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Model of signal transduction pathways of two Bce-like systems after induction with corresponding AMPs in 
Bacillus subtilis. The TCSs Bce and Psd and their inducing antibiotics as signal inputs are highlighted black 

and grey, respectively. For reasons of simplicity, the ABC transporters of both systems are not shown. Solid 

arrows indicate the signal transduction pathway within one system, while cross-regulation between BceS 
and PsdR is highlighted by the dotted arrow. On each promoter, MBS representing for the main binding site 
and SBS representing for the secondary binding of Bce-like RRs are filled with white on bceA promoter and 

slashes on psdA promoter. CM, cell membrane.  
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Abbreviated summary 

An efficient insulation is essential to ensure wiring specificity of highly similar signal 

transducing systems. Here, we describe the regulatory features necessary to allow 

discrimination of two target promoters by their corresponding paralogous response regulators, 

involved in mediating resistance against antimicrobial peptides in Bacillus subtilis. We 

demonstrate that regulator competition in combination with hierarchical cooperative binding 

ensures specificity despite only slight differences in binding affinities. 
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Summary 27 

BceRS and PsdRS are paralogous two-component systems in Bacillus subtilis controlling the 28 

response to antimicrobial peptides. In the presence of extracellular bacitracin and nisin, 29 

respectively, the two response regulators (RRs) bind their target promoters, PbceA or PpsdA, 30 

resulting in a strong up-regulation of target gene expression and ultimately antibiotic 31 

resistance. Despite high sequence similarity between the RRs BceR and PsdR and their 32 

known binding sites, no cross-regulation has been observed between them. We therefore 33 

investigated the specificity determinants of PbceA and PpsdA that ensure the insulation of these 34 

two paralogous pathways at the RR-promoter interface. In vivo and in vitro analyses 35 

demonstrate that the regulatory regions within these two promoters contain three important 36 

elements: in addition to the known (main) binding site, we identified a linker region and a 37 

secondary binding site that are crucial for functionality. Initial binding to the high affinity, 38 

low specificity main binding site is a prerequisite for the subsequent highly specific binding 39 

of a second RR dimer to the low affinity secondary binding site. In addition to this 40 

hierarchical cooperative binding, discrimination requires a competition of the two RRs for 41 

their respective binding site mediated by only slight differences in binding affinities.  42 
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Introduction 43 

Antimicrobial peptides (AMPs) are predominantly produced by Gram-positive microbes to 44 

suppress the growth of competitors in their natural habitats (Berdy, 2005). The main target of 45 

AMPs is the bacterial cell envelope, especially different intermediates of the lipid II cycle. By 46 

binding to their target molecules, AMPs inhibit cell wall biosynthesis and cause cell death 47 

(Silver, 2003, Breukink & de Kruijff, 2006, Jordan et al., 2008).  48 

In Firmicutes bacteria, sensing of and resistance against AMPs is usually mediated by highly 49 

conserved Bce-like detoxification modules containing an ATP-binding-cassette (ABC) 50 

transporter and a two-component system (TCS) (Dintner et al., 2011). The genome of 51 

Bacillus subtilis encodes three such systems: BceRS-BceAB, PsdRS-PsdAB and the poorly 52 

understood YxdJK-YxdLM-YxeA system (Joseph et al., 2002, Gebhard & Mascher, 2011). 53 

The BceRS-BceAB paradigm responds to AMPs such as bacitracin, actagardine and 54 

mersacidin (Staroń et al., 2011, Dintner et al., 2014, Fritz et al., 2015). It consists of two 55 

separate operons: the bceRS operon encodes the TCS comprised of a membrane anchored 56 

histidine kinase (HK), BceS, and a cytoplasmic response regulator (RR), BceR, under the 57 

control of a constitutive promoter. The bceAB operon encodes the ABC transporter under the 58 

control of an inducible BceR-dependent promoter, PbceA. In the absence of AMPs, both 59 

operons are expressed at a very low level. In the presence of AMPs such as bacitracin, the 60 

ABC transporter BceAB senses this stimulus and passes the signal on to the HK BceS 61 

(Dintner et al., 2014). Upon autophosphorylation, BceS then activates its cognate RR BceR 62 

by phosphoryl-group transfer. Phosphorylated BceR will then bind to PbceA and strongly 63 

induce bceAB transcription, ultimately resulting in increased BceAB production, thereby 64 

conferring AMP resistance (Mascher et al., 2003, Ohki et al., 2003, Bernard et al., 2007, 65 

Rietkötter et al., 2008, Fritz et al., 2015) (Fig. 1 black system, BceAB not shown).  66 

The main inducers of the Psd system are lipid II-binding lantibiotics such as nisin, actagardine, 67 

gallidermin and subtilin. In turn, the Psd system confers resistance against nisin, actagardine 68 
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and subtilin (Staroń et al., 2011). The signal transduction pathway within Psd system (Fig. 1 69 

grey system, PsdAB not shown) is similar to that described for the Bce system (Gebhard & 70 

Mascher, 2011). Despite significant sequence similarity between BceRS-BceAB and PsdRS-71 

PsdAB, signaling in each system is generally well insulated from the other, although a 72 

previous study has demonstrated some degree of cross-phosphorylation between BceS and 73 

PsdR at high bacitracin concentrations (Rietkötter et al., 2008) (Fig. 1, dotted arrow).  74 

In bacteria, transcription initiation starts with promoter recognition by the σ subunit of the 75 

RNA polymerase holo-enzyme at the -35 promoter element, followed by binding and 76 

unwinding of the DNA double helix at the -10 promoter element (Lee et al., 2012).  A -10 77 

promoter element with a perfect match to the σ
A
 consensus sequence (TATAAT) could be 78 

identified in PbceA. It is located 6 bp upstream of the transcription initiation site, which is 32 bp 79 

upstream of the bceA start codon. However, a conserved -35 element was not found (Ohki et 80 

al., 2003). An identical σ
A
-dependent -10 element was also found in PpsdA, again lacking a 81 

clear -35 element at the appropriate position (Staroń et al., 2011) (Fig. 2A). For such 82 

promoters deviating significantly from the consensus sequence at the -35 position, the σ 83 

subunit of RNA polymerase can still be recruited to these promoters by interaction with 84 

activators like RRs binding to the upstream region (Jarmer et al., 2001, Paget & Helmann, 85 

2003). RRs usually contain an N-terminal receiver domain and a C-terminal output domain. 86 

Both BceR and PsdR belong to the OmpR/PhoB subfamily of RRs with a C-terminal winged 87 

helix-turn-helix DNA-binding output domain that regulates the transcription of target genes 88 

by binding to their corresponding promoter regions via a specific recognition motif (Martínez-89 

Hackert & Stock, 1997, Fabret et al., 1999, Galperin, 2010). Inverted repeats on PbceA as well 90 

as on PpsdA were mapped as BceR- and PsdR-binding sites, respectively, upstream of the 91 

corresponding -10 promoter elements (Fig. 2A), which implies an interaction between BceR-92 

like RRs and the RNA polymerase holo-enzyme (Ohki et al., 2003, de Been et al., 2008, 93 

Staroń et al., 2011).  94 
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The DNA binding domains of BceR and PsdR share 51% sequence identity (66% similarity) 95 

and the corresponding binding sites on PbceA and PpsdA contain eleven out of fourteen identical 96 

nucleotides (Fig. 2A) (Joseph et al., 2002). Nevertheless, no cross-regulation was detected at 97 

the transcriptional level between BceR-PpsdA and PsdR-PbceA (Rietkötter et al., 2008). Such a 98 

regulatory insulation, that is, prevention of nonspecific regulatory cross-talk, is of course 99 

desired and can arise at different molecular levels in vivo (Huynh & Stewart, 2011). The most 100 

prominent mechanism for conferring such signaling specificity depends on the molecular 101 

recognition between the two interaction partners (Podgornaia & Laub, 2013). However, in the 102 

case of the Psd and Bce systems, the high degree of identity between the two regulator 103 

binding sites raised the question how specificity can be ensured between two such closely 104 

related systems. 105 

Here we provide detailed insights into the molecular mechanisms that ensure insulation and 106 

transcriptional regulation specificity between two Bce-like systems in B. subtilis, Bce and Psd 107 

at the level of RR-promoter interaction. Using both in vivo and in vitro approaches, we 108 

identified a secondary RR-binding site in both PbceA and PpsdA, in addition to the previously 109 

identified (main) binding site. Importantly, we demonstrate that the main binding site, while 110 

being essential for promoter activation, does not significantly contribute to specificity of RR-111 

promoter interactions. Instead, the secondary binding site and the variable linker region 112 

between the two sites are the primary specificity determinants. Moreover, our data show that 113 

in vivo promoter discrimination is based on competition between the two RRs for their 114 

respective binding sites. 115 

 116 

  117 
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Results 118 

 119 

Identification of the minimal bceA and psdA promoter motif 120 

PbceA and PpsdA are the target promoters for the RRs BceR and PsdR, respectively (Staroń et 121 

al., 2011). When B. subtilis is challenged with bacitracin, BceR is activated by the 122 

corresponding HK BceS and binds to a specific region of PbceA, resulting in a strong 123 

upregulation of the operon encoding the ABC transporter for resistance (Mascher et al., 2003) 124 

(Fig. 1). Previous work has already mapped an inverted repeat sequence for BceR binding in 125 

the PbceA region (AAGCgTGTGACgaaaatGTCACAtGCTT) from -111 to -84 upstream of the 126 

bceA start codon (Ohki et al., 2003). For PpsdA, a highly similar PsdR binding site 127 

(ATgTgACAgcatTGTaAgAT) could be identified from -99 to -80 upstream of the psdA start 128 

codon (Staroń et al., 2011). In agreement with these studies, a comparative genomics study 129 

identified a putative binding site among most bceA-like promoters in Firmicutes bacteria, with 130 

an overall consensus sequence of TnACA-N4-TGTAA as a recognition site for BceR-like RRs 131 

(Dintner et al., 2011).  132 

We first wanted to verify that these two known conserved binding motifs are indeed 133 

indispensable for the RR-dependent activation of the bceA and psdA promoters and identify 134 

the minimal regulatory elements for both promoter regions. Towards that goal, progressively 135 

truncated bceA promoters starting with the 5’-position ranging from -111 to -103 and ending 136 

at +82 relative to the ATG start codon of bceA were used to construct transcriptional lacZ 137 

reporter fusions (Table S2), which were integrated at the amyE locus in B. subtilis 168 wild 138 

type (WT) (Table S1). Progressively truncated psdA promoter fragments starting with 5’-139 

positions ranging from -110 to -95, all ending at position +30 relative to the ATG start codon 140 

of psdA, were generated in a similar fashion (Fig. 2A). The promoter activity of the resulting 141 

reporter strains was determined by quantitative β-galactosidase assay in the presence of 142 

bacitracin (PbceA) or nisin (PpsdA) (Staroń et al., 2011).  143 
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Truncated bceA promoters from -111 until -106 showed activities comparable to the non-144 

truncated promoter fragment starting at position -122 after bacitracin induction (black bars) 145 

(Fig. 2B). The truncations starting at position -105 and position -104 displayed a decreased 146 

promoter activity, while a further truncation of one additional nucleotide (starting at position -147 

103) led to a complete loss of promoter activity after bacitracin induction. 148 

Similar results were obtained for truncated psdA promoter fragments after nisin induction 149 

(grey bars) (Fig. 2C). No decrease of promoter activity was observed for truncations with 5’-150 

positions starting from -110 to -100 relative to the positive control fragment, starting at 151 

position -126. The promoter activities were significantly reduced for fragments truncated at 152 

positions -99 to -96, while a truncation at position -95 led to a complete loss of activity after 153 

nisin induction.  154 

These data confirmed that the 7-4-7 nt binding motif TGTGACGaaaaTGTCACA of PbceA and 155 

the TGTGACAgcatTGTAAGA binding motif of PpsdA are indeed necessary for promoter 156 

induction and constitute likely binding sites for BceR and PsdR, in good agreement with 157 

previous reports (Ohki et al., 2003, de Been et al., 2008, Staroń et al., 2011). These will be 158 

referred to as “main binding sites” (MBSs) from now on. Position -104 relative to bceA start 159 

codon and position -96 relative to psdA start codon determine the minimal 5’-end of active 160 

RR-dependent promoter fragments.  161 

 162 

A secondary binding site on bceA and psdA promoters 163 

Sequence analysis of PbceA and PpsdA did not identify a typical -35 region (TTGACA) upstream 164 

of the -10 region as normally recognized by σ
A
 (Jarmer et al., 2001). However, a 7 nt 165 

conserved half binding site for a BceR-like RR, located 13/14 nt downstream of the MBS and 166 

38 nt upstream of the -10 region, was predicted for both the bceA and the psdA promoter 167 

regions (Dintner et al., 2011). This observation implies the existence of a secondary binding 168 

site (SBS) instead of a typical -35 element on bceA-like promoters. Based on this prediction, 169 
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we annotated a putative SBS also showing the 7-4-7 pattern, as well as a linker region (L) 170 

between the MBS and the SBSs on both bceA and psdA promoters (Fig. 2A). We 171 

experimentally investigated the function of the predicted promoter motifs by randomizing 172 

their sequence, while maintaining the GC/AT content of the linker region. The fragments 173 

were used to generate lacZ reporter gene fusions (Tables 1+2) and were assayed as before.  174 

