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ABSTRACT 

A new methodology to predict the transient operational temperature of a polymer-steel gear pair under 

loaded running is presented. For the involute gear form, rolling and sliding leads to a loss of gear 

efficiency and generation of heat in the contact zone. The power dissipated is used to set the 

conditions for a series of rod on disc experiments. The rod-on-disc data are processed in a time 

averaging procedure, which allows prediction of the complete gear temperature. This is assessed with 

analytical and finite element models to validate the predicted temperature rise against the 

experimental data. The significance is that the experimental procedures may be used to assess gear 

thermal performance without testing full gear pairs. 
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1. Introduction 

 Spur gears that are machined or injection moulded from polymers are becoming increasingly 

prevalent in geared systems since they can be manufactured cost effectively, especially when 

moulded. They also have a lower inertia than metallic gears, which can be advantageous in terms of 

the dynamic response of a gear train used in low power transmission applications. In addition, as the 

number of polymer gears manufactured per year rivals that of metallic gears there is a desire to utilise 

them in higher power applications. Metallic spur gears have been well-researched and developed and 

it is now possible to design them with a high degree of confidence, taking account of strength and 

wear. However, it is less straightforward to calculate the strength of polymer spur gears due to the 

nonlinear properties of polymers and the limited work that has been done to investigate their wear 

mechanisms. This paper investigates the contact mechanism between two straight cut spur gear teeth 

(one metal and one polymer) and how it results in heat generated in the zone of contact. 

 The contact in a straight cut involute spur gear pair has both rolling and sliding elements as first 

documented by Breeds et al. [1]. Pure rolling occurs at the point at which the contact is in line with 

the centres of both the pinion and the gear, however, this occurs only at an instantaneous point. As the 

contact approaches this point and then moves away from it the sliding velocity decreases and then 

increases, respectively. This action can be modelled using the concept of equivalent cylinders, as 

reported by Hamrock et al. [2] who associates, for each point in the contact sweep, two cylinders of 

differing radii in contact with relative velocities determined by the rotation of pinion and gear. The 

sliding velocity can then be calculated through the contact sweep, which will vary through the stroke. 

The geometry of a gear is such that fine details of the size and shape of the teeth are superimposed 

upon the overall diameter of the circular gear. A full thermal analysis of the complete gear geometry 

would therefore be complex and an alternative predictive model based on the equivalent cylinders 

analogue would be preferable. This alternative model would also require experimental validation, for 

example, from an axially aligned steel rod in sliding contact with a polymer disc. The manner in 

which experimental and predicted results are compared would be critical for the validation process 

and this provides a focus for the procedures described in this paper. 

 The works of Hooke et al. [3] and Breeds et al. [1] make substantial inroads into understanding 

how spur gears run together and what the contact mechanics are of the gear teeth. In particular, the 

actions of rolling and sliding between the driven and driving gear are described. Furthermore, they 

indicate how this geometry driven contact, so particular to involute spur gears, may influence the 

efficiency of any given gear pair as well as resistance to wear, which are both instrumental in 

temperature rise. With reference to polymer-steel contact in involute gears a study was conducted 

using a Bowden-Leben stick-slip machine, which is a conventional tribometer utilising a pin sliding 

against a flat surface (Bowers et al. [4]). For steel running against nylon, values of 0.37 and 0.34 for 

static and dynamic friction, respectively, were published. Clearly, the materials chosen for the gears 
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will have a large effect on the friction and associated efficiency, which were measured by Walton et 

al. [5]. The efficiency ranged between 88% and 98% depending on material, load and speed. Overall, 

the material is a driving factor in the increase or decrease of efficiency, but the geometry, hence slip 

ratio is also important. Xie and Williams [6] made progress in predicting the coefficient of friction 

and wear between a randomly rough hard surface and a softer surface. They used a technique 

developed by Greenwood and Williamson [7] and expanded it to include specific plastic micro cutting 

of the softer material by the harder. Although progress has been made in the link between this and the 

actual contact mechanism, much is still to be done to quantify it completely. Indeed, in medical 

prosthetics, there has been much experimentation to validate a particular geometry of ball and cup of 

defined materials. Fisher et al. [8] found that surface roughness contributes greatly to the wear of a 

polymer in contact with a metal. They also concluded that the wear was not dependent on sliding 

velocity, however, the maximum sliding speeds used were 240 mm/s, which are lower than those 

generally experienced by gear teeth. 

 Blok [9] describes the concept of flash temperature, which provides a method for estimating the 

likely temperature between two contacting and sliding surfaces. If the flash temperature for a 

polymer-steel spur gear pair is above the melting point of the polymeric material, failure of the 

component will clearly be imminent. This has been expanded and improved upon on by Samyn and 

Schoukens [10] and also by Conte et al. [11] with inclusion of thermal diffusivity for the material in 

question. A numerical solution has been developed specifically for the application to spur gear teeth 

by Mao [12], who accounts for the effects at the tooth tip as the mesh starts and finishes, but it is 

considerably more complex than the Blok model. Attempts to reduce the running temperature to see if 

that materially affects the wear rate of the gears were carried out by Kim [13] and Duzcukoglu [14] by 

drilling small holes through the base of the root of the tooth to let air circulate more freely across the 

tooth flank. These studies found that reducing the running temperature of the gears also reduces the 

wear rate. Other experiments include loaded running of gears for temperature measurement and wear 

measurement, as in the work of Hooke et al. [15]. 

 Another test method uses a back-to-back apparatus with one electric motor driving through the 

gear pair under investigation to the driven motor, which acts as a generator and so provides the load. 

