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We show that periodic driving can enhance electron pairing in strongly-correlated systems. Fo-
cusing on the strong-coupling limit of the doped Hubbard model we investigate in-gap, spatially
inhomogeneous, on-site modulations and demonstrate that they substantially reduce electronic hop-
ping without suppressing super-exchange interactions and pair hopping. We calculate real-time
dynamics for the one-dimensional case, starting from zero and finite temperature initial states, and
show that enhanced singlet–pair correlations emerge quickly and robustly in the out-of-equilibrium
many-body state. Our results reveal a fundamental pairing mechanism that might underpin optically
induced superconductivity in some strongly correlated quantum materials.

PACS numbers: 03.67.Mn, 03.67.Lx

I. INTRODUCTION

Controlling the structural and electronic properties of
a solid by resonantly driving a single low-energy degree of
freedom is emerging as a transformative tool in materials
science [1]. Such excitations often play a decisive role in
stabilising various broken-symmetry states, and driving
them opens up the possibility to switch between phases.
This not only includes the melting of equilibrium long-
ranged order, like charge-density-waves [2–6], magnetic
order [7–9], and orbital order [9, 10], but even more re-
markably, inducing order, such as superconductivity, out
of equilibrium [11, 12].

To date, light-induced superconductivity has been ob-
served in several cuprates [13–15] and an alkali-doped
fullerene [11] all with quite distinct physics. This raises
the question of how ubiquitous such effects are, and what
mechanism(s) might underpin their appearance. So far,
theoretical exploration has concentrated on a minimal
Fröhlich-type model of phonon-mediated superconduc-
tivity [16, 17] subjected to a driving induced quench of
the electronic hopping amplitude. This was envisaged
as occurring from a modified electronic structure due to
non-linear phonon coupling [16, 18], or from polaronic
suppression due to phonon squeezing [17], and in either
case results in an increase in the density of states at the
Fermi level giving a corresponding increase in the super-
conducting coupling constant. Despite the slow collective
dynamics and elevated electron-phonon scattering, fast
enhancements of the superconducting order parameter
were predicted.

In this work we propose a qualitatively different mecha-
nism for driving-enhanced superconductivity in strongly
correlated lattice systems. We show that the modula-
tion of site energies in a bipartite lattice with frequency
Ω inside the charge-transfer gap U slows down electron
hopping t without reducing super-exchange interactions
J or pair hopping αJ (see Fig. 1). The driving breaks

(a)
t J

U � t
αJ

(b)
t̃� t J̃ ≈ J

U � t
α̃J̃

Ω

FIG. 1. (a) A bipartite chain with electron hopping t, ex-
change interaction J and onsite correlation U � t. Singlet
pairs move through the lattice with effective hopping rate
αJ . (b) Exciting on-site vibrational modes with t < Ω < U
greatly suppresses hopping t̃ � t, but leaves super-exchange
interaction J̃ ≈ J and pair hopping α̃J̃ ≈ αJ approximately
unchanged, resulting in an enhancement of nearest-neighbour
singlet pairing.

the usual relation J ∝ t2/U , allowing the normally sub-
ordinate J to induce a strong pairing effect, and enhance
long-range pair correlations even in one spatial dimen-
sion. We find that on the moderate timescales assessed,
the resulting non-equilibrium states are not significantly
heated by the driving field. Instead, driving can substan-
tially reduce the effective temperature of an initial ther-
mal state on experimentally relevant timescales, akin to
many-body adiabatic cooling.

Specifically, we investigate the Hubbard model in bi-
partite lattices with a bare hopping rate t and a large
on-site interaction U � t, subjected to periodic driv-
ing of frequency Ω that modulates the on-site energy
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in time τ with a spatially alternating pattern. We nu-
merically confirm that this leads to dynamical enhance-
ment of pairing for a one-dimensional system with real-
istic finite-frequency driving t < Ω < U , ramped up on
adiabatic and non-adiabatic time-scales, and at zero and
finite initial temperatures. We also analytically study the
system in Floquet theory [19–24] and derive an effective
static model to provide qualitative insights into the non-
equilibrium dynamics at low temperatures. Note that, in
contrast to many studies using Floquet theory, Ω is not
the largest frequency in our setup.

While motivated by experiments, our aim here is to
explore a fundamental principle from a minimal, period-
ically driven, strongly-correlated model, as opposed to
material-specific ab initio calculations. Nonetheless, or-
ganic superconductors (such as charge transfer salts) un-
der THz driving are likely candidate systems in which
the mechanism proposed here may be observed. In these
materials THz pulses can resonantly excite an infrared-
active local molecular vibration often located in the in-
gap regime [25, 26]. The ensuing “sloshing” motion of
the molecule is sufficiently large in amplitude and heavy
that its leading order effect is to couple to the electronic
states via a time periodic modulation of the on-site en-
ergy. These massive vibrations can therefore be consid-
ered classical oscillators for which back-action from the
electronic system is safely ignored. While the laser pulse
itself excites coherently and uniformly across the system,
the material is assumed to possess a two-molecule unit
cell [27], as in Fig. 1, so that the modulation induced on
the two interlocking sub-lattices a and b differs in ampli-
tude and/or phase. Such a unit cell might be composed
of different molecules or identical molecules with differing
orientations due to the stacking morphology [28]. Simi-
lar physics can be cleanly realized in optical lattices filled
with ultracold fermionic atoms by “shaking” the lattice
[29–31], or by exploiting Raman transitions between in-
ternal atomic states [32]. Our results provide a mech-
anism by which super-exchange physics may be better
exposed in these systems.

This paper is organized as follows. In Sec. II we in-
troduce the driven Hubbard model, describe the Floquet
basis and work out the quasi-energies for a small sys-
tem via exact numerical diagonalization. We then use
time-dependent density matrix renormalisation group
(DMRG) methods in Sec. III to study the real-time dy-
namics of the driven Hubbard model in one spatial di-
mension. In Sec. IV we derive an effective static model
whose ground and thermal states are used to approxi-
mate the non-equilibrium states of the driven Hubbard
model. Finally, we conclude in Sec. V.

