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A method for the fast evaluation of time-dependent acoustic fields from complex sources is pre-

sented. The technique is based on a fast integration method for the boundary integral arising in a

Kirchhoff formulation and requires a small, and roughly constant, computation time to compute a

transient signal, at the expense of a pre-processing stage. In the calculations in this paper, based on

test cases for a single rotor, a counter-rotating open rotor, and a broadband volume source, it is

found that transient field calculations require an order of magnitude less computational time for the

field from an array of 16 384 sources, a computational advantage that increases with source number.
VC 2016 Acoustical Society of America. [http://dx.doi.org/10.1121/1.4968018]

[NAG] Pages: 3963–3970

I. INTRODUCTION

The “solution” of many acoustic problems is the field

radiated by a source. Given the source, the field can always

be computed, but may require more computation time than

is practical so that simple knowledge of the source is not suf-

ficient for useful determination of the field. There are meth-

ods that replace a source with a simpler equivalent source

that can be used to compute the field more quickly, thus

making the computation feasible in some reasonable time.

For single frequency fields, a multipole expansion is the clas-

sical approach and can be derived for the field generated by

sources of arbitrary shape,1 based on the work of

Oestreicher.2 Similar methods exist in more specialized con-

texts, such as a recently developed technique for the far-field

noise of a propeller, using data from a small number of near-

field points to generate an equivalent expansion,3 or the

approach developed for quadrupole terms arising from flow

noise.4

When a transient signal is required, however, methods

for equivalent expansions or replacement sources are less

common. There is a requirement for such methods, in partic-

ular, in aeroacoustics, where signals are often broadband and

sources, for example, those generated by computational fluid

dynamics (CFD) calculations, may have millions of points,

for example, in jet noise problems. The signal must typically

be computed over a large domain, orders of magnitude larger

than the source region, and at a sub-wavelength scale in

order to avoid spatial aliasing and to properly resolve phe-

nomena in the radiated field. For example, in a study of an

accelerated computation method,5,6 the authors estimated

that standard evaluation would require 6.5 days CPU time to

compute a 755 time point signal at 2.3� 104 field points

using a source with 1.6� 106 source points generated by a

mixing layer calculation. Clearly, in any realistic problem,

acceleration methods are required in order to make detailed

transient field calculations feasible.

Recently, one of us7 has developed a method based on

time-domain spherical harmonics which uses a relatively

small number of near-field evaluations to generate a multi-

pole expansion which can be used to compute the radiated

field outside some surface enclosing the source. The method

is quite general and requires only pressure evaluations on a

set of spherical surfaces around the source. In this paper, we

present a method which requires as input the field on only

one surface, but at the expense of requiring the time deriva-

tive and gradient of pressure as well as the pressure proper.

The technique is based on a Kirchhoff method for the radia-

tion problem and can also be used on other boundary-

integral formulations. The required input is some means of

computing the pressure, pressure derivative, and pressure

gradient at required points on a spherical surface, and the

output is the transient signal at points on some radial vector

from the center of the sphere.

II. ANALYSIS

The method which we present is based on a boundary

integral formulation for the radiated field outside some sur-

face on which any necessary quantities can be evaluated. We

employ a Kirchhoff formulation, but the approach is identi-

cal for any other boundary integral equation for the field.8

The Kirchhoff integral for acoustic pressure p outside a

closed surface S is1

4pp x;tð Þ¼
ð

S

r̂ �n̂1

_p1 x1;sð Þ
Rc

þ
p1 x1;sð Þ

R2

� �
�1

R

@p1

@n1

" #
dS x1ð Þ;

r¼x�x1; R¼jrj; r̂¼r=R; s¼ t�R=c; (1)

where n̂1 is the outward pointing unit normal on the surface,

@p1=@n1 ¼ n̂1:rp1, and subscript 1 denotes a variable of

integration. Observer and source positions are x and x1,a)Electronic mail: m.j.carley@bath.ac.uk
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respectively, with corresponding reception and retarded

times t and s. Speed of sound is c and a dot denotes time

differentiation.

