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Abstract 

This paper presents the effects of hygrothermal aging on the durability of a pultruded flat sheet, immersed in distilled water 

at 25oC, 40oC, 60oC or 80oC for a period of 224 days. Elevated temperatures noticeably increase the moisture diffusion 

coefficient and moisture uptake behaviour. Measured changes in the tensile and in-plane shear mechanical properties were 

examined after 28, 56, 112 or 224 days. Tensile properties remained practically unaffected by aging whereas matrix 

dominated shear properties revealed an initial drop which was recovered to a substantial degree after further hygrothermal 

aging. Visco-elastic property changes due to the superimposing mechanisms of plasticization, additional cross-linking etc. 

were recorded. Scanning Electron Microscopy micrographs indicate that the fibre/matrix interface remained practically 

intact, even after the most aggressive hot/wet aging. X-Ray Energy Dispersive Spectroscopy analysis showed no chemical 

degradation incidents on the fibre reinforcement surfaces and infrared spectroscopy revealed superficial chemical alteration 

in the aging matrix. Optical microscopy revealed matrix cracking in samples aged at 80oC for 112 days. Lastly, Computed 

Tomography scans of un-aged material showed internal imperfections that undoubtedly enhanced moisture transport. After 

aging at 60oC for 112 days, Computed Tomography detected preferentially situated water pockets.  

 

Keywords: Pultruded FRP, hygrothermal aging, moisture, mechanical testing, Scanning Electron Microscopy, Computed 
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1. Introduction 

Fibre Reinforced Polymer (FRP) materials are used in engineering structures as load carrying elements as they can provide 

relatively high resistance to aggressive environmental conditions [1, 2]. Owing to their relative high strength and stiffness 

to weight ratios, and perceived enhanced durability benefits over traditional structural materials, there is growth in using 

FRP shapes and systems. The application of FRPs to repair and strengthen existing infrastructure is routinely practiced [3]. 

Exploitation of FRPs as primary and secondary structural elements [1, 2] is less developed within the civil engineering 

sector, and is a topic for materials and structural engineering research and development. The specific properties of FRPs 

[4-6] compared with structural grades of steel has activated applications in bridge deck constructions for short span 

highway bridges, as well as lightweight pedestrian footbridges. In many civil engineering applications, the composite 

processing method is pultrusion [4, 7, 8], since it is cost efficient in producing continuous lengths of constant cross-section 

shapes, having fibre volume fractions of 40-60%. Both mechanical fasteners and onsite adhesive bonding are used as 

methods of connection to fabricate primary structures from individual pultruded shapes [9]. Owing to the method of 

production, pultruded shapes (herein referred to as PFRP shapes) are highly orthotropic materials and their thin-walled 

cross-section is determined by the die’s shape [10]. The direction of pultrusion is also the longitudinal direction for the 

PFRP shape. Often, off-the-shelf pultrudates normally have reinforcement of glass, and a matrix based on either a polyester, 

vinylester or polyurethane resin.  

Despite service lives of 50 years or higher, civil engineering structures often lack the routine inspection and maintenance 

found in the aerospace and marine sectors. As a consequence, knowledge of their long-term service performance is a 

prerequisite for economic, safe and reliable design. Research in the field of assessment and standardization for the long-

term mechanical properties of FRPs, and their structures, is therefore in high demand. A growing number of research 

studies is continuously being published, which can be seen as aiming to offer designers a comprehensive database for the 

durability performance of FRPs. Karbhari et al. [2] have documented the reasons that created the ‘gaps’ in the transfer of 

knowledge and technology from the aerospace to the civil engineering sector. 

Moisture ingress is one of the phenomena that can adversely affect the long term durability of FRPs. The penetration of 

moisture penetrates from exposed surfaces induce both reversible and irreversible changes to the composite constituents 

[11]. Reversible changes are physical in nature, involving both property (durability) [12] and dimensional changes 

(swelling) [13]. Depending on the conditions and extent of hygrothermal exposure, some aging effects i.e. plasticization 

or softening, can be recoverable at the initial stages of aging when the absorbed water is removed and no chemical reaction 

occurs [14, 15]. Prolonged environmental exposure leads to irreversible changes that induce permanent property alterations 

within the matrix, the fibre surfaces and the fibre/matrix interface. Matrix micro-cracking [16], chain scission, residual 

cross-linking, hydrolysis, oxidation and plasticization are the major effects of the presence of moisture and moisture 

gradients [17]. The severity of the exposing conditions increases with the energy from increasing temperature.  

The fibre/matrix interface and the interphase region around each individual fibre, of a few tens of nanometer thickness, are 

susceptible to deterioration in the presence of moisture. With adhesion between the fibres and matrix reduced due to 

deterioration [18], there is enhanced interfacial capillary action along the fibres that can further promote their degradation. 

It has been also reported that moisture attacks the fibre reinforcement leading to mechanical property loss [19]. Capillary 

action or ‘wicking’ along the fibre reinforcement has been shown to be more pronounced than moisture diffusion in the 

matrix of a composite, thus degrading more prominently the fibre/matrix interface rather than the matrix or/and fibres 

individually [20]. The latter observation is verified by the higher amount of absorbed moisture uptake in reinforced 
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composites vs. unreinforced plain resin polymers [14, 21]. Based on that fact, moisture-induced local damage in a FRP 

such as hydrolysis, chain scission and permanent plasticization, is expected to be more pronounced than that in the 

respective plain polymer composite, due to the fundamental difference in the relative amount of total absorbed moisture 

[22]. All the above affect the durability of the materials and therefore modify their short and long-term performance. 

Investigations towards an understanding of the long-term durability of FRPs in practical time periods can be simulated by 

‘short-term’ accelerated aging [12, 23-33]. Accelerated aging corresponds to aging in severe conditions that provokes 

degradation and subsequently reduces aging time to a realistic short-term period. Additional energy applied to the system 

in the form of elevated temperature, increases the material’s molecular mobility accelerating the chemical reactions which 

occur during the degradation process. However, the applicability of the accelerated aging approach depends on the 

material’s chemical nature (chemical stability, degree of cure etc.) which may alter at high temperatures [34-36].  