II. THE DRIVEN HUBBARD MODEL

The focus of this work is the driven Hubbard model
Hamiltonian (taking ~ = 1)

Ĥ(τ) = Ĥhub + Ĥdrive(τ), (1)

where Ĥhub = Ĥhop + Ĥint and contributions given by

Ĥhop = −t
∑
〈ij〉σ

(ĉ†i,σ ĉj,σ + H.c.), (2)

Ĥint = U
∑
j

n̂j,↑n̂j,↓, (3)

Ĥdrive(τ) =
Va
2

sin(Ωτ −∆φ)
∑
j∈a

n̂j

+
Vb
2

sin(Ωτ + ∆φ)
∑
j∈b

n̂j . (4)

Here ĉi,σ with σ =↑, ↓ is the fermionic annihilation op-

erator for a spin-σ electron on site j, n̂j,σ = ĉ†j,σ ĉj,σ,

n̂j = n̂j,↑+ n̂j,↓, and 〈ij〉 denotes nearest-neighbour sites
on a bipartite lattice composed of a and b sub-lattices.
We denote the lattice filling by n̄ =

∑
j〈n̂j〉/L where

L is the number of lattice sites. The hopping ampli-
tude is t, and U the on-site Coulomb repulsion. The
driving Ĥdrive(τ) describes a time τ periodic single parti-
cle Hamiltonian with driving frequency Ω, corresponding
sub-lattice driving amplitudes Va(b), and a phase differ-
ence of 2∆φ. For simplicity we assume Va = Vb = V for
the driving amplitude, which may be a function of time
V (τ), and constant phase ∆φ = π/2 throughout the pa-
per. However, the the qualitative features of our results
are expected more generally (see Appendix A). We next
use a Floquet analysis to start investigating the dynamics
induced by Ĥ(τ).

A. Floquet analysis

Floquet theory [19, 21] is based on the time analog of

Bloch’s theorem and is applicable here since Ĥ(τ +T ) =

Ĥ(τ) with T = 2π/Ω. It gives that a complete set
of solutions to the time-dependent Schrödinger equa-
tion [Ĥ(τ) − i∂τ ] |Ψ(τ)〉 = 0 can then be written as
|ψη(τ)〉 = exp(−iεητ) |φη(τ)〉. The T -periodic Floquet
states |φη(τ + T )〉 = |φη(τ)〉 are solutions to the eigen-
value equation

[Ĥ(τ)− i∂τ ] |φη(τ)〉 = εη |φη(τ)〉 , (5)

with associated real quasi-energies εη that are defined
up to integer multiples of Ω. Periodicity means that
the quasi-energy spectrum possesses a zone-like structure
where physically distinct eigenstates lie within a quasi-
energy range E − 1

2Ω < εη ≤ E + 1
2Ω, where the choice

of E is arbitrary but often taken as E = 0.
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The Hermitian Floquet Hamiltonian ĤF = Ĥ(τ)− i∂τ
acts on an extended Hilbert space H⊗T which augments
the original Hilbert space H by the space T of square-
integrable T -periodic functions in time. This extended
Hilbert space, whose elements are denoted as |χ〉〉, is en-
dowed with a suitable scalar product by time-averaging
over a period T as

〈〈χ|ξ〉〉 =
1

T

∫ T

0

〈χ(τ)|ξ(τ)〉dτ, (6)

where |χ(τ)〉 and | ξ(τ)〉 are any T -periodic states in H,
and 〈χ(τ)|ξ(τ)〉 is the conventional scalar product for H.

We take the Fock basis | {nj,σ}〉 of the lattice system,
where nj,σ spin-σ electrons occupy site j, and construct
an orthonormal Floquet-Fock basis of H⊗ T as [24]

|{nj,σ},m〉〉 = | {nj,σ}〉 eimΩτ+i V2Ω sin(Ωτ)(
∑
j∈a nj−

∑
j∈b nj) .

(7)
These basis states include phases for the m-th Fourier
component and those associated with transforming into
the frame rotating with Ĥdrive(τ).

The matrix elements of the Floquet Hamiltonian ĤF

in this basis are

〈〈{n′j,σ},m′|ĤF|{nj,σ},m〉〉 = ζm′−m 〈{n′j,σ}|Ĥhop|{nj,σ}〉+ δm,m′

[
〈{n′j,σ}|Ĥint|{nj,σ}〉+mΩ

]
. (8)

The couplings ζm′−m are given by (also see Appendix A)

ζm′−m = sm
′−mJm′−m(ν), (9)

where Jn is the n-th order Bessel function of the first
kind and ν = V/Ω. They depend on the difference in
the Fourier components m′ −m, and also on the driving
parameter ν as well as the change in sub-lattice a occu-
pation s =

∑
j∈a(n′j−nj) = ±1 for the Fock states being

connected.
This matrix representation of ĤF has a natural block

structure with respect to the Fourier index m labelling
the Floquet sector replicas of the system. The diagonal
blocks are a matrix representation of J0(ν)Ĥhop + Ĥint

in the Fock basis, i.e. Ĥhub with a renormalised hopping
amplitude, and shifted in energy by mΩ. Correspond-
ingly, the off-diagonal blocks coupling different m sectors
are a matrix representation of ζm′−mĤhop. In the re-
mainder of this section we numerically investigate the
Floquet Hamiltonian for a small system.

B. Small system

Using a small, numerically exactly diagonalisable one-
dimensional lattice we calculate the quasi-energy spec-
trum εη as a function of ν from Eq. (5). We concentrate
on the quasi-energy states in the m = 0 Floquet sec-
tor that emerge from the low-energy sector of Ĥhub. In
Fig. 2(a) the results for high-frequency driving Ω� U, t
where the Floquet sectors are energetically well separated
and decouple in a perturbative sense. The width of the
spectrum initially shrinks with increasing ν indicating a
reduction of the driven [33] hopping amplitude t̃ < t, con-
sistent with the ζ0 = J0(ν) dependence. It reaches a min-
imum for ν = ν0 ≈ 2.4 where J0(ν0) ≈ 0. For this driving

strength electron hopping t̃ and the super-exchange J̃ are
both fully suppressed. The dynamics of the system are

therefore frozen, as signified by the collapse of the spec-
trum to a εη = 0 degeneracy at ν0. With further increases
of ν the hopping amplitude t̃ becomes negative, and the
quasi-energy spectrum correspondingly broadens. These
features are all a well known single-particle effect that
has been demonstrated experimentally, e.g. in optical
lattices [31].

