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Parallel kinematic mechanisms for distributed actuation of 

future structures 

G Lai, A R Plummer, D J Cleaver and H Zhou 

Centre for Power Transmission and Motion Control 

Department of Mechanical Engineering 

University of Bath, UK 
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Abstract. Future machines will require distributed actuation integrated with load-bearing 

structures, so that they are lighter, move faster, use less energy, and are more adaptable.  Good 

examples are shape-changing aircraft wings which can adapt precisely to the ideal aerodynamic 

form for current flying conditions, and light but powerful robotic manipulators which can interact 

safely with human co-workers.  A 'tensegrity structure' is a good candidate for this application 

due to its potentially excellent stiffness and strength-to-weight ratio and a multi-element 

structure into which actuators could be embedded. This paper presents results of an analysis of 

an example practical actuated tensegrity structure consisting of 3 ‘unit cells’. A numerical 

method is used to determine the stability of the structure with varying actuator length, showing 

how four actuators can be used to control movement in three degrees of freedom as well as 

simultaneously maintaining the structural pre-load. An experimental prototype has been built, in 

which 4 pneumatic artificial muscles (PAMs) are embedded in one unit cell. The PAMs are 

controlled antagonistically, by high speed switching of on-off valves, to achieve control of 

position and structure pre-load.  Experimental and simulation results are presented, and future 

prospects for the approach are discussed. 

1. Introduction 

Highly efficient aircraft are desirable for both environmental and economic reasons. A possible solution 

to further improve efficiency is to allow an aircraft to adapt its aerodynamic shape for different flight 

regimes. It is not a new concept to change the shape of an aerial vehicle. It can be dated back to the first 

powered and controlled aircraft which used a wing-warping system to change the twist of the wing [1, 

2]. Modern commercial aircraft have already adopted active shape-changing devices in several 

components, e.g. leading-edge slats. Nevertheless, these are only effective for a limited part of the flight 

regime. A significant disadvantage of these devices is that they could result in the loss of lift or cause 

regional stall as the hinged connections create discontinuous surfaces [3].  

It is believed that, for the next generation of aircraft, the actuation system and the structure should 

be tightly integrated together so as to allow the structure to change its shape while being capable of 

carrying aerodynamic loads [3]. It can thus reduce discontinuous surfaces and sharp edges of an aircraft. 

This requires actuators to be distributed within the structure. With the advent of ‘smart’ materials, e.g. 

shape memory polymer (SMP), elastic memory composite (EMC), etc., this target becomes more 

achievable, as these materials are not only deformable but also load-bearing [4]. Gern et al. conducted 

a computational study of actuation for smart wings [5]. The research shows that distributed actuation 
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for a morphing wing could provide a very robust and redundant actuation system avoiding the need for 

a complete backup system for each individual actuator as found in conventional aircraft. NASA also 

indicates that there will be no conventional mechanical connected parts in the future aircraft wing. It 

will be built of integrated, embedded “smart” materials and actuators to achieve superior aerodynamic 

efficiencies and aircraft control [6]. 

A tensegrity structure is a potential candidate for this future integration due to its unique properties. 

In fact, many organisms in the natural world, under natural selection, have already evolved tensegrity 

structures in their bodies because it is one of the optimum types of structure, e.g. human bones held by 

muscles and tendons [7]. The structure was first investigated by Emmerich, Fuller and Snelson in 1950s 

[8], and was named by Fuller who created the word tensegrity through the truncation of the phrase 

“tensional integrity” [9]. It is a multi-element structure with rigid members (struts) always in 

compression and flexible members (cables) always in tension. As its name suggests, the whole structure 

is required for ‘integrity’, and can only be stabilised by the tensile member forces acting on the 

compressive struts. There is no bending moment in any member or torque at any joint. Figure 1 is an 

example of tensegrity structure that has been built at the University of Bath. This is a class 3 structure 

as a maximum of 3 struts meet at a point. 

