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Abstract

The density functional tight binding (DFTB) method is a fast, semi-empirical, to-

tal energy electronic structure method based upon and parameterized to density

functional theory (DFT). The standard self-consistent charge (SCC) DFTB approx-

imates the charge fluctuations in a system using a multipole expansion truncated

to the monopole term. For systems with asymmetric charge distributions, such as

might be induced by an applied external field, higher terms in the multipole expan-

sion are likely to be important. We have extended the formalism to include dipoles

(SCCD), have implemented the method computationally, and test it by calculating

the response of various carbon nanotubes and fullerenes to an applied electric field.

A comparison of polarizabilities with experimental data or more sophisticated DFT

calculations indicates a substantial improvement over standard SCC-DFTB. We also

discuss the issues surrounding parameterization of the new SCCD-DFTB scheme.

Keywords: dipole, DFTB, DFT, tight-binding

1. Introduction

To accurately calculate the electronic structure of solid state materials, the den-

sity functional theory (DFT) has proven to be a trustworthy method if used appropri-

ately. However, for large systems DFT is increasingly expensive. For these systems, a

much faster semi-empirical method based upon the DFT framework, density func-5

∗Corresponding author
Email address: y.wu@bath.ac.uk (Ying Wu)

Preprint submitted to Computational Materials Science February 17, 2017



tional tight binding (DFTB) method [1; 2], can provide insight into the physical prop-

erties with a balance of accuracy and efficiency. First generation DFTB [1] approxi-

mates the total energy as a sum of the eigenvalues of all occupied states (also known

as band structure energy) and a two-body repulsive energy, which is fitted to full

DFT results. With careful parametrization, this method yields insightful structural10

and band structure results of various systems [1] possessing relatively small charge

redistribution. Elstner et al. [2] extended the method to accommodate systems with

considerable charge redistribution by introducing a charge fluctuation determined

self-consistently to minimize the total energy. This method, self-consistent-charge-

DFTB (SCC-DFTB), fundamentally enables the treatment of charge redistribution,15

and exhibits better results and transferability [2; 3]. Further extension of the DFTB

framework are possible, e.g. as described in Ref [4].

Standard SCC-DFTB truncates the charge fluctuation around each atom to the

monopole term. For systems with significantly asymmetrical charge distributions

it is natural to consider achieving greater accuracy by extending the monopole ap-20

proximation to higher terms. Bodrog and Aradi [4] have proposed using tabulated

multipole interaction matrices and discussed formally some of the consequences

for computation of the Hamiltonian and total energy. The specific method yielding

the multipole interaction matrix and the parameterization have not been presented,

nor implemented or applied. Motivated by a need to model with low cost large-25

scale graphene/graphitic films under the influence of external fields acting on the

nanoscale, we develop the extension of the standard second-order DFTB framework

to dipole terms proposed in [4]. We describe and implement a method to construct

and tabulate the multipole interaction matrix, discuss parameterization issues, and

validate and assess the dipole extension for carbon-based systems.30

2. Self-consistent charge DFTB

First, we briefly summarize the theoretical background of SCC-DFTB. From DFT

theory and the Kohn-Sham ansatz [5], the charge density n(r) in the SCC-DFTB

scheme [2] is expressed as a superposition of a reference density n0(r) and small
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charge fluctuation δn(r). The total energy is35

E [n] =∑
k

fk 〈Ψk |
(
−∇2

2
+ V̂ext +

∫
dr′

n0(r′)+δn(r′)
|r− r′| +Vxc[n0 +δn]

)
|Ψk〉

−EH[n0 +δn]+Exc[n0 +δn]−
∫

drVxc[n0 +δn](n0(r)+δn(r))+EII,

(1)

where fk is the Fermi-Dirac occupation function of the state k, andΨk is the corre-

sponding single-particle wave function. V̂ext describes the nuclear potential acting

on the electrons, V̂H[n] is the Hartree potential and V̂xc[n] is the exchange-correlation

potential. EH[n] is the Hartree energy, EII the nuclear-nuclear Coulomb energy and

Exc[n] the exchange-correlation energy. Writing the Kohn-Sham Hamiltonian as40

Ĥ = Ĥ0 +
(
Ĥ − Ĥ0

)
, where Ĥ0 refers to the system of reference charge density n0,

and expanding Exc[n0 +δn] as a Taylor series gives the energy to second order in

δn(r)

E [n] ≈∑
k

fk 〈Ψk | Ĥ0 |Ψk〉

+ 1

2

∫
dr

∫
dr′

(
1

|r− r′| +
δ2Exc[n]

δn(r)δn(r′)

∣∣∣∣
n0(r),n0(r′)

)
δn(r′)δn(r)

−
∫

drVxc[n0]n0(r)− 1

2

∫
dr

∫
dr′

n0(r)n0(r′)
|r− r′| +Exc[n0]+EII.