A qualitatively different result occurs for in-gap driving
t < Ω < U , as shown in Fig. 2(b). The quasi-spectrum
is again seen to reduce in bandwidth with increasing ν
initially, indicating that t̃ is still being suppressed. How-
ever, in contrast to high-frequency limit the spectrum
retains a finite width proportional to J = 4t2/U and is
shifted down by approximately J , even when ν ≈ ν0.
Rather than being frozen out, the dynamics in this driv-
ing regime are now being governed by the normally sub-
ordinate super-exchange energy J̃ ≈ J that appears to
be unsuppressed. This observation motivates the further
numerical studies presented in the next section. There we
gather evidence that the driven system has an increased
susceptibility to pair formation and long-range correla-
tions for driving ν . ν0. This then leads us to derive an
effective static t–J model that describes the singlet-pair
dynamics in the driven state with good accuracy even for
strong driving ν > 1.

III. DRIVING ENHANCED FERMION
PAIRING

We consider an L site one dimensional driven Hub-
bard model with open boundary conditions, and study
directly its real-time dynamics when slowly ramping up
the driving amplitude, first at zero and then at finite
temperature. Our numerics are based on highly accurate
time-dependent DMRG methods [34–36] as implemented
in the Tensor Network Theory (TNT) Library [37] and
are described in more detail in Appendix C.
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FIG. 2. The singly-occupied subspace of the Floquet quasi-
energy spectrum εη, computed exactly for L = 6 sites, with
2 up electrons and 2 down electrons. In (a), where Ω = 100t,
U = 20t, the quasi-energy spectrum collapses to a single point
at ν0 ≈ 2.4, signalling complete suppression of t̃ relative to
U . In (b), where Ω = 6t, and U = 20t, the spectrum does
not collapse to a point, but instead strongly resembles the
spectrum of a t–J Hamiltonian with J̃ > t̃.

A. Zero temperature

We calculate the real-time dynamics of a quarter–
filled system starting from the ground state and ramping
up the driving amplitude with in-gap driving frequency
t < Ω < U . We characterise the driving induced non-
equilibrium state |ψ(τ)〉 by studying its density-density
correlations

Nij(τ) = 〈n̂in̂j〉 − 〈n̂i〉〈n̂j〉 ,

the spin-spin correlations

Sij(τ) = 〈Ŝzi Ŝzj 〉 ,

with Ŝzi = (n̂i,↑ − n̂i,↓)/2 , and the nearest-neighbour
singlet-paring correlations

Pij(τ) = 〈b̂†i,i+1b̂j,j+1〉 .

Here the operators b̂†ij (b̂ij), given by

b̂†ij =
1√
2

(ĉ†i,↑ĉ
†
j,↓ − ĉ

†
i,↓ĉ
†
j,↑) , (10)

create (annihilate) a singlet electron pair at sites i and j,
and 〈·〉 = 〈ψ(τ) | · |ψ(τ)〉. We mostly concern ourselves
with the corresponding structure factors,

X(q) =
1

L

∑
jk

Xjkeiq(j−k), (11)

where X is any of N , S or P , and q is the dimensionless
quasi-momentum.

(a) (b)

(c)

0 10 20

j

10
−6

10
−4

10
−2

10
0

P
0
,j

τ t = 0

τ t = 30

τ t = 50

τ t = 70

(d)

FIG. 3. A quarter-filled (n̄ = 1/2) Hubbard chain with
L = 40 sites, U = 20t and driving frequency Ω = 6t.
The driving amplitude is ramped according to ν(τ) =
(ν(∞)/2) [tanh ((τ − τ0)/τr) + 1] with final driving strength
ν(∞) = 2.2, ramp time τr = 12.5/t, and τ0 = 25/t. The
plots show (a) the density-density structure factor N(q, τ),
(b) the spin structure factor S(q, τ) and (c) the singlet pair-
ing structure factor P (q, τ) as a function of quasi-momentum
q and time τ . In (a)–(c) we have averaged over the frequency
Ω oscillations, e.g. that are visible in the line-outs shown in
Fig. 4(a). Residual low frequency oscillations in these quanti-
ties are due to the finite ramping time τr. In (d) the real-space
pairing correlation function P0,j relative to the left boundary
j = 0 at various time slices is shown.

We plot the density structure factor N(q, τ) in
Fig. 3(a). The initial kink at q = 4kF, where kF = n̄π/2
is the non-interacting Fermi wave-vector for the quar-
ter filled system, is suppressed in favour of peaks at
q = ±2kF as the driving increases. This signifies a dou-
bling of the wavelength of Friedel oscillations in the sys-
tem and is an indication for the formation of bound pairs.
We interpret the slope of N(q, τ) as q → 0 as a dynam-
ical version of the Luttinger parameter Kρ(τ) [38]. In
equilibrium N(q) ≈ Kρq/π [39, 40], and in Fig. 3(a) it
is apparent that the gradient around q = 0 increases at
later times corresponding to an increase in Kρ(τ). Even-
tually exceeds Kρ(τ) > 1 signifying the formation of an
attractive Luttinger liquid.

The spin structure factor, shown in Fig. 3(b), begins
with sharp peaks at 2kF, indicating that the Hubbard
ground state has a tendency towards antiferromagnetic
order. At quarter-filling, this order is incommensurate
with the lattice period. In the presence of periodic driv-
ing the initial peaks are suppressed and instead a peak at
q = π forms, consistent with the formation of islands of
commensurate antiferromagnetic order. The broadness
of this emerging peak shows that the underlying order is
not quasi-long-ranged yet. Indeed, its form is similar to
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τt

0.2

0.7
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P
(q

=
0,
τ
)

ν(∞) = 1.8
ν(∞) = 2
ν(∞) = 2.2
ν(∞) = 2.4

(a)

0 40 80

τt

0.5

1.5

2.5

K
ρ
(τ
)

ν(∞) = 1.8
ν(∞) = 2
ν(∞) = 2.2
ν(∞) = 2.4

(b)

0 40 80

τt

0.2

0.7

1.2

P
(q

=
0,
τ
)

τrt = 1
τrt = 2.5
τrt = 5
τrt = 12.5
τrt = 20

(c)

4 6.5 9

Ω/t

0

0.5

1.0

P
(q

=
0)

P̄ (q = 0)
P (τ = 0, q = 0)

↓

↑

(d)

FIG. 4. (a) The height of the singlet structure factor peak
P (q = 0, τ) at various final driving strengths. The instanta-
neous value is indicated by a dotted line, while the moving
time average is denoted by a solid line. (b) The dynami-
cal Luttinger parameter Kρ(τ) extracted from the slope of
N(q, τ) at q → 0. (c) The peak of the singlet structure factor
P (q = 0, τ) for various ramp times. (d) The final height of
the singlet structure factor averaged from τ = 60/t to 80/t,
P̄ (q = 0) as a function of the driving frequency Ω. The solid
blue line is drawn to guide the eye. Arrows mark frequencies
Ω = 6 and Ω = 7. All parameters not explicitly given in the
plots are the same as in Fig. 3.