Both the WT bceA promoter (Fig. 2D) and the psdA promoter (Fig. 2E) showed strong 175 

induction with the corresponding inducers bacitracin (black bars) or nisin (grey bars) 176 

compared to the non-induced samples (white bars), but no such response to the non-cognate 177 

inducer. The weak induction of PpsdA by bacitracin (Fig. 2E) was due to the known cross-178 

phosphorylation of PsdR by BceS (Rietkötter et al., 2008) (Fig. 1 dotted arrow). Randomizing 179 

the MBS led to a complete loss of activity for both promoters. The same effect was obtained 180 

when randomizing the sequence of the predicted SBS. However, activities of both bceA and 181 

psdA promoters only showed a slight decrease by randomly mutating the corresponding linker 182 

region (L) between the two binding sites (Fig. 2D and 2E).   183 

The data demonstrate that on both PbceA and PpsdA, a SBS exists that is located downstream of 184 

the MBS with a 13/14 nt linker region in between them. This SBS seemingly replaces the -35 185 

region and is as indispensable as the MBS for RR-dependent promoter activity. Additional 186 

assays done by randomizing either the first or the second half of each SBS were in agreement 187 

with the results obtained for the completely randomized SBSs (data not shown), further 188 

demonstrating that each half binding site has the same importance for PbceA and PpsdA activity. 189 

 190 

Major specificity determinants are located in the region containing linker and SBS 191 

So far, we have identified an extended regulatory region in PbceA and PpsA, consisting of two 192 

binding sites, MBS and SBS, and a linker region between them. Since there is no cross-193 

regulation at the RR-promoter interface, neither between BceR-PpsdA nor PsdR-PbceA 194 

(Rietkötter et al., 2008), we therefore wanted to analyse the specificity determinants within 195 
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the bceA/psdA promoters. Towards that goal, a series of chimeric promoters derived from 196 

PbceA and PpsdA was constructed (Table S2) and fused with lacZ. Chimeric promoters BP1-4 197 

are derived from PbceA (black) with gradually substituting PpsdA (grey) at the 3’-terminal end 198 

(Fig. 3A). Chimeric promoters PB1-4 are derived from PpsdA (grey) with increasing of 3’-199 

fragments from PbceA (black) (Fig. 3B). To specifically eliminate any cross-talk between the 200 

Bce and Psd systems, the chimeric promoters as well as WT PbceA and WT PpsdA fragments as 201 

references, were introduced into the WT strain and additionally the otherwise isogenic 202 

∆bceRS (TMB1460) and the ∆psdRS (TMB1462) strains (Table S1). Compared to the WT 203 

strain, the ∆bceRS and ∆psdRS backgrounds remove the effect of cross-phosphorylation and 204 

hence provide a clearer view of individual RR-promoter interactions. 205 

PbceA showed the same high activity in the ∆psdRS mutant (Fig. 3D) as in the WT strain (Fig. 206 

3C) after bacitracin induction, but no activity after nisin induction in either the WT (Fig. 3C) 207 

or the ∆bceRS background (Fig. 3E). Correspondingly, PpsdA was highly induced by nisin in 208 

both the WT strain (Fig. 3C) and the ∆bceRS mutant (Fig. 3E). Importantly, the moderate 209 

induction of PpsdA by bacitracin seen in the WT (Fig. 3C) was not detected in the ∆bceRS 210 

mutant (Fig. 3D) due to the elimination of cross-phosphorylation between BceS and PsdR. 211 

These results are in agreement with previous studies that there is no cross-regulation at the 212 

RR-promoter level.  213 

Chimeric promoters BP1 and BP2 showed high activity after induction with bacitracin in both 214 

the WT strain (Fig. 3C) and the ∆psdRS strain (Fig. 3D), but no activity upon nisin induction 215 

in either the WT strain (Fig. 3C) or the ∆bceRS strain (Fig. 3E). Hence, BP2 could be 216 

recognized by BceR, but not by PsdR. These results indicate that the specificity determinants 217 

are located within the region upstream of and including the SBS. Interestingly, the chimeric 218 

promoter BP3 could neither be induced by bacitracin in the ∆psdRS background (Fig. 3D) nor 219 

by nisin in the ∆bceRS background (Fig. 3E), but showed moderate induction by bacitracin in 220 

only the WT background (Fig. 3C). The observation that PB3 requires both TCSs for 221 
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responding to bacitracin might point towards the formation of RR heterodimers. But this 222 

interpretation is purely speculative at the moment and will require follow-on studies. 223 

Moreover, BP4 – possessing the whole region downstream of the MBS originating from PpsdA 224 

– was not only moderately induced by bacitracin in the ∆psdRS background (Fig. 3D) but also 225 

by nisin in the ∆bceRS background (Fig. 3E), indicating a relaxation of specificity from BceR 226 

to PsdR. The results of BP2 and BP4 demonstrate that the major specificity determinants of 227 

PpsdA are located in the region containing the linker and the SBS. 228 

Chimeric promoters PB1 and PB2 showed a decreased activity after induction with nisin in 229 

both the WT background (Fig. 3F) and the ∆bceRS mutant (Fig. 3G) relative to PpsdA, and no 230 

bacitracin induction in the ∆psdRS mutant (Fig. 3H), indicating no change of specificity. 231 

These results corroborate that the region downstream of the SBS is not relevant for the RR-232 

promoter specificity. Interestingly, PB3 showed a significantly decreased activity in the 233 

∆bceRS mutant with nisin induction (Fig. 3G) and a strongly increased activity in the ∆psdRS 234 

mutant with bacitracin induction (Fig. 3H). Chimera PB4 was not inducible by nisin in the 235 

∆bceRS strain (Fig. 3G), but instead showed high induction by bacitracin in the ∆psdRS strain 236 

(Fig. 3H), strongly reminiscent of the intact PbceA. The promoter activities of PB3 and PB4 in 237 

the WT strain (Fig. 3F) were in accordance with those observed in both mutant backgrounds. 238 

These data indicate that the change of specificity from PpsdA to PbceA can be achieved by 239 

exchanging the SBS (PB3), and is further strengthened by an additional substitution of the 240 

linker region (PB4).  241 

The analysis of chimeric promoter constructs described above demonstrates that (i) all three 242 

regulatory parts (MBS-linker-SBS) together determine the RR-specificity, with (ii) the region 243 

downstream of the MBS of PbceA/PpsdA, containing the linker and the SBS, functioning as the 244 

main discriminator for BceR/PsdR recognition. 245 

 246 
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Rewiring the specificity between PbceA and PpsdA enables dissecting the roles of individual 247 

specificity determinants  248 

To further investigate the functions of MBS, linker region and SBS on the psdA promoter for 249 

PsdR recognition, additional chimeric promoters were generated with different combinations 250 

of these three motifs on PbceA replaced by the corresponding region of PpsdA (Fig. 4A) to rewire 251 

specificity from BceR to PsdR. Promoter activities were measured as described above in the 252 

WT strain (Fig. 4C), the ∆psdRS strain (Fig. 4D) and the ∆bceRS strain (Fig. 4E). 253 

Compared to PbceA, replacing only the MBS (M), the linker (L) or both (M+L) of PbceA with 254 

the corresponding region of PpsdA showed decreased promoter activity in the WT strain after 255 

induction with bacitracin (Fig. 4C) as well as in the ∆psdRS mutant (Fig. 4D). No increase of 256 

the promoter activity after induction by nisin was observed in either the WT strain (Fig. 4C) 257 

or the ∆bceRS mutant (Fig. 4E). This indicates that the MBS, the linker or both of PpsdA are 258 

not enough to cause activation via PsdR. Changing the SBS (S) on PbceA into PpsdA led to a 259 

decrease of promoter activity after induction with bacitracin in the WT strain (Fig. 4C) as well 260 

as in the ∆psdRS mutant (Fig. 4D) and a slight but detectable increase of promoter activity 261 

after induction with nisin in the ∆bceRS mutant (Fig. 4E). This indicates that exchanging only 262 

the SBS alone already conferred a relaxation of promoter specificity from BceR to PsdR.  263 

Substitution of the linker together with the SBS (L+S) resulted in a higher promoter activity 264 

compared to only exchanging the SBS (S) both after bacitracin induction (Fig. 4D) and nisin 265 

induction (Fig. 4E). This indicates that the linker region (L) can enhance promoter activity 266 

with both cognate PsdR and noncognate BceR. Compared to only the SBS switch (S), 267 

exchanging both the MBS and the SBS simultaneously (M+S) resulted in a severe decrease of 268 

the promoter activity after induction with bacitracin (Fig. 4D), while causing an increase of 269 

the promoter activity after induction with nisin (Fig. 4E).  270 

Taken together, these results suggest that the SBS on PpsdA is the main discriminator for PsdR-271 

binding to PpsdA, even though the intensity of induction with the SBS substitution alone is not 272 
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very strong. The linker cannot determine specificity by itself but can increase promoter 273 

activity with both BceR and PsdR, which explains the change of specificity that was detected 274 

for construct BP4 including the linker and the SBS but not for construct BP3 with only the 275 

SBS (Fig. 3C). Despite the fact that the MBS is absolutely crucial for RR-promoter 276 

interaction, the MBS of PpsdA alone cannot determine specificity. Instead, it supports the SBS 277 

in strengthening the promoter activity. Not surprisingly, switching all three elements together 278 

(M+L+S) resulted in the highest change of specificity after induction with nisin (Fig. 4E), 279 

demonstrating that all three parts together contribute to the specificity. 280 

In order to support the results obtained above, a similar approach was performed towards 281 

rewiring the specificity from PpsdA to PbceA. A comparable series of chimeric promoters with 282 

different combinations of the MBS, the linker region and the SBS of PpsdA being replaced by 283 

the corresponding regions from PbceA was constructed (Fig. 4B) (Table S2) and the promoter 284 

activities of the corresponding B. subtilis reporter strains (Table S1) were determined. The 285 

results are shown in Fig. 4F-4H. Overall, the combined data is in very good agreement with 286 

the results obtained for rewiring the specificity from PpsdA to PbceA with only minor differences 287 

between the two sets. 288 

Taken together, exchanging the MBS alone had no effect on the specificity of induction of 289 

PbceA and only caused a very minor change in PpsdA behaviour. Instead, the SBS provides the 290 

major discriminator for RR binding. The data is particularly clear for the BceR-PbceA 291 

interaction, where exchange of the SBS alone was able to cause a clear change in specificity, 292 

while the role of the SBS of PpsdA for the PsdR-PpsdA pair is less prominent. Both promoters 293 

have in common that the MBSs strengthen the specificity by increasing the interactions with 294 

the cognate RR, while simultaneously reducing the interactions with the non-cognate RR. In 295 

addition, the linker regions fine tune promoter activity. While specific roles can therefore be 296 

attributed to these three regulatory elements, it should be pointed out that the specificity of 297 
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BceR-like RRs for their target promoters is ultimately determined by the specific combination 298 

of MBS, linker and SBS working together.  299 

 300 

In vitro analysis of BceR binding to PbceA and PpsdA 301 

Next, we wanted to investigate if BceR could also discriminate between its native promoter 302 

PbceA and the non-cognate PpsdA in vitro. BceR carrying an N-terminal His10-tag with the 303 

expected molecular mass of about 27 kDa was produced in and purified from the cytoplasmic 304 

fraction of E. coli C43(DE3) cells containing plasmid pCF120 (Table S2). Electrophoretic 305 

mobility shift assays (EMSAs) were performed with purified BceR and the two promoters 306 

PbceA and PpsdA. 300 bp promoter DNA fragments (300 bp) of PbceA or PpsdA containing the 307 

MBS, the linker region and the SBS were amplified and labeled at the 5’-end with 6FAM by 308 

PCR. 6FAM labeled PsigW (the target promoter of an ECF sigma factor in B. subtilis) was used 309 

as a negative control.  310 

The results of EMSAs with BceR and PbceA are shown in Figure 5A. Increasing concentrations 311 

of BceR phosphorylated by the addition of phosphoramidate (BceR-P; see Experimental 312 

procedure) were incubated with 30 fmol of 6FAM-PbceA (lane 2 to lane 5), demonstrating a 313 

concentration-dependent binding of BceR-P to PbceA. The first shift was observed at 1.0 µM 314 

BceR-P representing the initial binding event of BceR-P to PbceA. An additional shift occurred 315 

at BceR-P concentrations of 1.5 µM or above and presumably represents a second binding 316 

event, consistent with the presence of two BceR binding sites on the DNA fragment. In 317 

contrast, unphosphorylated BceR showed a much weaker binding (data not shown), which 318 

demonstrated that RR-phosphorylation promotes DNA binding by increasing BceR affinity to 319 

PbceA.  320 

EMSAs were also performed between BceR-P and PpsdA (Fig. 5B). Two successive shifts of 321 

PpsdA band in lane 3 and lane 4 compared to free PpsdA DNA fragment (lane 1) demonstrated 322 

that BceR-P can also bind to two sites in the noncognate but highly related PpsdA in vitro. In 323 
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contrast, no shift was observed for the PsigW DNA fragment (Fig. 5E), confirming the overall 324 

specificity of the assay: BceR-P cannot bind to promoter fragments that do not harbor the 325 

binding motifs of a PbceA-like promoter.  326 

To further illustrate the specificity and affinities of BceR-P binding to PbceA and PpsdA, 900 327 

fmol of unlabeled promoter fragments were used as competitor DNA (Fig. 5A/5B lane 6-8). 328 

Co-incubation of BceR-P with 30 fmol 6FAM-PbceA and 900 fmol unlabeled PbceA fragment 329 