In a pure polymer matrix system, moisture absorption usually follows a Fickian trend [34]. Extreme environmental 

conditions, such as elevated temperatures and prolonged exposure times induce intrinsic chemical changes leading to 

deviations from the classical Fickian model [21, 35, 37]. Observed deviations can be attributed to polymer relaxation [38] 

and incomplete polymer curing, which ultimately allows for residual cross-linking and the leaching out of low molecular 

weight segments [21]. These major structural changes lead to an anomalous behaviour that impedes data interpretation and 

confuses the long-term prognosis. For engineering quantification the extrapolation of mechanical property variations, from 

aging at elevated temperatures, is typically employed to make long-term property predictions through an Arrhenius-type 

approach [39].  

The coupling of moisture uptake with increased temperature is found to significantly influence the mechanical properties 

of the matrix, especially when the aging temperature approaches the Glass Transition temperature (Tg). In the early stages 

of aging, the presence of moisture depresses Tg by acting as a plasticizer of the matrix. Beyond a certain aging point, matrix 

and/or fibre/matrix interface/interphase degradation may result in leaching of low molecular weight segments. This loss of 

species, seen as a mass loss in the gravimetric measurements, increases the rigidity of the polymer and effects positively 

the Tg [12]. Leaching of non-bound substances causes an increase in Tg since non-bound segments usually act as plasticizers 

and subsequently their absence causes less mobility in the polymer in the longer-term [35]. Zhou and Lucas reported a 

similar phenomenon of Tg alterations based on un-bound and bound water molecules [15]. They reported the presence of 

Type-I bound water at the initial stages of aging that causes polymer plasticization and depression of Tg. After prolonged 

aging, the Type-II bound water leads to additional side cross-links that contribute to a Tg recovery, or a lowering in the 

reduction. Zhou and Lucas reported that Tg is minimum when the material moisture peaks and that Tg values are expected 

to elevate post-saturation [15]. Moreover, they witnessed that the higher the aging temperature the greater Tg was recovered. 

Interestingly, should the composite be partially cured, additional, or ‘residual’, cross-linking may take place, complicating 

further any characterization evaluation of hygrothermal aging. Additional cross-linking due to re-activation of curing, 

causes Tg to rise [40, 41].  

The presence of moisture in polymer composites induces swelling which develops internal stresses that may instigate 

micro-cracking [42]. The generation of micro-cracks may increase the rate of moisture ingress and hence increase the 

severity of deterioration.  

It is undeniable that the interference of the different mechanisms which may change when transitioning through Tg [43], 

may trigger fluctuations in the durability of the material which eventually may lead to negligible deterioration or even 



4 

 

improvement of the mechanical properties [34]. The complexity of the hygrothermal aging process increases when the 

different mechanisms superimpose with different rates and initiation times [44].  

The different possible competitive mechanisms which establish the durability during exposure are: (a) additional cross-

linking due to residual curing, (b) secondary cross-linking between the polymer chains and the water molecules, (c) 

swelling, (d) micro-cracking, (e) leaching of low molecular weight segments (decomposition), (f) plasticization, (g) 

polymer relaxation etc. [1, 12, 26, 34, 45]. 

Fundamental works towards the understanding of the durability of FRPs have been conducted by Surathi et al. [34], 

Berketis et al. [46], Schutte [47], Sethi et al. [48] and Maxwell et al. [30]. Keller et al. studied the effects of natural 

weathering on the durability of FRPs in real service conditions [49]. In the latter, it was reported that the system and 

material stiffness remained unaffected after 17 years of exposure to severe Alpine environment. On the contrary Keller et 

al. found that the material’s strength was markedly reduced, without yet influencing the structural safety of the construction 

[49]. The use of the Arrhenius-type protocols, such as in the proposed model from Bank et al., [39] has found a growing 

interest amongst those wishing to make predictions for mechanical property values in the long-term, throughout short-term 

hot/wet aging tests [50]. Using such protocols the durability of polymeric composites exposed to various environments has 

been studied in terms of the: FRP itself [26]; fibre reinforcement [51, 52]; matrix [51, 53]; fibre/matrix interface and 

interphase [54-56]. 

Despite the growing body of research in this field, the unquantified durability performance of FRPs is perceived as a major 

drawback hindering their wider exploitation in civil engineering structures [34]. Poor understanding of how materials 

change internally with in-service conditions can, undoubtedly, lead to poor designs and executions, requiring maintenance, 

or replacement much sooner than is desirable to achieve an acceptable level of sustainable construction [34].  

This paper reports experimental findings of an extensive study concerning the effects of moisture on an ‘off-the-shelf’ 

PFRP flat-sheet material, as part of the EPSRC funded project (Providing Confidence in Durable Composites, 

DURACOMP, EP/K026925/1). Samples were immersed in distilled water at four different temperatures of 25oC, 40oC, 

60oC or 80oC, for a period of 224 days, in accordance with the test procedure reported by Bank et al. [39]. The effects of 

hygrothermal exposure over time have been investigated in a test programme involving the following analyses: 

gravimetric; mechanical; visco-elastic (Dynamic Mechanical Thermal Analysis-DMTA), microscopic (Scanning Electron 

Microscopy-SEM and Optical microscopy); chemical (X-Ray Energy Dispersive Spectroscopy-EDS); tomographic 

(Computing Tomography-CT). The comparative study based on the evaluation of a portfolio of analysis results is used to 

extend the understanding on the behaviour of the changing properties of a PFRP flat sheet exposed to aggressive aqueous 

environments.  