(2)

The total energy comprises band structure energy EBS (first term), second order en-

ergy E2nd (second term) and the repulsive energy Erep(remainder). The repulsive45

energy Erep is approximately expressed as a sum of pair potentials that are a func-

tion of the distance between atoms i and j , V i , j
rep(R), the form of which is obtained

by fitting to full DFT calculations [1; 2; 6]

Erep = ∑
i , j>i

V i , j
rep(R) = ∑

i , j>i

(
E i , j

DFT(R)−E i , j
el (R)

)
(3)

where Eel is the DFTB total energy without repulsive term. The band structure en-

ergy contains no contribution from charge fluctuations, with the Hamiltonian Ĥ050

determined by the reference charge density n0(r), which in the DFTB scheme is con-

structed as a sum of atomic charge densities. Correspondingly, single-particle wave
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functions are expanded as linear combinations of atomic orbitals ϕµ(r),

Ψk (r) =∑
µ

ck
µϕµ(r). (4)

where ϕµ(r) = ϕα(r−Ri ) and composite index µ = (α, i ) distinguishes orbital α on

atom i at Ri . The band structure energy is55

EBS =
∑
k

fk 〈Ψk | Ĥ0 |Ψk〉 =
∑
k

fk

∑
µ

∑
ν

ck∗
µ ck

νH 0
µν. (5)

Composite indices µ= (α, i ),ν= (β, j ) are used throughout the text below.

The atomic orbitals ϕµ(r) are determined by self-consistently solving modified

Kohn-Sham equations for an isolated confined atom using DFT [5]:

[
T̂s +V eff

i [n](r)
]
ϕµ(r) = εeff

µ ϕµ(r), ∀µ (6)

where the effective potential V eff
i [n](r)

V eff
i [n](r) =Vext,i (r)+VH[n](r)+V LD A

xc [n](r)+
(

ri

r0

)N

, (7)

additionally contains a confining potential introduced to improve performance [7].60

Vext,i (r) is the electrostatic potential from the ion i , and ri = |ri | = |r−Ri |.
Following Ref.[1], the Hamiltonian matrix elements H 0

µν are evaluated using the

two-centre approximation

H 0
µν =


εatom
µ µ= ν
〈ϕµ| T̂s +Vi +V j |ϕν〉 i 6= j

0 i = j ,µ 6= ν.

(8)

Vi is the effective free atom potential of atom i given by the expression in Eq. 7 but

without the confining potential. The diagonal term εatom
µ is the energy eigenvalue65

obtained by solving Eq. 6 again omitting the confining potential.

Regarding the second order energy in Eq. 2, if the local density approximation
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(LDA) is used for exchange-correlation contributions, then these vanish when r 6= r′.

Ignoring the on-site term of the exchange-correlation contributions, then only the

electrostatic interaction from charge fluctuations remain. The fluctuation δn(r) can70

be partitioned into atom-centred contributions δn(r) = ∑
i δni (ri ), each expressed

as a superposition of multipole densitiesδni (r) =∑
`ρi (r)[∆Q`], where ` is the num-

ber denoting the rank of the Cartesian multipole 1. The multipole densities them-

selves ρi (r)[∆Q`] can be expressed in terms of a standard normalised isotropic den-

sity ρiso
i (r ) scaled by the multipole moment ∆Q`. For example, dipole densities can75

be constructed from ρiso
i (r ) in an analogous manner to how a standard dipole can

be constructed from opposing point charges.

Standard SCC-DFTB uses the monopole approximation, in which the expansion

of the density fluctuation only includes the charge difference

δni (r) ≈ ρi (r)[∆qi ] =∆qiρ
iso
i (r ). (9)

Then E2nd becomes80

E2nd = 1

2

N∑
i=1

N∑
j=1

∫ ∫ δni (ri )δn j (r′j )

|r− r′| drdr′ = 1

2

N∑
i=1

N∑
j=1
∆qi Γ̂

00
i j∆q j (10)

where

Γ̂00
i j =

∫ ∫ ρiso
i (ri )ρiso

j (r ′
j )

|r− r′| drdr′. (11)

Analytical forms such as those based upon normalised Gaussian or exponential-

decay distributions ρiso
i ,GAU(r ) = (σi/π)3/2 e−σi r 2

and ρiso
i ,EXP(r ) = (

τ3
i/8π

)
e−τi r respec-

tively, are adopted for ρiso(r ) to evaluate Γ̂00
i j , introducing a parameter (σi or τi ) for

1For example, Q1 denotes the dipole moment made from px , py and pz components.
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each atom. Then85

Γ̂00
i j ,GAU =


1

Ri j
erf

(√
σiσ j

σi+σ j
Ri j

)
i 6= j√

2σi
π i = j ,

Γ̂00
i j ,EXP =



1
Ri j

−e−τi Ri j

(
τ4

j τi

2(τ2
i −τ2

j )2 −
τ6

j −3τ4
j τ

2
i

(τ2
i −τ2

j )3Ri j

)
−e−τ j Ri j

(
τ4

i τ j

2(τ2
j −τ2

i )2 −
τ6

i −3τ4
i τ

2
j

(τ2
j −τ2

i )3Ri j

)
i 6= j ,τi 6= τ j

1
Ri j

−e−τi Ri j

(
1

Ri j
+ 11

16τi + 3
16τ

2
i Ri j + 1

48τ
3
i R2

i j

)
i 6= j ,τi = τ j

5
16τi i = j ,

(12)

where Ri j = |Ri −R j |. The on-site value Γ̂00
i i is directly related toσi (τi ), meaning the

parameter can be obtained from Γ̂00
i i which can be approximated by the difference

of ionization energy Ii and electron affinity Ai of the atom, or the Hubbard U [3] :

Γ̂00
i i =Ui ≈ Ii − Ai .