This was undertaken by Senthilvelan and Gnanamoorthy [16] and surface features were observed that 

are relevant. However, no further analysis or conclusions for wear mechanisms or temperature rise 

were given. Hooke et al. [15] used a four-square rig with a single electric motor to drive two sets of 

spur gears connected across two parallel shafts. The driven gears were manufactured from case 

hardened steel, whilst the others were test polymer gears, as reported by Mao et al. [17] and [18]. The 

load was applied to the system through a lever arm, even as the gears became worn. These studies 

were concerned with how temperature and differing materials affect the wear of the gears. Acetal was 

used as the gear test material and it was concluded that it has a critical limit in terms of slip/roll 

beyond which complete failure of the material occurs due to thermal effects. 
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 Analytical models have been constructed that predict the temperature rise around a contact area 

such as in the work of Vick and Furey [19] who used a Green’s function approach. For steel running 

against a polymer the temperature rise should not exceed the polymer softening or melting 

temperature as this would clearly result in a catastrophic failure. This is the basis for a concept of the 

pressure-velocity limit for a polymer as proposed by Archard [20]. In a study by Walton et al. [21], 

load sharing of polymer gears was investigated using computational finite element techniques. They 

were concerned only with the loading between the gear teeth. A thermoelastic model can be created 

using finite element techniques as done by Taburdagitan and Akkok [22]. It is of interest as it 

illustrates some of the difficulties associated with producing this type of model. The model mesh was 

refined around the gears and the driven gear was considered loaded via a torsional spring at its centre. 

The conclusion was that tip relief of the gear teeth is important to the temperature rise as applying it 

can help to reduce the slip speed when the driving gear initially touches the driven gear and load 

transfer occurs. In a study by Unal et al. [23] of extremely high pressures of steel rubbing against a 

polymer, it was found that the wear rate of a polymer in this case is not strongly dependent on the 

pressure applied. 

 In this paper, an experiment involving an axially aligned steel rod applied to the circumference of 

a polymer disc is described. This experiment was augmented to run a full gear pair, of which the 

running temperatures were also measured. An analytical thermal model is formulated to predict the 

temperature rise in the axially aligned rod on disc experiment. A finite element model was also 

employed as an alternative method for prediction, though limited to a fixed heat source on the disc. 

This simplification is used to reduce the complexity of a full gear model and the mesh density 

required at the contact. Lee et al. [24] present a case in which a high mesh density is implemented for 

asperity-asperity interaction. Finally, a novel method of time averaging is presented to directly 

correlate the aligned rod on disc experiment with full the gear pair experiment.  
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2. Geometry, flash temperature, loadings and heat flux evaluation 

 In this section, pertinent evaluations are made that are appropriate for geometric and material 

parameters associated with the experimental system and gears considered in Section 3. 

2.1. Geometry 

 A feature of the involute profile that is known, but not generally considered significant, is that 

slip occurs between the teeth flanks. This results in a reduction in efficiency of around 1 – 2 % [5]. 

However, in an unlubricated polymer-steel gear pair it gives rise to heat generation. In the line 

diagram shown in Fig. 1, two contacting surfaces are represented by two separate cylinders of radii 𝑟𝑎 

and 𝑟𝑏. The rotational speeds of these cylinders are equal to those of the gears, respectively. This 

technique is described by Hamrock et al. [2] and the slip speed is 

𝑣 = (𝑟𝑏𝑔𝑠𝑖𝑛+ 𝑠)𝜔𝑏 − (𝑟𝑎𝑔𝑠𝑖𝑛− 𝑠)𝜔𝑎          (1) 

where 𝑟𝑎𝑔 is the pinion pitch radius, 𝑟𝑏𝑔 is the gear pitch radius,  is the pressure angle (rad), 𝑠 is the 

distance of the point of contact from the centre line, 𝜔𝑎 is the rotational speed (rad/s) of the pinion, 

and 𝜔𝑏 is the rotational speed (rad/s) of the gear. Accordingly, 𝑟𝑎 = 𝑟𝑎𝑔𝑠𝑖𝑛− 𝑠  and 𝑟𝑏 = 𝑟𝑏𝑔𝑠𝑖𝑛 +

𝑠. 

 

Fig. 1. Equivalent cylinders. 
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2.2. Flash temperature 

 Blok [9] proposed that if two surfaces are rubbed together, heat will be generated at the interface 

giving rise to a flash temperature. Because of the transient and constrained nature of the contact, this 

temperature rise will be higher than expected for the load and speed conditions of a gear pair. The 

flash temperature is given by 

𝑇𝑓 = 𝐴
𝑞𝑎𝑣

√𝑘𝑐
√

𝑏

𝑣
 

(2) 

 

where 𝑣 is the sliding velocity, 𝑏 is the length of the heat source in the sliding direction, 𝑘 is the 

thermal conductivity of the material, 𝑐 is the specific heat per unit volume, 𝐴 is a form factor offered 

by Blok, which is specific to the distribution of the heat flux, and 𝑞𝑎𝑣 is the average heat flux input 

over the length 𝑏. Figure 2 shows a typical evaluation of 𝑇𝑓 for a gear, where 𝑣 has been evaluated 

from Eq. (1) for −2  𝑠  2 (mm). However, 𝑇𝑓 is only a transient parameter and takes no account of 

the gradual accumulation and cyclic nature of the heat generation in a continuously rotating power 

driven gear pair. Hence the flash temperature alone cannot provide the final operating temperature of 

the gears. 

