
        

Citation for published version:
Lai, M, Battarra, M, Di Francesco, M & Zuddas, P 2015, 'An adaptive guidance meta-heuristic for the vehicle
routing problem with splits and clustered backhauls', Journal of the Operational Research Society, vol. 66, no. 7,
pp. 1222-1235. https://doi.org/10.1057/jors.2014.123

DOI:
10.1057/jors.2014.123

Publication date:
2015

Document Version
Early version, also known as pre-print

Link to publication

This is a post-peer-review, pre-copyedit version of an article published in Journal of the Operational Research
Society. The definitive publisher-authenticated version Lai, M., Battarra, M., Di Francesco, M., & Zuddas, P.
(2015). An adaptive guidance meta-heuristic for the vehicle routing problem with splits and clustered backhauls.
Journal of the Operational Research Society, 66(7), 1222-1235. 10.1057/jors.2014.123 is available online at:
http://dx.doi.org/10.1057/jors.2014.123.

University of Bath

Alternative formats
If you require this document in an alternative format, please contact:
openaccess@bath.ac.uk

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Download date: 25. Jun. 2024

https://doi.org/10.1057/jors.2014.123
https://doi.org/10.1057/jors.2014.123
https://researchportal.bath.ac.uk/en/publications/102f95e9-abb4-4921-b8a9-598f88b9e3d8


An adaptive guidance meta-heuristic for the Vehicle
Routing Problem with Splits and Clustered Backhauls
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Abstract

This paper presents a vehicle routing problem, where trucks deliver container
loads from a port to import customers and collect container loads from export
customers to the same port. In each route, import customers must be serviced
before export customers and each customer can be visited more than once.
We model the problem using an Integer Linear Programming formulation and
propose an Adaptive Guidance metaheuristic. Our extensive computational
experiments show that the adaptive guidance algorithm is capable of solving
average-sized instances within limited computing time.

Keywords: Vehicle Routing Problem with Splits, Backhauls, Drayage,
Adaptive Guidance, Meta-heuristics

1. Introduction1

This paper addresses a vehicle routing problem motivated by the case study2

of the italian carrier Grendi Trasporti Marittimi, which provides door-to-door3

freight transportation services. The carrier manages a homogeneous fleet of4

trucks and containers based at the port of Vado Ligure (Italy). Trucks move5

container loads from the port to import customers and from export customers6

to the port.7

It is important to note that in this problem containers are not picked up8

or delivered. They are brought to the customers, where they are packed or9

unpacked and moved away by the same trucks. Therefore, while containers10

are emptied at importer locations, drivers supervise the unloading operations11

and wait for empty containers to be returned. Similarly, trucks move empty12

containers to export customers, drivers supervise packing operations and wait13

for loaded containers to be returned. The truck and the containers are coupled14

in the sense that the truck carries the same set of containers throughout the15

route.16

From the customer’s point of view, this practice is perceived as a high quality17

service, because the loading and unloading operations are closely supervised and18

the integrity of the cargo is monitored. From the carrier’s point of view, this19
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policy improves container safety and integrity, because containers are never left20

unsupervised at customer locations.21

More important, the carrier is aware of the fact that leaving containers at22

customer locations would save drivers the time to supervise loading and unload-23

ing operations and they could move to other customers in the meanwhile (Che-24

ung et al., 2008). The profitability of this alternative policy depends on the25

availability of inland depots close to the customers, but inland depots are not26

often financially feasible for small carriers.27

In this case-study, the container loads of export customers are typically28

not ready before the afternoon, thus the carrier serves import customers before29

exporters. Moreover, the containers emptied at importers can be filled at export30

customers, hence a potential routing cost saving can be obtained.31

Since the number of containers loads to be delivered to importers and picked32

from exporters is possibly different, trucks may be required to leave and enter33

the port carrying some empty containers. More precisely, if the number of34

container loads to be delivered is larger than the number of container loads35

to be picked up, trucks return empty containers back to the port. Otherwise,36

trucks leave the port carrying empty containers to accommodate the requests37

of all export customers.38

Importers and exporters often demand a number of container loads larger39

than the truck’s capacity. Hence, splitting customer demand may be compul-40

sory and each customer may be visited more than once. Moreover, customer41

demands can be split among several trucks, even if the demand is lower than42

the capacity. The objective is to determine a set of routes in which routing43

costs are minimized, all customers are serviced, importers are visited before44

exporters, and the capacities of trucks are never exceeded.45

According to the problem classification in Parragh et al., 2008, this problem46

belongs to the class of Vehicle Routing Problems with Clustered Backhauls47

(VRPCB), because in each route all deliveries must be performed before all48

pickups. However, in classical VRPCB, each customer must be visited only49

once, whereas in this problem multiple visits at each customer are allowed. Our50

problem also belongs to the class of the so-called one-to-many-to-one pickup51

and delivery problems, because all delivery demands are initially located at the52

port and all pickup demands are destined to the same port (Berbeglia et al.,53

2007).54

This problem is called hereafter Split Vehicle Routing Problem with Clus-55

tered Backhauls (SVRPCB) and, as far as we are aware, it has not been ad-56

dressed in its current form in the literature before. In this paper, linehaul57

customers are referred as import customers, delivery customers or importers.58

In the same way, backhaul customers are also called export customers, pickup59

customers or exporters. Similarly, let importer routes and exporter routes be60

the routes serving only importers or exporters, respectively.61

An Integer Linear Programming (ILP) model is presented to address small-62

sized problems. In order to solve larger instances, we propose a meta-heuristic63

which exploits existing algorithms for simpler SVRPCB subproblems and guides64

them toward the construction of good SVRPCB solutions. More precisely, the65
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meta-heuristic constructs a feasible SVRPCB solution by first decomposing the66