S(q) = n̄(1 − cos q) expected for a gas of free nearest-
neighbour singlet pairs [41].

We obtain the most direct evidence of pairing via
the singlet structure factor, and in particular its uni-
form P (q = 0, τ) component which contains contribu-
tions from both long-range and short-range correlations.
In Fig. 3(c) a broad peak about q = 0 is seen initially,
which under driving eventually increases in magnitude
by a factor of more than three, and sharpens. This is
consistent with Kρ(τ) > 1 and suggests that the driving
has formed a quasi-condensate of singlet pairs in mo-
mentum space. To isolate the long-range contribution
to P (q = 0, τ) we examine the real-space singlet corre-
lations in Fig. 3(d). These correlations confirm a sup-
pression of 2kF modulations at short times followed by a
significant enhancement of the quasi-long range pairing
order at longer times when the driving has reached its
final strength.

In Fig. 4 we demonstrate the robustness of the pairing
dynamics for different driving parameters. As shown in
Fig. 4(a) the magnitude of P (q = 0, τ) oscillates with fre-
quency Ω about a mean value which is greatly enhanced
with increasing driving strength ν as long as ν < ν0. The
dynamical Luttinger parameter displayed in Fig. 4(b) in-
creases with driving and exceeds unity for sufficiently

strong driving. This suggests the onset of attractive in-
teractions within the system. However, for the largest
final driving strengths ν(∞) ≈ ν0, where the tunneling
is suppressed most strongly, P (q = 0, τ) reaches a maxi-
mum height at intermediate times and then reduces. This
behaviour is indicative of the pair state being unstable
to decay towards a resonating valence bond (RVB) type
state as we will discuss in detail in the next section.

The dependence of P (q = 0, τ) on the ramping time
τr is shown in Fig. 4(c). Roughly speaking the ramp
is expected to cross over to adiabatic when the time-
derivative of its amplitude ν̇ ≈ ν(∞)/τr ≈ J , i.e. when
it is sufficiently smaller than the dominant energy scale
of the final Hamiltonian. This is not satisfied for the
fastest ramps shown in Fig. 4(c), yet within their ramp-
ing profile a moderate enhancement of the pairing is still
induced and is sustained for longer times. For the slow-
est ramps considered the increases in the enhancement
begin to saturate, suggesting they are close to adiabatic
for this system.

In Fig. 4(d) we show the final pairing enhancement as
a function of driving frequency. A number of resonance
dips are seen where no singlet-pairing enhancement is ob-
served. The origin of these is traced back to level cross-
ings in the Floquet quasi-energy spectrum as the ramp
is traversed, which is discussed in more detail in Ap-
pendix B. In short, at these frequencies m > 0 Floquet
replicas of the upper Hubbard band, composed of states
containing high-energy doubly occupied configurations,
cross the m = 0 lower Hubbard band, composed of states
with predominantly singly-occupied configurations. As a
result the driving induces resonant transitions between
these states and mΩ of energy is absorbed, causing the
system to heat up. However, away from these resonances
the substantial enhancement reported for Ω = 6t is ob-
served over a wide range of frequencies Ω < U .

B. Finite temperature

The relevance of our observations at zero temperature
to real materials hinges on whether this effect survives
at finite temperatures. To answer this we use the finite-
temperature extension to time-dependent DMRG [42, 43]
working in the grand canonical ensemble and introduc-
ing a chemical potential µ to fix the average filling n̄.
We then compute the coherent evolution with periodic
driving via Ĥ(τ) for an initial thermal state of Ĥhub at
inverse temperature β.

Figure 5(a) shows that enhanced pairing persists at fi-
nite temperature, albeit with a peak of reduced height
and broadened width compared to the zero temperature
case. In Fig. 5(b), we show the singlet structure factor
P (q = 0, τ) as a function of time for various initial values
of β. Perhaps counterintuitively, the driven state consis-
tently exhibits enhanced singlet pairing correlations even
when the initial temperature 1/β ∼ t � J far exceeds
the pair binding energy. In the next section we will intro-
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(a)

0 20 40 60

τt

0

0.2

0.4

0.6

P
(q

=
0,
τ
)

βt = 1
βt = 2
βt = 5
βt = 10

(b)

FIG. 5. (a) The singlet structure factor P (q, τ) with an initial
temperature β = 5/t. As in Fig. 3, we have averaged over the
frequency Ω oscillations. (b) The height of the peak P (q =
0, τ), for several initial temperatures β. The dotted line shows
the instantaneous value, while the solid line shows the moving
time average. These results were computed for L = 24 sites.
All other parameters not explicitly given in the plots are the
same as in Fig. 3.

duce an effective time-independent model to qualitatively
capture all the physics underlying the numerical results
discussed so far. In the context of this effective model
the thermal enhancement can be viewed as a many-body
version of adiabatic cooling.

The reason for this is already apparent from Fig. 2(b).
As the driving amplitude ν approaches ν0, the bandwidth
of the quasi-energy spectrum in the m = 0 Floquet sector
is squashed. This is described by changes in the effective
model’s parameters with ν, and from Fig. 4(c) we saw
that for sufficiently slow ramping, ν̇ � J , this change
will be adiabatic. Consequently, the driving is substan-
tially reducing the energy gaps between the many-body
eigenstates of this model while keeping their thermal pop-
ulations unchanged. Therefore the driven state remains
approximately thermal, but at a significantly lower tem-
perature. A similar effect is used in cold-atom systems,
where an adiabatic increase of the lattice depth results
in a lowering of the temperature [44]. Indeed it has been
shown that even for instantaneous quenches, one can ob-
tain cooling in a wide variety of physical systems [45].

