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This paper describes for the first time the development of novel photocatalytic coatings specifically for medium-
density fibreboard (MDF) substrates. Anatase nanostructures were manufactured using a sol–gel synthesis route and
subsequently heat-treated to form micro-sized agglomerates. In this study titanium dioxide particles were doped
with cobalt in order to reduce the band gap and promote photocatalysis in the visible wavelength range. These
agglomerates were then bound to MDF using a polyurethane-based binder. The subsequent coatings were tested
under white, green and ultraviolet light using ink intelligent photoactive dyes in a gaseous environment and
methylene blue indicator in an aqueous environment. Manufactured particles were also compared to the
commercially available products P25 and Kronoclean 7000. The physical and chemical properties of the manufactured
particles and substrates were evaluated using electron microscopy, X-ray diffraction and Raman spectroscopy. This
work demonstrates the performance of photocatalytic coatings applied to MDF.
Notation
A absorbance
C concentration of dye
l path length
el molar absorption coefficient

1. Introduction
Increasing awareness of the health risks associated with exterior
atmospheric pollutants and volatile organic compounds (VOCs)
in the indoor environment is stimulating research aimed at
improving air quality. Since Honda and Fujishima1,2 discovered
the photocatalytic properties of titanium dioxide (TiO2) for water
splitting, the application of photocatalytic materials for degrading
VOCs has been identified as a promising approach to improving
air quality, and research in the field has increased exponentially.3

The widespread use of titanium dioxide can be attributed to its
relatively low ratio of cost to photocatalytic activity and non-
toxicity. The band gap of 3·2 eV requires short wavelength
ultraviolet (UV) light to activate the photocatalytic properties of
titanium dioxide.4 However, the intensity of UV only accounts for
a few per cent of the solar spectrum and is even lower within
buildings.5 This greatly reduces the potential of titanium dioxide
to catalyse the oxidation or reduction of harmful compounds
to innocuous products such as water or carbon dioxide. The
photocatalytic activity of a semiconductor can be enhanced by
various methods, including doping with noble metals, transition
metals and non-metallic elements.6 The formation of an additional
electronic state in the bandgap will be induced by the introduction
of a foreign element into the lattice. This will allow multiple
electronic transitions to be initiated by visible light, which
improves the photocatalytic efficiency of titanium dioxide.

Titanium dioxide in the form of nanoparticles is finding increasing
applications for improving indoor and outdoor air quality.7–9 A
wide range of chemicals, such as inorganic pollutants and VOCs,
are emitted by a variety of materials in buildings10–13 such as
furnishings, paints, carpets and air fresheners. The presence of
VOCs and other harmful chemicals is a significant contributing
factor to ‘sick building syndrome’,14 which describes the negative
impact a building’s environment can have on the life and
performance of its inhabitants.

To mitigate against sick building syndrome, the EU-funded
project Eco-innovative, Safe and Energy Efficient Wall Panels and
Materials for a Healthier Indoor Environment is developing a
building panel from eco-compatible materials to improve moisture
and temperature control, acoustic isolation and indoor air quality.
Titanium dioxide-based photocatalytic materials will make an
important contribution to achieving this objective.

This paper describes the synthesis and characterisation of cobalt-
doped and undoped titanium dioxide nanoparticle aggregates
(NPAs). Synthesised through a sol–gel processing method, these
were developed for application to wood substrates. Field emission
scanning electron microscopy (FESEM) and standard scanning
electron microscopy (SEM), Raman spectroscopy and energy-
1
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dispersive X-ray analysis (EDX) techniques were used to
characterise the physical and chemical properties of the cobalt
(Co)-doped and undoped nanoparticles, thereby allowing
comparison with the commercially available nanoparticle products
Degussa P25 and Kronoclean 7000.

To use a photocatalytic material effectively, it is necessary
to immobilise it on the surface of a substrate. This can present
a challenge, as the coating procedure must maintain the
photocatalytic activity of the particles and not lead to any adverse
consequences, such as the degradation of the surface. In this
paper, the authors investigate the performance of a photocatalytic
coating specifically developed for application to a medium-density
fibreboard (MDF) finished with a melamine formaldehyde-
impregnated paper substrate.

