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Uniqueness of solitary waves in the high-energy
limit of FPU-type chains

Michael Herrmann and Karsten Matthies

Abstract Recent asymptotic results in [HM15] provided detailed information on
the shape of solitary high-energy travelling waves in FPU atomic chains. In this
note we use and extend the methods to understand the linearisation of the travel-
ling wave equation. We show that there are not any other zero eigenvalues than
those created by the translation symmetry and this implies a local uniqueness result.
The key argument in our asymptotic analysis is to replace the linear advance-delay-
differential equation for the eigenfunctions by an approximate ODE.

1 Introduction

We study an aspect of coherent motion within a spatially one-dimensional lattice
with nearest-neighbor interactions in the form of Fermi-Pasta-Ulam or FPU-type
chains given by

ü j(t) = Φ
′(u j+1(t)−u j(t)

)
−Φ

′(u j(t)−u j−1(t)
)
, j ∈ Z. (1)

We are interested in solitary travelling waves, which are solutions of (1), given for
positive wave-speed parameter σ by a distance profile R and a velocity profile V
such that

R′(x) =V (x+1/2)−V (x−1/2) , σ V ′(x) = Φ
′(R(x+1/2)

)
−Φ

′(R(x−1/2)
)

(2)
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is satisfied for all x ∈R. The scalar function Φ is the nonlinear interaction potential
and the position u j(t) of particle j can be obtained by u j(t) =U

(
j−
√

σ t
)
, where

U denotes the primitive of V .
In the literature there exist many results on the existence of different types of

travelling waves – see for instance [FW94, FV99, Pan05, SZ09, IJ05] – but almost
nothing is known about the uniqueness for fixed wave-speed or their dynamical
stability with respect to (1). The only exceptions are the completely integrable Toda
chain (see [Tes01] for an overview) and the KdV limit of near-sonic waves with
small energy which have been studied rigorously in [FP99, FP02, FP04a, FP04b].

Another asymptotic regime is related to high-energy waves in chains with rapidly
increasing or singular potential; we refer to [FM02, Tre04, Her10, Her17] for FPU-
type chains and to [FSD12, TV14, AKJ+15] for similar solutions in other models. In
[HM15] the authors provide a detailed asymptotic analysis for the high-energy limit
for potentials with sufficiently strong singularity and derive explicit leading order
formula for σ as well as the next-to-leading order corrections to the asymptotic
profile functions. In this note we apply similiar techniques to the linearisation of (2)
and sketch how the local uniqueness of solitary high-energy waves can be estab-
lished by an implicit function argument. In the final section 4, we set the results into
the wider context of stable coherent motion for FPU lattices.

2 The high-energy limit for singular potentials

As in [HM15] we restrict our considerations to the example potential

Φ(r) =
1

m(m+1)

(
1

(1− r)m −mr−1
)

with m ∈ R and m > 1 , (3)

which satisfies Φ(0) = Φ ′(0) = 0 and Φ ′′(0) = 1. This potential is convex, well-
defined for r ≤ 1, and singular as r↗ 1. Moreover, it resembles – up to a reflection
in r – the classical Lennart-Jones potential, for which the analysis holds with minor
modifications.

The subsequent analysis concerns a special family of solitary waves that has been
introduced in [HM15]; similar families have been constructed in [FM02, Tre04,
Her10].

Proposition 1 (family of solitary waves and its high-energy limit). There exists a
family of solitary waves

(
(Vδ , Rδ , σδ )

)
0<δ<1 with the following properties:

1. Vδ and Rδ belong to L2(R)∩BC1(R) and are nonnegative and even. They are
also unimodal, i.e. increasing and decreasing for x < 0 and x > 0, respectively.

2. Vδ is normalized by ‖Vδ‖2 = 1−δ and Rδ takes values in [0, 1).

Moreover, the potential energy explodes in the sense of pδ :=
∫
R Φ
(
Rδ (x)

)
dx→ ∞

as δ → 0.