(Fig. 5A lane 6) completely abolished the retardation of the labeled PbceA fragment due to the 330 

competitive binding of BceR-P to an excess of unlabeled PbceA. However, the shift of 6FAM-331 

PbceA band was not influenced by adding a 30-fold molar excess of unlabeled PpsdA (Fig. 5A 332 

lane 7) or PsigW (Fig. 5A lane 8). This shows that despite its ability to bind to both PbceA and 333 

PpsdA in isolation, BceR is clearly able to distinguish between the two promoters and 334 

preferentially binds to its cognate target. In contrast, the retardation of the 6FAM-PpsdA DNA 335 

fragment was abolished by either addition of 30-fold excess unlabeled PbceA (Fig. 5B lane 6) 336 

or unlabeled PpsdA (Fig. 5B lane 7) fragments but not by PsigW (Fig. 5B lane 8).  These results 337 

clearly demonstrate that, while BceR-P can interact with seemingly identical activities with 338 

both target promoters in isolation (the shift occurs at comparable BceR-P concentrations), it 339 

preferentially binds to its native promoter, PbceA, compared to PpsdA in vitro when incubated in 340 

competition. Hence, the binding affinity for its cognate target promoter PbceA seems to be 341 

higher than for PpsdA, which determines the in vivo specific transcription initiation. 342 

Unfortunately, any efforts to purify PsdR failed, thereby preventing the performance of 343 

similar in vitro studies on PsdR-PpsdA/PbceA interactions. 344 

 345 

Cooperative binding of BceR to two binding sites on PbceA  346 

The in vivo promoter activity assays demonstrated that both binding sites on PbceA are 347 

indispensable for BceR-PbceA interaction (Fig. 2D). Moreover, the EMSA studies on complete 348 

promoter fragments strongly suggest two binding events at PbceA in vitro (Fig. 5A). To 349 

Page 16 of 50Molecular Microbiology



For Peer Review

 

 

15 

 

discriminate between the individual binding reactions, we next performed EMSAs with BceR-350 

P on 6FAM labeled bceA promoter DNA-fragments carrying randomized versions of either 351 

the MBS or the SBS (Fig. 5D).  352 

Incubation of BceR-P with labeled PbceA SBS
R
 (PbceA containing a native MBS and a 353 

randomized and hence inactive SBS) caused only a single shift at a BceR-P concentration of 354 

1.0 µM (Fig. 5C), a concentration comparable to the threshold concentration for binding to 355 

the intact PbceA fragment (Fig. 5A lane 3). Increasing the BceR-P concentration did not lead to 356 

any additional shift. Hence, PbceA containing only the MBS merely allows one binding event, 357 

which is the binding of BceR-P to the MBS. The identical BceR-P concentrations required for 358 

shifting either the WT or the SBS
R
 fragments indicates that binding of BceR-P to the MBS is 359 

independent of the SBS. 360 

Incubation of BceR-P with labeled PbceA MBS
R
 (PbceA containing a randomized and hence 361 

inactive MBS but an intact SBS) failed to retard the DNA-fragment within the same 362 

concentration range (Fig. 5D). This suggests that either BceR-P has a very low affinity for 363 

binding to the SBS alone or that binding to the SBS depends on and occurs after BceR-P 364 

binding to the MBS. 365 

 366 

Determination of binding kinetics of BceR-promoter interaction unravels the mechanism 367 

that determines BceR promoter specificity 368 

For quantitatively describing the binding kinetics of BceR-promoter interactions, we next 369 

performed SPR spectroscopy in combination with Interaction Map® (IM) analysis. We 370 

captured a biotin-labeled DNA-fragment comprising the PbceA region (see Table S3 for exact 371 

sequence) to a sensor chip coated with immobilized streptavidin. Next, increasing 372 

concentrations of His10-BceR and His10-BceR-P were injected over the chip surface. While 373 

non-phosphorylated BceR did not interact with the PbceA promoter (Fig. 6A), BceR-P showed 374 

clear binding (Fig. 6B). Since BceR has two binding sites on the DNA-fragment used for SPR, 375 
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we performed IM analyses. In order to determine and quantify the individual binding events 376 

represented by the SPR curves. Briefly, the IM algorithm splits the experimental SPR data set 377 

into several theoretical monovalent binding events and selects the binding curves that best fit 378 

the experimental data when summed up. By plotting the association rate ka and the 379 

dissociation rate kd within a two-dimensional distribution, heterogeneous binding data can be 380 

displayed as a map, in which each peak corresponds to one component that contributes to the 381 

cumulative binding curve (Altschuh et al. 2012). The sensorgram could be split into two 382 

binding events, one characterized by a fast ON/fast OFF (ka=1.8 × 10
6
/M*s; kd=1.0x10

-1
/s) 383 

and one characterized by a slow ON/slow OFF binding kinetics (ka=3.2 × 10
5
/M*s; 384 

kd=5.5x10
-4

/s) that differ in their overall affinity (KD=58 nM and KD=1.7 nM, respectively) 385 

(Fig. 6E). Each binding peak makes up an approximate peak weight of 50% revealing that 386 

both DNA-binding sites are bound by equal amounts of BceR-P molecules.  387 

As a next step, we determined the binding kinetics between BceR-P and PbceA when the MBS 388 

or the SBS was randomized (MBS
R
 or SBS

R
, respectively). Inactivation of the MBS 389 

completely prevented DNA-binding of BceR-P (Fig. 6C), while a clear DNA-binding of BceR 390 

could still be observed when only the SBS was randomized (Fig. 6D). In contrast to the 391 

sensorgram including both intact binding sites (Fig. 6B), the IM of the corresponding 392 

sensorgram suggested in principle only the slow ON/slow OFF binding event (ka=1.5 × 10
6
 393 

M*s; kd=4.9 × 10
-4

/s, resulting in an overall binding affinity of KD=0.4 nM (Fig. 6F). 394 

However, the in silico sensorgram is comparable to that one of the slow ON/slow OFF 395 

interaction of BceR-P to intact PbceA site revealing that this reflects binding of BceR-P to the 396 

MBS although the overall affinity is approximately six-fold higher, mainly caused by the five-397 

fold higher ON rate. The peak weight is calculated as 80%, meaning that this interaction 398 

mainly contributes to the measured sensorgram. However, the fast ON/fast OFF peak did not 399 

completely disappear, but compared to the intact promoter site the peak weight is lower than 400 

20% and can therefore be neglected. These data clearly show that the MBS of the PbceA region 401 
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is essential for binding of the RR to the DNA. Moreover, the affinity of the RR is not 402 

sufficient to allow any binding of BceR to the SBS if the MBS was not previously occupied, 403 

at least under the experimental regime applicable for SPR spectroscopy. Comparing the 404 

binding kinetics of BceR-P to the intact and the SBS
R
 promoter, it can be assumed that the 405 

SBS increases the overall affinity of the RR to the promoter region, and therefore is important 406 

for triggering gene expression.  407 

Finally, we wondered if the binding mechanism of BceR-P is also similar to the related PpsdA. 408 

We captured DNA comprising the PpsdA promoter as well as the PpsdA promoter in which the 409 

MBS or SBS were inactivated (MBS
R
 or SBS

R
, respectively) onto the chip. First, we injected 410 

increasing concentrations of non-phosphorylated BceR over the chip and observed, as 411 

expected, no binding to the PpsdA promoter (Fig. 6G). Then, increasing concentrations of 412 

BceR-P were injected. The interaction of Bce-R to PpsdA was almost comparable to the one 413 

observed for the PbceA promoter (Fig. 6H). The IM analysis underlying this sensorgram also 414 

revealed two binding events, one with fast ON/fast OFF (ka=6.2 × 10
5
/M*s; kd=1.2x10

-1
/s) 415 

and one with slow ON/slow OFF binding kinetics (ka=1.1 × 10
5
/M*s; kd=6.2x10

-4
/s) likewise 416 

resulting in two binding events that differ in their overall affinity (KD=188 nM and KD=6.2 417 

nM, respectively). Compared to the affinities of BceR-P to PbceA, the binding affinities for 418 

PpsdA are indeed in a similar range, but both PpsdA binding sites differ in their affinity in the 419 

factor of three to BceR-P (Fig. 6L). In agreement with the data obtained for the PbceA promoter 420 

region, inactivation of the MBS completely prevented BceR-P binding to the PpsdA promoter 421 

region (Fig. 6I). Inactivation of the SBS showed a 1:1 interaction described by one peak in the 422 

IM analysis that corresponds to the slow ON/slow OFF MBS site with an association rate of 423 

ka=1.1 × 10
5
 M*s and a dissociation rate kd=7.3 × 10

-4
/s making an overall binding affinity of 424 

KD=6.7 nM (Fig. 6M), also fitting well to ka, kd, and KD of the BceR-P/PpsdA interaction (Fig. 425 

6L). These data clearly demonstrate that the binding mechanism of BceR-P to the PpsdA 426 
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promoter is comparable to that of BceR-P to the PbceA promoter, however, with slightly altered 427 

binding kinetics and binding affinities differing by a factor of three. 428 

Taken together, the in vitro data obtained for the binding of BceR-P to isolated promoter 429 

fragments by EMSA (Fig. 5A/B) and SPR spectroscopy (Fig. 6B/E and Fig. 6 H/L) are in 430 

good agreement with each other. They indicate a hierarchical cooperative binding of 431 

phosphorylated BceR-like RRs first to the MBS and then to the SBS. While promoter 432 

discrimination could not be explained by EMSAs alone, we could determine slight differences 433 

in the binding affinities by SPR combined with IM analyses that could explain promoter 434 

preference and discrimination of isolated RRs on single promoter fragments and therefore 435 

selected activation of transcription. Moreover, DNA curvature as well as interaction of BceR-436 

P with the RNA polymerase could be further factors that finally lead to total promoter 437 

activation in vivo. 438 

 439 

Discussion 440 

 441 

On PbceA and PpsdA, no typical -35 element was found in the appropriate location upstream of 442 

the -10 element, indicating that the σ unit of the RNA polymerase cannot bind properly to the 443 

promoter by itself to initiate transcription initiation. However, binding can nevertheless be 444 

established under such conditions when the σ unit interacts with an RR that binds to upstream 445 

elements of the promoter, thereby compensating weak σ unit binding (Lee et al., 2012). DNA 446 

binding domain structures of both PhoB and OmpR from the OmpR subfamily showed that 447 

these RRs can directly interact with the σ subunit of the RNA polymerase (Martínez-Hackert 448 

& Stock, 1997, Blanco et al., 2002). BceR and PsdR, which belong to the same subfamily, are 449 

assumed to assist the transcription initiation of RNA polymerase in a similar way.  450 
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Specific transcription initiation by RRs is important for maintaining the insulation of the 451 

corresponding signaling systems. The similarity of Bce-like RRs DNA-binding domain and 452 

their binding sites on target promoters increases the potential of unwanted cross-talk at the 453 

transcription initiation level. However, we could show that Bce-type RRs in B. subtilis are 454 

extremely specific in inducing the transcription of only their cognate ABC transporter operons. 455 

While we observed binding of BceR-P to both the cognate PbceA and the non-cognate PpsdA 456 

with very similar affinities in vitro (Fig. 5A and 5B), BceR can only induce the transcription 457 

of bceAB but not of psdAB in vivo (Fig. 3). Moreover, our EMSA experiments showed that 458 

when incubated with a mixture of both promoter fragments, BceR is able to specifically bind 459 

its cognate target, even if that is present at 30-fold lower concentrations (Fig. 5). Promoter 460 

discrimination between cognate and non-cognate binding sites can therefore be based on even 461 

minor differences in binding affinities of isolated RRs to the otherwise highly similar binding 462 

sites, as demonstrated by the SPR measurements (Fig. 6). This discriminatory ability becomes 463 

especially apparent under conditions of competition between binding partners (as shown by 464 

the EMSA competition experiments, Fig. 5), which is most reminiscent of the intracellular 465 

environment, where both RRs and DNA target sequences are present at the same time. 466 

The slight affinity preference is the ability of the RR to distinguish the cognate from non-467 

cognate promoter in the natural cellular setting. Our data strongly suggest that B. subtilis 468 

evolved a sophisticated mechanism to maintain this ability by combining this existing target 469 

site competition of homologous RRs to their respective binding sites with hierarchical and 470 

cooperative DNA binding (Fig. 7). Instead of the single binding sites reported previously 471 

(Ohki et al., 2003, de Been et al., 2008), we experimentally demonstrated the presence of two 472 

binding sites in the regulatory region of the Bce-type RR target promoters (Fig. 2D and 2E), 473 

as was already suggested by a comparative genomics study on Bce-like TCSs (Dintner et al., 474 

2011). By performing EMSAs and SPR assays of BceR with PbceA mutants carrying random 475 

mutation in either the MBS or the SBS, we demonstrated that BceR has a high affinity and 476 
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shows independent binding to the upstream MBS (Fig. 5C and 6D). BceR has a low affinity 477 

for the downstream SBS and cannot bind to it alone under our experimental conditions (Fig. 478 

5D and 6C). While it is not possible to unequivocally determine the order of BceR binding to 479 

its two target sites from the data presented herein, our results nevertheless strongly suggest 480 

that a BceR dimer first binds to the high-affinity MBS. This first binding event might then 481 

assist the subsequent binding of another dimer to the downstream low-affinity SBS. In this, 482 

binding to the MBS appears to be of low specificity, while the second binding event to the 483 