 

2. Experimental procedure 

2.1 Material  

The material is a five-layered glass PFRP flat sheet (FS040.101.096A) from Creative Pultrusions Inc., USA. The nominal 

thickness is approximately 6.4mm. The outer surfaces of the laminate are covered by a thin protecting and non-structural 

polyester veil, which has the dual functions of retarding moisture ingress and protecting the PFRP from UV radiation. E-

CR glass fibres serve as the reinforcement and the matrix is of an isophthalic polyester resin with unknown additives. Fig. 

1 displays the structure of material comprising three Continuous Strand Mat (CSM) layers (for 2.75mm thick) and two 
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layers (for 3.65mm thick) of unidirectional (UD) reinforcement. The fibre volume fractions in the two reinforcement types 

are 33.3% and 54.5%, respectively, giving an overall volume fraction of 45%. 

 

 

Figure 1. Construction of 6.4mm thick PFRP flat sheet.  

 

All samples were cut from a single flat sheet of 2.4mx1.2m using a water-cooled diamond saw. Subsequently, samples 

were immersed in distilled water at the four different temperatures of 25oC, 40oC, 60oC or 80oC for time periods of 28, 56, 

112 or 224 days.  

2.2 Testing  

Sub-sections 2.2.1-2.2.3 provide summary details regarding the tests for moisture uptake, measurement of tensile and shear 

mechanical properties, and of viscoelastic properties. Sub-sections 2.2.4-2.2.6 introduce the SEM, EDS, FTIR and X-ray 

Computed Tomography (CT-scan) characterization methods. 

2.2.1 Moisture absorption 

For the moisture ingress measurements specimens were oven-dried at 30oC for 72h in order to remove absorbed moisture 

from the environment and to ensure standard initial conditioning. Square plates of 200mmx200mm and 6.4mm thickness 

(h) were immersed in distilled water at 25oC, 40oC, 60oC or 80oC in thermostatically controlled Grant SUB36 water tanks. 

The specimen size was chosen so that it resembled real conditions with moisture absorption occurring mainly in the 

thickness direction. Prior to immersion specimens were weighed using a digital scale with 0.001g sensitivity. Following 

immersion they were removed at pre-determined times in order to weigh the water ‘uptake’ in accordance with ASTM 

D5229. Mass (M(%)) change was determined using:  

𝑀(%) =
𝑀𝑡−𝑀0

𝑀0
× 100%         (1)  

where Mt is the measured mass at time t and Mo the initial dry mass. Moisture uptake measurements were conducted over 

a period of 224 days [39]. To calculate moisture diffusion coefficient the second Fick’s law is commonly employed 

assuming uniform moisture and temperature conditions within the sample:  

𝜕𝑥

𝜕𝑡
= 𝐷

𝜕2C

𝜕𝑥2        (2) 

UD roving 

Surface veil  

UD roving 

Continuous 

strand mat  

Continuous strand mat  

Continuous strand mat  
Surface veil 
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where x the is the distance in the thickness (h) direction, C is the concentration of the water and D a constant diffusion 

coefficient [57]. Moisture absorption and diffusion processes are functions of temperature, the type of FRP, fibre 

orientation and the fibre volume fraction [58, 59]. By assuming that classical Fickian diffusion takes place, D is calculated 

from the initial linear relationship of the moisture uptake with time. From the gravimetric curve shown in Fig. 2 the slope 

is:  

Slope =
𝑀2−𝑀1

√𝑡2−√𝑡1
         (3) 

In Equ. (3) M1 and M2 are the masses of the specimen at times t1 and t2 obtained from the linear part of the absorption 

process. 

 

Figure 2. Representative of a classical Fickian diffusion three-stage curve for M(t) vs. √𝑡. 

 

The maximum absorbed moisture content is M∞. In Fickian behaviour, D is a constant with respect to moisture 

concentration and temperature. According to [57] the solution of Equ. (2) for the one-dimensional approximation is: 

𝑀𝑡

𝑀∞
= 1 −

8

𝜋2
∑

1

(2𝑘+1)2
∞
𝑘=0 𝑒𝑥𝑝 (−

𝐷(2𝑘+1)2𝜋2𝑡

ℎ2 )     (4) 

Equ. (4) can be simplified for a short-term and a long-term approximation, as:  

𝑀𝑡

𝑀∞
=

4

𝜋2 √
𝐷𝑡

ℎ2        for Dt/h2 < 0.04, and                        (5) 

𝑀𝑡

𝑀∞
= 1 −

8

𝜋2 𝑒𝑥𝑝 (
−𝐷𝑡

ℎ2  𝜋2)     for Dt/h2 > 0.04.     (6) 

As long as M∞ can be established from the gravimetric curve, D for a statistical homogeneous material can be determined 

from:  

𝐷 = 𝜋(
ℎ

4𝛭∞
)2(

𝑀2−𝑀1

√𝑡2−√𝑡1
)2(1 +

ℎ

𝑙
+

ℎ

𝑤
)−2      (7) 

where l, w and h are for length, width and thickness of the rectilinear shaped specimen. In formulating Equ. (7) it is assumed 

that the moisture diffusion uptake occurs predominantly in the through-thickness direction. The final dimensional 

parameter in Equ. (7) accounts for the contribution in moisture absorption through the (cross-section) edges of the material 

[60]. Prolonged exposure can induce a deviation from this classical model and non-Fickian diffusion is observed [57, 60].  

2.2.2 Mechanical testing 

√t  
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M∞  

M2  

M1  

√t2  √t1  

slope =
𝑀2−𝑀1

√𝑡2−√𝑡1
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For the tensile coupon testing a DARTEC servo-hydraulic testing machine equipped with a 100kN load cell calibrated to 

BS EN ISO 7500-1 was used. To determine the strength and modulus of elasticity in the pultrusion direction, testing 

conducted on straight sided specimens (Fig. 3(a)) having dimensions of 250mmx25mm in accordance with ISO 527-

4:1997. Aluminium end tabs were bonded using Araldite 2015 epoxy adhesive in order to prevent from undesirable 

gripping failure during testing. Load was applied at a constant stroke rate of 2mm/min. FLA 10-11 direct strain gauges 

were bonded at mid-positions on one of the 25mm wide surfaces in order to record longitudinal strain.  