Oliveira and Mauricio explain how a tensegrity structure can be reshaped by changing its balanced 

state [10]. Skelton et al. presented detailed illustrations of the advantages of tensegrity structures in their 

work, e.g. to facilitate high precision control, and promote the integration of structure and control 

disciplines [11]. Hence, by applying the knowledge of parallel kinematics, the structure may achieve 

good stiffness-to-mass ratio without sacrificing the number of degrees of freedom. Tensegrity structures 

have been suggested for aerospace (particularly space) application [8, 12-14] because they are 

lightweight and could be stowed and deployed easily [15]. Tensegrity structures have also been found 

to be good models of biological structures [16-18]. Researchers have developed different form-finding 

methods to analytically and numerically determine the pre-stressed level and its corresponding 

geometric configuration. Analytical methods [19-21] have been used to study tensegrities of relatively 

simple configuration (less nodes and elements) and tensegrities with high level of symmetry. Numerical 

methods [22-24] have been used for the study of more complicated tensegrities. 

In this paper, the static state configuration of the proposed tensegrity structure is found by using an 

iterative approach as shown in Section 2. The experimental setup is presented in Section 3. A physical 

prototype with 1 unit cell of the proposed tensegrity was built. The unit cell is actuated by pneumatic 

artificial muscles (PAMs) produced by FESTO.  The PAM is a type of pneumatic actuator and has many 

advantages over conventional cylinder-type pneumatic actuators. It is frictionless, and it has a high force 

to weight ratio [25]. However, the dynamics of a PAM are complicated due to intrinsic non-linear 

characteristics. A range of research studies have been done to investigate PAM dynamic behaviour [26-

28]. The modelling of the unit cell is described in Section 4, and a bang-bang controller is shown for the 

control of position and force of the unit cell in simulation. Experimental results are shown in Section 5, 

and the conclusions are drawn in Section 6. 

Figure 1. Model of a class 

3 tensegrity structure. 

Figure 2. Unactuated example 3-unit-

cell tensegrity structure with finite 

node dimensions in isometric view. 
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2. Example actuated structure 

This section demonstrates the form-finding calculation for an actuated 3-unit-cell tensegrity structure 

by using an iterative approach. To find the equilibrium state, node positions are continuously updated 

through iterations until the resultant force at each node is zero (if possible). For a physically realizable 

structure, struts cannot meet at a point, and thus each node has a finite size with some separation between 

the ends of the members meeting at the node. This feature is included in the form-finding algorithm. 

Details of the approach are in [29]. Figure 2 and 3 depict the equilibrium state of the example tensegrity 

at its unactuated position. Cables are shown as thin lines and struts are bold lines. There are 33 elements 

in the structure of which elements 1 to 13 are struts. It is essentially the physical model as shown in 

Figure 1.  

Tensile members of the example structure can be controlled antagonistically to achieve three types 

of motion which will be named bending, shear and twisting deformation. The control can also change 

the pre-stressed level of the structure. A set of actuation examples is illustrated in Figure 4. The actuation 

is realised by controlling the lengths of members 15, 18, 21 and 24 in the middle unit cell. The top view 

in Figure 4 shows the structural equilibrium state when members 15 and 18 are contracted by 15% and 

members 21 and 24 extended by 20% of their original lengths. This causes a bending deformation of the 

structure. The front view in Figure 4 is an example of structural shear deformation achieved by 

contracting members 15 and 24 and extending members 18 and 21. The twisting motion in Figure 4 

results from the contraction of members 15 and 21 and the extension of members 18 and 24. 

Figure 3. Unactuated example 3-unit-cell tensegrity structure with finite node dimensions in: (a) 

Top view, (b) Front view and (c) Side view. 

(b) (a) (c) 

Figure 4. (a) Bending motion (top view), (b) Shear motion (front view) and (c) Twisting motion 

(side view). 