 

Fig. 2. Flash temperature profile. Data used: A = 1.1, k = 0.25 W/m/K, c = 500 J/kg/K (steel), c = 1670 

J/kg/K (nylon), b, v and  𝑞𝑎𝑣   vary through stroke according to geometry of contact. 
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2.3. Loadings and heat flux evaluation 

 The force generated between the driving and driven gear acts normal to the two gear teeth 

curvatures at their instantaneous point of contact and can be calculated from the driving torque, the 

acting radius and the pressure angle of the involute. The force normal to that point of contact is given 

by 

𝐹𝑐𝑛 =
𝜏

𝑟𝑎
cos (3)  

where 𝜏 is the input torque and 𝑟𝑎 is the reference radius of the pinion (Fig. 1). In the case of the 

studied gear pair, 𝜏 = 0.85 Nm and 𝑟𝑎 =  6 mm, which yields a normal force of 133 N. The materials 

investigated are steel (EN 1.1186, EN8) for the pinion and a polymer (POM Delrin 100) for the gear. 

The dynamic coefficient of friction between these materials is taken as 0.34 from Bowers et al. [4]. 

Since polymer-steel gears are generally unlubricated, the losses arising from a potential increase in 

friction need to be assessed. It is important to analyse the resulting temperature increase in order to be 

able to ensure that the polymer is able to operate within its temperature limit. It follows that as the 

equivalent cylinders change to represent the contacting radii through the tooth stroke and the normal 

force remains constant, the penetration of the steel gear into the polymer gear changes. Hence the area 

onto which the heat input is applied also changes. To this end, the deflection must be calculated to 

determine the heat flux for any given point in the contact between the teeth.  

 Table 1 

 Contact stress at points along the line of contact 𝑠. 

𝑠 (mm) 0.0 0.1 0.2 0.3 0.4 0.6 0.9 1.1 1.4 

𝜎𝑚𝑎𝑥(MPa) 74.5 73.1 71.7 70.5 69.3 67.2 64.5 62.9 60.9 

𝑏 (mm) 0.73 0.73 0.73 0.72 0.72 0.71 0.71 0.70 0.69 

𝑟𝑏(mm) 12.83 12.73 12.63 12.53 12.43 12.23 11.93 11.73 11.43 

𝑟𝑎(mm) 2.05 2.15 2.25 2.35 2.45 2.65 2.95 3.15 3.45 

𝑣 (mm/s) 0 61 121 182 243 364 547 668 850 

 

 The maximum stress and circumferential length of contact area for a cylinder pressing against a 

cylinder is given by Hertzian contact stress theory [25]. Let subscript a denote the steel pinion 

material and subscript b the gear polymer material. Then 

𝐶𝐸 =
1 − 𝜐𝑎

2

𝐸𝑎
+

1 − 𝜐𝑏
2

𝐸𝑏
 (4) 
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where 𝐸 is the Young’s modulus and 𝜐 is Poisson’s ratio. The maximum Hertzian stress is 

𝜎𝑚𝑎𝑥 = 0.798√
𝐹𝑐𝑛(𝑟𝑎+𝑟𝑏)

2𝐶𝐸𝑤𝑟𝑎𝑟𝑏
 

(5) 

and the circumferential length of contact due to penetration is   

𝑏 = 1.6√
2𝐹𝑐𝑛𝐶𝐸𝑟𝑎𝑟𝑏

𝑤(𝑟𝑎+𝑟𝑏)
 

(6) 

where 𝑤 is the gear width and 𝐹𝑐𝑛 is the normal load. For completeness, the penetration depth is  

𝛿 =
2𝐹𝑐𝑛𝐶𝐸

𝜋𝑤
[
2

3
+ ln

4𝑟𝑎

𝑏
+ ln

4𝑟𝑏

𝑏
] (7) 

Given a disc width of 10 mm, Table 1 shows evaluated variation of parameters with variation of 

distance along the line of contact 𝑠 as the teeth move through a contact cycle. 

The instantaneous power dissipated into the polymer follows as 

𝑃𝑇 = 𝐹𝑐𝑛𝜇𝑣 (8) 

Fig. 3. Axially aligned steel rod-on-disc facility.  
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where  is a fractional coefficient and 𝜇 is the coefficient of friction (0.34). The precise value of  will 

thermal conductivity values and the relative size of the disc compared to the rod. For the experimental 

system,  ≈ 1 is a good approximation. The heat flux into the polymer is 

𝑄𝑇 =
𝐹𝑐𝑛𝜇𝑣

𝑤𝑏
 (9) 

Using the previous data, this is evaluated as 0.848 W/mm2 for 𝑠 = 0.2 mm. This is purely the heat 

generated between the two contacting surfaces. The relative proportions of that heat transport that are 

shared between the polymer and the steel are accounted for in the models presented in the later 

sections. 

3. Experimental thermal assessment 

 The assessment of temperature rise was made in two separate experiments. The first was 

designed to emulate the equivalent cylinders (Fig. 1) and consisted of a disc rotating against a loaded, 

but stationary and axially aligned rod. The second experimental arrangement measured the 

temperature rise in a complete gear. The purpose of the axially aligned rod-on-disc experiments is to 

replicate the range of slip and torque conditions expected from a complete gear design. In Section 5.1 

it is shown how the rod-on-disc results may be used to predict the temperature rise for a complete 

gear. This avoids the problem of redesign of a complete gear and/or gear train should excessive 

temperature rise become evident. 