MDF is used worldwide for many applications, including building
and furniture constructions. It has a number of advantages when
compared to natural wood which are mainly associated with
its homogeneity and absence of defects such as knots and
irregularities. MDF has properties that can be tuned by varying the
type of resin, the constitution of the fibres and the manufacturing
parameters for the fibreboard.15–17 For certain applications, this
manufacturing flexibility can be a distinct advantage, but the
formaldehyde resins (e.g. melamine urea formaldehyde (MUF))
used to bind the wood fibres are responsible for particularly high
emission of aldehydes18 and other VOCs.
2. Experimental methodology

2.1 Sol–gel synthesis of cobalt-doped and undoped
titanium dioxide NPAs

Manufacture of titanium dioxide through a sol–gel method is
based on the hydrolysis and polymerisation of a metal–organic
precursor to form a colloidal suspension.19,20 In the synthesis,
10 ml of titanium (Ti), tetraisopropoxide (Sigma Aldrich, ≥98%;
MM = 284·22; d = 0·96 g/ml) was mixed with 40 ml of
2-propanol (Sigma Aldrich, ≥99·7%; d = 0·785 g/ml) in a round-
bottomed flask. That flask, which also acted as the reaction vessel,
was positioned above a hotplate/magnetic stirrer (Figure 1) within
a fume cupboard. The reaction vessel was placed inside a flat
crystalliser dish filled with water, thereby ensuring that the flask
was heated evenly at a temperature of 80°C. A separator funnel
mounted above the round-bottomed flask was filled with a
deionised water solution of cobalt (II) chloride (CoCl2) adjusted
to pH of 2 using nitric acid. In the synthesis of undoped titanium
dioxide, acidified deionised water was added to the alcoholic
solution with the titanium precursor. The acid provided the
optimum pH for the hydrolysis reaction. A 7 × 10−4 M solution
concentration of cobalt (II) chloride was used to achieve a dopant
concentration of 1 at.% in the titanium dioxide lattice.

The 2-propanol and the titanium precursor were maintained at a
temperature of 80°C under constant vigorous magnetic stirring for
1 h before the aqueous cobalt chloride solution was allowed to
2
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Figure 1. Sol–gel reaction system. 1, separator funnel containing
250ml of a solution 7 × 10−4 M of cobalt (II) chloride (aq);21 2,
round-bottomed flask containing 2-propanol and the titanium
precursor; 3, crystalliser plate with water for the temperature bath;
4, hotplate/magnetic stirrer
ll rights reserved.
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flow into the reaction vessel at a rate of 2 ml/min. After
continuous stirring for 6 h, a colloidal system with a concentration
of 5 g/l cobalt-doped titanium dioxide was obtained through the
reaction described in the following.

Ti½OCHðCH3Þ2�4 þ 2H2O → TiO2 þ 4ðCH3Þ2CHOHI.

The excess solvent was removed immediately after the completion
of the reaction. The titanium dioxide was initially amorphous and
required annealing to form the anatase crystalline phase that
exhibits higher photocatalytic activity compared to amorphous or
rutile titanium dioxide.21 Annealing was carried out using an Elite
BRF 14/10-2416 CG furnace with the material held in an alumina
crucible with an internal volume of 20 ml. The annealing was
achieved by ramping the temperature at a rate of 200°C/h,
followed by a dwell at 450°C, for 2·5 h before cooling.

2.2 Application procedure for applying photocatalytic
coating onto MDF

Water-based solutions were prepared containing 1% polyurethane
(PU), 25% isopropyl alcohol (IPA) and 0·5% (0·02 g) titanium
dioxide by weight. Rectangles with a surface area of 9 cm2 were cut
from the MDF wood board with a commercial paper decor finish
impregnated with MUF. Approximately 0·25 ml of the selected
solution was brushed onto the surface of the rectangular specimen,
resulting in an estimated coating thickness of about 20 mm. The PU
acted as the bonding agent to adhere the nanoparticles to the
surface following evaporation of the water and IPA.

