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M. Mucha-Kruczyński,1,* J. R. Wallbank,2 and V. I. Fal’ko2,3

1Department of Physics, University of Bath, Claverton Down, Bath BA2 7AY, United Kingdom
2National Graphene Institute, University of Manchester, Booth St E, Manchester, M13 9PL, United Kingdom

3School of Physics and Astronomy, University of Manchester, Oxford Road, Manchester, M13 9PL, United Kingdom
(Received 2 November 2015; published 8 February 2016)

We identify features in the angle-resolved photoemission spectra (ARPES) arising from the periodic pattern
characteristic for graphene heterostructure with hexagonal boron nitride (hBN). For this, we model ARPES spectra
and intensity maps for five microscopic models used previously to describe moiré superlattice in graphene/hBN
systems. We show that detailed analysis of these features can be used to pin down the microscopic mechanism
of the interaction between graphene and hBN. We also analyze how the presence of a moiré-periodic strain in
graphene or scattering of photoemitted electrons off hBN can be distinguished from the miniband formation.
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I. INTRODUCTION

In this article, we discuss how the moiré superlattice in
graphene (G) heterostructures with hexagonal boron nitride
(hBN) would be reflected in angle-resolved photoemission
spectroscopy (ARPES) measurements. ARPES [1,2] is a
powerful method of exploring the electronic band structure
of solids, in particular two-dimensional materials [3,4]. It
was used to probe electronic states in graphene [5–12], a
honeycomb layer of carbon and the first of atomically thin two-
dimensional atomic crystals [13]. The high resolution state-of-
the-art ARPES enables one to observe the modifications of the
electronic dispersion in graphene due to the underlying sub-
strate [14,15] or in graphene grown on metal surfaces [16–19],
as well as to distinguish between Bernal stacking and twisted
arrangement of layers in bilayer graphene [20,21].

In G/hBN van der Waals heterostructures, a difference
δ = 1.8% [22] between the lattice constants of the two crystals
and a misalignment angle θ between their crystalline axes
produce a quasiperiodic structure [23], known as moiré pattern
with the principal period A ≈ a√

δ2+θ2 , where a is the lattice
constant of graphene. The moiré perturbation leads to the
formation of minibands in the graphene electronic spectrum,
revealed by STM spectra [24], capacitance spectroscopy [25],
and transport measurements [26–28]. Here, we show how
ARPES can help in characterizing the specific details of the
moiré superlattice affecting electrons in graphene, specifically,
in the perfectly oriented heterostructures (θ = 0), which can
be grown using CVD [29–31] or MBE [32] deposition of
graphene on hBN. We also analyze how the visibility of
the distinctive miniband features is affected by the inelastic
broadening of holes, which is substantial for the valence
band energies where the moiré miniband structure would be
most sensitive to the moiré superlattice details and find that
second-order energy derivative of ARPES signal allows us to
recover the characteristic features of the ARPES maps.

The electronic bands of graphene relevant for the following
study are formed by the hybridization of Pz orbitals of
carbon atoms in its two triangular sublattices (A and B). The
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hybridization of Pz orbitals, φ(r), on the closest lattice sites,
into band states

|ξ, p,s〉0 = ξχs
A,ξ ( p)ψA

K ξ + p(r) + χs
B,ξ ( p)ψB

K ξ + p(r),
(1)

ψi
k(r) = 1√

N

∑
R

eik·(R+τ i )φ(r − R − τ i),

produces linear dispersion, ε = sv| p|, of electrons near the
Fermi level in undoped graphene: two cones touching with
their apices exactly at the corners, K (j )

± = R̂2πj/3(± 4π
3a

,0)T ,
j = 0,1,2, of the hexagonal Brillouin zone (BZ) [33]; see
Fig. 1. Here, s = 1 (s = −1) labels the conduction (valence)
band, vectors R point to the centers of unit cells, vectors τA

and τB indicate A and B sites, and R̂ϕ stands for anticlockwise
rotation by angle ϕ. All of the corners K (j )

ξ , often called Dirac
points, with the same ξ are related by a graphene reciprocal
vector, so that it is enough to consider in Eq. (1) only two
of them, K (0)