2.4. Steel rod axially aligned on disc 

 The polymer discs were made from Delrin 100 (Polyoxymethylene, POM). The experimental 

hardware (Fig. 3) consisted of a 100 W brushless DC electric motor driving a small 5:1 reduction 

epicyclic gearbox. The gearbox was connected, via a flexible coupling, to a steel shaft. The polymer 

disc was keyed to this shaft and so could be rotated up to a maximum speed of 800 rev/min. Motor 

Fig. 4 (a) Slow rotation disc surface temperature; (b) Synchronisation of load and temperature. 
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speed was measured by way of a Hall Effect surface mount encoder sensing the angular position of a 

small magnet attached to the rear of the motor shaft. The steel rod was held by an aluminium block, 

which was bolted to the load transducer. This consisted of a mild steel bar that had been machined to 

amplify the strain at a specific point. A full bridge strain gauge was adhered to the steel bar in the 

position of the maximum strain. The surface temperature of the disc was measured using an infrared 

sensor, the positioning of which in relation to the disc surface is shown as an inlay to Fig. 3. It was 

approximately 5 mm from the disc and was adjusted for an emissivity value of 0.91 for the device 

calibration, as provided by Beardmore [26]. 

 The speed of rotation of the disc and the load applied through the rod were both calibrated using 

external measurements and were found to be within a 0.5% tolerance band. An investigation was 

made as to the magnitude of any fluctuations that may be present in the temperature data resulting 

from manufacturing tolerances. Figure 4 (a) shows the temperature of the disc surface, measured with 

maximum time resolution. Starting from a thermally heated state, the temperature decays for around 8 

s at which point the disc was rotated at approximately 1 Hz. The fluctuation of the surface 

temperature can be seen clearly as the bulk of the material continues to cool, which is attributable to 

load variations between the aligned rod and disc caused by slight out of concentricity of the disc (Fig. 

4 (b)). The ±1 deg C variations were considered to be within bounds for follow-on experimental 

investigations. 

 The aim was to measure surface temperature rise in the disc at a variety of speeds that would 

correspond with a series of positions along the line of contact in a real gear pair. Figure 5 shows a trial 

run of the experiment at full speed and load for 1 hour. The detailed view between 30–40 minutes 

shows the temperature fluctuations caused by the varying load. The temperature rise in the disc is 

Fig. 5. Trial run of measured disc surface temperature to determine the required measurement 
time. 



Page 11 of 26         

 

initially steep, but the rate of temperature rise decreases with time. An overall bulk increase of 

temperature of the experimental hardware (aluminium housing, plate, motor and gearbox) also gave 

rise to an additional increase in surface temperature. There are two distinct knee points of the data at 

700 s and 2,800 s. These represent conditions of saturated bulk heating and a limit to the experimental 

time was therefore set at 1,800 s. 

 In association with Table 1, the corresponding disc rotational speeds, , are given in Table 2. 

Figure 6 shows the measured temperature corresponding to slip speeds associated with 𝑠 over the 

range 0.1 mm to 1.1 mm. Surface temperatures of the disc increase as the slip speed increases until it 

is seen that the data sets for 0.9 mm and 1.1 mm overlap. Also, the 1.1 mm set exhibits a higher level 

of temperature fluctuation as time increases, which is attributable to amplified load variations. 

 

 Table 2 

 Correspondence of speeds with gear contact position. 

𝑠 (mm) 0.0 0.1 0.2 0.3 0.4 0.6 0.9 1.1 1.4 

𝑣 (mm/s) 0 61 121 182 243 364 547 668 850 

 (rev/min) 0 45 91 138 184 275 414 505 643 

  

Fig. 6. Aligned rod on disc temperature results. 
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 Table 3 

 Pinion/Gear data. 

 

 

 

 

 

 

 

 

 

 

 

2.5. Temperatures for a gear pair 

 

This experiment used the same motor, load transducer assembly and control electronics as in the 

previous axially aligned rod on disc setup. This arrangement, however, drives a pair of gears together 

under a constant load and speed. Figure 7 shows the experimental hardware. Pertinent data are given 

in Table 3. 

 

 Pinion Gear 

N
o
 of Teeth 12 75 

Torque 0.85 Nm 5.3 Nm 

Speed 168 rev/min 26.7 rev/min 

Power 15 W <15 W 

Module 1 1 

Pressure Angle 20° 20° 

Reference Diameter 12 mm 75 mm 

Material Steel 1.0511 POM 

Profile Shift +0.5 -0.5 

Method of Manufacture Hobbed Hobbed 

Fig 7. Gear running experimental hardware 
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The motor drives the steel pinion, which is supported in two concentric bearings; the first allows 

the pinion to rotate and the second allows the frame in which the pinion is mounted to also rotate. 

This frame holds the polymer gear. The output shaft from the polymer gear is connected to a magnetic 

particle brake. When a voltage is applied to the brake it provides a resistive load to the rotation of the 

output from the gear, which in turn attempts to rotate the frame. The frame is reacted back to the 

support structure through the load transducer and so the torque generated by the output shaft from the 

gear is measured directly. Gear temperature was measured using the same infrared sensor as in Fig. 3. 

This was positioned facing the polymer teeth directly as they exited from the gear mesh. The system 

Fig. 8. Measured gear running temperatures. 