SVRPCB into two Split Vehicle Routing Problems (SVRP), where the first sub-67

problem involves only importers and the second only exporters. These problems68

are solved by the Tabu Search (TS) of Archetti et al., 2006. Next, importer and69

exporter routes are paired and merged by solving an assignment problem. This70

two-stage constructive heuristic is the building block for the proposed meta-71

heuristic.72

However, the importer routes and exporter routes by the TS could not result73

in good SVRPCB solutions. Therefore, at each iteration of the proposed algo-74

rithm, critical properties of the current SVRPCB solution are detected. Some75

guidance mechanisms are implemented by perturbing the data of the two SVRP,76

in order to discourage the TS in creating routes having undesired characteristics.77

This paper not only proposes a meta-heuristic algorithm for the SVRPCB,78

but also aims at investigating the effect of the growth in transportation capac-79

ities on the carrier’s service. The possibility of employing trucks with larger80

capacities than a single container is considered. This allows the carrier to esti-81

mate the savings in adopting larger vehicles.82

The rest of the paper is organized as follows. In Section 2, we review the83

related literature and in Section 3 we present the ILP formulation. In Section 4,84

the meta-heuristic based on Adaptive Guidance mechanisms is proposed. In85

Section 5, the results of our extensive computational experience are presented86

and a comparison between the performances of a state-of-art solver and the87

meta-heuristic algorithms is reported. Finally, conclusions and further research88

directions are summarized in Section 6.89

2. Literature Review90

Several papers address the VRPCB, where all linehauls are visited before91

backhauls and each customer must be visited exactly once. Exact methods92

for the VRPCB are proposed by Mingozzi et al., 1999 and Toth and Vigo,93

1997. Heuristics have been developed by Anily, 1996, Goetschalckx and Jacobs-94

Blecha, 1989, Toth and Vigo, 1999, Osman and Wassan, 2002, Brandão, 2006,95

Ropke and Pisinger, 2006 and Zachariadis and Kiranoudis, 2012. Recently, the96

unified hybrid genetic search algorithm of Vidal et al., 2012 provided the most97

competitive results for the VRPCB. We refer to the surveys of Gribkovskaia98

and Laporte, 2008 and Toth and Vigo, 2002 for the single-vehicle and multiple-99

vehicle problems, respectively.100

What makes the SVRPCB different from the VRPCB is the possibility to101

serve customers more than once. A recent review on SVRP was presented by102

Archetti and Speranza, 2012.103

Some attributes of the SVRPCB can be found in Mitra, 2005 and Mitra,104

2008. These papers consider a homogeneous fleet of vehicles located at a depot105

to serve delivery and pickup demands of a set of customers. Although splitting106

is allowed, unlike in the SVRPCB, importers and exporters can be visited in107

any order. Mitra, 2005 developed a Mixed Integer Linear Programming (MILP)108
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formulation for the problem and presented a route construction heuristic, which109

improved the best known solutions obtained by the MILP formulation. Mitra,110

2008 further investigated this problem designing a parallel clustering technique111

and route construction heuristic.112

In the field of intermodal freight transportation, the distribution of con-113

tainers by trucks between customers and intermodal terminals is known as114

“drayage”. According to Macharis and Bontekoning, 2004, drayage involves115

the distribution of a full container from an intermodal terminal to a receiver116

and the subsequent collection of an empty container, or the provision of an117

empty container to a shipper for the subsequent transportation of a full con-118

tainer. This definition accounts for both policies where trucks and containers119

are separated or coupled, as in the SVRPCB.120

The separation of trucks and containers has been investigated by Jula et al.,121

2005, Chung et al., 2007, Zhang et al., 2011, Zhang et al., 2010, Vidovic et al.,122

2011, Braekers et al., 2013 and Nossack and Pesch, 2013. The variant where123

trucks and containers are coupled received less attention, in fact it has been124

investigated only in papers motivated by specific technical restrictions (i.e., Imai125

et al., 2007) or regulation policies (Cheung et al., 2008).126

From a methodological point of view, the latter variant was investigated127

by Imai et al., 2007, who formulated their problem as the optimal assignment128

of trucks to a set of delivery and pickup pairs. They developed a subgradient129

heuristic based on Lagrangian Relaxation. However, trucks cannot visit more130

than one importer or one exporter in a single trip, because they can carry one131

container only. Caris and Janssens, 2009 modeled the container drayage prob-132

lem as a full truckload pickup and delivery problem with time windows. They133

constructed an initial solution by a two-phase insertion heuristic and improved134

it using a local search heuristic based on three neighborhoods. Yet, in their135

problem setting, each truck carries one container only. Lai et al., 2013 investi-136

gated how to deliver and collect container loads by trucks carrying one or two137

containers. A feasible solution was built using an adaptation of the Clarke and138

Wright, 1964 algorithm and it was improved using two neighborhoods. Hence,139

this algorithm cannot be used for trucks carrying more than two containers.140

To conclude, a frequent characteristic of papers on drayage is the assump-141

tion that trucks carry at most one container (Jula et al., 2005, Namboothiri142

and Erera, 2008, Zhang et al., 2011, Zhang et al., 2010 and Sterzik and Kopfer,143

2013). However, if the weight of the containers is under a set value, the capacity144

of trucks could be higher than one container. Carrying two or more containers145

per truck is allowed in many countries (Nagl, 2007). Since larger capacities can146

increase the efficiency of the distribution, this paper investigates this opportu-147

nity and aims at quantifying its benefits. However, it is important to note that148

this opportunity substantially increases the difficulty of SVRPCB, because the149

underlying packing problem becomes more difficult to solve.150
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3. Formulation151