+ ≡ K+ and K (0)
− ≡ K−. Then, the coefficients

χs
i,ξ ( p) are the corresponding components of the eigenvector

FIG. 1. Constant-energy ARPES map for the valence band states
in free-standing graphene. White hexagon (left) depicts the Brillouin
zone of graphene and the light gray rectangle the vicinity of the K+
valley, blown up to indicate the basic reciprocal vectors of the moiré
superlattice and the corresponding superlattice Brillouin zone (right).
Also shown (yellow) is a rhombic primitive cell used in Figs. 2–9.
Green, purple, and cyan lines indicate cuts in the k space for which
ARPES spectra are presented in Figs. 2–6.
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of the Dirac-like Hamiltonian (� = 1),

Ĥ0 = v p · σ , (2)

written in the basis order {ψA
K++ p,ψ

B
K++ p} in K+ and

{ψB
K−+ p, − ψA

K−+ p} in K−. Pauli matrices σi , σ = (σx,σy) act
in the sublattice space. Note that, as graphene is a gapless
semiconductor, Fermi level in it can be easily changed by
extrinsic doping.

The ARPES intensity,

I
(
K (j )

ξ + pe

) ∝
∑
s,ξ

∫
d p

∣∣sζ K (j )
ξ + pe

K ξ + p

∣∣2

× δ
(
εe + W − εs

ξ, p − ω
)
,

sζ
K (j )

ξ + pe

K ξ + p = 〈ei(K (j )
ξ + pe)·reip⊥

e z|ξ, p,s〉0, (3)

is determined by a projection sζ
K (j )

ξ + pe

K ξ + p of an electron band
state with wave vector K ξ + p onto the plane wave in vacuum
with wave vector (K (j )

ξ + pe, p⊥
e ), where p⊥

e denotes the
out-of-plane component of photoelectron wave vector. Here,
εs
ξ, p is the initial energy of the electron in the crystal, ω

is the ARPES photon energy, W ≈ 4.7eV [34] is the work
function of graphene, and εe is the photoelectron energy.
The initial and final states are connected by the operator
A·(K ξ + p)≈ A·K ξ , where A is the vector potential of the
incoming noncircularly polarized radiation, which produces
similar numerical prefactor for all p.

For Dirac electrons, the relation between the two com-
ponents of the electron wave-function is prescribed by the
direction of electron momentum [33] and this electronic
chirality (or pseudospin) provides a unique signature for
graphene in the ARPES intensity. For electrons photoemitted
from the K (j )

ξ BZ corner [8],

I
(
K (j )

ξ + pe

) ∼ ∣∣1 + ξseiϕ pe ei(K (j )
ξ −K (0)

ξ )·d∣∣2
,

where d = a(0,− 1√
3
) and ϕ p is the polar angle of p. For the

valence band, this results in crescent shapes displayed in the
ARPES intensity map in Fig. 1, where, to take into account
inelastic broadening of quasiparticles, we replaced the Dirac
δ function in Eq. (3) with a Lorentzian. Note that the patterns
in the vicinity of the BZ corners are related to each other by
60◦ rotations.

II. ARPES SIGNATURES OF G/hBN
HETEROSTRUCTURES

A. Moiré minibands in G/hBN heterostructures

Hexagonal boron nitride has the same honeycomb lattice
as graphene, but with B and N atoms instead of carbon in
the two sublattices and is a large gap (∼6 eV) insulator [22].
Placing graphene on top of hBN results in a moiré superlattice
that can be characterized by a Brillouin zone (sBZ) set
by six basic reciprocal vectors (see inset in Fig. 1) bn=
R̂nπ/3[1−(1+δ)−1 R̂θ ](0, 4π√

3a
), n=0,1, . . . ,5, where b=|bn|≈

4π√
3a

√
δ2+θ2 [35,36]. To model the electronic minibands aris-

ing due to the moiré perturbation, we use a phenomenological
symmetry-based model developed in Ref. [35]. In this model,
the Hamiltonian of the moiré-perturbed graphene takes a
generic form suitable for all misalignment angles θ

Ĥ = Ĥ0 + vb[(u+
0 f+ + u−

0 f−) + τzσz(u
+
3 f− + u−

3 f+)]