(b) (c) (a) 
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3. Experimental system 

The connection of one PAM is schematically illustrated in Figure 5. Each PAM is controlled by two 

modified 3/2 on-off solenoid valves. One solenoid valve is connected to a pressure source of 6 bar gauge 

pressure and is dedicated to pressurise the PAM, while the other solenoid valve is used to connect the 

PAM to atmosphere. The compressed air will be trapped in the PAM when both valves are off. A 

pressure transducer with a measuring range of 0-10 bar is connected at the PAM inlet in order to measure 

the pressure within the muscle. A draw-wire sensor with resolution of 0.1mm is used for the 

displacement measurement. The sensor is mounted on one end of the PAM with the wire being pulled 

out and attached at the other end. The measurements from the two devices are sent back to a host PC 

through an Arduino board with control and data acquisition functions. The setup allows a controller to 

be implemented as a Simulink model and the model parameters to be tuned on the host PC with the 

model running on the target Arduino board. The system provides real-time monitoring of the 

experimental signals which includes the pressure within the PAM, the displacement of the PAM, and 

Pressure

transducer

Data acquisition 

and control board

Host PC

FESTO pneumatic muscle

Draw-wire 

displacement 

sensor

3/2 solenoid 

valve unit

Pressure sourceAtmosphere

Figure 5. Schematic diagram for the connection of one PAM. 

Figure 6. Experimental setup for the testing of the proposed tensegrity structure. 

① 

② ④ 

③ 
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both the position and force demands and their corresponding feedbacks. The force feedback is estimated 

from PAM pressure and displacement as described in Subsection 4.1. 

Figure 6 shows the arrangement of the experimental apparatus. Four PAMs are embedded into the 

tensegrity structure to actuate the structure antagonistically. The PAMs in this research are type DMSP-

20-290N manufactured by FESTO. The muscle is constructed by wrapping the pressure-tight rubber 

tube with inextensible high-strength fibres. The fibres are orientated to create a rhomboidal pattern and 

are layered to build 3-D grid structure. When compressed air flows into the PAM, the tube expands in 

its circumferential direction, which generates a pulling force and a contraction movement in the 

longitudinal direction. The chosen PAM has an internal diameter of 20 mm and a nominal length of 290 

mm when the muscle is unpressurised. The maximum permissible contraction of the PAM is 25% of its 

nominal length. Its operational range is between 0 and 6 bar gauge pressure. 

The unit cell prototype is equivalent to the middle cell of the example structure in Figure 2 and is 

sized according to the mid-stroke position of the PAM, i.e. the length when the muscle contracts 12.5%. 

The prototype is a class 2 tensegrity structure and contains 13 members, of which 5 are struts (12.8 mm 

in diameter) made from aluminium alloy tube. The rest are tensile members, of which four are 3 mm 

stainless steel wires with swage studs at both ends and the remaining four are PAMs as mentioned 

previously. The lengths of each compressive member and tensile member are 614.4 mm and 524.8 mm, 

respectively. 

4. Modelling and control 

4.1 Modelling 

This subsection presents mathematical models which are used to simulate the dynamic behaviour of the 

tensegrity prototype. The model incorporates the fluid dynamics, the empirical model of the PAM 

proposed in [28] and a 2-D lookup table to determine the tensile force of the PAM with a given pressure 

and displacement. The changes in pressure and volume of the PAM are dictated by the mass flow rate 

of the compressed air thus resulting in the change of tensile force and displacement of the muscle. 

The dynamic behaviours of the airflow in the PAM are mainly governed by three equations [28]. 

They are the mass continuity equation of the compressed air, the ideal gas law, and the energy change 

equation for an open system. Three assumptions are made for the PAM model with the consideration of 

the actual circumstances. The 1st assumption is that air behaves like the ideal gas. The 2nd assumption is 

that pressure and temperature of the compressed air within the PAM are homogeneous. And the 3rd 

assumption is that heat transfer, kinetic energy and potential energy are neglected. 