This section introduces the notation and presents an ILP model for the152

SVRPCB. Let p be the port, I the set of importers, E the set of exporters and153

K the set of trucks, each with capacity Q-containers. Let di be the number of154

containers used to serve customer i ∈ I∪E. If i ∈ I, di represents the number of155

containers used to deliver container loads to import customer i ∈ I. If i ∈ E, di156

represents the number of containers used to pick up container loads from export157

customer i ∈ I.158

Given a direct graph G = (N,A), the set N is defined as N = {p ∪ I ∪ E}.159

Since trucks are not allowed to move from exporters to importers, the set A160

of arcs is defined as A = A1 ∪ A2, where A1 = {(i, j)|i ∈ p ∪ I, j ∈ N, i 6= j}161

A2 = {(i, j)|i ∈ E, j ∈ p ∪ E, i 6= j}. Three sets of variables are defined:162

xkij: Routing selection variables taking value 1 if arc (i, j) ∈ A is traversed by163

truck k ∈ K, 0 otherwise; let cij ≥ 0 be the cost of traversing arc (i, j);164

ykij: Number of loaded containers carried along arc (i, j) ∈ A by truck k ∈ K;165

zkij: Number of empty containers carried along arc (i, j) ∈ A by truck k ∈ K.166

The problem can be formulated as follows:167

min
∑
k∈K

∑
(i,j)∈A

cij x
k
ij (1)

s.t.∑
k∈K

∑
l∈N

ykil =
∑
k∈K

∑
j∈p∪I

ykji − di ∀i ∈ I (2)

∑
k∈K

∑
l∈N

zkil =
∑
k∈K

∑
j∈p∪I

zkji + di ∀i ∈ I (3)

∑
l∈N

ykil ≤
∑

j∈p∪I
ykji ∀i ∈ I, ∀k ∈ K (4)

∑
l∈N

zkil ≥
∑

j∈p∪I
zkji ∀i ∈ I, ∀k ∈ K (5)

∑
k∈K

∑
l∈p∪E

ykil =
∑
k∈K

∑
j∈N

ykji + di ∀i ∈ E (6)

∑
k∈K

∑
l∈p∪E

zkil =
∑
k∈K

∑
j∈N

zkji − di ∀i ∈ E (7)

∑
l∈p∪E

ykil ≥
∑
j∈N

ykji ∀i ∈ E,∀k ∈ K (8)

∑
l∈p∪E

zkil ≤
∑
j∈N

zkji ∀i ∈ E,∀k ∈ K (9)
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∑
(ji)∈A

(ykji + zkji) =
∑

(il)∈A

(ykil + zkil) ∀i ∈ I ∪ E,∀k ∈ K (10)

ykij + zkij ≤ Q xkij ∀(i, j) ∈ A,∀k ∈ K (11)∑
j∈N

xkji −
∑
l∈N

xkil = 0 ∀i ∈ N, ∀k ∈ K (12)

∑
j∈N

xkij ≤ 1 ∀i ∈ N, ∀k ∈ K (13)

∑
k∈K

∑
i∈I∪E

zkip −
∑
k∈K

∑
i∈I∪E

zkpi =
∑
i∈I

di −
∑
i∈E

di (14)

xkij ∈ {0, 1} ∀(i, j) ∈ A,∀k ∈ K (15)

ykij ∈ {0, 1, . . . , Q} ∀(i, j) ∈ A,∀k ∈ K (16)

zkij ∈ {0, 1, . . . , Q} ∀(i, j) ∈ A,∀k ∈ K (17)

Routing costs are minimized in the objective function (1).168

Constraints (2)-(5) concern the distribution of containers to importers. Con-169

straints (2) and (3) are the flow conservation constraints of loaded and empty170

containers, respectively, at each importer node. Constraints (4) enforce that171

the number of loaded containers cannot increase after servicing any importer,172

whereas constraints (5) guarantee that the number of empty containers does173

not decrease.174

Similarly, constraints (6)-(9) concern the distribution of containers to ex-175

porters. Constraints (6) and (7) are the flow conservation constraints of loaded176

and empty containers, respectively, for each exporter. Constraints (8) and (9)177

enforce that the number of loaded containers cannot decrease after visiting an178

exporter, whereas the number of empty containers cannot increase.179

Constraints (10) guarantee that the number of containers carried by each180

truck does not change after visiting a customer. Constraints (11) impose that181

the number of containers on each truck does not exceed the capacity Q.182

Constraints (12) represent the flow conservation constraints for each truck183

at each node. Constraints (13) enforces that each truck can reach only one node184

from the current node. It is important to note that constraints (12) and (13)185

enforce that the degree of each node must be at most 2. This forces a vehicle to186

visit the same customer at most once in a route. Moreover, if there is a successor187

for a node i visited in the route of truck k, Constraints (12) impose that there188

is also a predecessor for the same node and the same truck. Constraints (13)189

also guarantee that trucks are not used more than once.190

Constraints (14) represent the flow conservation of empty containers at the191

port p. Finally, Constraints (15), (16) and (17) define the domain of the decision192

variables.193

The model has been implemented using IBM ILOG CPLEX Optimization194

Studio 12.5 and solved by ILOG CPLEX 12.2 solver. Since exact methods may195

not be able to solve realistic-size instances of SVRPCB with high truck capacity,196

we present a meta-heuristic, which is described in the following section.197
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4. Meta-heuristic algorithm198