Fig. 9. Gear running temperatures - adjusted for ambient. 
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torque and speed were set using a trial gear, which was then replaced with the experimental gear and 

the experiment was started. The speed and torque of the input pinion was 168 rev/min and 0.85 Nm, 

respectively. Each run lasted for 1 hour to ensure that the temperature rise due to teeth contact had 

been captured. Four runs were undertaken and labelled in order as: G1, followed by G2 after 2.5 

hours, followed by G3 after 1 hour, followed by G4 after 1 week. Figure 8 shows the measured 

temperature profiles. The second profile, G2, is slightly higher by approximately 2 deg C than the 

first, G1, while G3 is higher by around 4 deg C. The final profile, G4, was taken after a delay of a 

week so that all latent heat in the system had dissipated and it lies below G1. The ambient temperature 

data sets were also recorded and are presented in Fig. 8. The gear temperature data were then adjusted 

to account for the ambient temperature during each of the experiment runs. The data were adjusted 

with respect to the first run G1 in the following manner: 

G2Adj = G2 − (G2Amb − G1Amb) 

G3Adj = G3 − (G3Amb − G1Amb) 

G4Adj = G4 + (G1Amb − G4Amb) 

 

 

 

 

Figure 9 shows the adjusted data. Runs G1, G2 and G4 are nearly coincident. However, G3, which 

was run with only a 1 hour delay after G2, is approximately 4 deg C higher in temperature than the 

others.  

 

4. Thermal modelling for the axially aligned rod on disc 

4.1 Finite element (FE) model 

 
Fig. 10. Circumferential heat flux FE model. 
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 Table 4 

 Model Parameters 

 

 

 

  

A solver was used and the following heat transfer coefficients were applied: 

(a) 200 W/m2/deg C between the shaft and the disc  

(b) 12 W/m2/deg C shaft to the environment   

(c) 1.9 W/m2/deg C the disc to environment 

The heat load of 0.13 W was uniformly distributed on the outer circumferential surface of the polymer 

disc.  

 A FE model of the aligned rod and disc arrangement, without rotation, was established to provide 

an initial assessment of the thermal response. Figure 10 shows the meshed shaft and disc. The finite 

element model has been developed as a design environment alternative to the full analytical model 

described in Section 4.5. A series of these models should be used in conjunction with the time 

averaging technique described in Section 5.1.1to determine the heat rise in a gear. A heat flux 

distribution is applied to the outer diameter of the polymer disc and convection boundary conditions 

to the environment were set up on the flanks of the disc and also on the external surfaces of the steel 

shaft. Since the model was non-rotational, an averaged heat flux was applied over the circumferential 

surface of the polymer disc. Firstly, a heat flux from the aligned rod to the polymer disc was evaluated 

according to Eq. (9). This was then scaled to distribute it over the complete circumferential surface 

according to 

𝑄𝐹𝐸𝑇 = 𝑄𝑇

𝐴𝑖

𝐴𝑑
 (10) 

where 𝑄𝐹𝐸𝑇 is the heat flux value of the circumferential distribution applied in the FE model, 𝑄𝑇 is 

heat flux generated under the aligned rod (Eq. (9)), 𝐴𝑖 is the area of indentation of the rod on disc, and 

𝐴𝑑 is the circumferential area of the modelled disc. The heat flux was applied in a step-like manner 

and a time dependent solution was obtained for a point on the centreline of the disc, as shown in Fig. 

11. Although the general trend is similar to the experimental measurements of Fig. 9, a more accurate 

dynamic thermal analysis from the rod heat flux is appropriate. 

 Disc Shaft 

Element type 20 Node Hexagonal 20 Node Hexagonal 

Element number 3080 572 

Element size 1 mm 3.4 mm 

Element Material POM Steel 
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4.2 Analytical dynamic thermal model 

 Flash temperature predictions such as in Fig. 2 indicate behaviour in the immediate vicinity of 

contact between the two surfaces. However, cyclical thermal response due to rotation is not predicted. 

Higher order analytical modelling is possible, for example, to determine temperature rise generated in 

magnetic bearing touchdown events (Keogh and Yong [27]). Consideration is therefore given to the 

interaction of the steel rod in contact with the rotating polymer disc. The model is based around the 

heat transfer equation in polar coordinates (Fig. 12), which may be axially averaged across the width 

of the polymer disc: 

Fig. 11. Disc centreline surface temperature prediction from FE model. 

Fig. 12. Geometry and coordinates associated with the polymer disc analytical thermal model.  
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𝜕2𝑇

𝜕𝑟2
+

1

𝑟

𝜕𝑇

𝜕𝑟
+

1

𝑟2

𝜕2𝑇

𝜕𝜃2
−

1

𝛼

𝜕𝑇

𝜕𝑡
− 𝛽𝑇 = 0 (11) 

where 𝑇 is the axially averaged disc temperature relative to the ambient temperature, 𝑇𝑎, (𝑟, 𝜃) are 

polar coordinates, and 

𝛼 =
𝑘

𝜌𝑐𝑝
, 𝛽 =

2ℎ

𝐿𝑘
 (12) 

where 𝑘 is the thermal conductivity of the polymer, 𝜌 is its density, 𝑐𝑝 is the specific heat capacity, 𝐿 

is the disc width, and ℎ is a convection heat transfer coefficient. The boundary condition at the outer 

surface of a cylinder of radius 𝑟 = 𝑅𝐼  is 

𝑘
𝜕𝑇

𝜕𝑟
|

𝑟=𝑅𝐼

= 𝑞𝐼(𝜃, 𝑡) (13) 

where 𝑞𝐼(𝜃, 𝑡) is the axially averaged circumferential heat flux into the disc. Taking the Laplace 

transform of Eq. (11) yields 

𝜕2𝑇

𝜕𝑟2
+

1

𝑟

𝜕𝑇

𝜕𝑟
+

1

𝑟2

𝜕2𝑇

𝜕𝜃2
−

𝑝

𝛼
𝑇 − 𝛽𝑇 = 0 (14) 

where 𝑝 is the Laplace transform variable. Expanding transformed temperature and heat flux as a 