SBS occurs with high specificity. This is supported by our in vivo promoter activity assays 484 

where we showed that exchanging the SBS between the PbceA and PpsdA fragments resulted in a 485 

much stronger influence on promoter specificity than exchanging the MBS by in vivo 486 

promoter activity assays (Fig. 4). This hierarchical and cooperative binding to the two sites 487 

enables BceR to discriminate between its cognate promoter PbceA and the non-cognate PpsdA, 488 

which is based on: (i) The MBSs of these two promoters differ only in three bases and provide 489 

a high-affinity, low-specificity docking site; (ii) The SBSs of these two promoters harbor five 490 

different bases and represent low-affinity, yet high specificity interaction sites; (iii) Only this 491 

combination of MBS and SBS together with the binding competition described above 492 

ultimately allows BceR-P to discriminate between the cognate promoter PbceA and the non-493 

cognate PpsdA, thereby ultimately ensuring the wiring specificity of highly similar RRs. 494 

It should be pointed out that the specificity of interaction between BceR and the MBS/SBS of 495 

either the cognate or non-cognate site – as expressed by the different binding affinities 496 

determined by SPR measurement in vitro (Fig. 6) – will in vivo of course be influenced by the 497 

relative cellular concentrations of phosphorylated BceR-like RRs. For both PbceA and PpsdA, the 498 

KD values differ by a factor of 30 between the MBS and the SBS, with the first in the range of 499 

2-7 nM while the latter was determined in the 50-150 nM range (Fig. 6).  500 

The strong discriminatory power of the SBS relative to the MBS suggests cellular BceR-P 501 

concentrations in the medium (approx. 10 to 100) nanomolar range. Under such conditions, 502 
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the MBS of both PbceA and PpsdA would be fully bound, while the small differences in binding 503 

affinities to the respective SBS should be sufficient for promoter discrimination at RR 504 

concentrations near the KD values. Unfortunately, no data on the cellular concentrations of 505 

BceR-like RRs is available, and even a comprehensive quantitative analysis aimed at 506 

determining the cellular amounts of all mRNA and protein species of the B. subtilis cell failed 507 

to detect BceR in any of over 200 conditions tested (Buescher et al. 2012) indicative of a very 508 

low basal abundance. The true physiological conditions for promoter-RR interaction therefore 509 

have to remain speculative. 510 

The linker regions of these two promoters showed characteristically distinct GC/AT contents: 511 

PbceA has a high AT content, while PpsdA has a high GC content (Fig. 2A). We showed that 512 

mutating the linker region into a random sequence while maintaining the GC/AT content of 513 

each promoter only slightly affected the promoter activity (Fig. 2D and 2E). However, 514 

exchanging the linker region between these two promoters, which means changing the GC/AT 515 

content, resulted in a more pronounced effect on the promoter activity (Fig. 4). AT-rich 516 

sequences are known to mediate DNA bending (Koo et al., 1986). One possibility is that the 517 

AT-rich linker region on PbceA confers a structural difference compared to PpsdA by bending the 518 

promoter between two binding sites, which might accommodate the binding of two BceR 519 

dimers.  520 

The high specificity of the SBS is presumably determined mainly by its first half-site, for 521 

which PbceA and PpsdA differ in four out of seven bases. In contrast, the second half-sites of the 522 

SBSs only differ in one base. The sequence identity of the second half-site and its location at 523 

the -35 position suggests that it can probably be bound by both BceR and the σ
A
 subunit of the 524 

RNA polymerase. Along those lines, we saw that a PbceA mutant with the SBS replaced by a 525 

second MBS (MBS-linker-MBS) completely lost its promoter activity (data not shown), 526 

further supporting the importance of the second half for transcription initiation, presumably 527 

by σ
A
 subunit binding. Alternatively, the binding of the σ

70
 subunit to the -35 element could 528 
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be replaced by protein-protein interactions between the RNA polymerase
 
and BceR/PsdR. 529 

Such a mechanism was shown in vitro for PhoB and CRP dependent promoter activation. 530 

(Kumar et al., 1994). A recent study demonstrated that in PhoB regulated promoters, σ
70

 531 

forms a number contacts with DNA-bound PhoB, replacing contacts with the -35 element 532 

(Blanco et al., 2011). 533 

Hierarchical and cooperative DNA binding is widespread among the OmpR RR subfamily. 534 

For example, PhoB can bind cooperatively to two binding sites in the pstS promoter with 535 

different individual binding affinities (Blanco et al., 2012). PompF has three OmpR binding 536 

sites with gradually reduced affinity from upstream to downstream, and binding of OmpR to 537 

the first site is important for subsequent binding to the lower-affinity downstream sites 538 

(Harlocker et al., 1995). Likewise, the RR YpdB from E. coli also shows a two-step 539 

cooperative binding mechanism to its target promoter PyhjX (Behr et al., 2016): binding of 540 

YpdB to the upstream site A initiates subsequent binding to the downstream site B followed 541 

by a rapid and successive promoter clearance. Similar to PbceA-binding of BceR, binding of 542 

YpdB to PyhjX was completely abolished if site A was inactivated (Behr et al., 2016). 543 

Interestingly, highly cooperative binding of BceR-P to its target promoter was already 544 

strongly suggested by a recent quantitative study on the regulatory dynamics of the Bce 545 

system (Fritz et al., 2015). This study indicated a high degree of cooperativity within the 546 

signaling pathway, presumably caused by cooperative binding of BceR-P to multiple sites in 547 

the target promoter. This cooperativity was shown to be crucial for the highly dynamic dose-548 

response behavior of bceAB expression in the presence of increasing amounts of bacitracin, 549 

resulting in an accurate produce-to-demand strategy that adjusts cellular BceAB levels to just 550 

the right amount to cope with the current presence of bacitracin (Fritz et al., 2015). These 551 

specific results on BceR cooperativity are in good agreement with a recent theoretical study, 552 

which identified cooperativity as an important mechanism to significantly reduce crosstalk in 553 

gene regulation (Friedlander et al., 2016). 554 
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The evolution of such complex regulatory mechanisms often correlates with the regulatory 555 

function of the RRs: e.g. PhoB and OmpR regulate dozens of operons in E. coli in the 556 

presence of certain stimuli. Some of these operons need to be highly upregulated while others 557 

require only moderate or subtle modulations in response to a given trigger. Controlling such 558 

differential expression levels of multiple target operons by a single RR can be achieved 559 

through assembly of different numbers of binding sites with sequence variations. We have 560 

demonstrated for B. subtilis that a similar mechanism can also be used to maintain signaling 561 

specificity and regulatory insulation between paralogous Bce-like systems that presumably 562 

evolved by gene duplications followed by sequence diversification of both the DNA binding 563 

domain and their target promoter sequence. Combining a high-affinity but low-specificity 564 

MBS and a high-specificity but low-affinity SBS provides B. subtilis with enough sequence 565 

space to ensure that Bce-like RRs can evolve the ability to discriminate cognate from non-566 

cognate promoters, thereby ensuring the signaling fidelity of highly paralogous Bce-like 567 

systems on the transcription level. It will be interesting to see if such a combination of 568 

competitive and hierarchical cooperative binding can also explain the target site 569 

discrimination for other paralogous pairs of two-component systems.  570 

 571 

Experimental procedures 572 

 573 

Bacterial strains and growth conditions. All strains used in this study are listed in Table S1. 574 

E. coli DH5αand XL1-blue were used for cloning. All B. subtilis strains used in this study 575 

are derivatives of the laboratory WT strain 168. E. coli and B. subtilis were grown routinely in 576 

Luria-Bertani (LB) medium at 37°C with aeration. B. subtilis was transformed by natural 577 

competence as previously described (Harwood & Cutting, 1990). Ampicillin (100 µg ml
-1

) 578 

was used for selection of all plasmids in E. coli. Chloramphenicol (5 µg ml
-1

), spectinomycin 579 

(100 µg ml
-1

) or erythromycin (1 µg ml
-1

) plus lincomycin (25 µg ml
-1

) for macrolide-580 
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lincosamide-streptogramin B (mls) resistance were used for the selection of B. subtilis 581 

mutants. Bacitracin was supplied as the Zn
2+

-salt. Growth was measured as optical density at 582 

600 nm wavelength (OD600). Solid media contained 1.5 % (w/v) agar. 583 

Plasmid construction and genetic techniques. All plasmids constructed in this study are 584 

listed in Table S2. The corresponding primer sequences are provided in the supplemental 585 

material (Table S3). Different promoter fragments derived from PbceA and PpsdA were fused to 586 

lacZ and cloned into the vector pAC6 (Stülke et al., 1997) via the EcoRI/BamHI sites. The 587 

details of all promoter constructs are given in Table S2. For construction of the BceR-588 

production plasmid in E. coli, bceR was amplified with primers TM2007/2008 and cloned into 589 

vector pET16b with XhoI and BamHI obtaining pCF120, resulting in an N-terminal His10-tag 590 

fusion. Constructs for unmarked gene deletion in B. subtilis were cloned into the vector 591 

pMAD (Arnaud et al., 2004). For each operon to be deleted, 800-1000 bp fragments located 592 

immediately before the start codon of the first gene (“up” fragment) and after the stop codon 593 

of the last gene (“down” fragment) were amplified. The primers were designed to create a 17-594 

20 bp overlap between the PCR-products (Table S2), facilitating fusion of the fragments by 595 

PCR overlap extension and subsequent cloning into pMAD. Gene deletions were performed 596 

as previously described (Arnaud et al., 2004). All constructs were checked for by sequencing, 597 

and all B. subtilis strains created were verified by colony PCR using appropriate primers.  598 

 599 

β-Galactosidase assays. Promoter activity assays were performed as described previously 600 

(Mascher et al., 2004). In brief, cells were inoculated from fresh overnight cultures and grown 601 

in LB medium at 37°C with aeration until they reached an OD600 between 0.4 and 0.5. The 602 

cultures were split into 2 mL aliquots and challenged with 30 µg ml
-1

 bacitracin or 2 µg ml
-1

 603 

nisin with one aliquot left untreated (non-induced control). After incubation for an additional 604 

30 min at 37°C with aeration, the cultures were harvested and β-galactosidase activities were 605 

determined as described previously, with normalization to cell density (Miller, 1972). 606 
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 607 

Overproduction and purification of His-tagged BceR. To produce BceR carrying an N-608 

terminal His10-tag, E. coli C43 (DE3) cells harboring plasmid pCF120 were grown at 25 °C 609 

with agitation until they reached an OD600 of about 0.4. IPTG (0.5 mM) was added to the 610 

culture and incubation was continued at 18 °C with agitation overnight. Cells were harvested 611 

by centrifugation at 4,400 × g for 10 min. The cell pellet was washed with buffer A (20 mM 612 

potassium phosphate buffer [pH7.5], 100 mM NaCl) and stored at -20 °C until use.  613 

To purify His10-tagged BceR, cells were resuspended in buffer B (50 mM potassium 614 

phosphate buffer [pH 7.5], 500 mM NaCl, 5 mM β-mercapto-ethanol, 10 mM imidazole and 615 

10 % (w/v) glycerol) supplemented with 0.1 mM phenylmethylsulfonyl fluoride (PMSF) plus 616 

2 mg DNaseI and disrupted by three passages through a French pressure cell (Thermo Fisher) 617 

at 20,000 PSI. Unbroken cells were removed by centrifugation at 17,000 × g for 20 min and 618 

the cell-free supernatant was filtered through a 0.45 µm syringe filter before loading onto a 1 619 

ml Ni
2+

-NTA resin column (Qiagen) pre-equilibrated with 5 column volumes (CVs) of buffer 620 

B. Loading was followed by washing with 5 CVs of buffer B and then with 5 CVs of buffer B 621 

containing 100 mM imidazole. BceR was eluted with buffer B supplemented with 250 mM 622 

imidazole. Fractions containing BceR were pooled and dialyzed in buffer C (50 mM Tris-HCl 623 

[pH 7.5], 150 mM NaCl, 10 mM MgSO4, 5 mM β-mercapto-ethanol, 5 mM imidazole and 10 % 624 

(w/v) glycerol) at room temperature for 1 h. Protein concentration was determined with Roti
®

-625 

Nanoquant (Carl Roth), and the proteins stored at 4 °C until use. 626 

 627 

Electrophoretic Mobility Shift Assays (EMSA). For electrophoretic mobility shift assays, 628 

different DNA fragments (around 300bp) generated by PCR using primers TM3146 (5’ 629 

terminal 6FAM labeled) and TM3137 were purified by gel extraction. Unlabeled DNA 630 

fragments were generated by PCR using primers TM3136/3137 and purified by gel extraction. 631 

N-terminal His10-BceR samples in the non-phosphorylated state and after phosphorylation 632 

with 50 mM phosphoramidate at room temperature for 2 h were centrifuged at 16,060 × g and 633 
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4 °C for 10 min to remove the aggregated protein. Protein concentrations of the supernatants 634 

were determined as above and the proteins were stored on ice. Binding reactions were set by 635 

incubating 6FAM-labelled DNA-fragments with different concentrations of His10-BceR at 636 

room temperature for 20 min. The reaction mixture included 30 fmol labeled target DNA and 637 

0, 0.5, 1.0, 1.5, 2.0 µM protein with binding buffer (20 mM Tris-HCl [pH 7.5], 50 mM KCl, 638 