+ vτzσ · [lz × ∇(u+
1 f− + u−

1 f+)] + �τzσz,

f+ =
∑

n

eibn·r , f− = i
∑

n

(−1)neibn·r , (4)

where the diagonal Pauli matrix τz acts in the valley space.
The perturbation in Eq. (4) consists of a simple potential mod-
ulation, local A-B sublattice asymmetry due to the substrate,
and spatial modulation of the hopping between the A and B

sublattices. Within each of those contributions to the moiré
perturbation, the first term inside the round bracket, character-
ized by the dimensionless parameters u+

i , i = 0,1,3, describes
the inversion-symmetric part of the perturbation. Correspond-
ingly, the second term in each round bracket, characterized by
one of the dimensionless parameters u−

i , i = 0,1,3, represents
the inversion-asymmetric part of the perturbation. Finally, the
last term describes a global gap at the Dirac point, which
developed due to periodic deformations in graphene with
the same period as the moiré lattice. Such a global gap
� ∼ 20 meV was used to interpret the temperature dependence
of resistivity found in some heterostructures [28], but in the
following analysis of ARPES spectra for the states at ε ∼ 50–
400 meV from the Dirac point it will play no important role.

The values of parameters used here to model ARPES
in G/hBN heterostructures are listed in Table I [37]. They
correspond to some of the microscopic models suggested for
the moiré perturbation in G/hBN heterostructures [35,38–41],
and for each model the first few minibands in the valence
band are displayed on the left-hand side of Figs. 2–6. Models

TABLE I. Values of moiré perturbation parameters in Eq. (4) for the microscopic models of G/hBN heterostructures described in the
text [37]. These parameters are dimensionless because we use unit of energy vb, set by the moiré pattern period, which is vb = 0.349 eV for a
perfectly aligned G/hBN heterostructure.

Model u+
0 u+

1 u+
3 u−

0 u−
1 u−

3 Ref.

(I) −0.0158 −0.1341 −0.0145 −0.0025 0.0081 0.0086 [41]
(II) 0.032 −0.063 −0.055 0 0 0 [35,38]
(III) −0.0241 −0.0191 −0.0134 −0.0097 0.0087 0.0089 [39]
(IV) −0.0581 0.1075 0.1003 0.0174 0.0298 0.0302 [40]
(V) −0.032 0.063 0.055 0 0 0 [35]
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FIG. 2. Miniband (blue) and ARPES spectra for the model (I) as
listed in Table I. Panels (1)–(3) show spectra for cuts in the k space
marked in Fig. 1. Panels (a)–(f) display ARPES constant-energy maps
for energies (a, d) ε = −0.5vb = −0.175 eV, (b, e) ε = −0.7vb =
−0.245 eV, and (c, f) ε = −0.9vb = −0.315 eV relative to the
Dirac point, corresponding to dispersion cross-sections indicated
in the miniband plot. In the top row, (a)–(c), constant broadening
� = 7 meV has been used while in (d)–(f) � = ε/10. However, the
same intensity scale has been used for both rows. Panels (g)–(i) show
second derivative of the ARPES intensity in (d)–(f) with respect to
energy. The yellow rhombus marks the sBZ and the dimensions of
the maps correspond to those of the inset in the right of Fig. 1.

(I) [41] and (II) [35,38] consider interlayer G–hBN hopping,
with (I) allowing for a periodic lattice deformation to minimize
van der Waals interaction between carbon atoms and nitrogens
and borons. Model (III) [39] is based on DFT calculations and
also takes into account relaxation of the graphene lattice on
top of hBN. Model (IV) [40] uses Slater-Koster-type approach
to calculate electron hopping between atomic sites within the
tight-binding approximation. Finally, model (V) [35] assumes
that the perturbation is caused by quadrupole electric moments
placed on the atomic sites of hBN. All of the five selected
models predict a single secondary Dirac point (sDP) between
the first and second miniband on the valence-band side
located at either κ ′ [models (I)–(III)] or κ [models (IV) and
(V)]. Models (I), (III), and (IV) contain inversion-asymmetric
terms and hence display gaps (most pronounced for model
(IV) [42,43]) at the sDP. The generic properties of the
miniband spectra produced by all the models agree with
the transport and magnetocapacitance data taken on various
G/hBN heterostructures [25–28]. Also, optical absorption data
in Ref. [44] agree with spectral properties of model (II)

FIG. 3. Miniband (blue) and ARPES spectra for the model (II) as
listed in Table I. Panels (1)–(3) show spectra for cuts in the k space
marked in Fig. 1. Panels (a)–(f) display ARPES constant-energy
maps for energies (a, d) ε = −0.5vb = −0.175 eV, (b, e) ε =
−0.7vb = −0.245 eV and (c, f) ε = −0.9vb = −0.315 eV relative to
the Dirac point, corresponding to dispersion cross-sections indicated
in the miniband plot. In the top row, (a)–(c), constant broadening
� = 7 meV has been used while in (d)–(f) � = ε/10. However, the
same intensity scale has been used for both rows. Panels (g)–(i) show
second derivative of the ARPES intensity in (d)–(f) with respect to
energy. The yellow rhombus marks the sBZ and the dimensions of
the maps correspond to those of the inset in the right of Fig. 1.