IV. EFFECTIVE t–J MODEL

The numerical results presented in the previous section
indicate that super-exchange interaction J and pair hop-
ping αJ , as in Fig. 1, play a significant role in the driven
dynamics when t < Ω < U . Moreover, from our calcu-
lations we find (see Fig. 7(b)) that the negligible double
occupation in the initial state remains small in the driven
state, once Ω does not coincide with any resonance. This
suggests that an effective t–J model may represent an ad-
equate foundation for a Floquet analysis in this driving
regime [46]. The t–J model arises from Ĥhub by pertur-
batively projecting double occupancies out via the stan-

dard approach [47] to yield

ĤtJα= P0

[
Ĥhop + Ĥex + Ĥpair

]
P0, (12)

with super-exchange and pair hopping contributions

Ĥex = −J
∑
〈ij〉

b̂†ij b̂ij , (13)

Ĥpair = −αJ
i 6=k∑
〈ijk〉

(
b̂†ij b̂jk + H.c.

)
. (14)

Here, the operator P0 =
∏L
j=1(1− n̂j,↑n̂j,↓) projects onto

the subspace of Fock states without any double occu-
pancies. The bracket 〈ijk〉 denotes sums over nearest
neighbour sites, not double-counting bonds. The two-site
super-exchange Ĥex term binds nearest-neighbour singlet
pairs together with an energy J . Correspondingly, the
three-site pair hopping term Ĥpair describes the motion
of these pairs without breaking their bond.

In equilibrium the parameters of the t–J model
Hamiltonian ĤtJα relate to the original Hubbard model
through J = 4t2/U and α = 1/2. The validity of the t–J
model relies on the strongly interacting limit t� U , and
thus mandates J � t. We now proceed with a Floquet
analysis of the driven t–J Hamiltonian defined as

Ĥ ′(τ) = ĤtJα + P0Ĥdrive(τ)P0, (15)

identical to that described in Sec. II A. Removing U as
an explicit energy scale is tantamount to taking U →∞,
and allows us to examine the behaviour with Ω, while
continually enforcing that U > Ω. This approach will
provide us with a simple, intuitive picture of the physics
for in-gap driving. A more accurate description, handling
the interplay between finite U and Ω, is contained in the
Appendix D and corroborates this picture.

A. Floquet analysis

By calculating a matrix representation of the Floquet
Hamiltonian for the driven t–J model Ĥ ′(τ), using the
Floquet basis introduced in II A, we immediately find
that the diagonal blocks are given by the matrix repre-
sentation of P0[J0(ν)Ĥhop + Ĥex + Ĥpair]P0. Thus, the
hopping is still suppressed, while the driving dependent
phase factors in the Floquet basis cancel out for Ĥex

and Ĥpair, as they did for Ĥint in the driven Hubbard
model, leaving these terms unaffected. Assuming Ω� t,
so the Floquet sectors decouple, we find that the effec-
tive Hamiltonian describing the m = 0 sector is a t–J
model with t̃ = J0(ν)t, J̃ = J and α̃ = α. The ratio J̃/t̃
therefore becomes strongly driving dependent

J̃/t̃ =
4t

UJ0(ν)
. (16)

The driven system therefore breaks the usual relation
J = 4t2/U � t and allows the realisation of the regime
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J̃/t̃ � 1 that is normally inaccessible. Consequently, a
slow increase in the driving strength ν̇ � J corresponds
to adiabatically moving through the phase diagram of
the t–J model into this new parameter regime. For this
reason, we now examine the equilibrium properties of this
effective model and compare them to the driven steady
states obtained in Sec. III.

B. Phase diagram of t–J model

In one-dimension the ground state of the t–J model,
for any α̃ and below half-filling n̄ < 1, is metallic with
Kρ = 0.5 as J̃/t̃ → 0. As J̃/t̃ increases and Kρ also in-
creases monotonically. When the hopping t̃ is quenched
by the driving the remaining terms Ĥex + Ĥpair together
resemble a Hamiltonian for hard-core bosons [48]. This

similarity suggests that for sufficiently large J̃/t̃ super-
exchange mediates the formation of nearest-neighbour
singlet pairs with binding energy −J̃ and pair hopping
gives them a bandwidth proportional to α̃J̃ . This is con-
sistent with the form of the quasi-energy spectrum near
ν ≈ ν0 shown in Fig. 2(b).

The pairing effect is captured by simple energetic ar-
guments. Solving the two electron problem the binding
energy of nearest-neighbour singlet pairs is given by [49]

Epair = −J̃ − 2α̃J̃ − 4t̃2

J̃ + 2α̃J̃
. (17)

Thus, in the dilute limit, comparing Epair to the energy
for two free electrons Efree = −4t̃, suggests that pair
formation will occur for J̃/t̃ ≥ 2/(1+2α̃). These nearest-
neighbour singlet pairs subsequently quasi-condense to
form a superconductor, characterised by dominant quasi-
long-range singlet pair correlations [50]

〈b̂†j+x,j+1+xb̂j,j+1〉 ∼ x−(1+1/Kρ), (18)

with Kρ > 1 signifying an attractive Luttinger liquid.

For yet larger J̃/t̃, the formation of phase-separated
electron-rich and hole-rich regions signalled by a diverg-
ing Kρ might be expected [40]. The exact solution of a
Heisenberg spin-chain gives the antiferromagnetic bond
energy Ebonds = −2J̃ ln(2). For α̃ = 1/2 we see that

Epair < Ebonds for all values of J̃/t̃, meaning that singlet
pairs will never freeze into larger antiferromagnetic clus-
ters. The pair hopping term destabilises antiferromag-
netic clusters, even when J̃/t̃ � 1, since it homogenises
holes throughout the system akin to hole repulsion. How-
ever, for n̄ ≥ 0.5 superconductivity is not expected to
persist up to J̃/t̃ → ∞. Instead an RVB “singlet gas”
appears with short-ranged pair correlations. This pic-
ture of the equilibrium properties of the 1D t–J model is
borne out by comprehensive exact diagonalization [51],
DMRG [40] and quantum Monte Carlo calculations [49].