The mass continuity equation of the compressed air is as shown below. The net mass flow rate ṁ 

within the control volume of the PAM could be expressed by the subtraction of the inflow rate ṁin and 

the outflow rate ṁout. 

outin )1( msmsm                                                                (1) 

where s is either 0 or 1 which is depended on the actuation of the PAM. When s = 1, it means the 

compressed air flows into the muscle. When s = 0, it means the compressed air flows out of the muscle. 

According to the ideal gas law, the equation of the state of the hypothetical ideal gas is: 

 TmRPV s                                                                     (2) 

where P is the pressure of the air in the PAM, V is the volume of the air in the PAM, m is the mass of 

the air, Rs is the specific gas constant for the air, and T is the temperature of the air. 

The energy change for an open system is as follows. Since the mass varies continuously, the net mass 

flow rate needs to be considered. The equation contains 3 forms of energy which are internal energy, 

kinetic energy and potential energy. 

)
2

()1()
2

(
d

d
out

2

out
outoutin

2

in
inin

cv gz
v

hmsgz
v

hmsWQ
t

E
                        (3) 

where Ecv is the energy of a control volume, Q̇ is the rate of the heat exchange between the system and 

the surroundings, Ẇ is the rate of the work done by the system to the surroundings, hin and hout are the 
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specific enthalpies of the compressed air mass inflow and outflow from the muscle, vin and vout are the 

corresponding velocities, and zin and zout represent the altitude of the mass flow.  

According to the first assumption, the air behaves like the ideal gas. Hence, the rate of the change in 

the internal energy, U̇, could be written as a function that depends only on the temperature:  

t

Tmc
U

d

)(d v                                                                    (4) 

where U̇ is the rate of the change in the internal energy and cv is the specific heat at constant volume.  

Mayer’s relation gives the following relationship between the specific gas constant and specific heats 

for a perfect gas: 

)1(vs  kcR                                                                   (5) 

v

p

c

c
k                                                                          (6) 

where k is the heat capacity ratio and cp is the specific heat at constant pressure.  

Based on the second assumption, the following two relations could be derived: 

Tchh poutin                                                                   (7) 

VPW                                                                          (8) 

where V̇ is the rate of change in volume of the PAM. 

In accordance with the third assumption, the heat transfer and the changes in both the kinetic energy 

and the potential energy are neglected. So the energy change equation of the open system is, in fact, the 

energy change equation of the internal energy with Q̇ = 0, i.e. adiabatic process, 

 outoutinin )1( hmshmsWU                                                     (9) 

By substituting equation (1), equation (2) and equations (4) – (8) into equation (9), the dynamic 

behaviour of the air pressure in the muscle is derived: 

  m
V

TkR
V

V

kP
P  s                                                            (10) 

The dynamic behaviour of the PAM is mainly due to the net mass flow rate which results in the 

changes in pressure and volume of the PAM. The mass flow rate of the PAM is controlled by two 

solenoid valves and is governed by, 

)( romd PfACCm                                                               (11) 
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                          (12) 

u

d
r

P

P
P                                                                       (13) 

where Cd is the discharge coefficient, Cm is the mass flow parameter for the air, Ao is the opening area 

of the orifice, Pu is the valve upstream pressure, Pd is the valve downstream pressure, Patm is the 

atmospheric pressure, Pcr is the critical pressure ratio, and Ck is a constant. 

In the empirical model, the volume of the PAM is calculated by using the equation below as the PAM 

could maintain the cylindrical shape under different pressures: 

LrV
2

e                                                                    (14) 

0
2

1

2

e aLar                                                                  (15) 

where L is the instantaneous length of the PAM, re is the equivalent radius of the PAM, a1 and a0 are the 

slope and intercept of the linear function which is derived through experiment. 