Γ̂00
i i ,GAU =

√
2σi

π
=Ui ⇒ σi = π

2
U 2

i . (13)

90

Γ̂00
i i ,EXP = 5

16
τi =Ui ⇒ τi = 16

5
Ui . (14)

The charge difference ∆qi , itself, is calculated as ∆qi = qi − q0
i , with q0

i the va-

lence charge of the reference atom. Mulliken population analysis [8] is used in SCC-

DFTB scheme [2] to determine charge qi as

qi = e
1

2

∑
k

fk

∑
α

∑
ν

(
ck∗
µ ck

νSµν+ ck∗
ν ck

µS∗
µν

)
, (15)

with Sµν the orbital overlap

Sµν =
∫
ϕ∗
µ(r)ϕν(r)dr. (16)

Eigenvector coefficients ck
µ are obtained by minimising the total energy subject to95
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fixed particle number. This yields a set of Kohn-Sham like equations,

∑
ν

(
H 0
µν+H 1

µν−εk Sµν
)

ck
ν = 0, (17)

where the Hamiltonian elements shift H 1
µν is introduced, and here defined as

H 1
µν = e

1

2

N∑
h=1

(
SµνΓ̂

00
i h +S∗

νµΓ̂
00
j h

)
∆qh . (18)

3. Dipole approximation

The monopole approximation used in SCC-DFTB has fundamentally improved

the accuracy of the DFTB allowing for the incorporation of charge transfer effects.100

However, for highly polarised systems extending the approximation is desirable. At

the next level of approximation the atomic charge density fluctuation δni (r) can be

expressed as a superposition of a density ρi (r)[∆qi ] associated with charge differ-

ence ∆qi , and a density ρi (r)[∆pi ] associated with dipole difference ∆pi :

δni (r) = ρi (r)[∆qi ]+ ρ̃i (r)[∆pi ]. (19)

The charge part has been considered above. For the terms containing the influence105

of the dipole part of the density, we can consider this as resulting from two opposite

signed charge densities displaced from atom center Ri by ±d (limd→0) in the direc-

tion of dipole∆pi . These charge densities are taken to have distribution ρ̃iso
i (r ), and

magnitude |∆pi |/d :

ρ̃i (r)[∆pi ] =∆pi ·∇Ri ρ̃
iso
i (ri ) (20)

where ∇Ri denotes that ∇ operates which respect to the atomic center Ri . Note110

that ρ̃iso
i (r ) used to describe the dipole fluctuation density need not be the same

as ρiso
i (r ) which describes the charge fluctuation density. Still using Gaussian or

exponential-decay forms for ρ̃i , this will lead to one more free parameter.
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The second order energy is now

E2nd =1

2

N∑
i=1

N∑
j=1

∫ ∫ δni (ri )δn j (r′j )

|r− r′| drdr′ = 1

2

N∑
i=1

N∑
j=1
∆qi Γ̂

00
i j∆q j

+
N∑

i=1

N∑
j=1
∆pi ·

(
∇Ri

∫ ∫ ρ̃iso
i (ri )ρiso

j (r ′
j )

|r− r′| drdr′
)
∆q j

+ 1

2

N∑
i=1

N∑
j=1
∆pi ·

(
∇R j ⊗∇Ri

∫ ∫ ρ̃iso
i (ri )ρ̃iso

j (r ′
j )

|r− r′| drdr′
)
∆p j .

(21)

Similar to Γ̂00
i j (scalar), we introduce Γ̂10

i j (vector) and Γ̂11
i j (tensor) as115

Γ̂10
i j =∇Ri

∫ ∫ ρ̃iso
i (ri )ρiso

j (r ′
j )

|r− r′| drdr′, (22)

Γ̂11
i j =∇R j ⊗∇Ri

∫ ∫ ρ̃iso
i (ri )ρ̃iso

j (r ′
j )

|r− r′| drdr′, (23)

so that

E2nd = 1

2

N∑
i=1

N∑
j=1
∆qi Γ̂

00
i j∆q j +

N∑
i=1

N∑
j=1
∆pi · Γ̂10

i j∆q j + 1

2

N∑
i=1

N∑
j=1
∆pi · Γ̂11

i j∆p j , (24)

representing charge-charge (qq), charge-dipole (pq) and dipole-dipole (pp) contri-

butions. Expressions for Γ̂10
i j and Γ̂11

i j can be obtained similarly to Γ̂00
i j (see Appendix

A), with the specific form dependent upon the choice of isotropic distributions.120

As with ∆qi , the dipole difference ∆pi can also be obtained by Mulliken popula-

tion analysis. The total dipole of the system is

p =
∫

rρ(r)dr = e
∑
k

fk

∑
µ

∑
ν

ck∗
µ ck

ν

[
Ri

∫
ϕ∗
µ(r)ϕν(r)dr+

∫
riϕ

∗
µ(r)ϕν(r)dr

]
. (25)

Introducing dipole matrix elements Pµν as

Pµν =
∫

riϕ
∗
µ(r)ϕν(r)dr (26)

8



where the integral is over all space, then

p = e
∑
k

fk

∑
µ

∑
ν

ck∗
µ ck

νRi Sµν+e
∑
k

fk

∑
µ

∑
ν

ck∗
µ ck

νPµν. (27)