The numerical results displayed in Fig. 3, Fig. 4 are
broadly consistent with these equilibrium properties of
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FIG. 6. The time average between τt = 60− 80 of the driven
state’s structure factors for (a) singlet pairing P̄ (q) and (b)
spin S̄(q) from Fig. 3(b)–(c) are shown alongside the same

quantities for a t–J ground state with α̃ = 1/2 and a J̃/t̃
that gives the closest match to P̄ (q). For ν(∞) = 2.2, the

effective J̃/t̃ = 2.0 Repeating this fit for the sequence of driv-

ing strengths ν shown in Fig. 4(a) gives J̃/t̃ plotted in (c),
with the solid curve reporting the prediction of Eq. (16). In
(d) P̄ (q) of the driven initial thermal state at inverse tem-
perature β0 was compared to t–J model thermal states, with
J̃ = J fixed to its equilibrium value and the ratio J̃/t̃ fixed
by the results in Fig. 6(c), to extract an effective inverse tem-
perature βeff . A solid line is drawn to guide the eye.

the t–J model spanning a wide range of J̃/t̃ values.
In particular we may now attribute the increased peak
height P (q = 0, τ) and emergence of quasi-longer-ranged

pair correlations to the driving elevating J̃/t̃ sufficiently
to near-adiabatically transition the system from its ini-
tial metallic phase into the superconducting phase. This
comparison is made more quantitatively in Fig. 6(a)–(b)
where the singlet pairing and spin structure factors from
Fig. 3(b)–(c) are closely matched to those of a t–J model

superconducting ground state with J̃/t̃ ≈ 2. For stronger

driving strengths ν → ν0, where J̃/t̃� 1, the transition
to an RVB singlet gas is evidenced by less pronounced
increases in P (q = 0, τ) and short-ranged correlations.

By repeating the fitting of the zero temperature driven
state singlet correlations to a t–J model ground state, we
extract the effective value of J̃/t̃ as a function of driving
strength ν. The results in Fig. 6(c) show decent agree-
ment with Eq. (16), and indicate that the superconduct-
ing phase can be reached with ν(∞) ≈ 2. We also fit the
singlet structure factors of the driven state obtained from
a finite initial temperature to thermal states of the t–J
model to obtain an effective temperature β̃. The results,
shown in Fig. 6(d) show that the driving substantially
decreases the effective temperature, confirming our in-
terpretation as adiabatically cooling the system.
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C. Floquet heating

In general, periodic driving of a generic many-body
system is expected to cause so-called Floquet heating,
even far away from resonances. Finite Ω corrections
are expected to result in the system being described by
an effective Hamiltonian possessing non-negligible “un-
physical” terms that are both spatially non-local and
multi-body. Eigenstates of such a Hamiltonian will be
highly delocalised in the eigenbasis of more physical
short-ranged few-body Hamiltonians, like the Hubbard
and t–J models. Thus the eigenstate thermalisation hy-
pothesis (ETH) [52–54] suggests that in the asymptotic
long-time limit, independent on its initial state, any finite
frequency drive results in all physical observables of the
system becoming indistinguishable from those of a fea-
tureless infinite temperature state [55–57]. However, the
ETH does not predict the rate of Floquet heating [58].

Despite operating in a finite frequency driving regime
on the accessible simulation times the numerical results
presented here do not display significant heating effects.
The time-averaged correlations emerging from the driven
Hubbard model, while possessing some small quantita-
tive discrepancies e.g. in Fig. 6(a)–(b), are nonetheless
well captured by an effective t–J model rather than a
more pathological Hamiltonian. This suggests that the
Floquet heating rate is small and that our findings are
instead consistent with the notion of prethermalisation
in driven systems [59–62].

To examine the Floquet heating rate further we com-
pute the half-chain entanglement entropy for the zero
temperature case, as shown in Fig. 7(b). As expected
it increases with time indicating that the driven state is
becoming increasingly entangled compared to the initial
Hubbard ground state. However, it increases roughly lin-
early with a rate indicating that saturation to the maxi-
mum entropy of an infinite temperature state would take
on the order of 103 hopping times. Indeed, it is pre-
cisely because the driven state remains weakly entangled
that allows our simulations to accurately track its dy-
namics for many 10’s of hopping times. When the sys-
tem is driven through the Ω = 7t resonance shown in
Fig. 4(d), the entropy grows more rapidly, indicating sig-
nificant heating. This is corroborated in Fig. 7(b), where
driving though the resonance results in a large increase in
the number of double occupancies, in contrast with the
Ω = 6 drive, which avoids such resonances and maintains
a small double-occupancy.

The appearance of very slow Floquet heating rates for
generic many-body systems was examined in several re-
cent studies [63–66]. They show that an effective static

Hamiltonian Ĥ∗ will describe the system up to times
τ < τ∗ where τ∗ ∝ exp(CΩ/ε). Here C is a numerical
constant of order unity and ε is an energy scale bound-
ing the terms in the driven Hamiltonian [64]. Our results
suggest that for in-gap driving ε ∼ t giving a broad time
window in which the system is described by an Ĥ∗. This
effective Hamiltonian may not be exactly a t–J model,

0 40 80
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4.5
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S
E
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)

Ω = 5t
Ω = 5.25t
Ω = 6t
Ω = 7t
Ω = 8t

(a)

0 40 80

τt

0

0.1

0.2

〈n
↑
n
↓
〉

Ω = 6t

Ω = 7t

(b)

FIG. 7. (a) The half-chain entanglement entropy SE as a
function of time, computed with the same parameters as in
Fig. 4(d) is shown. Here an MPS bond dimension χ = 800
was used which supports a maximum half-chain entanglement
entropy of Smax

E ≈ 9.64. (b) The average double-occupancy
per site 〈n↑n↓〉 computed using the same parameters as in
Fig. 4(d) is plotted. The dotted line shows the instantaneous
value, while the solid line shows the moving time average. The
two frequencies shown here correspond to the arrows drawn
in Fig. 4(d).

but it nonetheless shares essential physical features, such
as supporting a superconducting phase.