Uniqueness of solitary waves in the high-energy limit of FPU-type chains 3

The asymptotic results from [HM15] can be summarized as follows, where the small
quantities

εδ := 1−Rδ (0) and µδ :=
√

σδ ε
m+2
δ

measure the inverse impact of the singularity and determine the length scale for the
leading order corrections to the asymptotic profile functions, respectively.

Proposition 2 (global approximation in the high-energy limit). The formulas

R̂ε(x) :=


1− ε− ε S̄

(
|x|
µ̂ε

)
for 0≤ |x|< 1

2

ε T̄
(

1−|x|
µ̂ε

)
for 1

2 ≤ |x|<
3
2

0 else

and

V̂ε(x) :=
ε

µ̂ε

W̄

(
1
2 −|x|

µ̂ε

)
for 0≤ |x|< 1

0 else

with
µ̂ε :=

µ ε

1+ ε (κ−1)
σ̂ε := ε

−m−2
µ̂

2
ε

approximate the solitary waves from Proposition 1 in the sense of∥∥Rδ − R̂εδ

∥∥
q +
∥∥Vδ −V̂εδ

∥∥
q + ε

−1
δ

∣∣µδ − µ̂εδ

∣∣+ ε
m
δ

∣∣σδ − σ̂εδ

∣∣= O
(
ε

m
δ

)
= O(δ m)

for any q ∈ [1, ∞]. Here, S̄ solves the ODE initial-value problem

S̄′′(x̄) =
2

m+1
· 1(

1+ S̄(x̄)
)m+1 , S̄(0) = S̄′(0) = 0 (4)

and we have µ := 2√
m(m+1)

and κ :=
∫

∞

0 x̃ S̄′′(x̄)dx̄ as well as W̄ (x̄) := 1
2

(
S̄′(x̄)+µ

)
and T̄ (x̄) := 1

2

(
S̄(x̄)+µ x̄+κ

)
.

In this note we establish a local uniqueness result for the solitary waves from Propo-
sition 1.

Theorem 1. Suppose that δ0 > 0 is sufficiently small, then the solitary waves
(Rδ ,Vδ ) for given σδ are locally unique for 0 < δ < δ0. More precisely, there ex-
ists c0 > 0 such that there are no other non-negative, even, and unimodal solutions
(R,V ) of (2) for fixed σδ with |(R,V )− (Rδ ,Vδ )|L2 ≤ c0.

Furthermore the family R,V depends continuously on the wave parameter σ .

The proof is based on an implicit function argument applied to the nonlinear
travelling wave operator
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Fig. 1 Numerical results for high energy waves with m= 2: The velocity profile Vδ (black, dashed)
approaches as δ → 0 the indicator function V0 while the distance profiles Rδ (gray, solid) converges
to the tent map R0.

F (R,V,σδ ) =

(
∂

∂x R(.)−∇
±
1/2V (.)

∂

∂xV (.)− 1
σδ

∇
±
1/2 (Φ

′(R(.)))

)
, (5)

where the main challenge is to control the kernel of its linearisation.

3 Linearisation

The linearisation of (5) around a travelling wave (Rδ ,Vδ ) with speed σδ reads

Lδ

(
S(.)
W (.)

)
=

(
∂

∂x S(.)−∇
±
1/2W (.)

∂

∂xW (.)− 1
σδ

∇
±
1/2 (Φ

′′(Rδ (.))S(.))

)
(6)

with ∇
±
1/2 being the standard centered-difference operator with spacing 1/2. We

consider Lδ as an operator on the weighted Sobolev space

L2
a := {(S,W ) : R→ R2 : exp(ax)(S(x),W (x)) ∈ L2(R,R2)},

which is for given parameter a > 0 defined on the dense subspace

H1
a := {(S,W ) : R→ R2 : exp(ax)(S(x),W (x)) ∈ H1(R,R2)}.