and (V) [42,45]. The parameter sets we chose correspond
to a perfect alignment of graphene and hBN (θ = 0), what
should be the case in CVD [29–31] or MBE-grown [32]
G/hBN heterostructures, more relevant for ARPES studies
than exfoliated graphene. In the case of such an aligned
heterostructure, the characteristic energy vb = 0.349 eV.

B. Minibands signature in ARPES

The eigenstates of the superlattice Hamiltonian Eq. (4),

|ξ, p,{m,s}〉 =
∑

g=n1 b1+n2 b2

∑
s

cm,ξ
g,s ( p) |ξ,g + p,s〉0 ,

where p ∈ sBZ and m labels the minibands on the conduction
and valence side, are the result of Bragg scattering of Dirac
electrons by the moiré perturbation. We find the coefficients
c
m,ξ
g,s ( p) and the corresponding miniband energy for electrons,

ε
{m,s}
ξ, p , numerically, and then use those to evaluate ARPES
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FIG. 4. Miniband (blue) and ARPES spectra for the model (III)
as listed in Table I. Panels (1)–(3) show spectra for cuts in the k space
marked in Fig. 1. Panels (a)–(f) display ARPES constant-energy maps
for energies (a, d) ε = −0.5vb = −0.175 eV, (b, e) ε = −0.7vb =
−0.245 eV, and (c, f) ε = −0.9vb = −0.315 eV relative to the
Dirac point, corresponding to dispersion cross-sections indicated
in the miniband plot. In the top row, (a)–(c), constant broadening
� = 7 meV has been used while in (d)–(f) � = ε/10. However, the
same intensity scale has been used for both rows. Panels (g)–(i) show
second derivative of the ARPES intensity in (d)–(f) with respect to
energy. The yellow rhombus marks the sBZ and the dimensions of
the maps correspond to those of the inset in the right of Fig. 1.

intensity,

I
(
K (j )

ξ + pe

) ∝
∑
m

∣∣∣∣∑
s

cm,ξ
g,s ( pe − g)

× [1 + seiϕ pe ei(K (j )
ξ −K (0)

ξ )·d]

∣∣∣∣
2

× δ
(
εe + W − ε

{m,s}
ξ, pe−g − ω

)
. (5)

Here, g is the moiré reciprocal vector that brings pe into the
sBZ.

We show the ARPES dispersion cuts and intensity maps for
all five models listed in Table I in Figs. 2–6. In the top row,
next to the miniband spectra, we present the ARPES images
of dispersion cuts along the following k-space directions: (1)
k = (k,0); (2) k = (−b/

√
3,k); (3) k = (b/

√
3,k), displayed

in green, purple, and cyan in the inset of Fig. 1. As before, we
replaced the Dirac δ function with a Lorentzian and for those
cuts used half-width at half-maximum � = 0.02vb = 7 meV.
In all the cases, the spectra display gaps and deviations from
the linear traces observed for unperturbed graphene, which

FIG. 5. Miniband (blue) and ARPES spectra for the model (IV)
as listed in Table I. Panels (1)–(3) show spectra for cuts in the k space
marked in Fig. 1. Panels (a)–(f) display ARPES constant-energy maps
for energies (a, d) ε = −0.5vb = −0.175 eV, (b, e) ε = −0.7vb =
−0.245 eV, and (c, f) ε = −0.9vb = −0.315 eV relative to the
Dirac point, corresponding to dispersion cross-sections indicated
in the miniband plot. In the top row, (a)–(c), constant broadening
� = 7 meV has been used while in (d)–(f) � = ε/10. However, the
same intensity scale has been used for both rows. Panels (g)–(i) show
second derivative of the ARPES intensity in (d)–(f) with respect to
energy. The yellow rhombus marks the sBZ and the dimensions of
the maps correspond to those of the inset in the right of Fig. 1.

indicate boundaries of the sBZ. The cuts (1) for all the models
except (III) and (IV) are qualitatively similar, despite different
locations of the sDPs in the miniband spectra. This is because
of the chirality-induced supression of signal for momentum
states with kx > 0 [compare the relative intensity of cuts (2)
and (3)] and small magnitude of any potential gap at the sDP.
As a result, the large gap visible in cuts (1) at κ ′ can be either
between the first and second miniband [models (IV) and (V)]
or the second and third [models (I) and (II)]. A combination
of cuts along kx and ky for negative kx is necessary to deduce
the position of the sDP accurately.