Fourier series in the circumferential coordinate gives 

  𝑇(𝑟, 𝜃, 𝑝) = ∑ 𝑇𝑛(𝑟, 𝑝)𝑒𝑖𝑛𝜃

∞

−∞

, 𝑞̅𝐼(𝜃, 𝑝) = ∑ 𝑞̅𝐼𝑛(𝑝)𝑒𝑖𝑛𝜃

∞

−∞

     (15) 

The equation of heat conduction becomes 

𝜕2𝑇𝑛

𝜕𝑟2
+

1

𝑟

𝜕𝑇𝑛

𝜕𝑟
− (

𝑛2

𝑟2
+

𝑝

𝛼
+ 𝛽) 𝑇𝑛 = 0 (16) 

The Bessel function solution that is finite as 𝑟 tends to 0 is 

𝑇𝑛(𝑟, 𝑝) = 𝐴𝑛𝐼𝑛(𝜆𝑟) (17) 

 where 𝜆 = √
𝑝

𝛼
+ 𝛽. The boundary condition of Eq. (13) is satisfied by 

𝐴𝑛 =
1

𝑘𝜆𝐼𝑛
′ (𝜆𝑅𝐼)

𝑞̅𝐼𝑛(𝑝) (18) 

Hence 

𝑇𝑛(𝑟, 𝑝) =
𝐼𝑛(𝜆𝑟)

𝑘𝜆𝐼𝑛
′ (𝜆𝑅𝐼)

𝑞̅𝐼𝑛(𝑝) (19) 

The following recurrence relation (Abramowitz and Stegun [29]) applies: 
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𝐼𝑛
′ (𝑧) = 𝐼𝑛+1(𝑧) +

𝑛

𝑧
𝐼𝑛(𝑧) (20) 

Equation (19) can then be inverted to give a solution in the time domain as 

𝑇𝑛(𝑟, 𝑡) =
1

2𝜋𝑖
∫

𝐼𝑛(𝜆𝑟)

𝑘𝜆 (𝐼𝑛+1(𝜆𝑅𝐼) +
𝑛

𝜆𝑅𝐼
𝐼𝑛(𝜆𝑅𝐼))

𝑐+𝑖∞

𝑐−𝑖∞

𝑞
𝐼𝑛

(𝑝)𝑒𝑝𝑡𝑑𝑝 (21) 

The temperature response may be obtained using the convolution integral 

𝑇𝑛(𝑟, 𝑡) = ∫ 𝐻𝑛(𝑟, 𝑡 − 𝜏)𝑞𝐼𝑛(𝜏)𝑑𝑡
𝑡

0

 (22) 

where 

𝐻𝑛(𝑟, 𝑡) =
1

2𝜋𝑖
∫

𝐼𝑛(𝜆𝑟)

𝑘𝜆 (𝐼𝑛+1(𝜆𝑅𝐼) +
𝑛

𝜆𝑅𝐼
𝐼𝑛(𝜆𝑅𝐼))

𝑐+𝑖∞

𝑐−𝑖∞

𝑒𝑝𝑡𝑑𝑝 (23) 

Because 𝐼𝑛 (𝑣𝑒±
1

2
𝜋𝑖) = 𝑒−

1

2
𝑛𝜋𝑖𝐽𝑛(∓𝑣) has poles on the real axis it is appropriate to complete the 

contour of integration as shown in Fig. 13. In general, 𝑝 = 𝑧𝛾𝛼𝑥2/𝑅𝐼
2 on the angled lines where 𝑥 >

0 and 𝑧𝛾 = 𝑒𝑖𝛾 on the upper line. Hence 

𝑑𝑝 = 2
𝑧𝛾𝛼

𝑅𝐼
2 𝑥𝑑𝑥,      𝜆𝛾 = √

𝑧𝛾𝑥2

𝑅𝐼
2 + 𝛽 (24) 

It now follows that 

Fig. 13.  Completion of the inversion contour. 
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1

2𝜋𝑖
∫ 𝑓(𝜆)𝑒𝑝𝑡𝑑𝑠

𝑐+𝑖∞

𝑐−𝑖∞

=
𝑧𝛾𝛼

𝜋𝑖𝑅𝐼
2 ∫ 𝑓(𝜆𝛾)𝑒

𝑧𝛾𝛼𝑥2𝑡

𝑅𝐼
2

𝑥𝑑𝑥 −
𝑧−𝛾𝛼

𝜋𝑖𝑅𝐼
2 ∫ 𝑓(𝜆−𝛾)𝑒

𝑧−𝛾𝛼𝑥2𝑡

𝑅𝐼
2

𝑥𝑑𝑥
∞

0

∞

0

 
(25) 

Since the second term is the complex conjugate of the first term, it follows that 

 
1

2𝜋𝑖
∫ 𝑓(𝜆)𝑒𝑝𝑡𝑑𝑝

𝑐+𝑖∞

𝑐−𝑖∞

= 𝑅𝑒 (
2𝑧𝛾𝛼

𝜋𝑖𝑅𝐼
2 ∫ 𝑓(𝜆𝛾)𝑒

𝑧𝛾𝛼𝑥2𝑡

𝑅𝐼
2

𝑥𝑑𝑥
∞

0

) (26) 

