⊕

X∈M I, where M is the set of nested finite multisets. This is sufficient
(cf. [23]) to define a fixed point operator on the co-Kleisli category GR! .

The computational adequacy property for our semantics states that the weight
for a program of type com computed by the operational semantics is equal to
the weight assigned by its denotation to the single well-opened sequence (qa)
in [[com]]. The proof of this follows closely that of [18], defining an equivalent
semantics which assigns precise resouce bounds to variables indicating how many
times they are called (and in the case of recursively defined variables, a nested

3 In GR, N ∼=
⊕

i∈NΣ.



finite multiset representing their call-pattern), and proving soundness for this by
a nested multiset induction. The only further requirement is a set of equations
establishing the soundness of the reduction rules for the constants of Idealized
Algol: these were already established in [1] in proving soundness for the semantics
in G .

Proposition 6. For every program P : com, [[P,S]](qa) = w(P,S).

Although full abstraction fails in the semantics of PCFR in SetR [18], it holds in
our model of IAR , following readily from the definability property for the game
semantics of Idealized Algol in G.

Theorem 1. [1] For any finite strategy σ : [[T ]] there exists a IA term Mσ : T
such that [[Mσ]]G = σ.

Thus, in particular, every atomic strategy on [[T ]] (consisting of a single legal
sequence) is definable as a term of Idealized Algol (without fixed points), and
so any finitary strategy in GR (i.e. one for which finitely many sequences have
non-zero weight) is definable as a finite weighted sum of Idealized Algol terms.

Corollary 1 (Definability for IAR ). For any finitary R-weighted strategy
φ : [[T ]] there exists a term Mφ : T such that [[Mφ]] = φ.

Corollary 2 (Full Abstraction for IAR ). M ≈M ′ if and only if [[M ]] = [[M ′]]

Proof. This closely follows the proof in the original model — e.g. for completeness
suppose [[M ]] 6≈ [[M ′]], and thus there exists a complete s ∈ P[[T ]] such that
[[M ]](s) 6= [[M ′]](s). By the definability property, the strategy φ : [[T ]] → [[com]]
such that φ(t) = 1 if t = qsa (and 0 otherwise) denotes a term N : T → com

of Idealized Algol and thus [[N m]]R(qa) = [[M ]](s) and [[N M ′]](qa) = [[M ′]](s).
Hence by computational adequacy, w(N M ′) 6= w(N M ′) and so P 6≈ Q as
required.

This establishes that any inequivalent terms of IARmay be separated by a term
of Idealized Algol. So, for example, our model is fully abstract for Probabilistic
Algol.

6 Conclusions and Further Directions

We have described a general way of moving from qualitative intensional models
to quantitative ones, using the notion of change of base of an enriched category.
The only really essential properties that this uses from the original model of
Idealized Algol are that strategies may be viewed as certain cliques in a coherence
space and that composition is a stable, linear function, ruling out interleaving
models of concurrency, except in the case of idempotent semirings. For the sake
of simplicity, we have sidestepped mention of causal order (e.g. prefix order in
games), which gives a finer characterization of strategy behaviour. For example,
we may enrich categories over event structures [24, 25] (or dI-domains [3]) — thus
a monoidal functor adding weights to event structures may be used to change
their base.
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17. J. Laird. A categorical semantics of higher-order store. In Proceedings of CTCS
’02, number 69 in ENTCS. Elsevier, 2002.

18. J. Laird. Fixed points in quantitative semantics. In Proceedings of LICS ’16, pages
347 –356. ACM, 2016.

19. J. Laird, G. Manzonetto, and G. McCusker. Constructing differential categories and
deconstructing categories of games. Information and Computation, 222:247–264,
2013.

20. J. Laird, G. Manzonetto, G. McCusker, and M. Pagani. Weighted relational models
of typed lambda-calculi. In Proceedings of LICS ’13, 2013.



21. F. Lamarche. Quantitative domains and infinitary algebras. Theoretical Computer
Science, 94:37–62, 1999.

22. P. Melliès, N. Tabareau, and C. Tasson. An explicit formula for the free exponential
modality of linear logic. In Proc. ICALP ’09, number 5556 in LNCS, pages 247–260,
2009.

23. A. Simpson and G. Plotkin. Complete axioms for categorical fixed-point operators.
In Proceedings of LICS ’00, pages 30–41. IEEE Press, 2000.

24. G. Winskel. Event structures. In Advances in Petri Nets, Lecture Notes in Computer
Science. Springer, 1987.

25. G. Winskel. Concurrent strategies. In Proceedings of LICS ’11, 2011.