In spherical polar coordinates ðq; h;/Þ with S a spherical

surface of radius a centered on the origin, Eq. (1) becomes

4pp x;tð Þ¼a2

ðp

0

ð2p

0

r̂:n̂1

_p1 x1;sð Þ
Rc

þ
p1 x1;sð Þ

R2

� �
�1

R

@p1

@n1

" #

�d/1sinh1dh1;

n̂1¼ sinh1cos/1;sinh1sin/1;cosh1ð Þ;x1¼an̂1;

x¼q sinhcos/;sinhsin/;coshð Þ: (2)

Given the required quantities on the sphere, the radiated field

can be computed at any point via the surface integral. In this

form, however, the computational effort is constant and large

for evaluation of the field at any point x. We propose a tech-

nique which, at the expense of some pre-processing, acceler-

ates the calculation on rays of constant ðh;/Þ, by exploiting

a coordinate transformation and some standard interpolation

techniques. Subsequent sections detail these techniques and

how they are combined to yield an accelerated field compu-

tation method.

A. Spectral interpolation on the sphere

Our approach is based on source distributions on the

spherical surface at discrete time steps. We have some free-

dom in our choice of interpolation method, so we choose a

spectral method based on an expansion in spherical

harmonics,9

f ðh;/Þ ¼
X1
n¼0

Xn

m¼0

�P
m
n ðcos hÞ½an;m cosðm/Þ

þ bn;m sinðm/Þ�; (3)

where �P
m
n ðhÞ is the normalized associated Legendre

function,

�P
m
n hð Þ ¼ 2nþ 1

2

n� mð Þ!
nþ mð Þ!

� �1=2

Pm
n cos hð Þ: (4)

Discretizing the surface into a suitable set of nodes for cuba-

ture in h and /, using Gauss-Legendre and trapezoidal rules,

respectively, the coefficients in the expansion of Eq. (3) are

given by

an;m¼
2

N/

XNh�1

i¼0

XN/�1

j¼0

�P
m
n coshið Þcos m/j

� �
wh

i f hi;/j

� �
; (5a)

bn;m ¼
2

N/

XNh�1

i¼0

XN/�1

j¼0

�P
m
n cos hið Þsin m/j

� �
wh

i f hi;/j

� �
;

where /j ¼
2pj

N/
; (5b)

where the azimuthal integration is carried out using an N/

point trapezoidal rule and cos hi and wh
i are the nodes and

weights of an Nh-point Gauss�Legendre quadrature rule.

Coefficients with m¼ 0 must be multiplied by 1/2.

This integration is implemented as a matrix multiplica-

tion of the vector f of source terms at the nodes. If a is the

vector of coefficients an,m, bn,m, then

a ¼ Af; (6)

and the entries of the A are given by Eq. (5).

To evaluate the function at some point on the sphere, we

construct a vector of spherical harmonics,

pðh;/Þ ¼ ½� � � cosðm/Þ �Pm
n ðcoshÞ sinðm/Þ �Pm

n ðcoshÞ � � ��;
(7)

and the interpolated value at ðh;/Þ is given by

f ðh;/Þ � ½pðh;/ÞA�f; (8)

where the term in parentheses can be implemented as a sin-

gle vector of length Np ¼ NhN/ and the interpolation reduces

to an inner product with the function values f. Only one

Np�Np matrix A is required and is common to all spheres

discretized with the same Nh and N/, independent of radius

a, so it can be pre-computed and re-used as necessary.

B. Integration on the sphere

To evaluate the acoustic integrals over the spherical sur-

face, we take advantage of the separable coordinate system

and evaluate quantities in stages so that as much as possible

of the work is reusable. We begin by adopting a new coordi-

nate system on the spherical surface, (w, c), Fig. 1. This

rotates the original system to be oriented about the radial

vector from the sphere center to the field point and yields an

integration method which gives the transient signal at all

points on that radius vector for very little additional effort.

From Fig. 1, it is clear that points at a given value of w on

the surface are circles at constant distance R from points on

the radial vector. This is equivalent to grouping points on the

sphere with the same retarded time relative to the field point.

Equation (2) can be rewritten in the new coordinate sys-

tem, yielding

4pp x; tð Þ ¼ a2

ðp

0

"
r̂:n̂1

Rc

ð2p

0

_p1 w; c; sð Þ dc

þ r̂:n̂1

R2

ð2p

0

p1 w; c; sð Þ dc

� 1

R

ð2p

0

@p1

@n1

dc

#
sin w dw;

R wð Þ ¼ q2 � 2aq cos wþ a2
� �1=2

; (9)

noting that R, r̂, and s are functions of w only.