The first important observation is that the shift symmetry of (5) implies that Lδ

has at least one kernel function.

Lemma 1. Let a > 0 be given, δ > 0 be sufficiently small, and (Rδ ,Vδ ) be a travel-
ling wave. Then (

S1,δ ,W1,δ
)

:=
(

dRδ

dx
,

dVδ

dx

)
(7)

is in the kernel of Lδ and belongs to H1
a∩H1

−a.

Proof. The identity Lδ

(
S1,δ ,W1,δ

)
= 0 is obtained by differentiating (2) with respect

to x. The decay properties follow from ideas in [HR10] as in [HM15, Thm. 10].
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Our main asymptotic result can be formulated as follows and will be proven in
several steps.

Proposition 3. There exists δ0 > 0 such that

kerLδ = span
{(

S1,δ ,W1,δ
)}

holds for all 0 < δ < δ0.

3.1 Prelimenaries

In what follows we denote the wave speed by c =
√

σ .

Lemma 2.

(a) The operator ∇
±
1/2 is invertible on L2

a for a > 0.

(b) The operator Lδ : H1
a→ L2

a is Fredholm for 0 < a < ac, where ac > 0 is uniquely
determined by sinh(ac/2)/(ac/2) = c.

Proof. Part (a) follows by Fourier arguments since ∇
±
1/2 acts on L2

a as a weighted
difference operator. For part (b), the essential spectrum can be calculated explicitly
as in [FP04a, Lem. 4.2]. For any a ∈ R, the essential spectrum of Lδ in L2

a is given
by the following union of two curves:

{λ : λ = P+(ik−a) for some k ∈ R}∪{λ : λ = P−(ik−a) for some k ∈ R},

with P±(µ) = µ±2 1√
σδ

sinh(µ/2). In particular,

max{Reλ : λ ∈ σess(Lδ )}=−a+
2
c

∣∣∣sinh
(a

2

)∣∣∣=:−b∗(c,a)< 0,

so the essential spectrum does not intersect the closed right complex half plane and
hence 0 if and only if c > 1 and 0 < a < ac, where ac > 0 is the solution of the given
transcendental equation and increases with c. As 0 is not in the essential spectrum
Lδ , the operator itself is Fredholm.

3.2 Rescaling

We next transform (6) into a second-order advance-delay-differential equation.
Letting Sδ (x) = exp(−ax)Gδ (x) with Gδ ∈ L2 we express the linearised equation
as (

d
dx
−a
)2

Gδ = ∆1,−a
1

σδ

Qδ Gδ , (8)
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where Qδ (x) = Φ ′′(Rδ (x)) and the transformed discrete Laplacian is given by

∆1,−aF(x) = exp(−a)F(x+1)+ exp(+a)F(x−1)−2F(x) . (9)

Any solution Gδ to (8) gives immediately a corresponding Sδ and then due to the
invertibility of ∇

±
1/2 on L2

a also Wδ to obtain a solution of (6).
The key asymptotic observation for the high-energy limit δ → 0 is that the

advance-delay-differential equation (8) implies an effective ODE for both Gδ and
Sδ in the vicinity of x = 0 (‘tip of the tent’ in Fig.1). We therefore rescale the profile
Gδ according to

x = δ x̃, G̃δ (x̃) = Gδ (δ x̃), Q̃δ (x̃) =
δ 2

σδ

Qδ (δ x̃),
d
dx̃

=
1
δ

d
dx

.

With respect to the new coordinates, (8) becomes(
d
dx̃
−δa

)2

G̃δ = ∆1/δ ,−a
(
Q̃δ G̃δ

)
, (10)

where the operator ∆1/δ ,−a is defined analogously to (9) with spacing δ−1. More-
over, the Green’s function of the differential operator on the left hand side is given
by

H̃δ (x̃) =−x̃exp(δax̃)χ(−∞,0)(x̃) (11)

and the corresponding convolution operator has the following properties.