To determine in-plane shear properties, both the (anticlastic) Plate-twist and Iosipescu test methods were employed. Figs. 

3(b) and 3(c) show the test set-ups with the two different sized and shaped coupons. Loading was applied using a 50kN 

capacity Instron (3369 series) testing machine that conforms to BS EN ISO 7500-1. Plate-twist tests were conducted 

following ISO 15310:1999, whereas Iosipescu testing according with ASTM D5379/D5379M-98. Plate-twist specimens 

were 230mm×230mm×6.4mm and as shown in Fig. 3(b) the specimens were twisted using a specific rig having four 

loading points spaced at ~305 mm. A second specific rig was required for the Iosipescu test method, and as shown in Fig. 

3(c) the specimen of 20mm×76mm×6.4mm has two opposite-facing V-notches. In both shear tests a constant stroke rate 

of 1mm/min was utilized.  

For each temperature and aging time in the text matrix, batches of five or three nominally identical specimens were tested 

to establish the changing tensile or in-plane shear properties.  

 

Figure 3. Testing snapshots during: (a) tensile, (b) plate twist in-plane shear, (c) Iosipescu in-plane shear. 

 

2.2.3 Dynamic Mechanical Thermal Analysis 

DMTA was used to examine and compare the visco-elastic properties between the un-aged and aged materials. Samples 

of the PFRP flat sheet were analysed using a TTDMA Dynamic Mechanical Analyser (Triton technology, UK) on dual 

cantilever beam mode from 20oC to 200oC. Tg was defined by the peak of the tanδ curve. 

 

2.2.4 Scanning Electron Microscopy 

An JSM-6480LV (JEOL, Japan) SEM was employed to scrutinize the aging effects at the micro-structural level under 

variable pressure mode at 60 Pa to alleviate charging that would impair the imaging quality. Both un-aged and aged PFRP 

samples were inspected. All examined samples were metal coated with a 10nm chromium layer to enhance the detection 

resolution. Captured SEM images were analysed on a chemical basis using X-Ray Energy Dispersive Spectroscopy (EDS).  

 

(a) (b) (c) 
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2.2.5 Fourier Transform Infrared Spectroscopy 

Un-aged and aged materials were analyzed in the infrared spectra with the aim of identifying any chemical changes in the 

matrix due to aging. Particles of material from the bulk PFRP were collected, and for scanning, the matrix was separated 

from the fibres. Scans were carried out in the range of 500cm-1 to 4000cm-1, using a Perkin Elmer Frontier spectrometer, 

equipped with a diamond MIRacle Attenuated Total Reflectance (ATR) accessory (PIKE Technologies, USA) and a 

Deuterated Triglycine Sulfate (DTGS) detector with KBr optics (PerkinElmer, USA). 

 

2.2.6 Computed tomography 

The internal structure of the PFRP flat sheet was examined using a Nikon XT H 225 CT-scanner. In the case of un-aged 

material the tomography was employed to intrinsically identify cracks and voids. Interrogating aged samples (in their wet 

condition) had the objective of finding internal wet regions where the absorbed moisture had concentrated. The ‘wet’ 

samples were sealed in a plastic bag in order to prevent moisture loss during the scanning process. As illustrated in Fig. 4 

five flat sheets of 40mmx40mm were stacked to have a sample of ~32mm thickness. 

 

 

Figure 4. Configuration of samples for the CT-scanner analysis.  

 

3. Results and Discussion  

In this section of the paper the test results are presented, evaluated and discussed in terms of developing an understanding 

of the competing mechanisms that change the mechanical properties with aging temperature and aging duration up to 224 

days.    

  

3.1 Moisture absorption  

Fig. 5(a) depicts the distilled water ‘uptake’ curves as a function of time for immersion time to 224 days. The abscissa axis 

represents the M(%) using Equ. (1), while the ordinate-axis a linear scale of the soaking time in days. The solid lines 

indicate the gravimetric curves fitted to the experimental data. The theoretical predictions of M(t) by the Fickian model 

Equ. (6) are given by the dashed-lined curves in Fig. 5(a). Fickian modelling was employed as a practical methodology for 

the determination of diffusion coefficient values. However, it was not found efficient enough in modelling the moisture 

uptake behaviour of the aged materials and hence, other modelling approaches such as Langmuir modelling are suggested 

as more appropriate [34]. It is clear for the curves that an increase in T increases the rate of moisture uptake and the 

maximum moisture content recorded, which after 224 days at 25oC, 40oC and 60oC are ~0.98%, 1.27% and 1.82%. For the 

highest soaking temperature of 80oC the maximum is 1.89% after a mere 60 days. It is worth noting that for the 25oC 

6.4mm 

40mm 

40mm 
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4 
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soaking temperature the same specimen size absorbed almost half the amount. Furthermore, soaking at 25oC, 40oC and 

60oC the specimens failed to reach an equilibrium state. At 80oC the saturation state is maintained for approximately 40 

days, prior to M(t) dropping to a significantly lower mass. In this context, secondary effects refer to chemical 

decomposition mechanisms that lead to mass loss; that was previously reported and analyzed in a recent work by 

Grammatikos et al. [45]. Weight changes are known to be due to: i) moisture absorption; ii) leaching out of un-bound 

segments (decomposition); iii) leaching out of hydrolysis products (decomposition) [12, 15, 45]. The specific behaviour at 

80oC can be used to propose that the overall chemical decomposition might have been activated or, alternatively, have 

been more prominent after a relative short soaking period. This highlights the fact that moisture absorption and chemical 

decomposition mechanisms are superimposed. Moreover, it is observed that the moisture absorption process is more 

prominent in the initial immersion period and that chemical decomposition is most prominent in later stages, after giving 

a clearly identifiable peaked response in the M(%) values. 