The proposed meta-heuristic is based on Adaptive Guidance (AG) mecha-199

nisms, which are simple rules applied to check the quality of the current solution200

and detect possibly improvements. Then, the input parameters of simpler sub-201

problems are perturbed so as to achieve the desired diversification in the complex202

problem at hand. Examples of successful implementations of adaptive guidance203

algorithms are presented in Battarra et al., 2009, Bai et al., 2007, Kramer, 2008204

and Olivera and Viera, 2007. Moreover, Hart, 2005 presented a large class of205

simple rules of behavior, called adaptive heuristics.206

Our overall meta-heuristic consists of three phases:207

(i) SVRP phase decomposes the SVRPCB into two SVRPs, one for im-208

porters and one for exporters, each solved by the TS (Glover and Laguna, 1998)209

proposed by Archetti et al., 2006.210

(ii) Merging phase merges importer routes and exporter routes determined211

in SVRP phase by an ILP model based on the saving concept;212

(iii) AG phase analyses the current solution, detects areas of improvement213

and adjusts the input parameters of the SVRP phase.214

The three phases are repeated sequentially until a stop criterion is satisfied215

and the best solution found is returned.216

Table 1 illustrates the pseudo-code of the meta-heuristic algorithm, in which217

the following notation is adopted:218

tExe Execution time;219

it Number of consecutive iterations performed during the whole execution;220

notImpIt Number of consecutive iterations performed since an improving so-221

lution was found;222

S∗ Best solution found;223

MAXTIME Maximum execution time;224

MAXIT Maximum number of consecutive iterations allowed during the whole225

execution;226

SolImp Set of importer routes determined in the SVRP phase by the TS solving227

the SVRP on the set I of importers.228

SolExp Set of exporter routes determined in the SVRP phase by the TS solving229

the SVRP on the set E of exporters.230

Sol Current solution of the meta-heuristic;231

SMatrix Matrix of all savings that can be obtained by merging importer routes232

and exporter routes;233
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Merge(Sol, SolImp, SolExp, SMatrix) Function merging routes determined234

in the SVRP phase by an ILP model. The input parameters are the cur-235

rent solution Sol, the set of importer routes SolImp and exporter routes236

SolExp, and the saving matrix SMatrix. The output is the new current237

solution Sol;238

AdaptiveGuidance(Sol, SolImp, SolExp, it) Function analyzing the cur-239

rent solution Sol according to different criteria (or guidance mechanisms)240

and perturbing the costs in the SVRP phase. Since it is not compulsory241

to perform all mechanisms at each iteration, this function depends on the242

current number of iterations it.243

procedure main
Start tExe
it = 0
notImpIt = 0
S∗ ← ∅
while tExe ≤MAXTIME & notImpIt ≤MAXIT do

it = it+ 1
notImpIt = notImpIt+ 1
SolImp← TS(I); . SVRP phase Section 4.1
SolExp← TS(E);
Create the savings matrix SMatrix
Sol← ∅
Sol← Merge(Sol, SolImp, SolExp, SMatrix) . Merging phase

Section 4.2
if Sol ≤ S∗ || S∗ == ∅ then

S∗ ← ∅
S∗ ← Sol
notImpIt← 0

end if
AdaptiveGuidance(Sol, SolImp, SolExp, it) . AG phase Section 4.3

end while
return S∗

end procedure

Table 1: The structure of the meta-heuristic.

In the following, the three phases of the algorithm are described in detail.244

4.1. SplitVRP phase245

The SVRP phase consists of solving two SVRPs: the first involves importers246

only, whilst the second exporters only. As stated previously, the TS by Archetti247

et al., 2006 is employed to solve this NP-hard problem. The algorithm consists248

of three phases: (i) the first phase determines the initial feasible solution con-249

structing a giant tour by the GENIUS algorithm (Gendreau et al., 1992) and250

imposing trucks to return to the depot whenever their load equals the capac-251

ity; (ii) the second phase consists of a TS based on relocation moves, where252
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a customer is either relocated into another route or copied into an alternative253

route. In the latter case, its original demand is split between the two routes;254

(iii) the third phase improves the solution found by removing t-split cycles and255

by re-optimizing each route using the GENIUS algorithm.256

4.2. Merging phase257

Routes determined in the SVRP phase are merged in the Merging phase258

according to an ILP model, which is inspired by the Clarke and Wright savings259

algorithm (Clarke and Wright, 1964). In this algorithm savings are obtained by260

merging a route servicing importers with a route servicing exporters, instead of261

leaving them separate. It is important to note that, four possible routes can be262

generated by merging a selected pair of routes, because the first and the last263

importer may be linked to the first or the last exporter. To clarify, consider264

for instance n importers, serviced by route ri = {p, i1, . . . , in, p}, and m265

exporters serviced by route rj = {p, e1, . . . , em, p}. Moreover, let c(in, e1) be266

the cost of arc (in, e1) ∈ A, and so on. When the merging of routes ri and rj267

is evaluated, the algorithm computes four different savings based on the extra268

mileage evaluation:269

• s1ij = c(in, p) + c(p, e1)− c(in, e1), where routes ri and rj keep their original270

direction in the final route, i.e. importers are visited from i1 to in and271

exporters from e1 to em;272

• s2ij = c(in, p) + c(p, e1) + c(em, p) − c(in, em) − c(e1, p), where in the final273

route ri has the original direction and rj the opposite one, i.e. importers274

are visited from i1 to in and exporters from em to e1;275

• s3ij = c(p, i1) + c(in, p) + c(p, e1)− c(p, in)− c(i1, e1), where in the final route276

ri has the opposite direction and rj the original one, i.e. importers are277

visited from in to i1 and exporters from e1 to em;278

• s4ij = c(p, i1) + c(in, p) + c(p, e1) + c(em, p) − c(p, in) − c(i1, em) − c(e1, p),279

where routes ri and rj have the opposite direction in the final route, i.e.280

importers are visited from in to i1 and exporters from em to e1;.281

Each pair of routes is supposed to be merged according to the maximum282

saving. Therefore, the saving generated by merging routes ri and rj is sij =283

max{s1ij , s2ij , s3ij , s4ij}. Maximum savings are recorded in a matrix, in which the284

number of rows is equal to |SolImp| and the number of columns is equal to285

|SolExp|.286

Routes determined in SVRP phase are merged in the Merging phase by the287

following assignment problem. For all i ∈ SolImp and j ∈ SolExp, let wij be a288

binary variable, which takes value 1 if routes ri and rj are merged, 0 otherwise.289