Lemma 3. There exists a constant C > 0 which depends on the parameter a but not
on δ such that for all F̃ ∈ L2 we have

(i) H̃δ ∗ (∆1/δ ,−aF̃) = (∆1/δ ,−aH̃δ )∗ F̃ ,
(ii) δ 2‖H̃δ ∗ F̃‖2 +δ‖

(
H̃δ ∗ F̃

)′‖2 +‖
(
H̃δ ∗ F̃

)′′‖2 ≤C‖F̃‖2,
(iii) δ 1/2‖

(
H̃δ ∗ F̃

)′‖∞ ≤C‖F̃‖2 and ‖
(
H̃δ ∗ F̃

)′‖∞ ≤C‖F̃‖1.

Proof. Part (i) follows immediately from the Fourier representations of ∆1/δ ,−a and

H̃δ . In particular, the symbol of H̃δ is hδ (k̃) :=
(
ik̃−δa

)−2, so part (ii) is a direct
consequence of Parseval’s inequality. We finally observe that Young’s inequality
yields ∥∥(H̃δ ∗ F̃

)′∥∥
∞
=
∥∥H̃ ′

δ
∗ F̃
∥∥

∞
≤
∥∥H̃ ′

δ

∥∥
q

∥∥F̃
∥∥

p with
1
q
+

1
p
= 1,

and hence part (iii) via ‖H̃ ′
δ
‖2 ≤Cδ−1/2 for p = 2 and ‖H̃ ′

δ
‖∞ ≤C for p = 1.

Our asymptotic analysis strongly relies on the following characterisation of Q̃δ .

Proposition 4 (properties of the coefficient function).

1. We have
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Q̃δ (x̃) = P̃(x̃)+δ
m+2Z̃δ (x̃)

where P̃ is even, decays as x̃−m−2 as x̃→∞, and does not depend on δ , while the
perturbation Z̃δ is uniformly bounded in L∞.

2. The solution space of the ODE

T̃ ′′ =−2P̃T̃ (12)

is spanned by an even function T̃e and an odd function T̃o, which can be normal-
ized by

T̃ ′e (x̃)
x̃→+∞−−−−−→ 1 , T̃o(x̃)

x̃→+∞−−−−−→ 1

and satisfy

sup
x̃∈R

(∣∣T̃ ′e (x̃)x̃− T̃e(x̃)
∣∣+ ∣∣(T̃ ′e (x̃)−1

)
x̃m∣∣+ ∣∣T̃ ′o(x̃)x̃m∣∣)≤C

for some constant C depending on m.

Proof. We refer to [HM15] for the details but mention that the coefficient function P̃
has been constructed from the solution of the nonlinear ODE initial-value problem
(4). In a nutshell, we have P̃ :=Ψ ′′

(
R̃∗
)
, where R̃∗ is the even and asymptotically

affine solution to

R̃′′∗ =−2Ψ
′(R̃∗) , R̃′∗(0) = 0 , R̃∗(0) = 1

with Ψ ′(r)∼ (r)−m−1 for large |r|. In particular, P̃ has the non-generic property that
the odd solution to the linear ODE (12) is asymptotically constant as it is given by
T̃o = cR̃′∗ for some constant c. The remaining assertions on (12) follow from standard
ODE arguments and the estimates for Z̃δ are provided by an asymptotic analysis of
the nonlinear advance-delay-differential equation (2).

Using (11) and Proposition 4 we can finally transform (10) into the fixed point
problem

G̃δ = H̃δ ∗
(

∆1/δ ,−a
(
P̃G̃δ +δ

m+2Z̃δ G̃δ

))
(13)

and are now in the position to characterize the kernel of Lδ by identifying the afore-
mentioned asymptotic ODE.