On the assumption that the limit of absorption is time, not temperature, dependent, it is possible that M∞ at the three lowest 

temperatures can be equal or similar to that indicated and measured at 80oC. Based on the work of Chin et al. [61] it could 

take several years for a composite laminate at 40oC to attain moisture saturation. Table 1 presents the values of M∞ and D 

for the material at the four constant soaking temperatures. For convenience, Mmax is taken to be M∞ for the specimens aged 

at 25oC, 40oC and 60oC that had not reached equilibrium after 224 days. The values of D reported in Table 1 and Fig. 5(b) 

indicate that the diffusion coefficient exponentially increases with T, thereby verifying the responses plotted in Fig. 5(a).  

  

 

Figure 5. (a) Moisture absorption curves with time (dashed line for calculated, continuous line for experimental), (b) 

diffusion coefficients. 

 

Table 1. Maximum moistures and bulk diffusion coefficients at the four aging temperatures.  

Soaking temperature (oC) 25 40 60 80 

D (x10-6 mm2/sec) 0.42 0.52  1.15  3.26  

M∞ (%) 0.98 1.27 1.82 1.89 

     

3.2 Mechanical testing  
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Mechanical testing results presented in Figs 6 and 7 are plotted as percentage property retentions in terms of the un-aged 

mean measurement against time. The un-aged mean properties with range from the batch of five (tensile) or three (in-plane 

shear) coupons are reported in Table 2. Each plot has four different symbols that are coloured red, green, purple and blue 

for the constant soaking temperature of 25oC, 40oC, 60oC and 80oC, respectively. The symbols are used to position the 

batch means at the five testing time intervals of 0, 28, 56, 112 or 224. Error bars are used to indicate the batch variability 

shown in Table 2. The mean values are connected by a dashed straight line as information between these points is unknown. 

Figs. 6(a) and 6(b) present plots of the percentage property retentions for ultimate longitudinal tensile strength (σt,L) and 

tensile longitudinal modulus of elasticity (EL), respectively. Equivalent changes for in-plane shear strength (τLT) and in-

plane shear modulus (GLT) are plotted in Figs. 7(a) and 7(b), respectively. As can be seen from the plots in Figs. 6 and 7 

the variability in the experimental data is not constant with aging time. It is observed in Fig. 6(a) that σt,L remains practically 

unaffected at 25oC, 40oC, and 60oC. However, the tensile strength reduces by ~17% after 224 soaking days at 80oC. It is 

observed that σt,L exhibits an increasing tendency with time, especially at temperatures of 25oC and 40oC and between 112 

and 224 days. Such a strength increase can be attributed to potential additional cross-linking associated with post-curing 

of partially-cured polyester based matrix. This strengthening effect is possibly masked by a concurrent and greater 

decomposition of the PFRP material at 60oC and 80oC. The data in Fig. 6 give an interesting finding since σt,L exhibits a 

slight reduction after 56 days at 25oC and at 40oC, and the opposite effect at 60oC and 80oC. This change in σt,L suggests a 

non-linear interplay of opposing mechanisms such as additional cross-linking and decomposition. At the lowest aging 

temperature of 25oC a beneficial behaviour is noticeable only after 112 days. It takes only 56 days of soaking for the same 

outcome at the two highest temperatures of 60oC and 80oC. Furthermore, at 80oC the results show a substantial degradation 

after only 28 days, with a recovery in σt,L after 56 aging days, before strength is found to have lowered again at 112 days. 

  

Figure 6. Longitudinal tension with aging time and soaking temperature: (a) strength; (b) modulus of elasticity. 

As seen by inspecting the results in Fig. 6(b) the retention of EL seems to fluctuate around the un-aged value (100%) at 

each temperature, following an initial enhancement at 28 days. EL is seen to remain fairly constant to 224 days at 25oC and 

40oC. The measured longitudinal stiffness for the PFRP at 60oC exhibits a minimal reduction after 224 days, whereas there 

is a 20% loss in EL at 80oC.  
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Figs. 7(a) and 7(b) present the τLT and GLT percentage retentions with time using the Iosipescu and plate twist test methods, 

respectively. A characteristic trend is observed for τLT with an apparent monotonic reduction to 112 days, followed by a 

significant strength recovery at 224 days. It is seen that the 25oC and 40oC batches at 112 days exhibited a 20% reduction 

in shear strength, whereas at 60oC and 80oC a degradation to 24% and 44% is established. Mean shear strength at 25oC and 

224 days has not only recovered completely, but improved by approximately 5% against the un-aged mean value. This 

indicates the possible fact that the polyester matrix had an incomplete cure after production which re-activated during 

hygrothermal exposure and therefore let to τLT increase. For the three other aging temperatures, the mean τLT is found to 

increase by approximately 12% (40oC), 24% (60oC) and 19% (80oC) with aging between 112 and 224 days. Using the 

results for GLT in Fig. 7(b) a similar trend is observed.  

  

Figure 7. In-plane shear property retention with aging time and soaking temperature: (a) strength; (b) modulus of 

elasticity. 

Due to being matrix dominated, the equivalent shear properties (Fig. 7) have been affected more than the longitudinal 

tensile properties (Fig. 6), which expectedly remain practically constant. The monotonic reduction in shear properties for 

112 days is mainly attributed to plasticization of the polymer matrix of the composite. Nevertheless, other degrading 

mechanisms such as micro-cracking might have contributed to the depression of shear properties. It is worth to mention 

that beneficial mechanisms such as additional cross-linking might also be present, however, their effect is not likely to be 

distinguished unless it overcomes the potential of plasticization. In return, the final improvement in shear properties at the 

end of the aging regime could be attributed to additional cross-linking that occurs in the partially-cured matrix and 

significant leaching of low molecular weight segments. Secondary cross-links between the polymer chains and the water 

molecules have been also reported to occur [15]. Decomposition at this stage is present it is however being overshadowed 

by extensive residual curing. 
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Table 2. Batch longitudinal tensile and in-plane shear mechanical properties and batch glass transition temperatures. 
Aging 

temperature 
Time (days) σt,L (MPa) EL (GPa) τLT (MPa) GLT (GPa) Tg (oC) 