The assignment problem can be formulated by the following ILP model:290
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max
∑

i∈SolImp

∑
j∈SolExp

sij wij (18)

s.t.∑
j∈SolExp

wij ≤ 1 ∀i ∈ SolImp (19)

∑
i∈SolImp

wij ≤ 1 ∀j ∈ SolExp (20)

wij ∈ {0, 1} ∀i ∈ SolImp, j ∈ SolExp (21)

The overall gain is maximized in the objective function (18), where sij rep-291

resents the maximum saving obtained by merging routes i and j, as described292

above.293

Constraints (19) and (20) enforce that each route in SolImp can be merged294

at most with a route in SolExp and vice-versa. We do not consider merging295

operations nvolving more than an importer route and an exporter route, because296

it is quite unlikely that feasible SVRPCB solutions would be obtained due to297

the violation of the capacity constraint.298

4.3. Adaptive guidance phase299

The AG phase analyses the incumbent SVRPCB solution according to pre-300

defined criteria, each of which gives rise to a guidance mechanism. If drawbacks301

are detected in the solution, the input data of the TS are suitably perturbed by302

guidance mechanisms, which are implemented by penalizing costs in the SVRP303

phase. In this section we illustrate how to identify drawbacks in the incumbent304

solution, define quantitative measures for their evaluation and design suitable305

penalization mechanisms that would result in the desired diversification effect,306

without corrupting the original SVRPCB input data.307

Our meta-heuristic is guided by the following guidance mechanisms:308

(i) A.G.M.1 - Avoiding too many Splits309

Since the TS tends to generate routes where load splitting is allowed, the310

resulting SVRPCB solutions may be likely poor when the number of visits to311

customers is unnecessarily high. This guidance mechanism is aimed at correcting312

this drawback. Given a customer i, let minTripi = ddi/Qe be the minimum313

number of visits required to satisfy its demand, let visiti be the number of visits314

to customer i in the current solution and let exceedi be the difference between315

visiti and minTripi. This guidance mechanism selects the importer and the316

exporter with the largest positive values of exceedi, if any. A penalization317

is introduced for all arcs entering and leaving these customers in the next γ318

iterations, in order to guide the TS toward a lower use of arcs connecting these319

customers and, hence, split the load into a lower number of routes.320
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(ii) A.G.M.2 - Promising extreme importers321

The first importer and the last one play a crucial role in the SVRPCB,322

in fact, if they are close to export customers, the Merging phase is far more323

effective in connecting the importer route to an exporter route. However, the324

set SolImp of import routes determined in the SVRP phase ignores the location325

of exporters and, hence, the resulting SVRPCB solutions may be likely poor.326

This guidance mechanism aims to guide the TS, so that importers with close327

exporters are forced to be the first ones or the last ones in the new solution of328

the SVRP phase. In what follows, we refer to extreme importers instead of the329

first and the last importer in a route.330

Given a importer i ∈ I, we denote with αi the number of times in which331

i ∈ I is visited as an extreme node in the incumbent SVRPCB solution minus332

the number of times in which i ∈ I is visited as an internal node. In order333

to diversify the current solution, we are interested in the negative values of αi,334

because they indicate customers which are frequently visited as internal nodes.335

Moreover, let σi be the sum of all distances between the selected importer i ∈ I336

and all exporters. Since low values of σi indicate the high proximity of many337

exporters to the selected importer, this guidance mechanism selects the importer338

i ∈ I having a negative value of αi and the minimum value of σi, if any. In order339

to remove customer i from its frequent position of internal node, a penalization340

is added in the SVRP phase to all arcs entering or leaving importer i for the341

next γ iterations.342

(iii) A.G.M.3 - Promising extreme exporters343

This mechanism works as A.G.M.2, but it considers extreme exporters in-344

stead of importers.345

(iv) A.G.M.4 - Avoiding expensive arcs346

This mechanism aims to avoid the use of the most costly arcs in the incum-347

bent SVRPCB solution. This guidance mechanism selects the most expensive348

arcs connecting pairs of importers and pairs of exporters and penalize them in349

the SVRP phase for the next γ iterations.350

Remarks351

In the proposed meta-heuristic the execution of a single guidance mechanism352

is iteration-dependent. As a result, at any iteration one may run a guidance353

mechanism with all other mechanisms, with some of them or one at a time.354

Hence, it is important to properly calibrate parameters controlling when each355

guidance mechanism should be performed during the overall execution of the356

algorithm.357

4.4. Penalizations358

Once the incumbent SVRPCB solution has been analysed according to a
guidance mechanism, the selected arc costs are penalized in the SVRP phase
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for the subsequent γ iterations. If arc (i, j) connects two customers, its cost is
penalized as

cij = cij +RandomCoef · M (22)

The value M is set up as the largest entry of the cost matrix and RandomCoef
is a coefficient that randomly decreases/increases the penalties during the overall
execution of the algorithm, according to the formula:

RandomCoef = (Random(1, . . . , α) + β)/100 (23)

where β is a self-adapting parameter taking initial value 0 and increasing by359

α after each α iterations. Whenever a better SVRPCB solution is found, β is360

set to 0, in order to refresh penalties.361

A larger penalty is added to the cost of arcs connecting customers to the
port, in order to minimize the number of trucks in the solution. More formally,
if arc (i, j) connects a customer to the port, its cost is penalized as

cij = cij +RandomCoef · M + (|N | − 1) · M (24)

where M is the largest entry of the cost matrix and N the set of nodes.362

Moreover, whenever an improving solution is found, penalties are set to zero for363

arcs linking the port to the set of importers or exporters serviced by a lower364