10 mM MgSO4, 1 mM DTT, 5 µg ml
-1

 salmon sperm DNA and 4 % (w/v) glycerol) in a total 639 

volume of 5.5 µl. Unlabeled competitor DNA was added to the system to a final concentration 640 

of 900 fmol. Samples were loaded on a 6% native polyacrylamide gel and electrophoresis was 641 

performed by 300 V for 15 min in 1× TBE buffer. 6FAM fluorescence of labeled DNA bands 642 

was detected by PhosphorImager (Typhoon Trio™, GE Healthcare). 643 

 644 

Surface Plasmon Resonance (SPR) spectroscopy. SPR assays were performed in a Biacore 645 

T200 using carboxymethyl dextran sensor chips pre-coated with streptavidin (Xantec 646 

SAD500-L, XanTec Bioanalytics GmbH, Düsseldorf, Germany). All experiments were 647 

carried out at a constant temperature of 25°C and using HBS-EP+ buffer [10 mM HEPES pH 648 

7.4; 150 mM NaCl; 3 mM EDTA; 0.05 % (v/v) detergent P20] as running buffer. Before 649 

immobilizing the DNA fragments, the chips were equilibrated by three injections using 1 M 650 

NaCl/50 mM NaOH at a flow rate of 10 µl min
-1

. Then, 10 nM of the respective double-651 

stranded biotinylated DNA fragment was injected using a contact time of 420 sec and a flow 652 

rate of 10 µl min
-1

. As a final wash step, 1 M NaCl/50 mM NaOH/50% (v/v) isopropanol was 653 

injected. Approximately 100-200 RU of each respective DNA fragment were captured onto 654 

the respective flow cell. All interaction kinetics of BceR or BceR-P with the respective DNA 655 

fragment were performed in HBS-EP+ buffer at 25°C at a flow rate of 30 µl min
-1

. The 656 

proteins were diluted in HBS-EP+ buffer and passed over all flow cells in different 657 

concentrations (0.1 nM-10 nM) using a contact time of 180 sec followed by a 300 sec 658 

dissociation time before the next cycle started. After each cycle the surface was regenerated 659 
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by injection of 2.5 M NaCl for 60 sec at 30 µl min
-1

 flow rate followed by a second 660 

regeneration step by injection of 0.5% (w/v) SDS for 60 sec at 30 µl min
-1

. All experiments 661 

were performed at 25°C. Sensorgrams were recorded using the Biacore T200 Control 662 

software 2.0 and analyzed with the Biacore T200 Evaluation software 2.0. The surface of flow 663 

cell 1 was not immobilized with DNA and used to obtain blank sensorgrams for subtraction of 664 

bulk refractive index background. The referenced sensorgrams were normalized to a baseline 665 

of 0. Peaks in the sensorgrams at the beginning and the end of the injection emerged from the 666 

runtime difference between the flow cells of each chip. 667 

Calibration-free concentration analysis (CFCA) was performed using a 5 µM solution of 668 

purified BceR-P (calculated from Lowry-based protein determination), which was stepwise 669 

diluted 1:2, 1:5, 1:10, and 1:20. Each protein dilution was two-time injected, one at 5 µl min
-1

 670 

as well as 100 µl min
-1

 flow rate. On the active flow cell PpsdA-DNA was used for BceR-P-671 

binding. CFCA basically relies on mass transport, which is a diffusion phenomenon that 672 

describes the movement of molecules between the solution and the surface. The CFCA 673 

therefore relies on the measurement of the observed binding rate during sample injection 674 

under partially or complete mass transport limited conditions. Overall, the initial binding rate 675 

(dR/dt) is measured at two different flow rates dependent on the diffusion constant of the 676 

protein. The diffusion coefficient of BceR-P was calculated using the Biacore diffusion 677 

constant calculator and converter webtool (https://www.biacore.com/lifesciences/ 678 

Application_Support/online_support/Diffusion_Coefficient_Calculator/index.html), whereby 679 

a globular shape of the protein was assumed. The diffusion coefficient of BceR-P was 680 

determined as D=1.031x10
-10

 m
2
/s. The initial rates of those dilutions that differed in a factor 681 

of at least 1.5 were considered for the calculation of the „active“ concentration, which was 682 

determined as 5x10
-8

M (1% of the total protein concentration determined by Lowry assay) for 683 

BceR-P. The quite low percentage of “active” protein compared to total protein does not 684 

necessarily mean that most of the protein is inactive due to misfolding and/or aggregation. It 685 
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is rather possible that not the complete amount is phosphorylated and therefore not “active” 686 

and/or that, although thoroughly washed with high salts, a portion of the protein has still DNA 687 

bound after the purification process. However, the „active“ protein concentration was 688 

ultimately used for calculation of the binding kinetic constants. 689 

 690 

Interaction map
®
 (IM) analyses  691 

IM calculations were performed on the Ridgeview Diagnostic Server (Ridgeview Diagnostics, 692 

Uppsala, Sweden). For this purpose, the SPR sensorgrams were exported from the Biacore 693 

T200 Evaluation Software 2.0 as *.txt files and imported into TraceDrawer Software 1.5 694 

(Ridgeview Instruments, Uppsala, Sweden). IM files were generated using the IM tool within 695 

the software, which produces files that were then sent via e-mail to the server 696 

(im@ridgeviewdiagnostics.com), where the IM calculations were performed (Altschuk et al. 697 

2012). The resulting files were then evaluated for spots in the TraceDrawer 1.5 Software, and 698 

the IM spots were quantified. 699 
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 814 

 815 

Tables 816 

Table S1. Bacterial strains used in this study. 817 

Strain Genotype or characteristic(s)
a 

Reference or source  

E. coli strains   

DH5α recA1 endA1 gyrA96 thi-1 hsdR17 (rK
-
 mK

+
) relA1 glnV44 

Φ80’ ∆lacZ ∆M15 ∆(lacZYA-argF)U169 

(Grant et al., 1990) 

XL1-Blue endA1 gyrA96 (nal
R
) thi-1 recA1 relA1 lac supE44 [F’ 

proAB
+
 lacI

q
 ∆(lacZ)M15] hsdR17(rK

-
 mK

+
) 

Stratagene 

 

C43 (DE3) F
–
 ompT gal dcm hsdSB (rB

-
 mB

-
)(DE3) (Miroux & Walker, 1996) 

B. subtilis strains   

W168 Wild type, trpC2 Laboratory stock 

TMB279 W168 amyE::pER603; cm
r
 (Rietkötter et al., 2008) 

TMB299 W168 amyE::pER605; cm
r
 (Rietkötter et al., 2008) 

TMB412 W168 amyE::pCF601; cmr This study 

TMB607 W168 amyE::pJS605; cm
r
 This study 

TMB805 W168 amyE::pAS601; cm
r
 This study 

TMB806 W168 amyE::pAS602; cm
r
 This study 

TMB960 W168 amyE::pAS603; cmr This study 

TMB961 W168 amyE::pAS604; cm
r
 This study 

TMB962 W168 amyE::pAS605; cm
r
 This study 

TMB963 W168 amyE::pAS606; cm
r
 This study 

TMB964 W168 amyE::pAS607; cmr This study 

TMB965 W168 amyE::pAS608; cm
r
 This study 

TMB966 W168 amyE::pAS609; cm
r
 This study 

TMB967 W168 amyE::pAS610; cm
r
 This study 

TMB1047 W168 amyE::pAS613; cmr This study 

TMB1048 W168 amyE::pAS614; cm
r
 This study 

TMB1049 W168 amyE::pAS615; cm
r
 This study 

TMB1050 W168 amyE::pAS616; cm
r
 This study 

TMB1051 W168 amyE::pAS617; cmr This study 

TMB1052 W168 amyE::pAS618; cm
r
 This study 

TMB1053 W168 amyE::pAS619; cm
r
 This study 

TMB1054 W168 amyE::pAS620; cm
r
 This study 

TMB1460 W168 with unmarked deletions of the bceRS loci This study 

TMB1462 W168 with unmarked deletions of the psdRS loci This study 

TMB2244 W168 amyE::pMG600; cm
r
 This study 

TMB2245 W168 amyE::pMG601; cm
r
 This study 

TMB2247 W168 amyE::pMG603; cmr This study 

TMB2248 W168 amyE::pMG604; cm
r
 This study 

TMB2249 W168 amyE::pMG605; cm
r
 This study 

TMB2250 W168 amyE::pMG606; cm
r
 This study 

TMB2252 W168 amyE::pMG608; cmr This study 

TMB2253 W168 amyE::pMG609; cm
r
 This study 

TMB2303 TMB1462 amyE::pER603; cm
r
 This study 

TMB2304 TMB1462 amyE::pCF601; cm
r
 This study 

TMB2307 TMB1460 amyE::pER603; cmr This study 

TMB2308 TMB1460 amyE::pCF601; cm
r
 This study 

TMB2382 TMB1460 amyE::pMG600; cm
r
 This study 

TMB2383 TMB1460 amyE::pMG601; cm
r
 This study 

TMB2385 TMB1460 amyE::pMG603; cmr This study 

TMB2386 TMB1460 amyE::pMG604; cm
r
 This study 

TMB2387 TMB1462 amyE::pMG600; cm
r
 This study 
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TMB2388 TMB1462 amyE::pMG601; cm
r
 This study 

TMB2390 TMB1462 amyE::pMG603; cmr This study 

TMB2391 TMB1462 amyE::pMG604; cm
r
 This study 

TMB2392 TMB1460 amyE::pMG605; cm
r
 This study 

TMB2393 TMB1460 amyE::pMG606; cm
r
 This study 

TMB2395 TMB1460 amyE::pMG608; cmr This study 

TMB2396 TMB1460 amyE::pMG609; cm
r
 This study 

TMB2397 TMB1462 amyE::pMG606; cm
r
 This study 

TMB2399 TMB1462 amyE::pMG608; cm
r
 This study 

TMB2400 TMB1462 amyE::pMG609; cmr This study 

TMB2455 W168 amyE::pMG612; cm
r
 This study 

TMB2456 W168 amyE::pMG613; cm
r
 This study 

TMB2457 W168 amyE::pMG614; cm
r
 This study 

TMB2460 W168 amyE::pMG617; cmr This study 

TMB2461 W168 amyE::pMG618; cm
r
 This study 

TMB2462 W168 amyE::pMG619; cm
r
 This study 

TMB2463 TMB1462 amyE::pMG614; cm
r
 This study 

TMB2464 TMB1460 amyE::pMG614; cmr This study 

TMB2465 TMB1462 amyE::pMG613; cm
r
 This study 

TMB2466 TMB1460 amyE::pMG613; cm
r
 This study 

TMB2467 TMB1462 amyE::pMG619; cm
r
 This study 

TMB2468 TMB1460 amyE::pMG619; cmr This study 

TMB2469 TMB1462 amyE::pMG618; cm
r
 This study 

TMB2470 TMB1460 amyE::pMG618; cm
r
 This study 

TMB2475 TMB1462 amyE::pMG605; cm
r
 This study 

TMB2505 W168 amyE::pCF608; cmr This study 

TMB2506 W168 amyE::pCF609; cm
r
 This study 

TMB2507 W168 amyE::pCF610; cm
r
 This study 

TMB2508 W168 amyE::pCF611; cm
r
 This study 

TMB2509 W168 amyE::pMG621; cmr This study 

TMB2510 TMB1460 amyE::pMG621; cm
r
 This study 

TMB2511 TMB1462 amyE::pMG621; cm
r
 This study 

TMB2512 W168 amyE::pMG622; cm
r
 This study 

TMB2513 TMB1460 amyE::pMG622; cmr This study 

TMB2514 TMB1462 amyE::pMG622; cm
r
 This study 

TMB2515 W168 amyE::pCF612; cm
r
 This study 

TMB2516 TMB1460 amyE::pCF612; cm
r
 This study 

TMB2517 TMB1462 amyE::pCF612; cmr This study 

TMB2518 W168 amyE::pCF613; cm
r
 This study 

TMB2519 TMB1460 amyE::pCF613; cm
r
 This study 

TMB2520 TMB1462 amyE::pCF613; cm
r
 This study 

TMB2536 W168 amyE::pCF614; cmr This study 

TMB2537 TMB1460 amyE::pCF614; cm
r
 This study 

TMB2538 TMB1462 amyE::pCF614; cm
r
 This study 

TMB2539 W168 amyE::pCF615; cm
r
 This study 

TMB2540 TMB1460 amyE::pCF615; cmr This study 

  TMB2541 TMB1462 amyE::pCF615; cm
r
 This study 

  TMB2631 W168 amyE::pCF616 This study 

  TMB2632 TMB1460 amyE::pCF616 This study 

  TMB2633 TMB1462 amyE::pCF616 This study 

  TMB2637 W168 amyE::pCF618 This study 

  TMB2638 TMB1460 amyE::pCF618 This study 

  TMB2639 TMB1462 amyE::pCF618 This study 

TMB2640 W168 amyE::pCF619; cmr This study 

TMB2641 TMB1460 amyE::pCF619; cm
r
 This study 

TMB2642 TMB1462 amyE::pCF619; cm
r
 This study 

TMB2643 W168 amyE::pCF620; cm
r
 This study 

TMB2644 TMB1460 amyE::pCF620; cmr This study 

TMB2645 TMB1462 amyE::pCF620; cm
r
 This study 

a 
Resistant cassettes: cm, chloramphenicol; r, resistant.  818 
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Table S2. Vectors and plasmids used in this study. 819 

Plasimd Genotype or characteristic(s)
 