3.3 Sketch of the proof of Proposition 3

In this section we fix a > 0, consider families
(
G̃δ

)
0<δ<1 ⊂ L2 of solutions to (13),

and show that G̃δ is – up to normalisation factors and small error terms – uniquely
determined.
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Compactness: Bootstrapping shows that G̃δ is smooth, and without loss of gener-
ality we normalise G̃δ by∣∣G̃δ (0)

∣∣+‖P̃G̃δ‖1 +‖P̃G̃δ‖2 = 1. (14)

In view of Lemma 3 – and thanks to (13), ‖Z̃δ‖∞ ≤C, and the uniform Lp-continuity
of the operator ∆1/δ ,−a – we estimate

‖G̃δ‖2 ≤Cδ
−2‖P̃G̃δ‖2 +Cδ

m‖G̃δ‖2

and obtain ‖G̃δ‖2≤Cδ−2 for all sufficiently small δ > 0. Moreover, using Lemma 3
again as well as m > 1 we find

‖G̃′
δ
‖∞ ≤C

(∥∥P̃G̃δ

∥∥
1 +δ

m+3/2‖G̃δ‖2

)
≤C

and

‖G̃′′
δ
‖2 ≤C

(∥∥P̃G̃δ

∥∥
2 +δ

m+2‖G̃δ‖2

)
≤C ,

which in turn give rise to uniform Lipschitz and Hölder estimates for G̃δ and G̃′
δ

,
respectively. By the Arzelà-Ascoli theorem we can therefore extract a (not relabeled)
subsequence such that G̃δ converges in BC1

loc to a limit function G̃0. The bounds for
G̃δ (0) and ‖G̃′

δ
‖∞ ensure

|G̃δ (x̃)| ≤ 1+C|x̃| (15)

and hence
‖P̃G̃δ − P̃G̃0‖1 + ‖P̃G̃δ − P̃G̃0‖2

δ→0−−−−→ 0

by dominated convergence and due to the tightness of P̃. In particular, the limit G̃0
does not vanish as it also satisfies the normalisation condition (14).

Asymptotic ODE: We next study the functions S̃δ with

S̃δ (x̃) := exp(−aδ x̃)G̃δ (x̃) = Sδ (δ x̃) ,

which also converge in BC1
loc to the nontrivial limit S̃0 = G̃0 and satisfy the advance-

delay-differential equation

S̃′′
δ
= ∆1/δ ,0

((
P̃+δ

m+2Z̃δ

)
S̃δ

)
(16)

thanks to (10), where ∆1/δ ,0 abbreviates the discrete Laplacian with spacing 1/δ

and standard weights. Combining (16) with the decay of P̃, the uniform bounds for
Z̃δ , and the affine bound for G̃δ from (15) we obtain
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S̃�(x̃)

���1

x̃

O(1)

+��1

O(1)

Fig. 2 Cartoon of the unique rescaled eigenfunction S̃δ (gray, solid) and its pointwise limit S̃0
(black, dashed) with respect to the scaled phase variable x̃.

∣∣S̃δ (x̃)
∣∣+ ∣∣S̃′

δ
(x̃)
∣∣ x̃→+∞−−−−−→ 0

as well as ∣∣S̃′′
δ
(x̃)
∣∣≤C

exp(−δax̃)
(
x̃+δ−1

)(
x̃−δ−1

)m+2 for x̃≥ 3
2 δ
−1

and hence ∣∣S̃δ

( 3
2 δ
−1)∣∣= O

(
δ

m−1) , ∣∣S̃′
δ

( 3
2 δ
−1)∣∣= O(δ m) (17)

after integration over x̃ ≥ 3
2 δ−1. Using the pointwise estimates and the decay of P̃

we further verify

S̃′′
δ
(x̃) =−2P̃(x̃)S̃δ (x̃)+ Ẽ0,δ (x̃) for x̃ ∈ Ĩδ :=

[
− 1

2 δ
−1,+ 1

2 δ
−1] (18)

as well as

S̃′′
δ

(
x̃+δ

−1)= P̃(x̃)S̃δ (x̃)+ Ẽ+,δ (x̃) for x̃ ∈ Ĩδ , (19)

where the error terms are pointwise of order O(δ m) and satisfy∫
Ĩδ
|x̃|i
(∣∣Ẽ0,δ (x̃)