We also show in Figs. 2–6 ARPES intensity maps for en-
ergies ε = −0.5vb = −0.175 eV, ε = −0.7vb = −0.245 eV,
and ε = −0.9vb = −0.315 eV in the valence band, counted
from the Dirac point and corresponding to miniband dispersion
surfaces as indicated by the gray planes cutting through the
miniband spectra. For panels (a)–(c) of Figs. 2–6, we used
� = 0.02vb = 7 meV, whereas for panels (d)–(f), � = 0.1/ε,
to model experimental broadening as measured in Ref. [7]. In
all the images, the chirality of graphene electrons is responsible
for the modulation of the intensity as a function of the polar
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FIG. 6. Miniband (blue) and ARPES spectra for the model (V) as
listed in Table I. Panels (1)–(3) show spectra for cuts in the k space
marked in Fig. 1. Panels (a)–(f) display ARPES constant-energy maps
for energies (a, d) ε = −0.5vb = −0.175 eV, (b, e) ε = −0.7vb =
−0.245 eV, and (c, f) ε = −0.9vb = −0.315 eV relative to the
Dirac point, corresponding to dispersion cross-sections indicated
in the miniband plot. In the top row, (a)–(c), constant broadening
� = 7 meV has been used while in (d)–(f) � = ε/10. However, the
same intensity scale has been used for both rows. Panels (g)–(i) show
second derivative of the ARPES intensity in (d)–(f) with respect to
energy. The yellow rhombus marks the sBZ and the dimensions of
the maps correspond to those of the inset in the right of Fig. 1.

angle ϕ of the electron momentum, akin to the spectra of
unperturbed graphene. Similar modulation of the intensity is
also clear for features in the vicinity of the sDPs; see, for
example, Figs. 2(a), 3(c), or 5(a). The moiré effect is least
pronounced for model (III), characterized by the smallest
amplitudes of the moiré perturbation parameters. Maps for
all the other models show strongly triangularly deformed
shapes. Increased broadening used in panels (d)–(f) washes
out distinctive features of the spectra. In particular, the maps
for energy ε = −0.315 eV, panels (f), show only a blurred
crescent-like shape resembling that of unperturbed graphene.
However, the ARPES maps can be sharpened by differentiating
the ARPES signal twice with respect to energy [46]. Results of
such a procedure are shown in the last row in Figs. 2–6, panels
(g)–(i), where we display the maps of the second-order energy
derivative of the ARPES intensity calculated for � = 0.1/ε.
Despite this significant broadening as compared to panels
(a)–(c), the characteristic features are similar. Note, however,
that second derivative introduces certain spurious features in
the vicinity of intensity peaks.

FIG. 7. ARPES constant-energy maps at energy ε = −0.7vb =
−0.245 eV for model (V) from Table I for different BZ corners (a)
K (0)

+ , (b) K (2)
− , and (c) K (1)

+ . The yellow rhombus in each panel shows
the sBZ boundary and the dimensions of the maps correspond to those
of the inset in the right of Fig. 1.

The time-inversion symmetry that connects the electronic

states at K+ and K− and the phase factor ei(K (j )
ξ −K (0)

ξ )·d in
Eq. (5) guarantee that the ARPES patterns in consecutive BZ
corners are related by 60◦ rotation. Examples of ARPES maps
in the vicinity of BZ corners K (0)

+ , K (2)
− , and K (1)

+ have been
shown for model (V) and energy ε = −0.245 eV in Fig. 7.