Primers used for cloning Reference or source  

Vectors    

pAC6 Vector for transcriptional promoter fusions to 

lacZ in B. subtilis, integrates in amyE; cm
r
 

 (Stülke et al., 1997) 

pET16b Vector for IPTG-inducible gene expression; 

carries a N-terminal His10-tag sequence; amp
r
 

 Novagen 

pMAD Vector for construction of unmarked deletions 

in B. subtilis, temperature sensitive replicon; 

mls
r
 

 (Arnaud et al., 2004) 

Plasmids    

pAS601 pAC6 PpsdA (-99 to +30) -lacZ 1591/0600 This study 

pAS602 pAC6 PpsdA (-97 to +30) -lacZ 1592/0600 This study 

pAS603 pAC6 PpsdA (-104 to +30) -lacZ 1688/0600 This study 

pAS604 pAC6 PpsdA (-103 to +30) -lacZ 1687/0600 This study 

pAS605 pAC6 PpsdA (-102 to +30) -lacZ 1686/0600 This study 

pAS606 pAC6 PpsdA (-101 to +30) -lacZ 1685/0600 This study 

pAS607 pAC6 PpsdA (-100 to +30) -lacZ 1684/0600 This study 

pAS608 pAC6 PpsdA (-98 to +30) -lacZ 1683/0600 This study 

pAS609 pAC6 PpsdA (-96 to +30) -lacZ 1682/0600 This study 

pAS610 pAC6 PpsdA (-95 to +30) -lacZ 1681/0600 This study 

pAS613 pAC6 PbceA (-110 to +82) -lacZ 1869/0555 This study 

pAS614 pAC6 PbceA (-109 to +82) -lacZ 1870/0555 This study 

pAS615 pAC6 PbceA (-108 to +82) -lacZ 1871/0555 This study 

pAS616 pAC6 PbceA (-107 to +82) -lacZ 1872/0555 This study 

pAS617 pAC6 PbceA (-106 to +82) -lacZ 1873/0555 This study 

pAS618 pAC6 PbceA (-105 to +82) -lacZ 1874/0555 This study 

pAS619 pAC6 PbceA (-104 to +82) -lacZ 1875/0555 This study 

pAS620 pAC6 PbceA (-103 to +82) -lacZ 1876/0555 This study 

pCF101 pMAD ∆bceRS 2351/2352 2353/2354 This study 

pCF103 pMAD ∆psdRS 2357/2358 2359/2360 This study 

pCF120 pET16b bceR  2007/2008 This study 

pCF601 pAC6 PpsdA (-126 to +30 )-lacZ 0674/0600 This study 

pCF608 pAC6 PbceA (-122 to +82) main binding site 

mutation-lacZ  

2262/3563 3564/0555 This study 

pCF609 pAC6 PbceA (-122 to +82) second binding site 

mutation-lacZ 

0554/3565 3566/0555 This study 

pCF610 pAC6 PpsdA (-126 to +30) main binding site 

mutation-lacZ   

2262/3567 3568/0600 This study 

pCF611 pAC6 PpsdA (-126 to +30) second binding site 

mutation-lacZ 

0674/3569 3570/0600 This study 

pCF612 pAC6 PpsdA (-126 to +30) second binding site 

switched into the corresponding region of 

PbceA -lacZ 

0674/3553 3554/0600 This study 

pCF613 pAC6 PpsdA (-126 to +30) linker and second 

binding site switched into the corresponding 

region of PbceA -lacZ 

0674/3557 3558/0600 This study 

pCF614 pAC6 PbceA (-122 to +82) main binding site, 

linker and second binding site switched into 

the corresponding region of PpsdA -lacZ 

3692/0555 This study 

pCF615 pAC6 PpsdA (-126 to +30) main binding site, 

linker and second binding site switched into 

the corresponding region of PbceA -lacZ 

3693/0600  This study 

pCF616 pAC6 PbceA (-122 to +82) main binding site 

and second binding site switched into the 

corresponding region of PpsdA -lacZ 

3719/0555 This study 
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pCF618 pAC6 PbceA (-122 to +82) main binding site 

and linker switched into the corresponding 

region of PpsdA -lacZ 

3721/0555 This study 

pCF619 pAC6 PpsdA (-126 to +30) main binding site 

and second binding site switched into the 

corresponding region of PbceA -lacZ 

3720/0600  This study 

pCF620 pAC6 PpsdA (-126 to +30) main binding site 

and linker switched into the corresponding 

region of PbceA -lacZ 

3722/0600  This study 

pER603 pAC6 PbceA (-122 to +82) -lacZ 0554/0555 (Rietkötter et al., 

2008) 

pER605 pAC6 PpsdA (-110 to +30 )-lacZ 0599/0600 (Rietkötter et al., 

2008) 

pMG600 pAC6 PbceA (-122 to -46) - PpsdA (-36 to +30) 

(BP1) -lacZ   

1689/3240 3241/0600 This study 

pMG601 pAC6 PbceA (-122 to -56) - PpsdA (-46 to +30) 

(BP2) -lacZ   

1689/3242 3243/0600 This study 

pMG603 pAC6 PbceA (-122 to -76) - PpsdA (-66 to +30) 

(BP3) -lacZ   

1689/3246 3247/0600 This study 

pMG604 pAC6 PbceA (-122 to -88) - PpsdA (-79 to +30) 

(BP4) -lacZ   

1689/3248 3249/0600 This study 

pMG605 pAC6 PpsdA (-126 to -37) - PbceA (-45 to +82) 

(PB1) -lacZ   

0674/3230 3231/0555 This study 

pMG606 pAC6 PpsdA (-126 to -47) - PbceA (-55 to +82) 

(PB2) -lacZ   

0674/3232 3233/0555 This study 

pMG608 pAC6 PpsdA (-126 to -67) - PbceA (-75 to +82) 

(PB3) -lacZ   

0674/3236 3237/0555 This study 

pMG609 pAC6 PpsdA (-126 to -80) - PbceA (-87 to +82) 

(PB4) -lacZ   

0674/3238 3239/0555 This study 

pMG612 pAC6 PbceA (-122 to + 82) linker mutation -

lacZ  

0146/3351 3395/0010  This study 

pMG613 pAC6 PbceA (-122 to + 82) linker switched into 

the corresponding part of PpsdA -lacZ 

0146/3401 3400/0010  This study 

pMG614 pAC6 PbceA (-122 to + 82) main binding site 

switched into the corresponding region of 

PpsdA -lacZ 

0146/3419 3354/0010  This study 

pMG617 pAC6 PpsdA (-126 to + 30) linker mutation -

lacZ   

0146/3353 3352/0600  This study 

pMG618 pAC6 PpsdA (-126 to + 30) linker switched into 

the corresponding region of PbceA -lacZ  

0146/3403 3402/0600  This study 

pMG619 pAC6 PpsdA (-126 to + 30) main binding site 

switched into the corresponding region of 

PbceA -lacZ  

0146/3357 3356/0600  This study 

pMG621 pAC6 PbceA (-122 to + 82) second binding site 

switched into the corresponding region of 

PpsdA -lacZ 

2262/3551 3552/0555 This study 

pMG622 pAC6 PbceA (-122 to + 82) linker and the 

second binding site switched into the 

corresponding region of PpsdA -lacZ 

2262/3555 3556/0555 This study 

pJS605 pAC6 PbceA (-111 to +82) -lacZ  1307/0555 This study 

Amp, ampicillin; cm, chloramphenicol; mls, macrolide-lincosamide-streptogramin B group antibiotics; r, 820 

resistant. 821 

  822 
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Supplemental Table S3. Primers used in this study. 823 

Primer 

name 
Sequence (5'-3')

a
 Use 

TM0010 CTTCGCTATTACGCCAGCTGG lacZ check rev 

TM0146 GTCTGCTTTCTTCATTAGAATCAATCC cat check rev 

TM0554 GATCGAATTCGAACATGTCATAAGCGTGTGACG PbceA (-122) fwd 

TM0555 GATCGGATCCTATCGATGCCCTTCAGCACTTCC PbceA rev 

TM0599 AGTCGAATTCCACCCTCGTGAATGTGACAGC PpsdA (-110) fwd 

TM0600 AGTCGGATCCCGATAGGTTCGTTGTTTGCAACACG PpsdA rev 

TM0674 AGTCGAATTCTCGTGTTTTCAAGTGACACC PpsdA (-126) fwd 

TM1307 GATCGAATTCAAGCGTGTGACGAAAATGTCACAT PbceA (-111) fwd 

TM1591 AGTCGAATTCATGTGACAGCATTGTAAGATTGG PpsdA (-99) fwd 

TM1592 AGTCGAATTCGTGACAGCATTGTAAGATTGG PpsdA (-97) fwd 

TM1681 AGTCGAATTCACGACAGCATTGTAAGATTGG PpsdA (-95) fwd 

TM1682 AGTCGAATTCATGACAGCATTGTAAGATTGG PpsdA (-96) fwd 

TM1683 AGTCGAATTCTGTGACAGCATTGTAAGATTGG PpsdA (-98) fwd 

TM1684 AGTCGAATTCTAATGTGACAGCATTGTAAG PpsdA (-100) fwd 

TM1685 AGTCGAATTCGAATGTGACAGCATTGTAAG PpsdA (-101) fwd 

TM1686 AGTCGAATTCTGAATGTGACAGCATTGTAAG PpsdA (-102) fwd 

TM1687 AGTCGAATTCAGTGAATGTGACAGCATTGTAAG PpsdA (-103) fwd 
TM1688 AGTCGAATTCCGTGAATGTGACAGCATTGTAAG PpsdA (-104) fwd 

TM1689 CCGATGATAAGCTGTCAAAC pAC6 bandshifts 

TM1869 ATGCGAATTCAGCGTGTGACGAAAATG PbceA (-110) fwd 

TM1870 ATGCGAATTCGCGTGTGACGAAAATGTC PbceA (-109) fwd 

TM1871 ATGCGAATTCACGTGTGACGAAAATGTC PbceA (-108) fwd 

TM1872 ATGCGAATTCAAGTGTGACGAAAATGTC PbceA (-107) fwd 

TM1873 ATGCGAATTCAAATGTGACGAAAATGTC PbceA (-106) fwd 

TM1874 ATGCGAATTCGTGACGAAAATGTCAC PbceA (-105) fwd 

TM1875 ATGCGAATTCATGACGAAAATGTCAC PbceA (-104) fwd 

TM1876 ATGCGAATTCAAGACGAAAATGTCAC PbceA (-103) fwd 

TM2007 ATCGCTCGAGTTGTTTAAACTTTTGCTGATTG bceR fwd 
TM2008 ATCGGGATCCTTAATCATAGAACTTGTCCTC bceR rev 

TM2262 GAGCGTAGCGAAAAATCC pAH328 checkfwd 

TM2351 AATTTGGATCCGAGGAAGCAAAAGGAAATC bceRS deletion up fwd 

TM2352 CTTGATTTCATGAAACAGCG bceRS deletion up rev 

TM2353 ctgtttcatgaaatcaag ATATTGATGTTGAGTCGGAG bceRS deletion down fwd 

TM2354 AATTCCATGGTTCAAATTTCGCAGGATGAG bceRS deletion down rev 
TM2357 AATTTGGATCCCTACGATCTAAATGGTTTCC psdRS deletion up fwd 

TM2358 ATTTTTGAAGATGACCGCCC psdRS deletion  up rev 

TM2359 cggtcatcttcaaaaat CACTGTGATGACCATCGTG psdRS deletion down fwd 

TM2360 AATTCCATGGACCGAAACGGCAAACACAC psdRS deletion down rev 

TM3230 GTCAGCATCCTCCCATCGAAC PB1 up rev 

TM3231 cgatgggaggatgctgac TTCCTTTTTATAATGAGATTATCC PB1 down fwd 
TM3232 TCCCATCGAACTTTCTTGCAATTC PB2 up rev 

TM3233 caagaaagttcgatggga AAGCCCGGCATTCCTTTTTATAATG PB2 down fwd 

TM3236 TTCCGCTCCCCAATCTTACAATG PB3 up rev 

TM3237 taagattggggagcggaa TTGTTCGCCGTATCGAAGG PB3 down fwd 

TM3238 ATCTTACAATGCTGTCACATTC PB4 up rev 

TM3239 gtgacagcattgtaagat GCTTTTCTTTTTTGTTCGCCG PB4 down fwd 
TM3240 TGCCGGGCTTTTCCTTCGATAC BP1 up rev 

TM3241 cgaaggaaaagcccggcaTTCCTTTTTATAATAAAGAAAAAGG BP1 down fwd 

TM3242 TTCCTTCGATACGGCGAAC BP2 up rev 

TM3243 ttcgccgtatcgaaggaaGGATGCTGACTTCCTTTTTATAATAAAG BP2 down fwd 

TM3246 AAAAGAAAAGCATGTGACATTTTC BP3 up rev 
TM3247 gtcacatgcttttcttttTTGCAAGAAAGTTCGATGGGAGG BP3 down fwd 

TM3248 ATGTGACATTTTCGTCACACGC BP4 up rev 

TM3249 gtgacgaaaatgtcacatTGGGGAGCGGAATTGCAAGAAAG BP4 down fwd 

TM3351 cgaacaaatttgtataGCATGTGACATTTTCGTC PbceA L-M up rev 

TM3352 cgcacggcaattgcaAGAAAGTTCGATGGGAGG PpsdA L-M down fwd 

TM3353 tgcaattgccgtgcgCAATCTTACAATGCTGTCAC PpsdA L-M up rev 
TM3354 gacagcattgtaagaTGCTTTTCTTTTTTGTTCGCC PbceA M-S down fwd 