2.3 Compositional and morphological characterisations
of photocatalytic coatings

X-ray diffraction (XRD) analysis was carried out to evaluate the
percentage of crystalline amounts in the prepared specimens and
microstructural features. Semi-quantitative analysis (quantitative
phase analysis (QPA)) was attained by way of the Rietveld
method on the XRD data. Rietveld refinements were assessed
using the Gsas-EXPGUI software packages.22,23 XRD data were
collected on a Panalytical X’Pert Pro (NL) q/q diffractometer,
using copper (Cu) Ka radiation (45 kV and 40 mA) with a step
size of 0·02°2q and time per step of 200 s over a 20–80°2q range.
The instrumental broadening was measured using the National
Institute of Standards and Technology (NIST) SRM 660b
standard24 (LaB6) – data collected under the same conditions as
those used for the titanium dioxide samples. XRD was also used
to determine microstructural features from the specimens. For this
purpose, XRD data were collected in the same instrument with
identical set-up as that used for QPA. A higher signal-to-noise
ratio was achieved in the range of 20–115°2q, using a step size of
0·1° and a time per step of 500 s. The instrumental contribution
was obtained by parameterising the profile of 14 (hkl) reflections
from the NIST SRM 660b standard (LaB6), according to the
Caglioti et al.25 relationship. The microstructural features of the
specimens were analysed by using the whole powder pattern
modelling method,26 as implemented in the PM2K software
 [ UNIVERSITY OF BATH] on [15/12/16]. Copyright © ICE Publishing, all rig
package. By means of this novel methodology, the size
distribution of individual phases in nanoparticles can be
accurately defined.27 In this work, crystalline domains were
assumed spherical and their diameter is distributed according to a
log-normal curve. Raman spectra were acquired using a Renishaw
System 2000 spectrometer equipped with an inVia Raman
microscope using a helium (He)–neon (Ne) laser as an excitation
source operating at 785 nm and a maximum power of 20 mW. The
samples were analysed by focusing the laser with objective
magnification of ×100 onto the sample surface corresponding to a
laser spot diameter of about 10 mm. The acquisition time of 1 s
was used for each spectrum over the wave number range of
100–1400 cm−1 with a 2 cm−1 resolution. The morphology of the
aggregates and the composition of the cobalt-doped titanium
dioxide and the surface of coated MDF boards was studied using
a Jeol JSM-6480lv SEM with an Oxford Inca energy X-ray
analyser correlated using an acceleration voltage of 20 keV and a
spot size of 60 mm. A higher-magnification study of the particles
was obtained using a Jeol FESEM6301F microscope with an
acceleration voltage of 2 keV and a spot size of 5 mm.

2.4 Determination of photocatalytic activity of NPAs
using methylene blue degradation test

The photocatalytic activity was evaluated at the liquid solid
interface by monitoring the degradation of a methylene blue (MB)
solution, containing the nanoparticles using an adaptation of the
ISO 10678:2010 standard.28 The solution was irradiated with UV
light in the range of 375–385 nm with an average irradiation
intensity of 15·44W/m2, visible green light in the range
525–535 nm with an average irradiation intensity of 12·32W/m2

and light-emitting diode white light with an average irradiation
intensity of 16·74W/m2. All the light sources were situated 15 cm
from the sample, and the intensities were measured using a Deltha
Ohm photoradiometer HD 2102.1. The UV probe had a spectral
range from 315 to 400 nm and an irradiance range from 0·1 mW/m2

to 2000 W/m2. The visible probe had a spectral range from 425 to
750 nm and a range of irradiance from 0·1 mW/m2 to 2000W/m2.
The degradation was monitored quantitatively with a Jenway 6300
spectrophotometer set at 670 nm using deionised water for
calibration in a 1-cm-wide plastic cuvette. The initial absorbance of
the MB solution was between 0·85 and 0·9 units depending on the
sample. This value was recorded at the beginning of each
experiment. To correlate the absorbance to the concentration, the
Lambert–Beer law was applied in the following equation28

A ¼ ellC1.

where A is the absorbance; el is the molar absorption coefficient,
typical for each compound and depending on the wavelength
considered; l is the path length, in this case, it was the width of
the cuvette; and C is the concentration of the dye.