The integration over the sphere is implemented as a

matrix multiplication on the surface, which requires interpo-

lation onto the rotated surface coordinate system. This rota-

tion could be performed using efficient procedures for the

spherical harmonic expansion10 and would require OðN3
hÞ

operations. Since we do not require the spherical harmonic
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coefficients or the interpolation surface quantity explicitly,

but only integrals of surface data, we find it more convenient

to pre-compute quadrature matrices which give integrals in

OðN2
hÞ operations per quadrature node in w.

Conversion between the original and transformed coor-

dinate system is accomplished using

/1 ¼ tan�1 sin h sin / cos w� A cos cþ að Þsin w

sin h cos / cos wþ B sin cþ bð Þsin w
;

(10a)

h1 ¼ cos�1½cosðhþ wÞ þ sin h sin wð1� sin cÞ�; (10b)

A2 ¼ 1� sin2/ sin2h; a ¼ tan�1ðtan / cos hÞ;
B2 ¼ 1� cos2/ sin2h; b ¼ tan�1ðtan /= cos hÞ:

The integration in c is performed using a trapezoidal

rule which yields spectral accuracy for periodic functions,ð2p

0

f cð Þ dc � 2p
Nc

XNc�1

0

f cið Þ;

ci ¼ 2pi=Nc; (11)

which, with the use of the interpolation matrix of Sec. II A,

givesð2p

0

f cð Þ dc � 2p
Nc

XNc�1

0

ATp h cið Þ;/ cið Þ
� 	n oT

f

¼ q wð Þf;

q wð Þ ¼ 2p
Nc

AT
XNc�1

0

p h cið Þ;/ cið Þ
� 	8<

:
9=
;

T

: (12)

The vector q(w) of length Np gives the integral over c at w
via the inner product q � f. The size of q is independent of Nc

and its entries for a given direction ðh;/Þ depend only on w
and the discretization of the sphere, Nh and N/, so that it can

be computed once for all problems independent of source

type and sphere radius, with no penalty for using a large

value of Nc.

Integration in w is performed using a Gaussian quadra-

ture of length Nw with nodes wi and weights

ww
i ; i ¼ 0;…;Nw � 1. Defining the surface source distribu-

tion rðsÞ,

rðsÞ ¼

_p0ðsÞ @p0ðsÞ=@n p0ðsÞ
_p1ðsÞ @p1ðsÞ=@n p1ðsÞ

..

.

_pNp�1ðsÞ @pNp�1ðsÞ=@n pNp�1ðsÞ

2
666664

3
777775;

(13)

the integrals over c at a node wi are given by

a2

4p
q wið Þr sð Þ � a2

4p

�
wi sinwi

ð2p

0

_p dc

�wi sinwi

ð2p

0

@p=@ndc wi sinwi

ð2p

0

pdc

�
;

(14)

noting that s is a function of w.
The integrals at each quadrature node are evaluated

using a single matrix multiplication using QrðsÞ,

Q ¼ a2

4p

w0 sin w0q w0ð Þ
w1 sin w1q w1ð Þ

..

.

wNc�1 sin wNc�1q wNc�1

� �

2
666664

3
777775: (15)

As described in Sec. II C, for computational efficiency this is

evaluated for the source terms at a single value of s and an

advanced-time algorithm is used to interpolate the pressure

contributions at corresponding reception times t. The matrix

Q is of size Np�Nw so that if Nw¼O(Nh) to avoid aliasing,

the computational effort is OðN3
hÞ.

We note that by decoupling directivity and distance in

the calculation, the matrix multiplication of Eq. (15) is

required only once per time point on each radial vector, with

a small additional effort to compute the field at a particular

point on that vector. Geometrically, this approach can be

seen as replacing the spherical Kirchhoff surface with a

direction-dependent linear distribution of point sources.