Figure 7 is a 3-D graphic representation of the data in the 2-D lookup table. The data is derived from 

a FESTO product configuration software. The 2-D lookup table is used to represent the force output of 

the PAM at different displacements and pressures. The muscle can only exert tensile force, so the 

minimum force is 0. Based on the aforementioned equations in this subsection, a flow chart for the 
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calculation of the mathematical model is shown in Figure 8. The switching of the solenoid valves causes 

the variation in the net mass flow rate which in turn changes the pressure and the volume of the muscle 

and thus the tensile force in the muscle. 

 
Figure 8. Flow chart for the calculation of the mathematical model in order to simulate the dynamic 

behaviours of the PAM. 

4.2 Control strategy 

A bang-bang controller (on-off controller) with both position and force control is adopted. The controller 

continuously switches the valves on and off until both the desired position and the pre-stress level are 

achieved. The strategy for the control of two PAMs is as shown in Figure 9. The controller contains a 

position loop and a force loop. As the actuators in the unit cell act against one another antagonistically, 

it is not feasible to individually control the position and the force of each PAM to reach the desired 

motion and the pre-stress level. The displacement of the structure is defined as the deviation of the 

structure from its unactuated state (neutral position). Hence, the position demand, in this paper, is simply 

a set of actuator position differences. When the structure deviates from its neutral position, the structure 

is no longer symmetrical, and thus the actuator forces will no longer be the same for an appropriately 

pre-loaded structure. So the force is controlled by taking the average of the actuator forces. The actuator 

forces are estimated from the measurements of pressures and displacements. For either loop, if the error 

is above its dead zone, an output of 1 will be generated. If the error is below its dead zone, the output 

will be -1. Within the dead zone the output is zero. The valve control signal for each PAM is created 

through the combination of the position and the force loop outputs. If the sum is positive, the high 

Average force of the two actuated PAMs

Mechanical behaviours 

of the PAM 

(2-D lookup table)

Tensile force
Unit Cell 

SimMechanics

Model

Valve control 

signal

Empirical model 

(Equations 14 & 15)

L

d/dt

Flow across the valve 

unit (Equations (11)-(13))

Dynamic behaviours 

of the PAM tube

(Equation (10))

ṁ

V

P

.
V

290-L
Displacement

Take the 

average

Take the 

difference

Displacement difference between the two actuated PAMs

Figure 7. 3-D graphic representation of the data in the 2-D lookup table to represent the 

mechanical behaviours of the PAM. 
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pressure valve will be opened. If the sum is negative, the low pressure valve will be opened. Otherwise, 

both valves will be closed, i.e. the desired position and the pre-stress level are achieved. More details 

for the control of the whole structure are given in [29]. 

4.3 Simulation results  

Two sets of simulation were carried out to investigate the dynamic behaviours of the unit cell according 

to the model and the controller given in Subsections 4.1 and 4.2. Four PAMs are modelled in Simulink, 

and these are embedded in a multi-body mechanical model of the unit cell implemented using 

SimMechanics (Figure 12). Table 1 lists the values of controller and model parameters for the simulation. 

The time step of the numerical integration is set to 0.001s. Only PAMs 1 and 2 are actuated (see Figure 

6), while PAMs 3 and 4 are kept at constant pressure. Square wave demand signals of 10 and 40 mm 

amplitude used. For both simulations, the force demand is kept at 200 N. Initially, the lengths of the 

PAMs are the same and so are the pressures. Simulation results are presented in Figures 10 and 11.  