For each sample, approximately 1 ml of a 1M solution of MB
was added to 100 ml of deionised water to obtain the appropriate
3
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initial value of absorbance. Approximately 0·1 g of titanium
dioxide was then added to these solutions. After a short period
when the solution was stirred without irradiation, the first sample
of solution for measurement was extracted using a 10-ml syringe
and a filter unit (Sartorius Stedim, Minisart, 0·10 µm) to remove
solid particles from the solution. After the first measurement, the
light source was turned on to initiate the degradation reaction.
A sample of the solution was taken at 5-min intervals, and
a comparison is made between commercially available and
synthesised particles with different light sources.

2.5 Determination of photocatalytic activity of
coatings on MDF using Ink Intelligent dyes

The photocatalytic activity of the coatings on lime and wood were
evaluated using Ink Intelligent dyes. Ink Intelligent is a spin-off
company from Queen’s University, Belfast, UK. The company
has developed three different inks that provide a rapid and reliable
method of evaluating the photocatalytic activity of a substrate. A
semi-quantitative measure of the activity can be determined by
evaluating the rate of colour change29,30 during irradiation with
UV light (375–385 nm) with an average irradiation value of
5·02W/m2 measured with a Deltha Ohm photoradiometer HD
2102.1 with a UV probe with spectral range from 315 to 400 nm
and range of irradiance from 0·1 mW/m2 to 2000W/m2. Different
inks are available depending on the level of activity involved. In
this study, the Explorer (Resazurin-based dye) was used for
surfaces with medium activity and the Visualiser (Basic Blue
66-based dye) was used on surfaces with higher activity.
Photocatalytic samples were tested alongside standard non-
photocatalytic surfaces and, in all cases, half of the dye-coated-
surface was covered with aluminium foil during irradiation. This
allowed a comparison of colour change between photocatalytic
and non-photocatalytic and irradiated and non-irradiated to
be made.

3. Results and discussion

3.1 Characterisation of nanoparticle agglomerates
XRD patterns of titanium dioxide and cobalt–titanium dioxide
specimens are shown in Figure 2; QPA data are reported in Table 1.

As shown in Table 1, the synthesised specimens contain the three
most abundant titanium dioxide polymorphs. Unmodified titanium
dioxide contains 67·7 wt% anatase, 3·9 wt% rutile and 28·4 wt%
brookite. Cobalt–titanium dioxide is composed of 59·9 wt%
anatase, 3·5 wt% rutile and 36·6 wt% brookite. The strong
presence of brookite has to be ascribed to the acidic conditions
4
ed by [ UNIVERSITY OF BATH] on [15/12/16]. Copyright © ICE Publishing, a
of the synthesis.31 On the other hand, the presence of cobalt
favoured the brookite crystallisation at the expense of anatase.
While the cobalt-doped and undoped titanium dioxide contain
the three polymorphs and no amorphous phase, the commercial
Kronoclean 7000 consists of anatase with a low percentage of
amorphous phase.

The microstructural features of the synthesised specimens are
reported in Table 2. The primary average crystalline domain size
of anatase in the commercial titanium dioxide specimen is 3·3 nm.
The presence of cobalt in the synthesised sample increased this to
6·7 nm, as the anatase in the undoped titanium dioxide is 9·0 nm.
As per rutile and brookite, their average crystalline domain sizes
are, in undoped titanium dioxide, 7·6 and 8·9 nm and, in the
cobalt-doped titanium dioxide, 12·4 and 8·6 nm.

Raman spectra were obtained to determine the crystalline
structure of the samples, comparing the results with the literature.
Figures 3 and 4 show the spectra for commercial and synthesised
titanium dioxide.

In all the samples, the major crystalline structure was anatase, as
indicated from the characteristic bands at 145, 197, 399, 516 and
640 cm−1. In both doped and undoped synthesised samples, two
K7000

Co–TiO2

TiO2
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Figure 2. XRD patterns of synthesised and commercial specimens –
A, R and B are symbols, standing for anatase, rutile and brookite,
respectively
Table 1. Rietveld agreement factors and crystalline phase composition of the prepared specimens
Sample
 Number of variables

Agreement factors
ll rights reserv
Phase composition: wt%
R(F
2): %
 Rwp: %
 c 2
 Anatase
ed.
Rutile
 Brookite
 Amorphous
Kronoclean 7000
 22
 3·56
 4·31
 1·98
 93·5 ± 1·1
 0
 0
 6·5 ± 1·1

Titanium dioxide
 22
 2·33
 4·14
 1·45
 67·7 ± 0·2
 3·9 ± 0·2
 28·4 ± 0·7
 0

Cobalt–titanium dioxide
 22
 2·28
 3·97
 1·32
 59·9 ± 0·2
 3·5 ± 0·2
 36·6 ± 0·7
 0
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additional phases are present where bands at 244 and 330 cm−1

are attributed to residual rutile and where the bands at 250 and
322 cm−1 are assigned to brookite phase in the samples following
annealing.