TM3356 gacgaaaatgtcacaTTGGGGAGCGGAATTGCAAG PpsdA M-S down fwd 

TM3357 tgtgacattttcgtcACATTCACGAGGGTGTCACTTG PpsdA M-S up rev 

TM3395 tatacaaatttgttcgCCGTATCGAAGGAAAAGC PbceA L-M down fwd 

TM3400 ggcgaacaatccgctcccGCATGTGACATTTTCGTCAC PbceA L-S down fwd 
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TM3401 gggagcggattgttcgccGTATCGAAGG PbceA L-S up rev 

TM3402 cttgcaataaaagaaaaCAATCTTACAATGCTGTCAC PpsdA L-S down fwd 

TM3403 ttttcttttattgcaagAAAGTTCGATGGG PpsdA L-S up rev 

TM3419 tcttacaatgctgtcACACGCTTATGACATGTTCG PbceA M-S up rev 

TM3551 ccatcgaactttcttgCAAAAAAGAAAAGCATGTGACATTTTC PbceA S-S up rev 

TM3552 caagaaagttcgatGGAAAAGCCCGGCATTCC PbceA S-S down fwd 
TM3553 ccttcgatacggcgaaCAATTCCGCTCCCCAATC PpsdA S-S up rev 

TM3554 ttcgccgtatcgaaGGGAGGATGCTGACTTCC PpsdA S-S down fwd 

TM3555 actttcttgcaattccgctccccaATGTGACATTTTCGTCACACG PbceA S+L-S up rev 

TM3556 ggaattgcaagaaagttcgatGGAAAAGCCCGGCATTCC PbceA S+L-S down fwd 

TM3557 tacggcgaacaaaaaagaaaagcATCTTACAATGCTGTCACATTC PpsdA S+L-S up rev 

TM3558 ttttttgttcgccgtatcgaaGGGAGGATGCTGACTTCC PpsdA S+L-S down fwd 
TM3563 gcgttaagtcaccgctaaCGCTTATGACATGTTCGAATTCG PbceA M-M up rev 

TM3564 ttagcggtgacttaacgcTGCTTTTCTTTTTTGTTCGCCG PbceA M-M down fwd 

TM3565 cagctagcagtcagtcagAAAAAGAAAAGCATGTGACATTTTC PbceA S-M up rev 

TM3566 ctgactgactgctagctgAAAAGCCCGGCATTCCTTTT PbceA S-M down fwd 

TM3567 tacttcggtcaccgctaaTTCACGAGGGTGTCACTTG PpsdA M-M up rev 

TM3568 ttagcggtgaccgaagtaTTGGGGAGCGGAATTGCAAG PpsdA M-M down fwd 
TM3569 gtcagtcgtcagtcagtcATTCCGCTCCCCAATCTTAC PpsdA S-M up rev 

TM3570 gactgactgacgactgacGAGGATGCTGACTTCCTTTT PpsdA S-M down fwd 

TM3665 
GTCATAAGCGTGTGACGAAAATGTCACATGCTTTTCTTTTTTGTTC

GCCGTATCGAAGGAAAAGCCCGGCATTCCT 
PbceA WT fwd (for SPR) 

TM3666 
AGGAATGCCGGGCTTTTCCTTCGATACGGCGAACAAAAAAGAAA

AGCATGTGACATTTTCGTCACACGCTTATGAC 
Biotin-PbceA WT rev (for SPR) 

TM3667 
CCCTCGTGAATGTGACAGCATTGTAAGATTGGGGAGCGGAATTG

CAAGAAAGTTCGATGGGAGGATGCTGACTTCCT 
PpsdA WT fwd (for SPR) 

TM3668 
AGGAAGTCAGCATCCTCCCATCGAACTTTCTTGCAATTCCGCTCC

CCAATCTTACAATGCTGTCACATTCACGAGGG 
Biotin-PpsdA WT rev (for SPR) 

TM3669 
GTCATAAGCGTTAGCGGTGACTTAACGCTGCTTTTCTTTTTTGTTC
GCCGTATCGAAGGAAAAGCCCGGCATTCCT 

PbceA M-M fwd (for SPR) 

TM3670 
AGGAATGCCGGGCTTTTCCTTCGATACGGCGAACAAAAAAGAAA

AGCAGCGTTAAGTCACCGCTAACGCTTATGAC 
Biotin-PbceA M-M rev (for SPR) 

TM3671 
CCCTCGTGAATTAGCGGTGACCGAAGTATTGGGGAGCGGAATTG

CAAGAAAGTTCGATGGGAGGATGCTGACTTCCT 
PpsdA M-M fwd (for SPR) 

TM3672 
AGGAAGTCAGCATCCTCCCATCGAACTTTCTTGCAATTCCGCTCC
CCAATACTTCGGTCACCGCTAATTCACGAGGG 

Biotin-PpsdA M-M rev (for SPR) 

TM3673 
GTCATAAGCGTGTGACGAAAATGTCACATGCTTTTCTTTTTCTGA

CTGACTGCTAGCTGAAAAGCCCGGCATTCCT 
PbceA S-M fwd (for SPR) 

TM3674 
AGGAATGCCGGGCTTTTCAGCTAGCAGTCAGTCAGAAAAAGAAA

AGCATGTGACATTTTCGTCACACGCTTATGAC 
Biotin-PbceA S-M rev (for SPR) 

TM3675 
CCCTCGTGAATGTGACAGCATTGTAAGATTGGGGAGCGGAATGA
CTGACTGACGACTGACGAGGATGCTGACTTCCT 

PpsdA S-M fwd (for SPR) 

TM3676 
AGGAAGTCAGCATCCTCGTCAGTCGTCAGTCAGTCATTCCGCTCC

CCAATCTTACAATGCTGTCACATTCACGAGGG 
Biotin-PpsdA S-M rev (for SPR) 

TM3677 
TCACGAATTACCATCTACACCCTGCCAAAAATTTGATAAACTTAT

TTTATAAAAAAATTGAAACCTTTTGAAACGAA 
PsigW WT fwd (for SPR) 

TM3678 
TTCGTTTCAAAAGGTTTCAATTTTTTTATAAAATAAGTTTATCAAA

TTTTTGGCAGGGTGTAGATGGTAATTCGTGA 
Biotin-PsigW WT rev (for SPR) 

TM3692 
GATCGAATTCGAACATGTCATAAGCGTGTGACAGCATTGTAAGA

TTGGGGAGCGGAATTGC 
PbceA M+L+S-S fwd 

TM3693 
AGTCGAATTCTCGTGTTTTCAAGTGACACCCTCGTGAATGTGACG

AAAATGTCACATGCTTTTCTTTTTTGTTCGC 
PpsdA M+L+S-S fwd 

TM3719 
GATCGAATTCGAACATGTCATAAGCGTGTGACAGCATTGTAAGA

TGCTTTTCTTTTTTGCAAG 
PbceA M+S-S fwd 

TM3720 
AGTCGAATTCTCGTGTTTTCAAGTGACACCCTCGTGAATGTGACG

AAAATGTCACATTGGGGAGCGGAATTG 
PpsdA M+S-S fwd 

TM3721 
GATCGAATTCGAACATGTCATAAGCGTGTGACAGCATTGTAAGA

TTG 
PbceA M+L-S fwd 

TM3722 
AGTCGAATTCTCGTGTTTTCAAGTGACACCCTCGTGAATGTGACG

AAAATGTCACATG 
PpsdA M+L-S fwd 

a Restriction sites are underlined; overlaps to other primers for PCR fusions are shown by lower case letters. 824 
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Figure legends 825 

 826 

Figure 1. Model of signal transduction pathways of two Bce-like systems after induction 827 

with corresponding AMPs in Bacillus subtilis. The TCSs Bce and Psd and their inducing 828 

antibiotics as signal inputs are highlighted black and grey, respectively. For reasons of 829 

simplicity, the ABC transporters of both systems are not shown. Solid arrows indicate the 830 

signal transduction pathway within one system, while cross-regulation between BceS and 831 

PsdR is highlighted by the dotted arrow. On each promoter, MBS representing for the main 832 

binding site and SBS representing for the secondary binding of Bce-like RRs are filled with 833 

white on bceA promoter and slashes on psdA promoter. CM, cell membrane. 834 

 835 

Figure 2. Functional analysis of bceA and psdA promoters of B. subtilis. (A) DNA 836 

sequence alignment of the bceA promoter and the psdA promoter. Different motifs are framed 837 

and annotated underneath the DNA sequence. Important positions on each promoter are 838 

marked with arrows according to the start codon of the corresponding regulated gene. Half 839 

binding sites of Bce-like RRs on each promoter are emphasized in bold face. Activities of (B) 840 

truncated constructions of the bceA promoter (from -122: +82 to -103: +82) and (C) truncated 841 

constructions of the psdA promoter (from -126: +30 to -95: +30) according to the start codon 842 

of regulated genes. Activities of (D) PbceA mutants and (E) PpsdA mutants with MBS
R
 (main 843 

binding site random mutation), L
R
 (linker random mutation) and SBS

R
 (secondary binding site 844 

random mutation) are compared with the corresponding WT promoters. All promoter 845 

constructions were fused to lacZ and introduced into amyE locus of B. subtilis 168. Cultures 846 

growing exponentially in LB were challenged with Zn
2+

-bacitracin 30 µg ml
-1

 (black bars) or 847 

nisin 2 µg ml
-1

 (grey bars) for 30 min, comparing with the non-induced condition (white bars). 848 

β-galactosidase activities are expressed in Miller Units (MU) (Miller, 1972) and results are 849 
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shown as the mean plus standard deviation of three biological replicates. A log scale is 850 

applied for reasons of clarity. 851 

 852 

Figure 3. Functional studies of chimeric promoters derived from PbceA (“B”) and PpsdA 853 

(“P”). Schematic of series of chimeric promoters (A) BP1-4, bceA promoter fragments (black) 854 

with gradual substitutions of 3’ region by increased corresponding parts of psdA promoter 855 

(grey) and (B) PB1-4 vice versa are compared with WT PbceA and PpsdA. The MBS and SBS of 856 

PbceA and PpsdA are represented as in Fig.1. Grey dashed lines indicate the fusion points of each 857 

chimera. (C to H) Activities of chimeric promoters compared with WT promoters in different 858 

genetic backgrounds of B. subtilis. Transcriptional lacZ fusions of WT promoters (PbceA and 859 

PpsdA) as well as different sets of chimeras (BP1-4 and PB1-4) were integrated at the amyE 860 

locus of B. subtilis wildtype (WT), ∆psdRS strain (TMB1462) and ∆bceRS strain (TMB1460). 861 

Promoter activities were measured by β-galactosidase assay as described in Fig. 2. (C) BP1-4 862 

in WT, (D) BP1-4 in ∆psdRS strain, (E) BP1-4 ∆bceRS strain, (F) PB1-4 in WT, (G) PB1-4 in 863 

∆bceRS strain and (H) PB1-4 in ∆psdRS strain. For reasons of clarity, the values of promoter 864 

activities induced by bacitracin are represented as % relative to the native PbceA, while the 865 

values of promoter activities induced by nisin are represented as % relative to the native PpsdA 866 

promoters. Both wild type promoters are set to 100% after subtraction of the uninduced 867 

promoter activities. The original data sets corresponding to Fig. 3 are provided in Fig. S1. 868 

Black and grey bars, induction with bacitracin and nisin, respectively.  869 

 870 

Figure 4. Unravelling the roles of different promoter elements in RR-promoter 871 

specificity. (A and B) Schematic of chimeric promoters derived from PbceA and PpsdA, 872 

respectively. Composition of each chimeric promoter is indicated as follows: M, main binding 873 

site; L, linker; S, secondary binding site. MBS and SBS from PbceA and PpsdA are indicated as 874 

in Fig.1. (C to H) Activities of chimeric promoters compared with WT promoters in different 875 
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genetic backgrounds of B. subtilis. Transcriptional lacZ fusions of WT promoters (PbceA and 876 

PpsdA) as well as different sets of chimeras from (A) and (B) were integrated at amyE locus in 877 

B. subtilis WT strain, ∆psdRS strain (TMB1462) and ∆bceRS strain (TMB1460). Promoter 878 

activities were measured by β-galactosidase assay as described for Fig. 2. (C) PbceA-derived 879 

chimeras in WT, (D) PbceA-derived chimeras in ∆psdRS strain, (E) PbceA-derived chimeras in 880 

∆bceRS strain, (F) PpsdA-derived chimeras in WT, (G) PpsdA-derived chimeras in ∆bceRS strain 881 

and (H) PpsdA-derived chimeras in ∆psdRS strain. Black bars and grey bars represent samples 882 

induced with bacitracin and nisin, respectively. Data representation as described for Fig. 3; 883 

original data sets are provided in Fig. S2. 884 

 885 

Figure 5. In vitro binding of BceR-P to PbceA and PpsdA. Increasing concentrations of 886 

phosphorylated 10×His-BceR were incubated with 30 fmol of different 6FAM-labeled 887 

promoter DNA fragments as follows: (A) PbceA from -122 to +82, (B) PpsdA from -126 to +30, 888 

(C) PbceA SBS
R
 (SBS inactivated), (D) PbceA MBS

R
 (MBS inactivated), and (E) PsigW as a 889 

negative control. Schematics of bceA-like promoters and corresponding mutants are shown in 890 

the lower left corner of each gel. The concentrations of phosphorylated BceR are indicated 891 

above the gel by [BceR-P] in µM. 900 fmol of unlabelled competitor (comp.) DNA fragments 892 

containing PbceA, PpsdA and PsigW were added for lanes 6, 7 and 8, respectively, in (A) and (B). 893 