∣∣+ ∣∣Ẽ+,δ (x̃)
∣∣)dx̃ = O

(
δ

m−i) for i ∈ {0,1} . (20)

In other words, we can replace the nonlocal equation (16) on the interval Ĩδ by an
asymptotic ODE since both the advance and the delay terms on the right hand side
are small, while on the shifted interval Ĩδ + δ−1 the main contribution stems from
the delay term. (On Ĩδ −δ−1, the advance term is the most relevant one.)

Uniqueness of accumulation points: The linear ODE (18) and the error estimates
(20) imply

S̃δ (x̃) = ce,δ T̃e(x̃)+ co,δ T̃o(x̃)+O
(
δ

m−1) for all x̃ ∈ Ĩδ (21)



10 Michael Herrmann and Karsten Matthies

with T̃e and T̃o as in Proposition 4. The constants ce,δ and c0,δ are uniquely deter-
mined by S̃δ (0) and S̃′

δ
(0), and satisfy∣∣ce,δ

∣∣+ ∣∣co,δ
∣∣ δ→0−−−−→ c 6= 0

due to the locally uniform convergence of S̃δ and S̃′
δ

and the nontriviality of the
limit. We further employ the identity

S̃δ (x̃) = S̃δ

( 3
2 δ
−1)+ S̃′

δ

( 3
2 δ
−1)(x̃− 3

2 δ
−1)+

3
2 δ−1∫
x̃

S̃′′
δ
(ỹ)
(
ỹ− x̃

)
dỹ

along with (17) and the asymptotic differential relations (18)+(19) to get

S̃δ

( 1
2 δ
−1)=

3
2 δ−1∫

1
2 δ−1

S̃′′
δ
(ỹ)
(
ỹ− 1

2 δ
−1)dỹ+O

(
δ

m−1)

=

+
1
2 δ−1∫

− 1
2 δ−1

S̃′′
δ

(
ỹ+δ

−1)(ỹ+ 1
2 δ
−1)dỹ+O

(
δ

m−1)

=

+
1
2 δ−1∫

− 1
2 δ−1

(
− 1

2 ce,δ T̃ ′′e (ỹ)− 1
2 co,δ T̃ ′′o (ỹ)

)(
ỹ+ 1

2 δ
−1)dỹ+O

(
δ

m−1)

=−
ce,δ

4δ

+
1
2 δ−1∫

− 1
2 δ−1

T̃ ′′e (ỹ)dỹ−
co,δ

2

+
1
2 δ−1∫

− 1
2 δ−1

T̃ ′′o (ỹ)ỹdỹ+O
(
δ

m−1)
=−

ce,δ

2δ
T̃ ′e
( 1

2 δ
−1)+ co,δ T̃o

( 1
2 δ
−1)+O

(
δ

m−1),
where we also used the parity of T̃e and T̃o as well as

d
dỹ

(
T̃ ′o(ỹ)ỹ− T̃o(ỹ)

)
= T̃ ′′o (ỹ)ỹ, T̃ ′o

( 1
2 δ
−1)= O(δ m).

Equating this with (21) evaluated at x̃ = 1
2 δ−1 we arrive at

ce,δ

2δ

(
T̃ ′e
( 1

2 δ
−1)+2δ T̃e

( 1
2 δ
−1))= O

(
δ

m−1) .
On the other hand, the properties of T̃e – see again Proposition 4 – provide
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T̃ ′e
( 1

2 δ
−1)= 2δ T̃e

( 1
2 δ
−1)+O(δ ), T̃ ′e

( 1
2 δ
−1)= 1+O(δ m)

and we conclude that

ce,δ = O(δ m) , co,δ = co,0 +O(δ m), (22)

where co,0 6= 0 is uniquely determined by the normalisation condition (14).