III. ARPES SIGNATURE OF PERIODIC DEFORMATION
PATTERN IN G/hBN HETEROSTRUCTURES

As noticed in Ref. [47], the graphene lattice may periodi-
cally deform to adjust locally to the slightly incommensurate
hBN substrate. In addition to affecting the moiré perturbation
[an effect already included in models (I) and (III)], these
deformations will further modify the ARPES intensity maps by
altering the positions of the carbon atoms from which electrons
are emitted. For a smooth deformation, the shift of atomic
positions

R + τ i → R + τ i + u(R + τ i) ≈ R + τ i + u(R),

where u(r) is the deformation field [48], leads to additional
phases in the crystal wave function projections onto plane
waves in vacuum:

sζ
K (j )

ξ + pe

K ξ + p =
(∑

R

ei(K (0)
ξ −K (j )

ξ + p− pe)·[R+u(R)]

)

× [
χs

A,ξ e
i(K ξ −K (j )

ξ + p− pe)·τA

+χs
B,ξ e

i(K ξ −K (j )
ξ + p− pe)·τB

]
. (6)

We have p, pe � 1
a

, so that in the vicinity of the BZ corners

K (0)
ξ we can expand to first order in ( p − pe) · u(R) � 1. We

also use the periodicity of the deformation field and rewrite
it as the Fourier transform u(R) = ∑

n un exp(ibn · R), where
we assume that only the simplest harmonics are important, to
obtain ∑

R

ei( p− pe)·[R+u(R)] ≈
∑

R

ei( p− pe)·R

+
∑

R

∑
n

i( p − pe) · une
i( p− pe+bn)·R.

Because p and pe are in the vicinity of the same valley, the
sums over lattice vectors R yield Dirac δ functions so that the
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transition amplitude is

sζ
K++ pe

K++ p =
[
δ( p − pe) + i

∑
n

δ( p − pe + bn)( p − pe) · un

]
[ei( p− pe)·τA + seiϕ pei( p− pe)·τB ], (7)

and the intensity is

I
(
K (0)

ξ + pe

) ∼
∑

s

⎛
⎝|1 + ξseiϕ pe |2 +

∣∣∣∣∣
∑

n

bn · un[e−ibn·τA + ξseiϕ pe−bn e−ibn·τB ]

∣∣∣∣∣
2
⎞
⎠δ

(
εe + W − εs

+, pe
− ω

)

≈
∑

s

⎛
⎝|1 + ξseiϕ pe |2 +

∣∣∣∣∣
∑

n

bn · un[1 + ξseiϕ pe−bn ]

∣∣∣∣∣
2
⎞
⎠δ

(
εe + W − εs

+, pe
− ω

)
, (8)

where in the second line we used the fact that bn · τ i ∼
δ 2π

3 � 1. Note that transverse deformations, bn ⊥ un, do not
contribute to the second term in the round bracket above.

For BZ corners other then K (0)
ξ , the phase factors in

the sum over R in Eq. (6) contain an additional graphene
reciprocal vector [K (0)

ξ −K (j )
ξ ]. However, we can choose any

two inequivalent valleys to construct wave functions in Eq. (1)
and Hamiltonian in Eq. (2). For those two new “reference”
valleys, we can follow the same procedure as outlined above
for K (0)

ξ , although the coefficients χs
i,ξ gain additional phase

factors [49]. The general form of the ARPES intensity, which
preserves the rotational relation between ARPES maps at
various BZ corners, is then

I
(
K (j )

ξ + pe

) ∼
∑

s

⎛
⎝|1 + ξseiϕ pe eiξ K (j )

ξ ·d |2

+
∣∣∣∣∣
∑

n

bn · un[1 + ξseiϕ pe−bn eiξ K (j )
ξ ·d]

∣∣∣∣∣
2
⎞
⎠

× δ
(
εe + W − εs

+, pe
− ω

)
. (9)

We use bn · un = 4πδ to plot the ARPES maps in the
vicinity of K (0)

+ and K (2)
− shown in Fig. 8. The moiré-periodic

strain generates satellite peaks shifted by vectors bn from the
center of the valley. This additional sixfold structure is clearly
distinguishable from the images produced by minibands,
Figs. 2–6, panels (a)–(f). In fact, for ARPES intensity maps

FIG. 8. ARPES constant-energy maps in the vicinity of valley (a,
b) K (0)

+ and (c) K (2)
− , showing the replicas of the main Dirac cone states

due to the moiré-periodic strain. The yellow rhombus in each panel
shows the sBZ boundary and the dimensions of the maps correspond
to those of the inset in the right of Fig. 1.

for energies close to the Dirac point, such replicas of the
crescent-shaped image of chiral Dirac electrons can be used
to identify the amplitude of strain in graphene because the
miniband formation effects are weak in the center of the sBZ.