V. CONCLUSIONS

We have shown that periodic in-gap driving of a
strongly-correlated electronic system can slow the elec-
trons down enough to make the normally subordi-
nate super-exchange interaction the dominant energy
scale. This effect manifests itself in a many-body one-
dimensional setting as a distinct switching of pair correla-
tions. We showed that the driven state is similar to what
would be expected if J/t → J̃/t̃ > 1 was enhanced to
values which are considered unphysical in thermal equi-
librium. Furthermore, these effects were found to be ro-
bust to finite ramp times of the driving and finite initial
temperatures. Our future experimental and theory work
is likely to focus on higher dimensional systems where
dynamically enhanced pairing is expected to emerge at
smaller values of J̃/t̃ [67]. The inclusion of competing
instabilities, such as charge-density-waves, and the in-
terplay of driving with dissipation [68, 69], could then
provide a fuller picture of this route to engineering light-
induced superconducting states in quantum materials.
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FIG. 8. The coefficient ζ0 with unequal a and b driving
strengths as a function of νa and ∆φ. The contour line ζ0 = 0
is highlighted in red.

Appendix A: Floquet Hamiltonian coupling

In the main text we concentrated on the special case of
driving with Va = Vb = V and constant phase ∆φ = π/2.

Here we go back to the general driving Ĥdrive given in
Eq. (4) and define the Floquet-Fock basis as

| {nj,σ},m〉 = | {nj,σ}〉 exp [imΩτ ] (A1)

× exp

−i∆a(τ)
∑
j∈a

nj − i∆b(τ)
∑
j∈b

nj

 ,
where m is the Fourier component and

∆a(τ) = − Va
2Ω

cos(Ωτ −∆φ),

∆b(τ) = − Vb
2Ω

cos(Ωτ + ∆φ). (A2)

The Floquet Hamiltonian is defined by the eigenvalue
problem Eq. (5) which in the basis Eq. (A1) becomes

[Ĥ(τ)−i∂τ ] | {nj,σ},m〉 = [Ĥhop+Ĥint+mΩ1] | {nj,σ},m〉 .

We then use the extended scalar product Eq. (6) to eval-

uate the righthand side as 〈〈{n′j,σ},m′|Ĥhop + Ĥint +
mΩ1|{nj,σ},m〉〉. The last two terms are diagonal in the
Floquet-Fock basis so all the non-trivial physics is con-
tained in the hopping matrix elements. These are given
by

〈〈{n′j,σ},m′|Ĥhop|{nj,σ},m〉〉 =
1

T

∫ T

0

exp [i(m−m′)Ωτ + is∆a(τ)− is∆b(τ)] dτ 〈{n′j,σ}|Ĥhop|{nj,σ}〉, (A3)

= ζm′−m 〈{n′j,σ}|Ĥhop|{nj,σ}〉. (A4)

Here we have used that 〈{n′j,σ}|Ĥhop|{nj,σ}〉 is non-zero only when an electron (of either spin) moves from a site in
sub-lattice a to a site in sub-lattice b, or the reverse. Thus we can denote the change in the occupation of sub-lattice a
as
∑
j∈a(n′j−nj) = s, and we know that the change in occupation of sub-lattice b is

∑
j∈b(n

′
j−nj) = −s, with s = ±1.

The Floquet coupling coefficient ζm′−m depends not only on the Fourier components but also on the parameters of
the driving Va, Vb,∆φ,Ω and the Fock states being connected via s. To evaluate ζm′−m we first expand ∆a(τ)−∆b(τ)
as

∆a(τ)−∆b(τ) =
(Va + Vb)

2Ω
sin(Ωτ) sin(∆φ)− (Va − Vb)

2Ω
cos(Ωτ) cos(∆φ). (A5)

Next we use a Jacobi-Anger expansion to breakup the exponentials of trigonometric functions and perform the time-
averaging integration to obtain

ζm′−m =

∞∑
n=−∞

(−i)nJn

(
s

(Va − Vb)
2Ω

cos(∆φ)

) ∞∑
n′=−∞

Jn′

(
s

(Va + Vb)

2Ω
sin(∆φ)

)
δn+n′,m′−m. (A6)

This coupling appears in the Floquet Hamiltonian in
Eq. (8) for the most general driving parameters. For
the special case used in the main text, Va = Vb = V and
∆φ = π/2, this reduces ζm′−m in Eq. (A6) to that given

in Eq. (9). However, note that Eq. (A6) displays suppres-
sion of the hopping for a much wider range of driving pa-
rameters than this special case. As an example, in Fig. 8
we take νa = Va/Ω = 2νb and plot ζ0, the hopping sup-
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pression factor in the limit U → ∞, Ω → ∞, U/Ω < 1.
This shows that the hopping can still be suppressed to
zero even in the case where νa 6= νb and ∆φ 6= π/2.

Appendix B: Crossings in the Floquet Spectrum

As seen in Fig. 4(d), there are several resonance fre-
quencies at which pairing (and indeed all corrrelations)
are destroyed rather than enhanced by the driving. This
can be understood by looking at the Floquet quasi-energy
spectrum. Since the spectrum is periodic high energy
states in the upper Hubbard band are folded down into
the first Brillouin zone −Ω/2 < U − mΩ < Ω/2, as
shown in Fig. 9 for a small system. For Ω = 6t folded
upper Hubbard band states do not intersect the lower
Hubbard band portion of the spectrum, and so a suffi-
ciently slow ramp will adiabatically follow the Floquet
state connected to the undriven ground state. However,
in for the Ω = 7t case, there is a level-crossing between
these bands. Similar crossings are found for the other
resonance frequencies in Fig. 4(d). By driving through
these crossings strong excitation of states in the upper
Hubband band are expected that effectively heat up the
system and destroy correlations. Indeed for the larger
system this is what is shown in Fig. 7(b) where driving
at Ω = 7t is found to result in 10 times larger increase in
the average density of double occupancies than driving
at Ω = 6t. The smallness of the latter case supports our
interpretation of the driven system with an effective t–J
model.

Appendix C: Details on numerical calculations

For the zero temperature calculations, we computed
the ground state of the Hubbard system using standard
DMRG [34, 70], with an matrix product state (MPS)
bond dimension of χ = 300. We then evolved this ground
state under the Hamiltonian Ĥ(τ) using time-evolving
block decimation (TEBD) algorithm [36], computing the
expectation values given in Sec. III A.

To accurately capture the driven state our TEBD cal-
culations were performed with MPS bond dimensions up
to χ = 1600 and a timestep ∆τ = 0.01/t. To resolve the
fast oscillations in the correlation functions, they were
sampled every 5 timesteps. Increasing χ and decreasing
∆τ were found to have negligible effect on the correlation
functions, and the cumulative truncation error during the
time-evolution remained small.