In this expression 

𝑧𝛾𝑓(𝜆𝛾)𝑥 =
2𝑅𝐼

2

𝐿𝑘
ℎ𝑛(𝑥, 𝜌, 𝛾) 

ℎ𝑛(𝑥, 𝜌, 𝛾) =
𝑧𝛾𝑥𝐼𝑛(𝑧𝛾

0.5𝜌𝑥)

(𝑧𝛾
0.5𝑥𝐼𝑛+1(𝑧𝛾

0.5𝑥) + 𝑛𝐼𝑛(𝑧𝛾
0.5𝑥))

 

(27) 

where 𝜌 = 𝑟/𝑅𝐼. It now follows from Eqs (22) and (23) that 

𝑇𝑛 = 𝐻𝑛(𝑟, 𝑡) =
𝛼

𝜋𝑖𝑘𝑅𝐼
∫ ∫ {ℎ𝑛(𝑥, 𝜌, 𝛾)𝑒

𝑧𝛾𝛼𝑥2(𝑡−𝜏)

𝑅𝐼
2

 −ℎ𝑛(𝑥, 𝜌, −𝛾)𝑒

𝑧−𝛾𝛼𝑥2(𝑡−𝜏)

𝑅𝐼
2

}
∞

0

𝑡

0

𝑞𝐼𝑛(𝜏)𝑑𝑥𝑑𝜏 

((28) 

Considering the axially aligned rod and disc, the heat flux can be regarded as rotating at frequency 𝜔 

about the circumference of the disc, which is considered to be stationary: 

𝑞𝐼(𝜃, 𝑡) = 𝑄𝐼(𝜃 − 𝜔𝑡) (29) 

Hence 

𝑞𝐼(𝜃, 𝑡) = ∑ 𝑄𝐼𝑛𝑒−𝑖𝑛𝜔𝑡𝑒𝑖𝑛𝜃

∞

−∞

 
(30) 

Then 

𝑞𝐼𝑛(𝜏) = 𝑄𝐼𝑛𝑒−𝑖𝑛𝜔𝜏 (31) 

Substituting into Eq. (28) and performing the time integration yields  

𝑇𝑛(𝑟, 𝑡) =
1

2𝑖
(𝑇𝑛,𝛾(𝑟, 𝑡) − 𝑇𝑛,−𝛾(𝑟, 𝑡)) (32) 

where 

𝑇𝑛,𝛾(𝑟, 𝑡) =
2𝛼

𝜋𝑘𝑅𝐼
∫ ℎ𝑛

∞

0

(𝑥, 𝜌, 𝛾)
𝑒𝑧𝛾𝛼𝑥2𝑡/𝑅𝐼

2

(𝑧𝛾𝛼𝑥2/𝑅𝐼
2 + 𝑖𝑛𝜔))

𝑑𝑥𝑄𝐼𝑛 
                      (33) 
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For a heat flux arising from a Hertzian pressure distribution between the aligned rod and disc, an 

appropriate expression for the heat flux into the polymer is 

𝑄𝐼(𝜃) = {
𝑄0√(𝜃0

2 − 𝜃2)   , |𝜃| < 𝜃0

                   0  ,                  |𝜃| > 𝜃0  

 (34) 

where 𝑄0 = 𝜇𝑅𝐼𝜔 and 2𝜃0 is the angular extent of the contact zone. The implication of Eq. (34) is 

that the Fourier coefficients follow as 

𝑄𝐼𝑛 = {

𝑄0𝜃0

2𝑛
𝐽1(𝑛𝜃0)  , 𝑛 ≠ 0

   
𝑄0𝜃0

2

2
 ,                        𝑛 = 0  

 (35) 

The complete expression for the axially averaged disc temperature is 

This expression was evaluated for the parameters matching the case when 𝑠 = 0.2 mm. Time 

dependent contour plots of the disc temperature are shown in Fig. 14. The heat source moves in an 

anti-clockwise sense starting from the right hand side of the disc. After the second rotation it can be 

seen that the wall is starting to cool as the leading edge of the heat approaches the heat source for the 

third time. In the 10 rotation plot, the temperature is nearly uniform around the circumference of the 

disc. 

Figure 15 shows the temperature variation at a fixed point on the circumference at 45° clockwise 

from the top of the disc. The initial step-like variation is due to the cyclic heating as the heat source 

(aligned rod) passes the observation point. The steps persist, though are not resolvable on the macro 

scale of the lower plot.
 

𝑇(𝑟, 𝜃, 𝑡) = ∑ 𝑇𝑛(𝑟, 𝑡)𝑒𝑖𝑛𝜃

∞

−∞

 
(36) 

Fig. 14. Disc temperature contours for up to 10 rotations. 
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5. Comparison and analysis of measured and modelled temperatures 

 The purpose of this section is to assess the level of correlation between the aligned rod on disc 

temperature measurements, the gear temperature measurements, and the predicted temperature 

measurements.  