The total dipole moment of the system is seen to be made up of two contributions,125

the first the macroscopic part pext due to charges distributed on atoms throughout

the system, and the second the atomic part pint due to the atomic dipole distribu-

tions. Similar to the way Mulliken charges are defined in Eq. 15, the dipole contri-

bution can be decomposed into a sum over atomic contributions by defining

pi
ext = Ri e

1

2

∑
k

fk

∑
α

∑
ν

(
ck∗
µ ck

νSµν+ ck∗
ν ck

µS∗
µν

)
= Ri qi

pi
int = e

1

2

∑
k

fk

∑
α

∑
ν

(
ck∗
µ ck

νPµν+ ck∗
ν ck

µP∗
µν

)
,

(28)

so that p =∑
i
(
pi

ext +pi
int

)
, where pi

ext is the atomic contribution associated with the130

net charge on atom. Because the initial reference dipole of the free atom is zero, we

can identify the atomic contribution from dipole distributions on each atom pi
int as

the dipole difference on each atom, which is therefore to be used in Eq. 24.

In order to find Pµν in Eq. 26, it is convenient to define artificial orbitals χξµ(r)

χ
ξ
µ(r) = êξ ·

(
riϕµ(r)

)
ξ= x, y, z (29)

so that135

riϕµ(r) =∑
ξ

êξχ
ξ
µ(r). (30)

Since we can write r =∑
ξ êξr

p
4π/3Yξ(θ,φ), where Yξ is a spherical harmonic, then

riϕµ(r) =∑
ξ

êξ

(
ri

√
4π

3
Yξ(θi ,φi )

)(
Rµ(ri )Yα(θi ,φi )

)
=∑

ξ

êξ
(
ri Rµ(ri )

)∑
ω

Cω
α,ξYω(θi ,φi ),

(31)

9



allowing the identification of

χ
ξ
µ(r) = ri Rµ(ri )

∑
ω

Cω
α,ξYω(θi ,φi ). (32)

where the coefficients Cω
α,ξ are given by integral over the spherical surface

Cω
α,ξ =

√
4π

3

∫
Yω(θ,φ)Yα(θ,φ)Yξ(θ,φ)sinθdθdφ. (33)

In this way, Eq. 26 becomes

Pµν =
∫

riϕ
∗
µ(r)ϕν(r)dr =∑

ξ

êξ

∫
χ
ξ∗
µ (r)ϕν(r)dr, (34)

which have same form as the Sµν, so similar techniques can be used to evaluate Pµν140

numerically for each atom pair.

Finally, the same method as used to obtain Eq. 18 gives the Hamiltonian shift

including dipole fluctuation as

H 1
µν =e

1

2

N∑
h=1

[ (SµνΓ̂
00
i h +S∗

νµΓ̂
00
j h)∆qh

+ (Pµν · Γ̂10
i h +P∗

νµ · Γ̂10
j h)∆qh +∆ph · (Γ̂10

hi Sµν+ Γ̂10
h j S∗

νµ)

+ (Pµν · Γ̂11
i h +P∗

νµ · Γ̂11
j h)∆ph ] .

(35)

When an external electric field is present, the energy due to interaction with this

field produces an additional contribution to the second order energy as145

E2nd = E qq
2nd +E pq

2nd +E pp
2nd +

N∑
i=1
∆qi V ext

i −
N∑

i=1
∆pi ·Eext

i . (36)

where Eext
i is the external field at the location of atom i , and V ext

i the corresponding

external potential. This then results in an additional contribution H ext
µν to be added

to the Hamiltonian shift in Eq. 35, namely

H ext
µν = e

1

2

[
(SµνV ext

i +S∗
νµV ext

j )− (Pµν ·Eext
i +P∗

νµ ·Eext
j )

]
. (37)

10



and the total Hamiltonian matrix becomes

Hµν = H 0
µν+H 1

µν+H ext
µν . (38)

The above equation represents our self-consistent charge and dipole DFTB scheme150

(SCCD-DFTB).

4. Applications to Carbon Based Systems

An implementation of the above SCCD-DFTB scheme has been made, based

upon the existing SCC-DFTB code "DFTB+" [3; 9]. The Slater-Koster integrals for the

dipole matrix Pµν have been generated separately based on the ’pbc-0-1’ parametriza-155

tion, and calculation of Γ̂10
i j /Γ̂11

i j , Mulliken dipole difference ∆pi and inclusion of an

external field Eext
i are implemented along with the necessary modifications to the

total energy and Hamiltonian shift.