Conclusion: In (21) and (22) have shown that S̃δ can be approximated with high
accuracy by a certain multiple of the odd solution to the linear ODE (12), see Figure
2 for an illustration, and Lemma 2 implies the corresponding asymptotic uniqueness
for W̃δ . In particular, this result applies to the rescaled kernel functions

(
S̃1,δ , W̃1,δ

)
from (7) as well as to the rescaling of any other solution to Lδ (Sδ ,Wδ ) = 0. If
Proposition 3 was false, we would find another solution

(
S̃δ , W̃δ

)
in the orthogonal

L2
a-complement of

(
S̃1,δ , W̃1,δ

)
and hence a contradiction.

3.4 Local uniqueness and differentiability of travelling waves

We finally sketch the proof of Theorem 1. We look for solutions of the nonlinear
travelling wave equation (5) in L2

a and thanks to Lemma 2 we can recover V for
given R. So it suffices to seek solutions to the second order nonlinear equation

F2(R,σδ ) =
∂ 2

(∂x)2 R(.)− 1
σδ

∆1Φ
′(R(.))= 0. (23)

We note that F2(.,σδ ) : H2
a→ L2

a maps even to even and odd to odd functions and
aim to apply the implicit function theorem to (23). The solutions given in Propo-
sition 1 provide a point with F2(Rδ ,σδ ) = 0 and the kernel of Lδ is spanned by
a single odd profile, see Proposition 3. By Lemma 2 b), 0 is not in the essential
spectrum and this implies that the second order version of Lδ as corresponding to
(8) is invertible on the space of even functions. Hence D1F2(R,σδ ) is invertible on
even functions if 0 < δ < δ0. Consequently, the uniqueness part of Theorem 1 is a
consequence of the implicit function theorem. Furthermore, R depends smoothly on
the wave speed parameter σ as long as δ is small enough such that σ will be large.
This completes the proof of Theorem 1.

4 Discussion

The control of the kernel of Lδ is an important step to study the dynamical stability
of the waves given in Proposition 1. Following [FP04a] it is enough to study eigen-
functions to eigenvalues with non-negative real part of the linearisation of (1) around
the travelling waves. The current analysis helps with this as one needs to show that
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neutral modes are just those 2×2 Jordan blocks that are created due to the symmetry
of the system. The symmetry solutions are

(
S1,δ ,W1,δ

)
from (7) and

(
S2,δ ,W2,δ

)
:=
(

dRδ

dδ
,

dVδ

dδ

)
and satisfy the Jordan relations

Lδ

(
S1,δ ,W1,δ

)
= 0, Lδ

(
S2,δ ,W2,δ

)
=−

d
√

σδ

dδ

(
S1,δ ,W1,δ

)
.

This programme will be carried out in a forth-coming paper for the high-energy
limit using a similar combination of techniques of detailed asymptotic analysis and
the structure of the underlying equations. Most of the analysis will hold for other
potentials than (3) as long as one can guarantee certain non-degeneracy conditions
for the energy of a solitary wave. In particular, one needs to show that

dH(Rδ ,Vδ )

dδ
6= 0 and

dσδ

dδ
6= 0

holds in the high-energy limit, where H can be computed using the FPU energy.
Unimodal solitary travelling waves exist following [FW94] for all supersonic

wave speeds. They are locally unique and dynamically stable in KdV regime close
to the sound speed by [FP99, FP02, FP04a, FP04b]. For the high-energy, i.e. high
velocity limit, we have established local uniqueness in this note, whereas results
on dynamical stability are forthcoming. We conjecture that for most potentials the
whole family of unimodal solitary travelling waves are indeed unique and stable,
but new methods need to be developed to understand the linearisation of (1) around
the travelling waves for moderate speeds.
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