C. Advanced time interpolation

The procedure of Sec. II B gives the inner integral over

c at points in w on the spherical surface, the first stage in

evaluating the retarded potential for pðq; h;/; tÞ. These inner

integrals do not, however, contribute to the radiated pressure

simultaneously and their contributions must be summed

appropriately into the transient signal. This is performed

using an advanced-time, or source-time-dominant tech-

nique,11,12 in which the reception time t¼ sþR/c is com-

puted and the contribution to the radiated pressure is

interpolated into the signal.

FIG. 1. Auxiliary coordinate system for surface integration.
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For a pressure calculation with p(t) a function g(s) of s,

pðtÞ ¼ gðsÞ; (16)

for example, gðsÞ ¼ qðsÞ=4pR, the algorithm works as fol-

lows. Reception time t and retarded time s are discretized

with the same time step Dt. We write ti¼ iDt, qi¼ q(si), and

pi¼ p(ti). Starting from retarded time s, we write

t ¼ sþ R=c;

and for interpolation,

t ¼ ðiþ dÞDt;

where i is an integer and 0� d< 1. Given some interpolation

method for equally spaced data, we write

f ðdÞ ¼
Xk1

k¼k0

wkf ðkÞ; (17)

where the weights wk are generated by the interpolation

scheme (we use Lagrange) and k0 may be less than zero. To

increment p, we take Dp¼ g(s) and for each k, k0� k� k1,

piþk :¼ piþk þ wkDp:

This is equivalent to a sparse matrix multiplication, though it

is implemented in our code as a sequence of summations.

The algorithm is identical for any source term as long as

Dp can be computed, and since the weights are functions of

R and Dt only, they can be pre-computed and stored. To

compute the radiated field, the source terms at each retarded

time si are used to evaluate the contribution to the field at

corresponding advanced times tiþk, with contributions being

summed in-place to give an overall final signal for the whole

retarded time period. This has the particular advantage that

each set of source terms need be read only once, rather than

storing them in memory and interpolating on retarded time,

a considerable saving in effort on large data sets.

D. Computational demands

The computational effort for field calculation is readily

estimated from Secs. II A and II B. We neglect setup costs

for matrices, since these can be generated once and are uni-

versally applicable once the spherical grid has been chosen.

The computational effort per time point for a field point on

one radius vector is

T ¼ a1NpNw þ a2NwNi; (18)

where Ni is the number of points in the interpolation of Eq.

(17), e.g., four for third-order interpolation, and a1 and a2

are implementation-dependent constants. In any reasonable

calculation, NpNw � NwNi, and the computational cost per

radial vector scales as NpNw, with the marginal cost per point

NwNi very small, as will be shown in the performance evalu-

ation of the method, The computational time is independent

of source complexity once the spherical grid has been set, so

that the method is increasingly efficient for more complex

sources, but is not competitive for simple problems, as will

become clear when performance data are presented later.

If a whole-field calculation is to be performed, with the

same resolution as the spherical grid, the calculation must be

performed for Np radial vectors, with the same procedure

being applied for each radius independently, and spherical

harmonic interpolation being used to find the field at any

required point. The total number of evaluations required for

the radial vector data could be reduced by exploiting symme-

tries, but the effort will still scale as Np.

If source data on the sphere are being interpolated from

a CFD calculation, say, there is effectively no computational

cost in generating them. If, as in our test cases, the field is

computed from an array of point sources, there is a pre-

processing cost in generating the surface data of O(NpNsts),
where ts is the computational time for one source point and

Ns is the number of point sources. When Np	Ns, the com-

putational effort for field evaluation is still very much faster

than direct evaluation of the field. The break-even point

where our approach is faster than direct evaluation of the

field thus depends on the number of field points, their geom-

etry, and the source data.

E. Summary of algorithm

The steps in the algorithm can be summarized as fol-

lows, given some means of computing p, _p and @p/@n on a

surface.

1. Initialization

(a) Fix the sphere discretization Nh and N/ and compute

matrix A from Eq. (5);

(b) fix quadrature rule length Nw and generate Q for the

required radial vector (h, /), using Eq. (15).

2. Pre-processing

(a) Fix the sphere radius a to enclose all sources;

(b) for each point ðh;/Þ on the sphere surface compute p,

_p, and @p/@n to generate r at each time step, Eq. (13).