number of routes. This allows for a lower number of routes and, hence, lower365

routing costs.366

Three different methods are proposed for the introduction of penalties. The367

three methods are:368

(i) Unchecked penalties Penalties are added to an arc cost, even if a penal-369

ization is already applied. To clarify, if a penalty on arc (i, j) ∈ A is370

added from iteration it to it+ γ and the arc is selected to be penalized at371

iteration it+ δ (with δ ≤ γ), the penalty is applied twice;372

(ii) Unique penalties Penalties are applied in the next γ iterations on an arc373

only if it is not penalized at the moment. To clarify, if a penalty on arc374

(i, j) ∈ A is applied from iteration it to it + γ and the arc is selected to375

be penalized at iteration it + δ (with δ ≤ γ), the penalty is rejected and376

the adaptive guidance mechanism is executed again, until an arc not yet377

penalized is detected or no more penalties become available;378

(iii) Incremental unique penalties It implements both previous penaliza-379

tion strategies. To clarify, if a penalty is applied on arc (i, j) ∈ A from380

iteration it to it + γ and the arc is selected to be penalized at iteration381

it + δ (with δ ≤ γ), the penalty is accepted and the adaptive guidance382

mechanism is executed again, until an arc not yet penalized is detected383

or no more penalties become available. Therefore, if a penalty on an arc384

(i, j) ∈ A is found at iterations it and it+ δ (with δ ≤ γ), the penalty is385

inserted twice and the adaptive guidance mechanism is executed again to386

look for additional penalties.387
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5. Computational results388

This section aims to analyze the performance of the proposed meta-heuristic.389

Our test set consists of 140 uniformly generated instances with 10, 20, 30, 40, and390

50 customers. Since large-sized instances are the most challenging, we generate391

a larger number of instances of large size (12 instances with 10 customers, 20392

with 20 customers, 28 with 30 customers, 36 with 40 customers and 44 with 50393

customers).394

Instances with the same number of customers have the same customer lo-395

cations, which are integers uniformly generated between −1000 and +1000 and396

the same demands, which are integers generated according to a random uniform397

distribution in the range 1 to 5.398

The ratio between the number of importers and exporters is generated as399

follows. Denoting by n the number of customers, we generate n/5+1 instances.400

The number of importers in instance k 6= {0, n/5} is 5k, consequently the num-401

ber of exporters is n− 5k. However, in order to have at least two importers and402

two exporters in the instance k = 0 and k = n/5, the number of import and403

export customers for such instances is forced to be 2, respectively.404

The number of trucks in each instance is fixed and is equal to the minimum405

number of trucks needed to service all container loads. It is computed as the406

the bin packing lower bound dmax{
∑

i∈I di,
∑

i∈E di}/Qe.407

Twenty percent of the instances for each problem-size considers trucks car-408

rying up to 1-container, 2-containers, 4-containers and 6-containers. This choice409

depends on the current rules adopted in several countries. Whenever the over-410

all load weight is not a constraint, almost all countries allow to carry up to 2411

containers, some others up to 4 containers. To our knowledge, in Australia up412

to 3 40 feet containers per truck are allowed when rail transportation is not413

available (Nagl, 2007). Nevertheless, these instances allow for experimenting414

with transportation units smaller than containers. The instances are available415

upon request.416

5.1. Experimental Setting417

The integer programming formulation (1)-(17) had been coded using IBM418

ILOG CPLEX Optimization Studio 12.5 and solved by the Branch & Cut of419

ILOG CPLEX 12.2. The meta-heuristic presented in Section 4 was coded in420

C++, and the integer model (18)-(21) is solved using the Callable Libraries of421

CPLEX 12.2. Experiments have been performed on a Linux four-CPU server422

2.67 GHz 64 GB RAM, with default parameter settings.423

Although a major requirement for the carrier is to determine solutions in424

about 10 minutes, the solver execution has also been set to stop after 3 hours.425

This choice allows the solver to produce better upper and lower bounds and pro-426

vide a better term of comparison for assessing the quality of the meta-heuristic.427

We set MAXTIME to 600 seconds, as suggested by the carrier, MAXIT =428

10000, γ = |I| for penalties involving importers and γ = |E| for penalties429

involving exporters. Finally, the coefficient α in Equation (23) takes value 10.430

These settings proved to provide good quality results in our preliminary testing.431
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The meta-heuristic depends also on the parameter ϕ, which sets the strategy432

to update penalties: it takes value 1 for “Unchecked penalties”, 2 for “Unique433

penalties” and 3 for “Incremental unique penalties” (see Section 4.4). All pe-434

nalization strategies are tested and combined with several execution sequences435

of the guidance mechanisms. The top five calibrations in our preliminary ex-436

periments are denoted by C1, C2, C3, C4 and C5, and are described hereafter:437

C1 each adaptive guidance mechanism has probability 33% to be performed at438

each iteration. Penalties are updated according to the strategy “Unchecked439

penalties”;440

C2 all adaptive guidance mechanisms are performed at each iteration. Penalties441

are updated according to the strategy “Unchecked penalties”;442

C3 the AGM1 is the only adaptive guidance mechanism and it is performed at443

each iteration. Penalties are updated according to the strategy “Unchecked444

penalties”;445

C4 each adaptive guidance mechanism has probability 33% to be performed at446

each iteration. Penalties are updated according to the strategy “Incre-447

mental unique penalties”;448

C5 each adaptive guidance mechanism has probability 25% to be performed at449

each iteration. Penalties are updated according to the strategy “Incre-450

mental unique penalties”.451

In order to select the best calibration among them, all generated instances452

are solved with each setting of the meta-heuristic. Since 33 instances out of453

140 are proven to be optimal by Cplex, we consider the remaining 107 instances454

and we compute how many times the best solution is found by each setting of455

the meta-heuristic and by the constructive heuristic. Results are represented in456