We describe both the charge and dipole distribution using the same analytical

forms, for which we use the exponential-decay profile ρiso(r ) = (
τ3/8π

)
e−τr , but note160

that the parameter τ that enters need not be the same where describing both charge

and dipole distributions. We use calculations performed on different fullerene molecules

(C60, C70 and C84) and carbon nanotubes (CNT) ((6,6), (9,0) and (15,0)) to explore

this parametrisation. All systems are treated as non-periodic clusters, with lengths

greater than 40 Å used for the CNTs to ensure that edge effects are negligible. The165

geometries of the fullerenes are those obtained by relaxing atomic coordinates using

SCC-DFTB, and the geometries of the CNTs are those used in Ref. [10]. Polarizabil-

ities for each system have been calculated as the value of the parameter τ for the

dipole distribution (τp ) is varied, while holding that for the charge (τq ) fixed. The

standard value for charge parameter τq = 1.16 obtained using Eq. 14 is used. The170

polarizability α is acquired using the relation P =αE, where E is the applied electric

field and P the resulting static dipole, and we present results for the mean polar-

izability for fullerenes or lateral polarizability per unit length (α⊥) for CNTs. Note

that the dipole P here is the total dipole of the system, a combination of the atomic

11
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Figure 1: Calculated mean polarizability of various fullerenes and lateral polarizability per unit length of
various CNTs using SCCD-DFTB with different parameter value τp for dipole distribution. The arrows
indicate the standard parameter for charge τq .

dipole on each atom and the dipole due to the distribution of the charges. We ob-175

serve a sudden band gap closing and total energy jump for fullerenes when τp is too

small (0.64, 0.672, 0.768 for C60, C70, C84), indicating that τp smaller than those

values is not physical. Instead we limit the range of value τp to within ± 30% of

the standard charge parameter, so between 0.832 and 1.472. Fig. 1 shows that all

systems exhibit similar trends: smaller τp results in larger polarizability. The set of180

fullerenes (left panel in Fig. 1) and the set of CNTs (right panel in Fig. 1) also show

similar variations.

Table 1 gives the polarizabilities of selected fullerenes and CNTs calculated from

SCC-DFTB and two sets of results from SCCD-DFTB using for the dipole parameter

either τp = τq or τp = 0.832, along with other experimental and theoretical results185

from references [10–13; 16–18]. Results obtained using τp = 0.832 are presented as

this value of the parameter yields the maximum polarizabilities for all systems with

τp in the range considered. With τp = τq , the results obtained using SCCD-DFTB

12



Table 1: Calculated polarizabilities (α or α⊥) of various carbon-based systems using self-consistent
charge (SCC) and dipole extension (SCCD) DFTB with different parameters τp , compared with previous
calculated and experimental results.

C60 C70 C84
(Å3) SCC-DFTB 58.0 77.7 93.2

SCCD-DFTB (τp = τq ) 63.9 84.6 100.7
SCCD-DFTB (τp = 0.832) 68.1 90.6 105.3
MCSCFa 75.1 89.8 109.4
charge-dipoleb 75.1 91.5 115.9
DFT-LDAc 86.1 104.8
DFT-PBEd 82.9 102.8
exp f 83.0 103.5
exp g 76.5±8
exph 102±14

CNT(6,6) CNT(9,0) CNT(15,0)
(Å2) SCC-DFTB 10.7 8.0 23.1

SCCD-DFTB (τp = τq ) 11.4 8.7 24.9
SCCD-DFTB (τp = 0.832) 11.5 8.9 25.2
MCSCFa 11.0 8.9 20.1
charge-dipoleb 11.3 8.9 21.5
DFT-PBEe 11.6 9.3 20.3

a Multi-Configurational Self-Consistent Field [11]
b Classical charge-dipole [10]
c DFT-LDA [12]
d DFT-PBE [13]
e DFT-PBE [14]
e Experimental method (electron energy loss spectroscopy) [15]
f Experimental method (molecular beam deflection) [16]
g Experimental method (gas phase) [17]

show a ∼ 9% enhancement in polarizabilities over charge only SCC-DFTB for both

fullerenes and CNTs, while with τp = 0.832, the polarizabilities are enhanced over190

the SCC-DFTB value by ∼ 16 % for fullerenes and ∼ 9% for CNTs. Further analysis of

the parameter sensitivity of the two sets of systems (see Appendix B) shows that the

observed differences are mainly due to the different nature of their polarizability,

namely that polarizability of the fullerenes is the mean value for the molecule (Å3)

and that of CNTs is the lateral polarizability per unit length (Å2).195

The above results for a set of 3 CNTs shows little enhancement in the calculated

polarizabilities when using τp = 0.832, which gives the maximum calculated polar-
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izabilities, when compared to those obtained using τp = τq . Additional calculations

on 12 CNTs ((3,3), (4,4), (5,5), (6,6), (7,0), (8,0), (9,0), (10,0), (11,0), (6,2), (6,4) and

(8,4)) with the dipole charge distribution parameter τp = τq and τp = 0.832 have200

also been performed, and give average lateral polarizability enhancements of 9.3 %

and 10.2 % respectively over charge only SCC-DFTB results, confirming that CNT

systems are not particularly sensitive to the parameter τp .

As Refs. [19–24] have suggested, the lateral polarizability of CNTs shows a linear

dependence on the square of their radius. Fig. 2 shows a comparison of calculated205

polarizabilities of these 12 CNT systems presented so as to show this, and as ob-

tained from SCC-DFTB, SCCD-DFTB using τp = τq , and DFT results using the PBE

functional reported in Ref. [14]. DFT-PBE results are chosen for comparison be-

cause Table 1 shows that among other simulation methods, DFT calculation results

and experimental measurements agree best and because the set of DFTB parame-210

ters used in this paper have been derived by fitting to the results of DFT calculations

that used the PBE functional. Fig. 2 shows that there is a systematic enhancement of

the polarizabilities moving from SCC-DFTB to SCCD-DFTB, the latter mostly show-

ing a 8 ∼ 12% improvement comparing to DFT-PBE values.