Un-aged  389±7.8 22±0.9 83±5.3 3.8±0.1 136±2.2 

25oC 

28 385±17 24±0.2 71±3.5 3.6±0.1 132±0.8 

56 373±19 25±0.9 69±1.8 3.3±0.1 132±2.4 

112 385±52 25±2.4 66±1.0 3.0±0.1 126±1.7 

224 440±32 26±3.1 87±2.8 3.2±0.1 122±2.2 

40oC 

28 398±14 25±0.3 79±1.7 3.3±0.1 135±1 

56 387±25 24±2.5 74±4.5 3.4±0.2 131±2.1 

112 387±57 25±2.5 68±3.0 3.0±0.1 127±2.1 

224 410±46 26±4.4 78±2.1 3.3±0.1 123±1.2 

60oC 

28 399±25 25±2.4 76±2.1 3.5±0.1 130±1.3 

56 406±16 25±1.6 66±3.5 3.2±0.1 134±2.0 

112 366±45 25±2.3 58±1.0 2.8±0.2 129±2.6 

224 373±61 24±2.9 78±1.1 2.9±0.3 123±1.8 

80oC 

28 300±22 25±1.6 63±3.7 3.2±0.1 132±1.5 

56 353±69 23±3.1 54±3.3 3.1±0.1 130±2.9 

112 314±28 25±1.4 42±2.7 2.4±0.1 130±2.6 

224 326±23 27±3.1 57±0.6 2.7±0.1 133±1.9 

 

3.3 Dynamic mechanical thermal analysis  

Fig. 8 presents Tg changes from DMTA throughout the whole aging programme with the Tg plotted as a percentage retention 

of Tg for the un-aged material. The final column in Table 2 lists the Tg values of the un-aged and aged materials. The 

important finding is that Tg has a general decreasing trend with exposure time, which is known to correspond to 

plasticization and micro-cracking due to moisture-induced swelling of the bulk of polymer composite [27]. These material 

changes were clearly mirrored by way of the initial decreasing trend in the matrix dominated shear properties presented in 

Figs 7(a) and 7(b). In the case of samples aged at 60oC, it is seen that Tg was lowered from 1362.2oC to 1301.3oC at 28 

days, before increasing by 3% at 56 days, and then reducing again to a temperature of 123oC, which is very comparable to 

the Tg of PFRP material aged at 25oC and 40oC for 224 days. Interestingly, samples aged at 80oC show an exponential form 

of reduction up to 112 days, followed by a 2% increase at 224 days. For this soaking temperature, it is believed that the 

degree of material degradation was insufficient to overcome the beneficial effects that might stem from additional cross-

linking and the effect of leaching out of non-bound fragments. Changes in Tg are associated with changes in the chemical 

structure of the polyester based matrix. As mentioned in Section 1, there are different possible competitive mechanisms 

which dominate in the establishing of the mechanical and visco-elastic behaviour during exposure. These fundamental 

mechanisms interplay with each other to generate the non-linear behaviour observed experimentally supporting evaluation 

given in Section 3.2 for the specific characteristics of the in-plane shear properties.  
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Figure 8. Glass transition temperature (Tg) with time for the four constant aging temperatures. 

  

Increases in moisture content have been shown to lead to increases in the magnitude and shifts to a lower temperature in 

loss factor curves (tan) [12, 62]. The drop in Tg shown in Fig. 8 may be due to the increasing presence of water within the 

polymer. Distribution of intermolecular chemical bonds will induce a further decrease in Tg that will affect negatively the 

mechanical properties. In this characterization work, it is found that storage modulus (E’), tan and Tg all vary according 

to the different structural mechanisms that control, at different times, the physicochemical and mechanical properties [12].  

Fig. 9 (a to d) presents E’ and tan vs. temperature curves for samples aged at all the investigated aging temperatures for 

a maximum of 224 days. The results of the un-aged material are provided by the solid line curves, and allow for a direct 

comparison. Changes in storage modulus are associated with the degree of additional cross-linking and decomposition 

while tan curves reveal an increasing tendency due to the presence of moisture and the extent of aging time. In Fig. 9(a), 

E’ and tan of samples aged at 25oC are illustrated. E’ of samples aged forta 112 and 224 days shows a drop due to the 

effects of significant plasticization. Samples aged at 25oC were not expected to experience any significant cross-linking 

incidents owing to the lack of the necessary thermal energy to re-activate curing. Samples aged at 40oC (Fig. 9(b)), 

highlighted a more complicated behaviour. There is an increase in E’ (glassy region) after 28 days, followed by a decrease 

for the 56 and 112 days and a final recovery after 224 days. In this case the beneficial effects of cross-linking and leaching 

of low-molecular segments were more dominant than plasticization over the 28 days period and therefore the material was 

found to increase in stiffness. This behaviour was not continued for the following 112 days in which E’ returned to values 

similar to the un-aged material. The effect of plasticization is verified by the broadening of the tanδ (Figs. 9(a) and 9(b)) 

curves with aging. This behaviour is more obvious for samples aged at 25oC than 40oC. Broadening of tan response 

implies higher molecular mobility which paves the way for plasticization [12, 40, 46]. At 60oC (Fig. 9(c)), cross-linking 

and leaching surpass plasticization leading to a steady increase of relative modulus. Zero or negligible broadening of the 

tan curves confirmed the masking of plasticization by opposing beneficial mechanisms. The slight increase of E’ after 56 

days gives confirmation to the recorded slight increase in Tg values (Fig. 8, 60oC – 56 days).  
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The visco-elastic behaviour of aged PFRP at 80oC (Fig. 9(d)) was similar to that at 60oC. It is worth mentioning that 

samples aged at 60oC and 80oC reached higher E’ values as opposed to samples aged at 25oC and 40oC revealing the larger 

effect of additional cross-linking and leaching of low-molecular weight segments.  