Figure 1a.457

Figure 1a shows that calibration C1 seems to be the most effective, in fact458

it determines the best solution for 87 times out of 107 instances. Figure 1a also459
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shows that in 55 instances the constructive heuristic returns the best solution460

and no improvement is obtained by any proposed guidance mechanism.461

Figure 1b shows how many times each setting of the metaheuristic improves462

the solution of the SVRPCB determined by the constructive heuristic. For463

example, calibration C1 improves the initial feasible solution of the SVRPCB464

for 48 times and calibration C2 for 44 times.465

As Figures 1a and 1b show, C1 seems to be the most promising calibration.466

Therefore, the results obtained by this calibration are discussed hereafter.467

5.2. Effectiveness of the adaptive guidance mechanisms468

This section illustrates the improvements produced by the adaptive guidance469

mechanisms running under the calibration C1 with respect to the constructive470

heuristic solution.471

In Table 2 each row describes a class of several instances. Q denotes the472

transportation capacity of the homogeneous fleet of trucks and Instances the473

number of instances in the considered class. Table 2 reports in the column474

CONSTRUCTIV E HEURISTIC Average t(s), which is the average time475

to determine the first feasible solution by the constructive heuristic. The column476

ADAPTIV E GUIDANCE indicates the average time in seconds to find the477

best feasible solution for the meta-heuristic (Average t(s)) and the average gap478

between the solution of the meta-heuristic and the solution of the constructive479

heuristic (Average % Gap). Negative values of this gap indicate the average480

improvement produced by guidance mechanisms on the class of instances con-481

sidered in that row.482

Table 2 shows that interesting improvement opportunities can be obtained483

by the guidance mechanisms. Moreover, they seem to be more effective as the484

truck capacity increases.485

5.3. Comparison with Cplex486

This section compares solutions provided by the meta-heuristic with those487

obtained by state-of-art solver CPLEX. Computational results are reported in488

Table 3 following the additional notation:489

• Average % Gap 10 min: Average percentage gaps with respect to best490

solutions provided by CPLEX in 10 minutes. When the solutions of the491

meta-heuristic are better than the best CPLEX upper bounds, or the492

meta-heuristic provides the optimal solutions, gaps are reported in bold.493

• Average % Gap 3 h: Average percentage gaps with respect to best solu-494

tions provided by CPLEX in 3 hours. When solutions of the meta-heuristic495

are better than CPLEX upper bounds, or the meta-heuristic provides op-496

timal solutions, gaps are reported in bold.497

• n.a.: No available gap with respect to CPLEX within its time limit, be-498

cause CPLEX did not find any feasible solution.499

500

CPLEX 10 min and 3h501
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CONSTRUCTIVE ADAPTIVE
HEURISTIC GUIDANCE

Q Instances Average Avergage Average %
t(s) t(s) Gap

10 CUSTOMERS
1 3 0.23 0.23 0.00
2 3 0.18 0.18 0.00
4 3 5.19 5.19 0.00
6 3 4.22 74.04 0.00

20 CUSTOMERS
1 5 1.97 1.97 0.00
2 5 1.11 1.11 0.00
4 5 6.96 173.79 -0.57
6 5 8.70 96.09 -1.70

30 CUSTOMERS
1 7 7.57 7.57 0.00
2 7 8.63 41.68 -0.36
4 7 13.21 408.39 -1.98
6 7 13.77 73.67 -1.19

40 CUSTOMERS
1 9 23.50 23.50 0.00
2 9 23.33 188.15 -0.31
4 9 12.39 195.06 -1.02
6 9 17.26 228.82 -1.92

50 CUSTOMERS
1 11 31.69 31.69 0.00
2 11 23.28 48.19 -0.04
4 11 16.31 131.61 -0.28
6 11 19.38 198.04 -0.26

Table 2: Adaptive guidance effectiveness

• Optimality / Feasibility : The first number indicates the number of op-502

timal solutions obtained in that class of instances; the second number503

indicates the number of feasible solutions for which the optimality cannot504

be demonstrated;505

• Average Opt. Gap: The optimality gap between upper and lower bounds506

determined by CPLEX in 10 minutes and 3h, respectively;507

• n.s.: No feasible solution determined by CPLEX within the time limit.508

It is important to note that each row of Table 3 represents average percentage509

gaps over a class of instances.510

Table 3 shows that the meta-heuristic provides exact solutions in instances511

where the transportation capacity is 1 container. CPLEX outperforms the meta-512

heuristic in few small instances; when n = 10 and Q = 6, there are exact513

solutions at most 1.62% better than those determined by the meta-heuristic.514

In the instances with 20 customers, CPLEX outperforms the meta-heuristic515

only when it is executed for 3h: the gaps are 0.12% and 0.41% for Q equal 2 and516

6, respectively. Nevertheless, the solutions obtained by CPLEX in 10 minutes517

are up to 12.19% worse on average than those of the meta-heuristic.518

In case of instances with 30 customers, the meta-heuristic outperforms sys-519

tematically CPLEX, both when it is executed for 10min and 3h. The average520
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ADAPTIVE GUIDANCE CPLEX 10 min CPLEX 3 h
Q Instances Average Average Average Optimality / Average Optimality / Average

% Gap % Gap Feasibility %Opt. Feasibility % Opt.
t(s) 10 min 3 h Gap Gap

10 CUSTOMERS
1 3 0.23 0.00 0.00 3 / 0 0.00 3 / 0 0.00
2 3 0.18 0.00 0.00 1 / 2 3.18 1 / 2 2.33
4 3 5.19 0.00 0.00 1 / 2 1.45 3 / 0 0.00
6 3 74.04 1.62 1.62 3 / 0 0.00 3 / 0 0.00

20 CUSTOMERS
1 5 1.97 0.00 0.00 5 / 0 0.00 5 / 0 0.00
2 5 1.11 -0.49 0.12 0 / 5 5.20 0 / 5 4.46
4 5 173.79 -4.73 -0.30 0 / 5 16.27 0 / 5 10.97
6 5 96.09 -12.19 0.41 0 / 5 21.22 0 / 5 7.63