Although the above results on fullerenes and CNTs indicate that the SCCD-DFTB215

method shows systematic improvement over SCC-DFTB, there still remain differ-

ence with values derived from experiment or calculations using ab-initio DFT meth-

ods. In this regard, firstly, differences between some calculated values may reflect

slight differences in geometries used, with a 0.04 Å variation in bond length in fullerenes

and CNTs changing polarizabilities by ∼ 4%. Secondly, we note that the basis sets220

used in standard DFTB are minimal basis sets, restricting the variational freedom

to describe charge redistribution. Taking monolayer graphene as an example, we

find a perpendicular static dipole moment of ' 0.3 Å3 per unit cell using SCCD-

DFTB with a minimal basis set, the precise value depending upon the parameter-

isation. This is a significant improvement over the vanishing value found with stan-225

dard charge-only SCC-DFTB, but below ab-initio DFT values (see Appendix C), and

consistent with the trend that sees α⊥ increase with basis set size. While prepar-

ing this manuscript, Boleininger et al. [25] have reported a study using DFTB that
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shows that both an increased basis set along with dipole corrections improves the

description of the polarizabilities of hydrocarbon molecules. Their approach incor-230

porates self-consistent polarized charges and polarization orbitals, with multipole

interactions calculated "on-the-fly", reported as contributing a notable computa-

tional overhead. This is avoided in the approach adopted here. We also note that

whereas the approach considered here considers multipole contributions as a cou-

pled self-consistent charge process, alternative methods have been proposed to ad-235

dress polarization within the DFTB framework that considering dipole interactions

independently of the self-consistent charge, such as the chemical potential equal-

ization method [26–28] and SCC-DFTB with force field method [29]. Finally, both

SCC- and this SCCD-DFTB extension are based upon the second-order approxima-

tion, with higher order terms in the density fluctuation expansion of the total en-240

ergy ignored, while Gaus et al. [30] have argued that third-order terms are particu-

larly important for the description of systems with localized charges. Nevertheless,

when future improvements in basis set, higher-order corrections and other possible

improvement have been made, the dipole extension discussed here can be easily

adapted accordingly, providing further accuracy with little extra cost.245

5. Conclusion

In conclusion, we have extended the standard SCC-DFTB method from monopole

to dipole approximation. Implementing the extension within the "DFTB+" code, we

have applied it to various carbon systems and discussed the parametrization of the

dipole extension. Comparing with ab-initio DFT calculations, we find calculated po-250

larizabilities of a set of 12 CNTs, are improved using our SCCD-DFTB scheme over

those obtained from charge only SCC-DFTB. We expect more generally that SCCD-

DFTB method increases accuracy for systems with significant charge asymmetry,

while preserving the low cost of the computational approach.
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Figure 2: Calculated lateral polarizability with respect to radius squared of a set of CNTs using SCC- and
SCCD-DFTB, and for comparison results using DFT-PBE from Ref. [14].
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Appendix A. Charge-charge, charge-dipole and dipole-dipole interaction matri-260

ces.

Γ̂10
i j . As defined in Eq. 22

Γ̂10
i j =∇Ri

∫ ∫ ρiso
i (ri )ρiso

j (r j )

|r− r′| drdr′ =∇Ri Γ̂
00
i j . (A.1)
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For the Gaussian distribution, this gives immediately

Γ̂10
i j ,GAU = Ri j

R3
i j

[
−erf

(√
σiσ j

σi +σ j
Ri j

)
+

√
4σiσ j

π(σi +σ j )
Ri j e

− σi σ j
σi +σ j

R2
i j

]
, (A.2)

while for the exponential-decay distribution, the result is

Γ̂10
i j ,EXP =−Ri j

R3
i j

−Ri j



e−τi Ri j

(
− τ4

j τi

2(τ2
i −τ2

j )2
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R3
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i τ j
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i )2

τ j
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+ τ6

i −3τ4
i τ
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j −τ2
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τ j

R2
i j
+ τ6

i −3τ4
i τ

2
j

(τ2
j −τ2
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1
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i j

)
i 6= j ,τi 6= τ j
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(
1

R3
i j
+ τi

R2
i j
+ τ2

i
2Ri j

+ 7τ3
i

48 + τ4
i Ri j

48

)
i 6= j ,τi = τ j

(A.3)

Because of symmetry, the on-site values for Γ̂10
i i ,GAU and Γ̂10

i i ,EXP are both 0.265

Γ̂11
i j . As defined in Eq. 23

Γ̂11
i j =∇R j ⊗∇Ri

∫ ∫ ρiso
i (ri )ρiso

j (r j )

|r− r′| drdr′

=∇R j ⊗∇Ri Γ̂
00
i j

=∇R j ⊗ Γ̂10
i j =−∇Ri ⊗ Γ̂10

i j .

(A.4)

In this case, ∇Ri is differentiation with respect to the same vector as in Γ̂10
i j .