3. Computation

(a) For each q on radial vector (h, /), compute time inter-

polation weights from Eq. (17);

(b) for each time point, compute Qr and accumulate

weighted sum, Eq. (17).

The output is a set of computed transient signals at the

required points ðq; h;/Þ. Note that the matrices A and Q are

problem-independent and need be evaluated once only for

all calculations.

III. NUMERICAL TESTING

We present three sets of calculations designed to assess

the performance of the method in terms of accuracy and

computation time. The first case, which models a rotating
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point source, represents the most basic problem which we

might wish to solve, and gives a means of assessing accuracy

and computation time. The second test case is a model prob-

lem for a counter-rotating open rotor (CROR) where tran-

sient non-periodic effects must be captured if the radiated

field is to be properly modeled. This is the type of problem

for which our technique is intended and thus a relevant, and

demanding, test case. The final test uses a broadband volume

source and is a check of the ability of our method to deal

with problems characteristic of flow-generated noise.

In each case, we compute a transient signal at 65 points

on a ray ðq; h;/Þ; 2 � q � 10; h ¼ p=2; / ¼ 1=2. The

enclosing sphere has radius a¼ 1. To assess error, we

employ the measure

� ¼ maxjpdðx; t� pf x; tð Þj
maxjpd x; tð Þj

; (19)

where pd and pf are the time signals computed using the

direct and fast methods, respectively. Error is reported for

q¼ 2, but is roughly constant over the whole range in the

calculations. Parameters varied are surface resolution Nh,

quadrature order Nw, time step Dt, and interpolation order

for the advanced-time method. The azimuthal surface resolu-

tion N/ is fixed at N/ ¼ 2Nh. In some cases, where addi-

tional information about the source is known, computations

could be accelerated by reducing N/, for example, when the

field is known to be axisymmetric, but we concentrate here

on the general case.

A. Rotating source

Sound generation by a rotating system is modeled by a

ring source, with acoustic field given by

p x; tð Þ ¼
ð2p

0

cos nXs� n/1ð Þ
4pR

d/1;

x1 ¼ r cos /; r sin /; 0ð Þ; r ¼ x� x1; R ¼ jrj:
(20)

This corresponds to the nth azimuthal order component of

the field generated by a point source at radius r rotating at

angular velocity X. The field is evaluated using a trapezoidal

rule of length Ns in / equivalent to discretizing the system

into Ns point sources.

In order to avoid spatial aliasing, the spherical grid must

be dense enough to capture the azimuthal variation of the

field, i.e., N/ > 2n. We set rotor parameters n¼ 7, r¼ 0.7 m,

and X¼ 400 rad/s corresponding to a rotation Mach number

Xr/c¼ 0.82 for a speed of sound c¼ 340 m/s. This rotation

Mach number is at the upper end of the range to be expected

in aeronautical applications.

Figure 2 shows the error behavior as a function of time

step and interpolation order. The upper plot shows the solu-

tion converging to an error of about 10�5 on a properly

resolved surface mesh, N/ ¼ 64. The quadrature order Nw is

also sufficiently large to avoid spatial aliasing, and so the

error behavior is controlled by the time step. The lower plot

shows the effect of varying the order of time interpolation

and as might be expected, the linear interpolation shows the

largest error and slowest convergence while second order is

better and reaches the same accuracy as third order at the

smallest time step considered.

In Fig. 3, we consider the effect of surface discretization

at fixed time step and the effects of aliasing and/or inade-

quate surface resolution become apparent: at Nh¼ 8, the

error is large but immediately drops at Nh¼ 16, a value large

enough to properly resolve the surface pressure field.

Increasing Nh beyond this point does little to improve the

accuracy since the spatial frequency content has been cap-

tured exactly.