 

   

 

Figure 9. Storage modulus (E’) and tan as a function of time to 224 days and aging temperature of: a) 25oC, b) 40oC, c) 

60oC, d) 80oC. Aging time curves are symbolized as follows: un-aged (-), 28days (···), 56days (---), 112days (-·-), 224days 

(-··-).  

 

3.4 Scanning electron microscopy 

Using the approach introduced in Sub-section 2.2.4 SEM micrographs of fractured surfaces from failed tensile specimens 

are shown in Figs. 10 and 11. Images for the PFRP aged to 224 days can be compared with the un-aged material. Fig. 10 

presents fractured surfaces with both matrix and fibres, whereas in Fig. 11 the higher resolution images are for the matrix 

only. Initial inspection finds that the fibres are firmly connected/embedded into the matrix indicating the presence of an 

acceptable fibre/matrix adhesion at the four aging temperatures. Closer examination of the fibre surfaces themselves in 

Fig. 10, shows that the majority of the fibres possess clean surfaces, suggesting a clear fibre/matrix debonding when a 

tensile coupon fails with the rupturing mode of failure [63]. 
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Figure 10. SEM images of fractured surfaces: (a) un-aged; (b) 25oC for 224days; (c) 40oC for 224 days; (d) 60oC for 224 

days; (e) 80oC for 224 days. 

 

 

   

   

   

  

Figure 11. SEM images of fractured surfaces showing the fibre-fibre interphase and fibre-pockets: (a) un-aged; (b) 25oC 

for 224days; (c) 40oC for 224 days; (d) 60oC for 224 days; (e) 80oC for 224 days. 
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Fractured bulk matrix surfaces were assessed using SEM with the aim of identifying any changes at the fibre/matrix 

interface/interphase. Figs. 11(a to e) illustrate fibre ‘pockets’ or matrix areas where the glass fibres had been enclosed prior 

to failure. The images show there to be matrix regions or fibre-fibre interphase that separate the fibre ‘pockets’. Inside the 

pockets there are ‘voids’ that are not present in the fibre-fibre interphase regions. The presence of cluster-like voiding is 

possibly due to selectively detaching of the fibre sizing layer. Apart from the maximum accelerating aging at 80oC, the 

surface texture of the pockets in Figs. 11(a) to 11(d) does not indicate any significant change between un-aged and aged 

materials for soaking temperatures of 25oC, 40oC and 60oC. At 80oC the image in Fig. 11(e) shows a rougher morphology 

that could be attributed to a more severe degradation of the fibre-sizing. This observation could be indicative of brittle 

failure or a more cross-linked interfacial bond. Overall the ten micrographs in Figs. 10 and 11 suggest that hygrothermal 

aging to 224 days had induced minimal changes at the micro-level and this finding supports what was discussed in Section 

3.3 from an evaluation of the mechanical property test results. 

The surface of the fibre reinforcement was analyzed using Energy Dispersive Spectroscopy (EDS). Table 3 reports the 

percentage of chemical elements present, and the totals are 100%. Comparing the five sets of results (obtained from 

fractured samples) and considering the variability of the technique, there is no clear trend to indicate that fibers themselves 

are affected by hygrothermal aging. The variation of C shown in Table 3 is attributed to the presence of residual matrix 

particles on the surface of the fibres.  

Table 3. Percent composition of chemical elements at surface of fibres at zero days and 224 days of aging. 

 C O Mg Al Si Ca  

Un-aged 26.5 43.3 0.5 4.7 15.9 9.1  

25oC 20.0 43.9 0.7 5.0 20.3 10.2  

40oC 11.4 46.5 0.4 5.9 23.6 12.1  

60oC 27.6 41.3 0.4 4.8 16.9 9.0  

80oC 18.6 40.2 1.1 5.0 22.2 12.9  

 

3.5 Fourier Transform Infrared Spectroscopy 

Samples of matrix (separated from the fibres) from both un-aged and aged material were scanned in the infrared spectra. 

Infrared signatures of the aged PFRP (red curves) have been plotted against the un-aged spectra (blue curve) in Fig. 12, 

with the aim of identifying any significant chemical reactions that might have occurred during the hygrothermal aging. It 

is known that ester groups in polyester resins are susceptible to hydrolysis and the higher the aging temperature the more 

severe hydrolytic attack is expected to occur. Figs. 12(a) to 12(d) present the spectra at 224 days for the four aging 

temperatures of 25oC, 40oC, 60oC or 80oC.  

Owing to the presence of O-H there is a broad peak with weak intensity in the four parts of Fig. 12, in the wavelength 

region of ~3700 cm-1. The next weak peak which sets at around 2960 cm-1 is attributed to C-H stretching. A third peak at 

~1730 cm-1 indicates the presence of ester groups in the polyester (the carboxyl acid groups). The severity of decomposition 

can be determined by the maximum intensity of the O-H peak at 3700 cm-1 and the C-H peak at 2960 cm-1. Overall, 

evaluation of the IR spectrums of the aged materials suggests that chemical decomposition by hydrolysis was insignificant, 

since, with increasing aging temperature, the change in the peaks of the O-H band is ~1% and < 2% [64]. This finding 

from the FTIR analysis enhances the aforementioned understanding reported in Section 3.2 for the causes of the observed 

changes in the mechanical properties and PFRP material’s microstructure.  
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Figure 12. Infrared spectrums of un-aged and 224 day aged matrix: (a) 25oC; (b) 40oC; (c) 60oC; (d) 80oC. 