For both Gaussian distribution and exponential-decay distribution cases, Γ̂10
i j

has the form Γ̂10
i j = Ri j F (Ri j ). For vector a = rF (r ),

∇⊗a = F I+ 1

r

∂F

∂r
r⊗ r, (A.5)

where I is the 3×3 identity matrix. Therefore, for the Gaussian distribution becomes270

Γ̂11
i j ,GAU =

3Ri j ⊗Ri j −R2
i j I

R5
i j

[
−erf

(√
σiσ j

σi +σ j
Ri j

)
+

√
4σiσ j

π(σi +σ j )
Ri j e

− σi σ j
σi +σ j

R2
i j

]

+ 1

R2
i j

√√√√ 16σ3
i σ

3
j

π(σi +σ j )3 e
− σi σ j
σi +σ j

R2
i j Ri j ⊗Ri j .

(A.6)
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The on-site Γ̂11
i i ,GAU is the limit of Eq. A.6 as Ri j approaches 0, namely

Γ̂11
i i ,GAU = lim

Ri j →0
Γ̂11

i j ,GAU = 1

3

√
2

π
σ3/2

i . (A.7)

For the exponential-decay distribution, a similar analysis yields

Γ̂11
i j ,EXP =

−3Ri j ⊗Ri j +R2
i j I

R5
i j

+Mi j I+Ni j Ri j ⊗Ri j , (A.8)

where

Mi j =



e−τi Ri j
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and275

Ni j =
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In this case,

Γ̂11
i i ,EXP = lim

Ri j →0
Γ̂11

i j ,EXP = 1

48
τ3

i . (A.11)

Appendix B. Parametrization comparison.

Fig. B.3 shows a comparison of the sensitivity of calculated polarizabilities for

sets of fullerenes and CNTs to the dipole distribution parameter τp . In order to bet-
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Figure B.3: Comparison of changes in rooted calculated polarizabilities (∆α1/γ) of a set of fullerenes (γ=
3) and carbon nanotubes (γ= 2) obtained from various dipole distribution parameter τp . The reference
values are those obtained using τp = τq (= 1.16).

ter compare these two family of systems, the calculated polarizabilities are rooted280

(cube rooted for fullerenes and square rooted for CNTs), so that 1/τp and the rooted

polarizabilities both have unit of a length. The CNTs then exhibit a consistent linear

dependence with 1/τp and fullerenes also exhibit a consistent but weakly nonlinear

dependence of 1/τp , and these two sets show similar sensitivity towards the param-

eter τp .285

Appendix C. Polarizabilities of monolayer graphene calculated using DFT.

Table C.2 gives polarizabilities of monolayer graphene calculated using the ab-

initio DFT with CRYSTAL14[32], obtained using several different standard linear com-

bination of atomic orbital basis sets. All calculations use a C-C bond length of 2.461

Å and 61 k points in the hexagonal Brillouin zone.290
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basis set [31] LDA PBE
6-21G 0.47 0.47
6-21G* 0.51 0.52

6-31d1G 0.59 0.60
TZVP 0.63 0.63

Table C.2: Perpendicular polarizability per unit cell (Å3) of monolayer graphene using DFT calculated
with different standard basis sets.

References

[1] D. Porezag, T. Frauenheim, T. Köhler, G. Seifert, R. Kaschner, Construction of

tight-binding-like potentials on the basis of density-functional theory: Appli-

cation to carbon, Phys. Rev. B 51 (1995) 12947.

[2] M. Elstner, D. Porezag, G. Jungnickel, J. Elsner, M. Haugk, T. Frauenheim,295

S. Suhai, G. Seifert, Self-consistent-charge density-functional tight-binding

method for simulations of complex materials properties, Phys. Rev. B 58 (1998)

7260.

[3] J. Elsner, Surfaces and Extended Defects in Wurtzite GaN (PhD thesis),

Universität-Gesamthochschule Paderborn, Paderborn, 1998.300

[4] Z. Bodrog, B. Aradi, Possible improvements to the self-consistent-charges

density-functional tight-binding method within the second order, Phys. Stat.

Sol.(b) 249 (2012) 259–269.

[5] W. Kohn, L. J. Sham, Self-consistent equations including exchange and corre-

lation effects, Phys. Rev. 140 (1965) A1133–A1138.305

[6] P. Koskinen, V. Mäkinen, Density-functional tight-binding for beginners,

Comp. Mater. Sci. 47 (2009) 237.

[7] H. Eschrig, I. Bergert, An optimized LCAO version for band structure calcula-

tions application to copper, Phys. Stat. Sol. (b) 90 (1978) 621.

[8] R. S. Mulliken, Electronic population analysis on LCAO-MO molecular wave310

functions. I, J. Chem. Phys. 23 (1955) 1833.

20



[9] B. Aradi, B. Hourahine, T. Frauenheim, DFTB+, a sparse matrix-based imple-

mentation of the DFTB method, J. Phys. Chem. A 111 (2007) 5678–5684.

[10] A. Mayer, Formulation in terms of normalized propagators of a charge-dipole

model enabling the calculation of the polarization properties of fullerenes and315

carbon nanotubes, Phys. Rev. B 75 (2007) 045407.

[11] D. Jonsson, P. Norman, K. Ruud, H. Ågren, T. Helgaker, Electric and magnetic

properties of fullerenes, J. Chem. Phys. 109 (1998) 572–577.

[12] M. van Faassen, L. Jensen, J. A. Berger, P. L. de Boeij, Size-scaling of the po-

larizability of tubular fullerenes investigated with time-dependent (current)-320

density-functional theory, Chem. Phys. Lett. 395 (2004) 274–278.