B. Counter-rotating open rotor

Our second test case is one which is relevant to compu-

tationally demanding applications where a transient signal

must be accurately captured. It is a model problem for a

CROR, a system which generates quite complex waveforms

owing to the interaction between two rotors of unequal blade

number and/or rotation speed. We model the field as

p x; tð Þ ¼
ða

0

ð2p

0

cos n1X1s1� n1/1ð Þ
4pR1

d/1r1 dr1

þ
ða

0

ð2p

0

cos n2X2s2� n2/2ð Þ
4pR2

d/2r2 dr2;

Ri ¼ jx� xij; xi ¼ r cos/; r sin/; zið Þ; si ¼ t�Ri=c;

(21)

FIG. 2. Error versus time step for Nh¼ 32, Ns¼ 8192: upper plot, third-

order time interpolation, circles Nw¼ 16; squares Nw¼ 32; crosses Nw¼ 64;

lower plot, Nw¼ 32, circles, first order interpolation; squares, second order;

crosses, third order.
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where z1,2 is the axial position of a rotor, the rotational fre-

quencies X1,2 are unequal and of opposite sign and the har-

monic numbers n1,2 are not necessarily equal. For the tests

presented here, we use the parameters of a published test

case13 with two eight-bladed rotors each of radius 0.381 m

rotating at �4800 and 5200 rpm, respectively. We examine

the signal generated by the interaction of two different har-

monics of rotation frequency and set n1¼ 8 and n2¼ 16. As

in the ring source case, the field is evaluated using a trape-

zoidal rule in azimuth and radius, equivalent to replacing the

surface with a dense array of point sources, allowing an

assessment of the computational burden as a function of

source resolution.

Figure 4 shows a computed sample signal for one rota-

tion period, 2p=jX1j, of the front blade row. The transient

effects caused by the interaction of the two blade row signals

are apparent, with an underlying signal of frequency 8jX1j
modulated non-periodically by its interaction with the signal

of frequency 16jX2j. Such transient effects must be correctly

computed if the noise from CRORs is to be properly

assessed in aeronautical applications.

Figure 5 shows the error behavior for the Nh¼ 64 grid as

a function of time step and Nw. As is clear from the first curve

on the plot, there is aliasing when Nw is too small (there is a

similar problem when Nh or N/ are too small) and cannot ade-

quately resolve the field on the spherical surface. This is to be

expected: the minimum adequate sampling for the spherical

surface is twice the maximum azimuthal order, in this case

N/ > 2jn2j ¼ 32, corresponding to Nh> 16. For a surface

grid of given resolution, any resampling must also respect the

Nyquist criterion, so Nw> 16 to avoid aliasing. As soon as Nw

is large enough, the error drops and is controlled by the tem-

poral interpolation, rapidly reaching its minimum of 10�5.

Behavior for the Nh¼ 32 grid is quantitatively similar.

C. Broadband volume source

As a final example we compute the broadband signal

radiated from a random volume source, modeled as a collec-

tion of point sources,

p x; tð Þ ¼
XNs

i¼1

ai cos Xisð Þ
4pRi

Ri ¼ jx� xij; xi ¼ qi sin hi cos /i; sin hi sin /i; cos hið Þ;
s ¼ t� Ri=c; (22)

where ai, qi, hi, and /i are randomly assigned with

�1=2< ai < 1=2; qi < 2�1=2; 0� hi < p, and 0 � /i < 2p.

Frequency Xi is randomly assigned with X1�X�X2. For

these calculations, X1¼ 1000 and X2¼ 2000 giving a one

octave bandwidth for the signal. Randomization of the source

amplitudes introduces partial cancellation effects which com-

plicate the source directivity and random distribution of the

point sources forms a volume source within the sphere, which

is again of unit radius.

Calculations were performed with Nh¼Nw¼ 32 and a

varying time step, with third-order time interpolation. A

sample time record is shown in Fig. 6, demonstrating that

the signal is indeed random and broadband. The error in the

radiated signal is shown as a function of time step in Fig. 7,

for varying numbers of point sources. It is clear that the error

is independent of the number of sources and that reducing

the time step rapidly reduces the error as in the previous test

case, showing that the accuracy of the method is not limited

by geometric discretization in this case.

D. Computation time

Combining the results from the test cases, we can pre-

sent an assessment of the computational time required for

field calculations. The computation time for one time point

at one position on a ray is made up of one matrix multiplica-

tion per ray, plus a sequence of multiplications per point on

FIG. 3. Error versus Nh, Dt¼ 1/217; circles: Nw¼ 16; squares: Nw¼ 32;

crosses: Nw¼ 64.

FIG. 4. Sample signal for CROR test case, time scaled on period of rotation

of front rotor, pressure scaled on maximum absolute value.