Raman and XRD data confirm the presence of the three
polymorphs. The morphology at different magnifications was
studied using SEM and FESEM. During the thermal treatment,
sintering is evident between the nanoparticles which led to the
formation of aggregates. Figures 4(a) and 4(b) show a large
aggregate of nanoparticles around 100 mm wide, together with
 [ UNIVERSITY OF BATH] on [15/12/16]. Copyright © ICE Publishing, all rig
smaller aggregates, from 1–30 mm wide. All the aggregates are
formed from individual nanoparticles, as shown in Figures 5(a)
and 5(b). The nanoparticles have an average dimension of 47 nm
(±5 nm); the distances were measured using image-processing
software on post-processing analysis.

Figure 6 shows the morphology of the MDF substrate at the
microscale when coated with cobalt-doped titanium dioxide. As
described previously, the MDF is finished with an MUF-coated
paper to give a white appearance and aesthetically pleasing finish.
This white coating, however, contains a proportion of rutile
Table 2. Mean crystalline domain diameter of Kronoclean 7000, undoped titanium dioxide and cobalt–titanium dioxide
Sample

Mean crystalline domain diameter
Dant: nm
hts reserved.
Drt: nm
 Dbrk: nm
Kronoclean 7000
 3·3 ± 0·1
 0
 0

Titanium dioxide
 9·0 ± 0·9
 7·6 ± 0·4
 8·9 ± 0·4

Cobalt–titanium dioxide
 6·7 ± 0·6
 12·4 ± 2·6
 8·6 ± 0·3
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Figure 3. (a) Raman spectrum of Kronoclean 700032 and (b) Raman spectrum of Degussa P2533
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Figure 4. (a) Raman spectrum of cobalt-doped titanium dioxide annealed at 450°C for 2·5 h and (b) Raman spectrum of undoped
titanium dioxide annealed at 450°C for 2·5 h
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100 µm
(a)

200 µm
(b)

Figure 5. (a) SEM image of cobalt-doped titanium dioxide annealed at 450°C with a magnification of ×400 and (b) SEM image of the
surface of titanium dioxide cobalt-doped aggregate annealed at 450°C with a magnification of ×3500
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Figure 6. (a) SEM image of MDF coated with cobalt-doped titanium dioxide, (b) EDX spectra on MUF resin (containing rutile–titanium
dioxide pigment) and (c) EDX on titanium dioxide aggregate
6
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titanium dioxide which is employed as a pigment. The cobalt-
doped titanium dioxide aggregates of nanoparticles are evident as
particles on the surface. Due to their porous structure and low
conductivity, some surface charging under the electron beam is
 [ UNIVERSITY OF BATH] on [15/12/16]. Copyright © ICE Publishing, all rig
evident, and these are clearly visible. The darker background, the
grey area, is attributed to the paper coating. When analysed using
EDX analysis, the spectrum shown in Figure 7(b) is obtained.
Peaks corresponding to carbon, oxygen and titanium are visible
(a)

200 nm

(b)

200 nm

Figure 7. (a) FESEM image of aggregated cobalt-doped titanium dioxide particles with a magnification of ×120 000 and (b) FESEM image
showing nanostructures of undoped titanium dioxide particles with a magnification of ×100 000
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Figure 8. Degradation of MB solution in the presence of nanoparticles, (a) irradiated with UV light, (b) irradiated with green light and (c)
irradiated with white light
7
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with the titanium signal originating from the rutile pigment. The
analysis of the cobalt-doped titanium dioxide gives a similar
spectrum. Due to the sensitivity of the EDX analysis and the
relatively low cobalt-doping concentration, 1%, peaks corresponding
to cobalt are not evident within the spectrum of a single point, but a
larger area was scanned to obtain the peaks of interest.