 894 

Figure 6. Surface plasmon resonance spectroscopy of and IM analysis BceR-P binding 895 

within the PbceA and PpsdA promoter region. (A) BceR binding to PbceA, (B) BceR-P binding 896 

to PbceA, (C) BceR-P binding to PbceA MBS
R
 (MBS inactivated), and (D) BceR-P binding to 897 

PbceA SBS
R
 (SBS inactivated), (E) IM and in silico sensorgrams of BceR binding to PbceA,; (F) 898 

IM and in silico sensorgrams of BceR binding to PbceA SBS
R
 (SBS inactivated), (G) BceR 899 

binding to PpsdA, (H) BceR-P binding to PpsdA, (I) BceR-P binding to PpsdA MBS
R
, (K) BceR-P 900 

binding to PpsdA SBS
R
), (L) IM and in silico sensorgrams of BceR binding to PpsdA, and (M) 901 
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IM and in silico sensorgrams of BceR binding to PpsdA SBS
R
 (SBS inactivated). SPR 902 

sensorgrams: 0.2 nM (red line), 0.5 nM (brown line), 1 nM (dark blue line), 2.5 nM (magenta 903 

line), 5 nM (green line), 7.5 nM (lime green line), and 10 nM (blue line), respectively, of each 904 

of purified BceR or BceR-P was passed over the chip. The sensorgrams show each one 905 

representative example of three independently performed experiments. IM analyses: the blue 906 

spots in the IMs represent the fast ON/fast OFF interaction, which corresponds to the SBS, the 907 

green spots the slow ON/slow OFF interaction corresponding to the higher affine MBS. The 908 

respective calculated sensorgrams are shown in the same colors. The calculated overall 909 

affinities (KD), as well as the ON (ka) and OFF (kd) rates, are indicated below the respective in 910 

silico sensorgram. The grey shapes of the IM peaks represent the weighing factors meaning 911 

the darker the grey scale, the stronger the contribution.  912 

 913 

Figure 7. Model of the specific transcriptional activation of PbceA by BceR and RNA 914 

polymerase. Initially, a BceR dimer (black), but not a PsdR dimer (grey) preferentially binds 915 

to the MBS of PbceA. This interaction then facilitates the binding of a second BceR dimer to 916 

the SBS directly upstream of the -10 element of PbceA. This second binding event then 917 

mediates the binding of the σ
A
 subunit of the RNA polymerase holo-enzyme to the promoter 918 

region to ultimately initiate transcription. Presumably, the structure of the DNA is altered by 919 

the linker region between two binding sites (DNA bending). See discussion for details.  920 

 921 

Figure S1. Functional studies of chimeric promoters derived from PbceA (“B”) and PpsdA 922 

(“P”). Schematic of series of chimeric promoters (A) BP1-4, bceA promoter fragments (black) 923 

with gradual substitutions of 3’ region by increased corresponding parts of psdA promoter 924 

(grey) and (B) PB1-4 vice versa are compared with WT PbceA and PpsdA. The MBS and SBS of 925 

PbceA and PpsdA are represented as in Fig.1. Grey dashed lines indicate the fusion points of each 926 

chimera. (C to H) Activities of chimeric promoters compared with WT promoters in different 927 
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genetic backgrounds of B. subtilis. Transcriptional lacZ fusions of WT promoters (PbceA and 928 

PpsdA) as well as different sets of chimeras (BP1-4 and PB1-4) were integrated at the amyE 929 

locus of B. subtilis wildtype (WT), ∆psdRS strain (TMB1462) and ∆bceRS strain (TMB1460). 930 

Promoter activities were measured by β-galactosidase assay as described in Fig. 2. (C) BP1-4 931 

in WT, (D) BP1-4 in ∆psdRS strain, (E) BP1-4 ∆bceRS strain, (F) PB1-4 in WT, (G) PB1-4 in 932 

∆bceRS strain and (H) PB1-4 in ∆psdRS strain. Black and grey bars, induction with bacitracin 933 

and nisin, respectively; white bars, non-induced controls.  934 

 935 

Figure S2. Unravelling the roles of different promoter elements in RR-promoter 936 

specificity. (A and B) Schematic of chimeric promoters derived from PbceA and PpsdA, 937 

respectively. Composition of each chimeric promoter is indicated as follows: M, main binding 938 

site; L, linker; S, secondary binding site. MBS and SBS from PbceA and PpsdA are indicated as 939 

in Fig.1. (C to H) Activities of chimeric promoters compared with WT promoters in different 940 

genetic backgrounds of B. subtilis. Transcriptional lacZ fusions of WT promoters (PbceA and 941 

PpsdA) as well as different sets of chimeras from (A) and (B) were integrated at amyE locus in 942 

B. subtilis WT strain, ∆psdRS strain (TMB1462) and ∆bceRS strain (TMB1460). Promoter 943 

activities were measured by β-galactosidase assay as described for Fig. 2. (C) PbceA-derived 944 

chimeras in WT, (D) PbceA-derived chimeras in ∆psdRS strain, (E) PbceA-derived chimeras in 945 

∆bceRS strain, (F) PpsdA-derived chimeras in WT, (G) PpsdA-derived chimeras in ∆bceRS strain 946 

and (H) PpsdA-derived chimeras in ∆psdRS strain. Black bars and grey bars represent samples 947 

induced with bacitracin and nisin, respectively, while white bars stand for non-induced 948 

controls. 949 
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Figure 1. Model of signal transduction pathways of two Bce-like systems after induction with corresponding 
AMPs in Bacillus subtilis. The TCSs Bce and Psd and their inducing antibiotics as signal inputs are highlighted 
black and grey, respectively. For reasons of simplicity, the ABC transporters of both systems are not shown. 
Solid arrows indicate the signal transduction pathway within one system, while cross-regulation between 

BceS and PsdR is highlighted by the dotted arrow. On each promoter, MBS representing for the main binding 
site and SBS representing for the secondary binding of Bce-like RRs are filled with white on bceA promoter 

and slashes on psdA promoter. CM, cell membrane.  
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Figure 2. Functional analysis of bceA and psdA promoters of B. subtilis. (A) DNA sequence alignment of the 
bceA promoter and the psdA promoter. Different motifs are framed and annotated underneath the DNA 

sequence. Important positions on each promoter are marked with arrows according to the start codon of the 
corresponding regulated gene. Half binding sites of Bce-like RRs on each promoter are emphasized in bold 
face. Activities of (B) truncated constructions of the bceA promoter (from -122: +82 to -103: +82) and (C) 
truncated constructions of the psdA promoter (from -126: +30 to -95: +30) according to the start codon of 

regulated genes. Activities of (D) PbceA mutants and (E) PpsdA mutants with MBSR (main binding site 
random mutation), LR (linker random mutation) and SBSR (secondary binding site random mutation) are 

compared with the corresponding WT promoters. All promoter constructions were fused to lacZ and 
introduced into amyE locus of B. subtilis 168. Cultures growing exponentially in LB were challenged with 

Zn2+-bacitracin 30 µg ml-1 (black bars) or nisin 2 µg ml-1 (grey bars) for 30 min, comparing with the non-
induced condition (white bars). β-galactosidase activities are expressed in Miller Units (MU) (Miller, 1972) 

and results are shown as the mean plus standard deviation of three biological replicates. A log scale is 
applied for reasons of clarity.  
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Figure 3. Functional studies of chimeric promoters derived from PbceA (“B”) and PpsdA (“P”). Schematic of 
series of chimeric promoters (A) BP1-4, bceA promoter fragments (black) with gradual substitutions of 3’ 
region by increased corresponding parts of psdA promoter (grey) and (B) PB1-4 vice versa are compared 

with WT PbceA and PpsdA. The MBS and SBS of PbceA and PpsdA are represented as in Fig.1. Grey dashed 
lines indicate the fusion points of each chimera. (C to H) Activities of chimeric promoters compared with WT 

promoters in different genetic backgrounds of B. subtilis. Transcriptional lacZ fusions of WT promoters 
(PbceA and PpsdA) as well as different sets of chimeras (BP1-4 and PB1-4) were integrated at the amyE 

locus of B. subtilis wildtype (WT), ∆psdRS strain (TMB1462) and ∆bceRS strain (TMB1460). Promoter 

activities were measured by β-galactosidase assay as described in Fig. 2. (C) BP1-4 in WT, (D) BP1-4 in 
∆psdRS strain, (E) BP1-4 ∆bceRS strain, (F) PB1-4 in WT, (G) PB1-4 in ∆bceRS strain and (H) PB1-4 in 

∆psdRS strain. For reasons of clarity, the values of promoter activities induced by bacitracin are represented 
as % relative to the native PbceA, while the values of promoter activities induced by nisin are represented 

as % relative to the native PpsdA promoters. Both wild type promoters are set to 100% after subtraction of 
the uninduced promoter activities. The original data sets corresponding to Fig. 3 are provided in Fig. S1. 

Black and grey bars, induction with bacitracin and nisin, respectively.  
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Figure 4. Unravelling the roles of different promoter elements in RR-promoter specificity. (A and B) 
Schematic of chimeric promoters derived from PbceA and PpsdA, respectively. Composition of each chimeric 

promoter is indicated as follows: M, main binding site; L, linker; S, secondary binding site. MBS and SBS 
from PbceA and PpsdA are indicated as in Fig.1. (C to H) Activities of chimeric promoters compared with WT 

promoters in different genetic backgrounds of B. subtilis. Transcriptional lacZ fusions of WT promoters 
(PbceA and PpsdA) as well as different sets of chimeras from (A) and (B) were integrated at amyE locus in 

B. subtilis WT strain, ∆psdRS strain (TMB1462) and ∆bceRS strain (TMB1460). Promoter activities were 
measured by β-galactosidase assay as described for Fig. 2. (C) PbceA-derived chimeras in WT, (D) PbceA-

derived chimeras in ∆psdRS strain, (E) PbceA-derived chimeras in ∆bceRS strain, (F) PpsdA-derived 
chimeras in WT, (G) PpsdA-derived chimeras in ∆bceRS strain and (H) PpsdA-derived chimeras in ∆psdRS 
strain. Black bars and grey bars represent samples induced with bacitracin and nisin, respectively. Data 

representation as described for Fig. 3; original data sets are provided in Fig. S2.  
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Figure 5. In vitro binding of BceR-P to PbceA and PpsdA. Increasing concentrations of phosphorylated 
10×His-BceR were incubated with 30 fmol of different 6FAM-labeled promoter DNA fragments as follows: (A) 
PbceA from -122 to +82, (B) PpsdA from -126 to +30, (C) PbceA SBSR (SBS inactivated), (D) PbceA MBSR 

(MBS inactivated), and (E) PsigW as a negative control. Schematics of bceA-like promoters and 
corresponding mutants are shown in the lower left corner of each gel. The concentrations of phosphorylated 

BceR are indicated above the gel by [BceR-P] in µM. 900 fmol of unlabelled competitor (comp.) DNA 
fragments containing PbceA, PpsdA and PsigW were added for lanes 6, 7 and 8, respectively, in (A) and (B). 
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Figure 6. Surface plasmon resonance spectroscopy of and IM analysis BceR-P binding within the PbceA and 
PpsdA promoter region. (A) BceR binding to PbceA, (B) BceR-P binding to PbceA, (C) BceR-P binding to 
PbceA MBSR (MBS inactivated), and (D) BceR-P binding to PbceA SBSR (SBS inactivated), (E) IM and in 
silico sensorgrams of BceR binding to PbceA,; (F) IM and in silico sensorgrams of BceR binding to PbceA 
SBSR (SBS inactivated), (G) BceR binding to PpsdA, (H) BceR-P binding to PpsdA, (I) BceR-P binding to 
PpsdA MBSR, (K) BceR-P binding to PpsdA SBSR), (L) IM and in silico sensorgrams of BceR binding to 
PpsdA, and (M) IM and in silico sensorgrams of BceR binding to PpsdA SBSR (SBS inactivated). SPR 

sensorgrams: 0.2 nM (red line), 0.5 nM (brown line), 1 nM (dark blue line), 2.5 nM (magenta line), 5 nM 

(green line), 7.5 nM (lime green line), and 10 nM (blue line), respectively, of each of purified BceR or BceR-P 
was passed over the chip. The sensorgrams show each one representative example of three independently 
performed experiments. IM analyses: the blue spots in the IMs represent the fast ON/fast OFF interaction, 
which corresponds to the SBS, the green spots the slow ON/slow OFF interaction corresponding to the 
higher affine MBS. The respective calculated sensorgrams are shown in the same colors. The calculated 

overall affinities (KD), as well as the ON (ka) and OFF (kd) rates, are indicated below the respective in silico 
sensorgram. The grey shapes of the IM peaks represent the weighing factors meaning the darker the grey 

scale, the stronger the contribution.  
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Figure 7. Model of the specific transcriptional activation of PbceA by BceR and RNA polymerase. Initially, a 
BceR dimer (black), but not a PsdR dimer (grey) preferentially binds to the MBS of PbceA. This interaction 

then facilitates the binding of a second BceR dimer to the SBS directly upstream of the -10 element of 
PbceA. This second binding event then mediates the binding of the σA subunit of the RNA polymerase holo-
enzyme to the promoter region to ultimately initiate transcription. Presumably, the structure of the DNA is 

altered by the linker region between two binding sites (DNA bending). See discussion for details.  
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