FIG. 5. Error versus time step for CROR test case with Nh¼ 64, Ns¼ 16384,

third-order time interpolation: circles Nw¼ 16; squares Nw¼ 32; crosses

Nw¼ 64.
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the ray. We present timing data for these computations as a

function of grid resolution. There is also a pre-processing

stage in generating the surface data on the spherical grid.

The time required for this stage will vary depending on

implementation and application, but for completeness, we

present it here for the worst case, when it is computed using

a direct field calculation at each node. In practice, we expect

that the spherical surface data would be generated as part of

another calculation, for example, by interpolating from data

generated during a CFD computation. In this case, the pre-

processing cost is negligible. For error assessment, a direct

calculation at each node is a better way of testing our algo-

rithm, and so we have used this approach in the previous

examples and present timing data based on this method.

The performance of the method is summarized by pre-

senting the time required for a full-field calculation. We

assume that in order to resolve the radiated field, it must be

computed on a set of spherical grids of the same resolution

as for the Kirchhoff surface, i.e., that the same aliasing and

interpolation considerations apply in the field as near the

source. The computational effort for the fast method is then

Tf ¼ tp þ Nptr þ nrNptc; (23)

where tp is the pre-processing time required to compute the

surface quantities on the Kirchhoff surface, tr is the pre-

processing time for one radial vector, tc is the computation

time for one point on a radial vector, and nr is the number of

spherical surfaces, or radii, where the field is required. The

corresponding computation time using direct evaluation is

Td ¼ nrNptd; (24)

where td is the computation time for direct evaluation at one

point. Computation times are scaled on the number of time

points in the computed signal.

Figure 8 shows the computation time as a function of nr

and Ns. Other parameters were fixed at Nh¼ 32 (Np¼ 2048),

Nw¼ 32. Changing these values moves the curves for Tf up or

down on the plot, but the general behavior is unaltered. The

curves for Tf appear flat because of the very small value of tc:
the main computational burden appears in the pre-processing

stage, tp, but the marginal cost of computing at one radius is

negligible. Because of the approach taken, tp scales as NpNs,

while tr scales as NpNw and tc as Nw. In our implementation, tp
is up to three orders of magnitude greater than tr which is in

turn two orders of magnitude greater than tc. The pre-

processing time tp is shown as a solid circle and is the same as

td for nr¼ 1, as it obviously should be. Also shown as crosses

are the points where Td¼ Tf and the time for the fast method

breaks even with direct evaluation. For small numbers of

sources, the fast approach is not competitive with direct com-

putation, as might be expected, but for large Ns, it quickly

demonstrates its superiority. The break-even value of nr

roughly halves as Ns doubles and for Ns¼ 16 384, if the field

is required on spheres at more than two radii our algorithm is

already faster than direct evaluation.

We also note that if the input data are not computed

from an array of point sources, but interpolated from CFD

data say, the pre-processing cost tp is negligible.

IV. CONCLUSIONS

We have presented a method for the efficient evaluation

of transient acoustic fields which uses standard methods and

demonstrates good accuracy and computational effort on

realistic test cases. The approach can also be used with inter-

polated CFD data at negligible computational cost, so that it

offers a rigorous and systematic means of computing radi-

ated fields from computed flow data, as well as from

FIG. 6. Sample signal for broadband test case, time scaled on minimum

source frequency, pressure scaled on maximum absolute value.

FIG. 7. Error versus time step for broadband test case with Nh¼ 32, Nw¼ 32,

third-order time interpolation: circles Ns¼ 1024; squares Ns¼ 4096; crosses

Ns¼ 16384.

FIG. 8. Computation time for direct and fast methods with Nh¼ 32

(Np¼ 2048) and Nw¼ 32: solid curves, Td for Ns¼ 256, 512,…, 16 384;

dashed lines, fast method for Ns¼ 256 (lower) and Ns¼ 16 384 (upper);

solid circles, pre-processing time for fast method; crosses, break-even point

Tf¼Td.
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collections of point sources. The break-even point where our

method is faster than direct evaluation has been considered

and, while dependent on problem size, demonstrates that

when a full field calculation is to be performed, our algo-

rithm is superior to direct evaluation even for modest prob-

lem sizes and very much faster as the number of sources

increases.
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