IV. SECONDARY SCATTERING OF GRAPHENE
PHOTOELECTRONS BY hBN

Scattering of the electrons photoemitted from graphene off
the underlying hBN before detection changes their momentum
by a reciprocal vector of hBN without destroying their memory
of the original Dirac state they occupied. We take into account
such processes by considering transition amplitude of the
form

sζ
K (j )

ξ + pe

K ξ + p =
∫

dqe 〈ei(K (j )
ξ + pe)·r |

∑
GBN

αGBNeiGBN·r |ei(K (j ′ )
ξ +qe)··r〉

× 〈ei(K (j ′ )
ξ +qe)·reiq⊥

e z|ξ, p,s〉0

≈
∑

G,GBN

αGBN φ̂
(∣∣K (j )

ξ − G
∣∣,q⊥

e

)
δ
(
K ξ + p − K (j )

ξ

− pe + GBN−G
)[

ξχs
A,ξ ( p)eiG·τA

+χs
B,ξ ( p)eiG·τB

]
, (10)

where K (j ′)
ξ + qe is the momentum of the photoelectron after

emission from graphene and K (j )
ξ + pe is its final momentum

after scattering off hBN and gaining additional momentum
GBN, a reciprocal vector of hBN. The coefficients αGBN char-
acterize efficiency of the scattering off hBN by GBN, which we
assume depends only on the magnitude of this vector and can
also include additional phase shifts due to additional path scat-
tered electrons have to traverse between graphene and hBN.
Because the Fourier transform of the 2pz orbital φ̂(| p|,pz)
decays rapidly with increasing | p|, for each BZ corner three
vectors Gj , j = 0,1,2, for which |K (j )

ξ −Gj | = |K+| = |K−|
provide the greatest contributions to sζ

K (j )
ξ + pe

K ξ + p [for the valley

K+, for example, they are G0 = 0, G1 = ( 2π
a

,− 2π

a
√

3
), and

G2 = ( 2π
a

, 2π

a
√

3
)]. For those three vectors, we introduce

coefficients α0 (corresponding to G0 = 0 which is always
one of those three vectors) and α1 (for the other two vectors)
and after limiting the sum over G to the three biggest terms,
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FIG. 9. ARPES constant-energy maps in the vicinity of valley (a,
b) K (0)

+ and (c) K (2)
− , showing the replicas of the main Dirac cone states

due to the scattering of graphene photoelectrons off hBN. The yellow
rhombus in each panel shows the sBZ boundary and the dimensions
of the maps correspond to those of the inset in the right of Fig. 1.

we obtain intensity

I
(
K (j )

+ + pe

) ∼
∑

s

{|[1 + α0][1 + ξseiϕ pe ei(K (j )
+ −K (0)

+ )·d]|2

+ |α1[1 + ξse
iϕ pe−ξ R̂2πj/3 b1 ei(K (j )

+ −K (1)
+ )·d]|2

+|α1[1 + ξse
iϕ pe−ξ R̂2πj/3 b2 ei(K (j )

+ −K (2)
+ )·d]|2}

× δ
(
εe + W − εs

+, pe
− ω

)
. (11)

Here, we also included the contribution of electrons photoemit-
ted from unperturbed graphene that traveled directly to the
detector. The first term in Eq. (11) has the form identical to the
contribution from unperturbed graphene, whereas the second
and third term describe contributions from photoelectrons
ejected from the vicinity of the BZ corners at K (j )

ξ +G1 and

K (j )
ξ +G2, respectively, which scatter off hBN with addition of

nonzero GBN and hence are detected at K (j )
ξ + pe. The A and

B sublattice components remember the original BZ corner of
the electron, so that these two terms generate rotated crescent
shapes, as shown in Fig. 9 for the vicinity of K (0)

+ and K (2)
− . To

obtain those ARPES maps, we used real α0 and α1 and α1
1+α0

=
1
4 . Importantly, the additional patterns can be distinguished
from the miniband effects by their angular orientation.

V. SUMMARY

To summarize, we show how ARPES can be used to
characterize the electronic minibands formed in graphene due
to the moiré potential and hence elucidate on the microscopic
details of G/hBN heterostructures. We also discuss how the
features due to miniband formation can be distinguished from
those due to the periodic strain in graphene. We note that
nonzero angular misalignment θ between graphene and hBN
changes the size of and rotates the sBZ but does not affect the
angular orientation of the additional crescent shapes appearing
due to the moiré-periodic strain or photoelectron scattering off
the substrate (because these are replicas of crescent patterns
formed by Dirac states around BZ corners related by graphene
reciprocal vector).
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