3.2 Evaluation of photocatalytic activity using
degradation of MB

The degradation of a solution of MB was carried out to confirm
and measure the photocatalytic activity of the particles considering
the reactions at the liquid–solid interface. Figures 6(a)–6(c) show
the normalised concentration against time in solutions irradiated
with lights of different wavelength.

Degradation under UV light in Figure 8(a) demonstrates the
superior performance of commercially available Degussa P25
compared to Kronoclean 7000 and undoped and cobalt-doped
titanium dioxide. When irradiated with green light (Figure 8(b)),
the performance of the synthesised doped titanium dioxide is
comparable with the P25, and pure titanium dioxide is slightly
less active; furthermore, broadening the irradiation wavelength
with white light enhances this effect. Figure 8(c) shows that the
performance of undoped titanium dioxide is comparable with the
P25, whereas the doped sample showed the best performance
under visible light, confirming that doping with cobalt enhances
the photocatalytic activity in the range examined.
8
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3.3 Photocatalytic activity detection with Ink
Intelligent inks

Ink Intelligent inks were used as a qualitative method to confirm
the photocatalytic activity of the particles once applied onto the
surfaces of wood-based materials. During the irradiation period,
half of the samples were coated to compare the degradation due to
the photocatalytic activity and oxidation reactions.

Figure 9 presents typical results from three different coatings;
the indicator stripes on the left and right are BB66 and Rz,
respectively. The presence of the coating on the surface modified
the wettability of the substrate which is apparent from the non-
uniformed application of the Rz-based ink. The bottom half of the
substrates (below the dashed line) was shielded with a metal plate.
The photocatalytic activity was correlated to the change in colour
from blue to pink and then transparent in the BB66-based ink and
from blue to transparent in the Rz-based ink. The synthesised
cobalt-doped material displays a more intense reaction, with the
inks showing a faster degradation compared to undoped and
commercial particles. In all cases, the degradation begins 5 min
after the initial irradiation.

4. Conclusions
Cobalt-doped titanium dioxide NPAs were successfully
synthesised using a sol–gel process involving the reaction of
titanium tetraisopropoxide at 80°C. Nanoparticles with a mean
diameter of 47 nm (±5 nm) were produced. The experimental
Exposed
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irradiation

Exposed
to

irradiation

Exposed
to

irradiation

T = 0 min

T = 6 min

T = 15 min

Covered

Covered

Covered

BlankKronoclean
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Co-doped TiO2 Pure TiO2

Figure 9. Ink Intelligent photocatalytic test on MDF samples coated with Kronoclean 7000, cobalt-doped titanium dioxide, pure titanium
dioxide and blank irradiated with UV light. BB66-based ink applied on the left side of the MDF samples changes colour from blue to
colourless, and Rz on the right side changes colour from blue to pink
ll rights reserved.
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conditions employed in this study produced the three polymorphs
of titanium dioxide in the nanoparticles. These polymorphs differ
from commercial particles, which are constituted of anatase and a
small proportion of amorphous material, indicated by XRD and
Raman spectra. The presence of cobalt in the lattice promoted the
formation of the brookite polymorph and caused a colouration of
the titanium dioxide powder from white (in the case of pure
titanium dioxide) to a brown–yellow colour.

The degradation of MB by the cobalt-doped titanium dioxide
was observed under UV radiation (375–385 nm), green light
(525–535 nm) and white light (5200K). P25 showed the best
performance under the UV light. When the degradation was studied
using light in the visible range, cobalt-doped titanium dioxide was
more photocatalytically active than commercial, undoped titanium
dioxide. Photosensitive organic inks (Ink Intelligent) were employed
to evaluate the photocatalytic activity of polymer coatings applied
to decor finishes on MDF substrates. Photocatalytic activity
was observed in all the materials incorporating titanium dioxide
nanoparticles. The superior catalytic performance of the cobalt-doped
titanium dioxide compared to the best commercial pure titanium
dioxide Degussa P25 and carbon-doped titanium dioxide Kronoclean
7000 in the range of visible light indicates promise for future
research and further applications in indoor air environments.
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