Table 1. Values of controller and model parameters for the simulation of the unit cell. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Parameter Description Value Unit 

Rs Specific gas constant 287 J/kgK 

T Ambient temperature 288.15 K 

k Heat capacity ratio 1.4  

Cd Valve discharge coefficient 0.82  

Cm Mass flow parameter for air 0.0405  

Ao Maximum orifice area 0.32 mm2 

Pcr Critical pressure ratio 0.528  

Patm Atmospheric pressure 101 kPa 

Ck Constant 3.864  

Ps Supply pressure in absolute pressure 700 kPa 

a1 Slope -0.005  

a0 Intercept 6.735  

Di PAM initial displacement 36.25 mm 

Pi PAM initial pressure 300 kPa 

Tc Valve time constant 0.01 s 

Zp Position dead zone 1 mm 

Zf Force dead zone 2 N 

Above dead zone      output  = 1

Within dead zone      output  = 0

Below dead zone      output = -1

Displacement difference between the two actuated PAMs

Position 

error

Control signal

-Position demand

-

+

Force demand
+

Average force of the two actuated PAMs

Force 

error

High pressure

Valve 1

Low pressure

Valve 1

High pressure

Valve 2

Low pressure

Valve 2

Above dead zone      output  = 1

Within dead zone      output  = 0

Below dead zone      output = -1

PAM1

PAM2

+
+

+
+

-1

Control signal

Figure 9. Bang-bang controller for the control of the motion and the pre-stressed level of the structure. 
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Figure 12. SimMechanics model of the unit cell. 
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5. Experimental results 

Two sets of experiments were conducted to study the performance of the unit cell prototype by using 

the bang-bang control strategy and the experimental setup as discussed in Section 3. The pressure of the 

air supply is 6 bar gauge pressure, and the temperature in the laboratory is 15°C. The controller sample 

rate is 20 Hz, which means the controller will update the valve on-off signals every 0.05 s. The 

experimental settings are the same as the settings of the simulation for the purpose of comparison. 

During the experiments presented here, PAM 1 and 2 were actuated antagonistically while the remaining 

two were supplied with a pressure of 2 bar gauge pressure. Figures 13 and 14 show the measured motion 

of the unit cell with a square wave demand of 10 and 40 mm amplitude respectively. The force demand 

signal for both experiments is kept the same at 200 N. The results demonstrate that position control of 

the unit cell can be successfully achieved. However, the pressure and force deviations of the two PAMs 

are slightly different in the positive and negative directions, indicating that although the unit cell is 

designed to be symmetric, its assembly is not perfect which has resulted in slight asymmetry of the 

structure. Note that the average force is controlled well to be close to the 200N demand, but the 

individual actuator forces vary significantly as the structure moves away from its neutral position. 

The experimental step responses are similar to the simulation results. However, the measured 

pressures show some differences from their corresponding simulation results. It can be seen that the 

pressure variation is greater in the experiments. This is likely to be due to the friction at the connections 

in the unit cell. In the simulation, the mechanical behaviour of each PAM is calculated from the 2-D 

lookup table through interpolation. The size of the data sample is limited. By using more points in the 

lookup table, the discrepancy between the experiment and the simulation may be reduced.  

6. Conclusions 

The proposed bang-bang controller can effectively actuate the prototype to achieve position control of 

the tensegrity structure, while maintaining the required pre-load. In terms of the simulation, the 

presented model of the unit cell replicates the motion and force dynamics of the prototype reasonably 

well. However, friction may be significant in the joints and this is not yet included in the model. A full 

non-linear model of the PAM will be used in the future to replace the 2-D lookup table in order to 

represent the characteristics of the muscle better. The next step in the research is to add another 2 unit 

cells to the existing one and control the 4 PAMs together to achieve bending, shear and twisting motion 

of the whole structure. This will help to validate the hypothesis that tensegrity structures are a viable 

concept for lightweight, high stiffness structures with actively controllable shape. 
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Figure 13. (a) Position demand of 10 mm and 

measured position feedback, (b) Force results for 

the two actuated PAMs, (c) Pressure results for the 

two actuated PAMs. 
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Figure 14. (a) Position demand of 40 mm and 

measured position feedback, (b) Force results for 

the two actuated PAMs, (c) Pressure results for 

the two actuated PAMs. 
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