[13] R. R. Zope, The static dipole polarizability of C70 fullerene, J. Phys. B: At. Mol.

Opt. Phys. 40 (2007) 3491.

[14] B. Kozinsky, N. Marzari, Static dielectric properties of carbon nanotubes from

first principles, Phys. Rev. Lett. 96 (2006) 166801.325

[15] E. Sohmen, J. Fink, W. Krätschmer, Electron energy-loss spectroscopy studies

on C60 and C70 fullerite, Z. Physik B - Condensed Matter 86 (1992) 87–92.

[16] R. Antoine, P. Dugourd, D. Rayane, E. Benichou, M. Broyer, F. Chandezon,

C. Guet, Direct measurement of the electric polarizability of isolated C60

molecules, J. Chem. Phys. 110 (1999) 9771–9772.330

[17] I. Compagnon, R. Antoine, M. Broyer, P. Dugourd, J. Lermé, D. Rayane, Electric

polarizability of isolated C70 molecules, Phys. Rev. A 64 (2001) 025201.

[18] A. F. Hebard, R. C. Haddon, R. M. Fleming, A. R. Kortan, Deposition and char-

acterization of fullerene films, Appl. Phys. Lett. 59 (1991) 2109–2111.

[19] L. X. Benedict, S. G. Louie, M. L. Cohen, Static polarizabilities of single-wall335

carbon nanotubes, Phys. Rev. B 52 (1995) 8541–8549.

21



[20] G. Y. Guo, K. C. Chu, D.-s. Wang, C.-g. Duan, Linear and nonlinear optical prop-

erties of carbon nanotubes from first-principles calculations, Phys. Rev. B 69

(2004) 205416.

[21] G. Y. Guo, K. C. Chu, D.-s. Wang, C.-g. Duan, Static polarizability of carbon340

nanotubes: ab initio independent-particle calculations, Comp. Mater. Sci. 30

(2004) 269–273.

[22] E. N. Brothers, K. N. Kudin, G. E. Scuseria, C. W. Bauschlicher, Transverse polar-

izabilities of carbon nanotubes: A Hartree-Fock and density functional study,

Phys. Rev. B 72 (2005) 033402.345

[23] V. Lacivita, M. Rérat, R. Orlando, R. Dovesi, P. D’Arco, Longitudinal and trans-

verse hyperpolarizabilities of carbon nanotubes: a computational investiga-

tion through the coupled-perturbed Hartree-Fock/Kohn-Sham scheme, Theor.

Chem. Acc. 135 (2016) 1–13.

[24] R. Demichelis, Y. Noël, P. D’Arco, M. Rèrat, C. M. Zicovich-Wilson, R. Dovesi,350

Properties of carbon nanotubes: An ab initio study using large gaussian basis

sets and various dft functionals, J. Phys. Chem. C 115 (2011) 8876–8885.

[25] M. Boleininger, A. A. Guilbert, A. P. Horsfield, Gaussian polarizable-ion tight

binding, J. Chem. Phys 145 (2016) 144103.

[26] T. J. Giese, D. M. York, Density-functional expansion methods: grand chal-355

lenges, Theor. Chem. Acc. 131 (2012) 1145.

[27] S. Kaminski, T. J. Giese, M. Gaus, D. M. York, M. Elstner, Extended polarization

in third-order scc-dftb from chemical-potential equalization, J. Phys. Chem. A

116 (2012) 9131–9141. PMID: 22894819.

[28] A. S. Christensen, M. Elstner, Q. Cui, Improving intermolecular interactions360

in dftb3 using extended polarization from chemical-potential equalization, J.

Chem. Phys 143 (2015) 084123.

22



[29] C. Iftner, A. Simon, K. Korchagina, M. Rapacioli, F. Spiegelman, A density func-

tional tight binding/force field approach to the interaction of molecules with

rare gas clusters: Application to (C 6H6)+/0 Arn clusters, J. Chem. Phys 140365

(2014) 034301.

[30] M. Gaus, Q. Cui, M. Elstner, DFTB3: Extension of the self-consistent-charge

density-functional tight-binding method (SCC-DFTB), J. Chem. Theory Com-

put. 7 (2011) 931–948.

[31] K. L. Schuchardt, B. T. Didier, T. Elsethagen, L. Sun, V. Gurumoorthi, J. Chase,370

J. Li, T. L. Windus, Basis set exchange: A community database for computa-

tional sciences, J. Chem. Inf. Model. 47 (2007) 1045–1052.

[32] R. Dovesi, R. Orlando, A. Erba, C. M. Zicovich-Wilson, B. Civalleri, S. Casassa,

L. Maschio, M. Ferrabone, M. De La Pierre, P. D’Arco, Y. Noël, M. Cauà, M. Rérat,

B. Kirtman, CRYSTAL14: A program for the ab initio investigation of crystalline375

solids, Int. J. Quantum. Chem. 114 (2014) 1287–1317.

23


	Introduction
	Self-consistent charge DFTB
	Dipole approximation
	Applications to Carbon Based Systems
	Conclusion
	Charge-charge, charge-dipole and dipole-dipole interaction matrices.
	Parametrization comparison.
	Polarizabilities of monolayer graphene calculated using DFT.