To measure of the amount of Floquet heating in our
system, we compute the entanglement entropy at the cen-
tral MPS bond, defined as

SE(τ) = −Tr
[
ρ0,L/2(τ) log2(ρ0,L/2(τ))

]
, (C1)

where ρ0,L/2 is the reduced density matrix for the left
half of the system. The behaviour of SE(τ) is shown in
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FIG. 9. The Floquet spectrum εη for an L = 6 site system
with U = 20t, ∆φ = π. The doubly-occupied levels are drawn
in red, the singly-occupied are drawn in blue. In (a), Ω = 6t,
and there are no crossings between singly and doubly-occuped
states. In (b), Ω = 7t and, we observe a crossing between the
upper and lower Hubbard bands. The two frequencies shown
here correspond to the arrows drawn in Fig. 4(d).

Fig. 7(a) for various driving frequencies. After ramping
up the driving the entanglement entropy grows in time.
The largest growth is seen for Ω = 5.25t and Ω = 7t
that were identified already in Fig. 4(d) as Floquet res-
onances. The elevated heating makes these frequencies
more difficult to capture with an MPS ansatz due to a
rapid growth of truncation error after the ramp [71]. The
growth in SE(τ) for the other frequencies, that are away
from the resonances, are broadly similar to each other
and smaller. The rate of growth of SE(τ), indicative of
the rate of Floquet heating, appears to be very slow on
the timescales considered. Linearly extrapolating the en-
tropy predicts that a time on the order of 103/t is needed
for SE(τ) to saturate at the maximum entropy at quarter
filling of Sβ=0 = 38.47.

For the finite temperature calculations, we obtained
thermal states of the Hubbard model via imaginary-time
TEBD. An initial matrix product operator (MPO) repre-
sentation of the identity matrix (i.e. an infinite tempera-
ture state) was evolved in imaginary time with a timestep
∆β = 0.01/t to obtain an MPO representation of the de-
sired thermal mixed state [43]. We introduced a chemical
potential µ to our Hamiltonian, and tuned this to achieve
the desired filling n̄. We then performed real-time evolu-
tion with an MPO dimension up to χ = 400 to describe
the driven state.

Appendix D: Perturbative corrections

The virtue of constructing a Floquet Hamiltonian ĤF

is that standard time-independent perturbative methods
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are applicable to it. In particular, given a Hamiltonian
Ĥ = Ĥ0+λĤ1, composed of a bare contribution Ĥ0 and a
perturbation Ĥ1 with coupling strength λ, we wish to de-
termine an effective Hamiltonian Ĥeff describing the en-
ergy eigenvalues of Ĥ in a degenerate subspace of eigen-
states of Ĥ0 with energy E. To second order in λ we
obtain Ĥeff via a standard projection approach [47] as

Ĥeff = PĤP−PĤQ 1

QĤQ− E
QĤP, (D1)

where P is the projector onto the degenerate subspace
of Ĥ0 and Q is its orthogonal complement. For Ĥ =
Ĥhub/U , where Ĥ0 = Ĥint/U , λĤ1 = Ĥhop/U and P =
P0 this method yields the t–J model given in Eq. (12).

We now apply the same approach to ĤF in the en-
larged Hilbert space H⊗T using a projector P = P0M0,
where M0 is the projector onto the m = 0 Floquet sec-
tor, i.e. the DC Fourier component. This approach has
the virtue of dealing with the strong-coupling limit and
driving on the same footing [46]. Specifically, it allows
us to determine an effective time-independent Hamilto-
nian describing the stroboscopic evolution that contains
perturbative corrections due to couplings to doubly occu-
pied states and their Floquet replicas. We find that this
again yields t–J model with α̃ = 1/2, and t̃ = J0(ν)t as
before, but a super-exchange coupling given by

J̃/t̃ =
4t

UJ0(ν)

∞∑
m=−∞

Jm(ν)2

1 +mΩ/U
. (D2)

Note that this second order result for the effective J̃ for
sub-lattice driving is identical to that obtained by apply-
ing a driving term describing an AC electric field across
the lattice [22]. In the limit U → ∞ this expression
reduces to Eq. (16) found from the t–J model Floquet
analysis.

In the limit of Ω → ∞ the energy separation between
the Floquet sectors far exceeds the energy scales t and
U within them. Consequently the perturbative contribu-
tions to J̃ from m 6= 0 sectors can be safely ignored leav-
ing a suppressed super-exchange given by J̃/t̃ = 4t̃/U .
Indeed Eq. (D2) indicates that above gap driving Ω > U

will lead generically to a reduction in J̃ . This is because
while m < 0 and m > 0 contributions have the same
numerator, for m < 0 the denominator is negative and
smaller than for m > 0. It therefore acts against the
m ≥ 0 contributions to reduce J̃ pushing the system fur-
ther into the metallic J̃/t̃� 1 regime.

For in-gap frequencies t < Ω < U an interesting in-
terplay between strong interactions and driving leads to
different behaviour. In this case the leading m < 0
contributions, where Jm(ν)2 is non-negligible, lie above
the retained subspace so there denominators are positive.
These contributions represent super-exchange processes
in which the gap U is bridged virtually by borrowing
mΩ energy from the driving and then returned. The net
effect of this is to strengthen the m ≥ 0 contributions
resulting in J̃ slightly increasing beyond its equilibrium
value. Since the hopping continues to be suppressed in-
gap driving can therefore access the regime J̃/t̃ > 1.

[1] M. Rini, R. Tobey, N. Dean, J. Itatani, Y. Tomioka,
Y. Tokura, R. W. Schoenlein, and A. Cavalleri, Nature
449, 72 (2007).

[2] D. Fausti, R. I. Tobey, N. Dean, S. Kaiser, A. Dienst,
M. C. Hoffmann, S. Pyon, T. Takayama, H. Takagi, and
A. Cavalleri, Science 331, 189 (2011).

[3] F. Schmitt, P. S. Kirchmann, U. Bovensiepen, R. G.
Moore, L. Rettig, M. Krenz, J.-H. Chu, N. Ru, L. Per-
fetti, D. H. Lu, M. Wolf, I. R. Fisher, and Z.-X. Shen,
Science 321, 1649 (2008).

[4] K. Miyano, T. Tanaka, Y. Tomioka, and Y. Tokura,
Phys. Rev. Lett. 78, 4257 (1997).
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