 

3.6 Computed tomography scan 

Un-aged (dry) and aged (wet) samples were scanned with the aim of identifying internal imperfections and wet regions, 

respectively. In each case, a stack of 5 replicates was inspected for statistical purposes. Figs. 13(a) and 13(b) are images 

for an un-aged stack, whereas Fig. 13(c) is for the aged material for 112 days at 80oC. Fig. 13(a) is a three-dimensional 

representation of dry material from which the structure of the front facing CSM layer is very obvious. Figs. 13(b) and 13(c) 

are images of a two-dimensional presentation through the 32mm thickness of a stack. In these figures the direction of the 

continuous UD fibre layers at the bottom of the image is horizontal. Above the lowest flat sheet the rest of the sheets have 

their UD reinforcement direction perpendicular to that at the bottom. In Fig. 13(b) there are noticeable cracks running 

through the thickness of the UD layers. These cracks were potentially formed due to the relief of residual stresses developed 

during and after the pultrusion process and the thermal expansion mismatch between fibres and matrix. Such cracks will 

be responsible for a higher rate of moisture transport. Figs. 13(b) and 13(c) show that there are no similar cracks in the 

perpendicular direction using the CT-scanning imaging of the bottom flat sheet. 

Fig. 13(c) presents the aged-samples (wet) case. Dark (black) areas represent water pockets mainly located within the CSM 

layers and at the CSM/UD layer interface. This observation suggests that the CSM/UD interface is most prone to local 

deterioration in the presence of moisture uptake. It may also be proposed that the longitudinal cracks formed in the UD 

layers appear to assist in the movement of moisture through the sheet’s thickness and so the CSM layers and the CSM/UD 

interface act as a ‘sponge’ in absorbing localized concentrations of moisture.  
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Figure 13. CT-scanning: (a) a three-dimensional representation using a stack of five dry (un-aged) flat sheets; (b) two-

dimensional image of dry (un-aged) material; (c) two-dimensional image of wet samples (aged and fully saturated). 

 

3.7 Optical microscopy 

The exposed faces (cross-sections) of samples aged for 112 days at 60oC and 80oC were analyzed with an optical 

microscope with a view to identifying the presence of surface corroding deterioration caused by hot/wet aging. The three 

images in Fig. 14 allow for comparison between the un-aged and aged PFRP materials. As can be seen by the ‘black’ areas 

appearing in Fig. 14(b), aging induces characteristic ‘pitting’ corrosion around the fibres. The severity of this phenomenon 

leads to cracks through the matrix, as seen in Fig. 14(c). Such matrix cracking will accelerate moisture absorption and 

could trigger the development of other degradation mechanisms such as delaminations, hydrolysis, fibre corrosion etc.  

 

   

Figure 14. Optical micrographs: (a) un-aged; (b) aged for 112 days at 60oC; (c) aged for 112 days at 80oC. 

 

4. Concluding Remarks 

This paper presents an examination of the effects of hygrothermal aging on the durability of a pultruded E-CR glass fibre 

reinforced polyester matrix. Samples cut from a 6.4mm thick flat sheet were immersed in distilled water at 25oC, 40oC, 

60oC and 80oC, for a maximum aging period of 224 days. Gravimetric measurements were recorded during the whole 

aging regime. Changes in the tensile and in-plane shear mechanical properties were determined after 28, 56, 112 and 224 
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days. Physico-chemical effects were characterized by analysis using SEM, EDS, FTIR, CT-scanning and Optical 

microscopy. It was found that: 

 Elevated temperatures accelerate the moisture absorption rate and moisture diffusion coefficient (0.42 to 3.2610-6 

mm2/s). Aging at 80oC (which is more than 40oC below the un-aged material’s Tg) revealed substantial mass loss that 

can be attributed to decomposition and leaching out of low-molecular weight segments into the water medium. 

 Tensile strength and modulus of elasticity in the direction of pultrusion remained virtually unaffected, except for aging 

at 80oC.  

 Determination of in-plane shear modulus and in-plane shear strength showed that matrix dominated properties were 

significantly affected by hygrothermal aging. After an initial lowering, the 224 day test results showed that these 

mechanical properties had significantly increased compared to test results for 112 days. Changes witnessed from the 

mechanical testing data are believed to be due to the superimposing mechanisms of swelling, plasticization, leaching 

out of low-molecular weight segments and additional cross-linking.  

 Dynamic mechanical analysis verified the variation of shear mechanical properties by exhibiting cross-linking, leaching 

and plasticization as a result of increased temperature and moisture ingress, respectively. Tg showed a continual 

decreasing tendency for aging to 224 days at: 25oC (1320.8 to 1222.2oC); 40oC (1351.0 to 1231.2oC); 60oC 

(1301.3 to 1231.8oC). At 80oC, Tg (1321.5 to 1331.9oC) was lowest at 112 days and then recovered by 3% after 

224 days. This finding for the PFRP’s response at 80oC can be attributed to a greater matrix stiffness following 

extensive polymer cross-linking and leaching out of low-molecular weight segments.  

 Scanning Electron Microscopy (SEM) micrographs indicated that the fibre/matrix interface remained practically intact 

after hygrothermal aging for 224 days.  

 Energy Dispersive Spectroscopy (EDS) analysis showed that no significant chemical degradation occurred on the E-

CR glass fibre surfaces after hygrothermal aging for 224 days.  

 Infrared spectroscopy (FTIR) analysis revealed minimal chemical changes in the aged matrix. Matrix cracking, that 

enhances moisture ingress and subsequently accelerate aging, was detected in exposed faces (cross-section edges) of 

samples after aging for 112 days at 80oC via optical microscopy.  

 Computed tomography scanning provided imaging information to locate, in un-aged material, internal imperfections 

in the form of cracks along the unidirectional roving bundle lengths that undoubtedly, promotes moisture transport into 

the body of the laminate. CT-scanning also detected that there were preferentially pockets of water inside samples aged 

at 60oC for 112 days.  

Using a standard accelerated testing protocol and combining mechanical testing with a programme of material 

characterization analysis methods, a qualitative understanding has been developed on the effects of competing degradation 

mechanisms on the durability of a commercially available pultruded flat sheet. The reported test results revealed the matrix 

and interface/interphase dominance on the material’s response during aging.  
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