30 CUSTOMERS
1 7 7.57 0.00 0.00 7 / 0 0.00 7 / 0 0.00
2 7 41.68 -10.91 -1.42 0 / 5 15.70 0 / 7 6.14
4 7 408.39 -29.10 -15.28 0 / 7 37.51 0 / 7 25.33
6 7 73.67 -42.78 -24.20 0 / 5 48.86 0 / 7 33.62

40 CUSTOMERS
1 9 23.50 0.00 0.00 2 / 0 0.00 9 / 0 0.00
2 9 188.15 n.a. n.a. 0 / 0 n.s. 0 / 0 n.s.
4 9 195.06 -31.51 -24.82 0 / 4 36.94 0 / 5 30.28
6 9 228.82 -54.78 -49.95 0 / 1 62.71 0 / 6 57.68

50 CUSTOMERS
1 11 31.69 n.a. 0.00 0 / 0 n.s. 9 / 0 0.00
2 11 48.19 n.a. n.a. 0 / 0 n.s. 0 / 0 n.s.
4 11 131.61 n.a. n.a. 0 / 0 n.s. 0 / 0 n.s.
6 11 198.04 n.a. n.a. 0 / 0 n.s. 0 / 0 n.s.

Table 3: Comparison with the exact algorithm.

gaps are up to 42.78% and 24.20% for 10min and 3h, when Q = 6. A simi-521

lar trend of improvement can be observed when n = 40, even if there are few522

instances where CPLEX was capable of generating an upper bound and, thus,523

the direct comparison of the methods is less significant. When n = 50, CPLEX524

cannot determine any upper bound in 10 minutes and returns only 9 upper525

bounds out of 44 instances in 3h.526

Tests show that the meta-heuristic improves most of the upper bounds pro-527

duced by the exact algorithm, when the instance size is larger than 20-30 cus-528

tomers. Moreover, CPLEX is not able to provide feasible solutions for 77 out529

of 140 instances within a time limit of 10 minutes, and 51 out of 140 instances530

within a time limit of 3 hours. From the point of view of the execution time,531

the meta-heuristic provides all feasible solutions in less than 10 minutes.532

Finally, Figure 1 analyses how larger capacities remarkably decrease the533

routing cost of the distribution. As Figure 1 shows, whenever the trucks have a534

larger capacity, the distribution is performed at a lower cost:535

• If we consider the instances with capacity Q = 2 with respect to the536

instances with capacity Q = 1, the routing cost decreases by 47.05% in537

the case of 20 customers, up to 58.22% in the case of 10 customers.538

• If we consider the instances with capacity Q = 4 with respect to the539

17



instances with capacity Q = 2, the routing cost decreases by 38.72% in540

the case of 10 customers, up to 46.06% in the case of 40 customers.541

• If we consider the instances with capacity Q = 6 with respect to the542

instances with vehicles Q = 4, the routing cost decreases by 20.01% in the543

case of 10 customers, up to 26.94% in the case of 20 customers.544

Note that the marginal improvement due to the vehicles with capacity Q = 6545

with respect to trucks with capacity Q = 4 is relatively small, but if we consider546

the instances with vehicles capacity Q = 6, with respect to the instances with547

vehicles capacity Q = 1, the routing cost decrease by 77.99% in the case of 20548

customers and up to 79.52% in the case of 10 customers.549
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Figure 1: Efficiency of the distribution with larger transportation capacities

6. Conclusions550

This paper addressed the SVRPCB, which is rich vehicle routing problem551

originating from a real world application. Although there are many papers on552

VRPCB and SVRP, to our knowledge, their integration was seldom investigated.553

In the specific field of container transportation, this is an interesting variant of554

drayage problems, due to the coupling between containers and trucks, each of555

which can carry more than one container. In this paper we have presented a556

mathematical model for the SVRPCB.557

The proposed solution method is a meta-heuristic based on adaptive guid-558

ance mechanisms. It determines feasible solutions for SVRPCB by a construc-559

tive heuristic decomposing the problem into two simpler SVRPs, each solved by560

a TS, and exactly merging routes by an assignment problem. However, these561

feasible solutions may be inefficient, since too many splits may be performed,562
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highly expensive arcs may be used and the first or the last importer and/or563

exporter in any route may not be appropriate.564

The proposed meta-heuristic aims to improve these solutions by detecting565

predefined drawbacks and guiding the TS in the SVRPs, in order to produce566

the desired diversification in SVRPCB solutions. More precisely, four guidance567

mechanisms are implemented by perturbing in the subsequent iterations the568

costs of the SVRPs, in order reduce splits, use less expensive arcs and change569

the first and/or the last customer in current routes.570

Our experimentation indicates that some guidance mechanisms are more571

effective than others, but usually they are all able to improve initial feasible572

solutions. In our experimentation the most effective guidance mechanism is573

obtained when all proposed guidance mechanisms are randomly combined and574

arcs already perturbed can be penalized further. Moreover, the meta-heuristic575

is much more effective than a state-of-art solver in solving artificial instances576

with 20 and 30 customers, yielding considerable savings in terms of travelled577

distances. Therefore, the meta-heuristic represents a promising instrument to578

improve the decision-making process and provides a quantitative estimation of579

savings obtainable by increasing transportation capacities.580

To conclude, the adaptive guidance mechanism is a general approach, which581

is based on the iterative analysis of current solutions and perturbation of simpler582

subproblems by problem-specific adaptive guidance mechanisms. It is important583

to note that this approach can exploit existing heuristics for subproblems of the584

problem at hand. Hence, one may easily adapt modules of code already in use,585

minimizing the inconvenience of adopting a new software. Easy pieces of code586

are also easier to maintain and possibly adapt to incorporate more advanced587

problem features. Further research will be carried out to implement guidance588

mechanisms on rich vehicle routing problems.589
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