5.1 Aligned rod on disc and gear temperature measurement correlation 

 The temperature data for the aligned rod on disc need to be transformed so as to be useful to 

compare with the measured gear temperatures. The issue is that gear tooth slip speeds are variable 

during operation, while aligned rod on disc slip speeds are constant for each condition of test. The rod 

on disc measurements are therefore amalgamated to apportion results with appropriate to gear tooth 

Fig. 15. Fixed point temperature variation with time. 
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slip speeds at each point of the tooth sweep. The temperature generated at a given point in the tooth 

contact sweep is a function of both time and distance along the line of contact: 

𝑇𝑠 = 𝑇(𝑡, 𝑠) (37) 

where 𝑇𝑠 is the temperature at the point along the line of contact 𝑠 at time 𝑡. As the slip speed, 𝑣, 

varies through the contact sweep, the time increment spent in contact is given by 

𝛿𝑡 =
1

𝑣
𝛿𝑠 

(38) 

Each aligned rod on disc temperature set (𝑖 = 1, … , 𝑁) is then averaged according to the time spent in 

contact to estimate the gear temperature as 

𝑇𝑎𝑣𝑒(𝑡) =
1

𝑠0
∑ 𝑇(𝑡, 𝑠𝑖)𝛿𝑠𝑖

𝑁

𝑖=1

 
(39) 

where 𝑠0 is the length of travel along the line of contact. As the gear and pinion run together, heat 

flows into the polymer and the steel. As the teeth share contact, the heat generation will also be shared 

in the proportion given by the contact ratio, which is given by 

𝑅𝐶 =
√(𝑅𝑔𝑜

2 − 𝑅𝑔𝑏
2) + (𝑅𝑝𝑜

2 − 𝑅𝑝𝑏
2) − sin 𝛼

𝑑 cos 𝛼
 

(40) 

where 𝑅𝑔𝑜  is the outer radius of the gear, 𝑅𝑔𝑏 is the base radius of the gear, 𝑅𝑝𝑜  is the outer radius of 

the pinion, 𝑅𝑝𝑏 is the base radius of the pinion, 𝛼 is the pressure angle of the tooth form and 𝑑 is the 

circular pitch of the teeth. Incorporating this factor of contact ratio into the summation of the data sets 

gives the correlated temperature as 

5.2 Comparison of gear temperatures with time averaged rod on disc temperatures and modelled 

temperatures 

Figure 16 (a) shows the comparison of the summation of the averaged aligned rod on disc and 

gear temperature measurements. There is an offset between the two series of approximately 2.5 deg C. 

In Eq. (41), the contact ratio depends on the depth of the teeth and, in the case of the real product gear 

and pinion combination, a correction of 0.5 mm has been applied. This is to the addendum and 

dedendum of the gear teeth, which effectively moves the contact towards the gear centre. This is done 

to avoid undercutting and therefore weakening the teeth of the pinion during manufacture. The time 

averaging was repeated, including a 70 𝜇m adjustment (reduction) to the contact radius. This was 

achieved by altering the values 𝑅𝑔𝑜 , 𝑅𝑔𝑏 , 𝑅𝑝𝑜  and 𝑅𝑝𝑏 in the contact ratio expression given in Eq. 

𝑇𝑐𝑜𝑟(𝑡) =
𝑅𝐶

𝑠0
∑ 𝑇(𝑡, 𝑠𝑖)𝛿𝑠𝑖

𝑁

𝑖=1

      (41) 
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(40). The corrected averaged rod on disc temperature is shown in Fig. 16(b), which now aligns closely 

with the measured gear temperatures. It is therefore possible to use aligned rod on disc experimental 

data to evaluate the likely temperature rise in a real gear pair to within a tolerance determined by the 

accuracy of the manufactured gears. 

 Finally, the temperatures measured and time averaged from the rod on disc experiment can be 

compared to both the analytical and finite element models that have been presented. These data are 

also shown in Fig. 17 and good correlation exists between the three data sets. It is therefore possible 

to predict the running temperature of a polymer-steel spur gear pair using a simple aligned rod on disc 

Fig. 16. Comparison of gear and disc temperature data. 

(a) Without correction. (b) With 70 𝜇m correction. 
 

(b) 

(a) 
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model, either in analytical of finite element form. This is useful and convenient because, as previously 

discussed, a model that accurately represents the geometry and contact conditions of a spur gear pair 

would be excessively complex to construct and run.  

6. Conclusions 

 An axially aligned steel rod on a polymer disc system is proposed for the prediction of the 

thermal response of a steel pinion and polymer gear, which is important for the assessment of gear 

efficiency. Losses arise from slip between the teeth. An experiment was therefore devised to measure 

thermal response of the polymer disc, with heating equivalent to local zones of contact between the 

gear teeth. The experiment was then augmented to enable the real gear pair to be run and the dynamic 

temperature of the polymer gear to be measured. The polymer disc and gear temperatures were then 

correlated through a novel technique of time averaging of the rod on disc results to integrate each 

temperature data set with respect to the gear contact sweep load profile. The initial correlation under-

predicted the gear temperature results by around 9% or 2.5 deg C. This difference was attributed to 

manufacturing tolerance of geometric offsets, commonly introduced to prevent weakening of the 

pinion teeth during manufacture. A reduction of the reference radius from the gear centre 70 𝜇m was 

considered appropriate and was shown to give rise to the under-prediction of 2.5 deg C. 

 Two models were also presented to predict the temperature rise in the aligned rod on disc 

experiment. The FE model considered an averaged circumferential heat input, whilst the analytical 

model included the rotational and cyclic nature of the heat input to the polymer disc. There was good 

Fig. 17. Comparison of rod on disc temperatures with the model 

predictions. 
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correlation between both models and the experimental data, which provides a degree of validation. It 

is therefore concluded that the combination of aligned rod on disc modelling and experimentation, 

together with time averaging over a gear contact load profile is sufficient to predict the running 

temperature of a spur gear pair. This avoids the need for complex transient analysis of the multiple 

interactions of teeth in a gear pair, which would be excessive if undertaken by FE modelling. Hence 

the methodology is appropriate for the design of new gear pairs in terms of the defined contact load 

profile.  
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