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The potential of polymeric film-forming systems as sustained     
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Abstract 

Introduction: Dosing regimens requiring multiple daily applications frequently result in poor 

patient compliance, especially in the treatment of chronic skin diseases. Consequently, devel-

opment of sustained delivery systems for topical drugs permitting less frequent dosing is of 

continuing interest for dermatological therapy. 

Areas covered: This potential of polymeric film-forming systems (FFS), created in situ on the 

skin, as sustained delivery platforms for topical drug delivery is reviewed. Key formulation 

parameters that determine delivery efficiency are considered focussing on those that permit a 

drug reservoir to be established in the upper layers of the skin and/or on the skin surface from 

which release can be sustained over a prolonged period. The advantageous and superior cos-

metic attributes of FFS (compared to conventional semi-solid formulations) that offer signifi-

cantly improved patient compliance are also addressed. 

Expert opinion: The promise of polymeric FFS as convenient and aesthetic platforms for sus-

tained topical drug delivery is clear. Manipulation of the formulation allows the delivery pro-

file to be customised and optimised to take advantage of both a rapid, initial input of drug into 

the skin (likely due to a transient period of supersaturation) and a slower, controlled release 

over an extended time from the residual film created thereafter.  

Keywords 

Dermal drug delivery; polymeric film-forming systems; supersaturation; topical formulations; 

sustained delivery. 
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Article highlights 

 Optimisation of the formulation of polymeric film-forming systems (FFS) permits sus-

tained drug delivery to be achieved via the formation of a drug reservoir in or on the skin. 

 The initial metamorphosis of the formulation, and consequent increase in the degree of 

drug saturation, enables the establishment of a drug reservoir in the upper skin layers. 

 FFS prepared with hydrophobic polymers have greater skin substantivity, facilitating for-

mation of an external drug reservoir from which sustained delivery may be achieved. 

 Realisation of the long-term potential of FFS as sustained, topical drug delivery systems 

requires proof-of-principle to be demonstrated conclusively in vivo. 

 A key issue is to accomplish the desired therapeutic effect with a FFS formulation that cre-

ates an aesthetically acceptable residual polymeric film on the skin. 
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1 Introduction 

The topical treatment of skin diseases is desirable for obvious reasons: the drug product is 

applied directly at the affected site, achieving levels at the local target that are at least as high 

as those possible by (e.g.) oral administration, but with very limited systemic exposure and 

associated side-effects. However, topical delivery can be challenging due to the efficient bar-

rier properties of the stratum corneum (SC). Typically, only a small percentage of the applied 

drug reaches the target site, the remainder being left in a non-diffusible (i.e., solid) form in the 

residual film post-application and unavailable for delivery (1, 2).  

Patient compliance to the repetitive daily application of conventional, cosmetically sub-

optimal topical dosage forms (ointments, etc.) is often poor (3-5), compromising the efficacy 

of the treatment of chronic skin diseases in particular (3). The development of topical, sus-

tained delivery formulations permitting prolonged therapeutic effect and less frequent dosing 

would offer great benefit, therefore, in dermatological therapy. How can this be achieved? 

Two strategies that almost certainly overlap in practice are envisaged involving formation of 

drug “reservoirs” on and in the skin. The former requires creation of a residual film of formu-

lation, in which the drug maintains at least some solubility, with good substantivity and re-

sistance to washing and wear (6). The latter depends on manipulation of the formulation’s 

metamorphosis post-application to relatively rapidly transfer sufficient drug into the outer 

layers of the SC, the slow diffusion from which can subsequently control delivery of the ac-

tive to the underlying tissue. This so-called “reservoir” function of the skin (7) has been rec-

ognised for many years (8).  

Clearly, therefore, the objective of sustained topical delivery will depend on those formulation 

characteristics that (a) comprise the residual surface film, (b) the volatile excipients, the evap-
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orative loss of which drives drug into the SC upon initial application (possibly resulting in 

transient supersaturation), and (c) the physicochemical properties of the drug that governs its 

affinity for, and ability to diffuse through, the SC (9). 
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2 Film-forming systems for topical application 

The use of polymeric FFS created in situ for topical application is relatively new, although 

such systems are well-known as controlled-release film coatings of solid oral dosage forms 

and have been investigated for transdermal delivery as well (10-13). In the latter case, the 

product Axiron
®
 topical solution (Eli Lilly and Co., Indianapolis, IN), a polymeric FFS devel-

oped by Acrux, Inc. (Melbourne, Australia), for the transdermal delivery of systemically ac-

tive testosterone was approved by the U.S. Food & Drug Administration (FDA) in 2010 (14). 

The disadvantages of conventional topical dosage forms, especially ointments, include their 

poor cosmetic attributes (visual appearance and perceived skin feel) and long drying time, 

making application of medication inconvenient and time-consuming for patients (4, 15) and 

resulting in poor compliance (16-18). A better and more patient-friendly formulation would be 

fast drying, aesthetically pleasing, and able to deliver the drug over longer periods of time, (≥ 

24 hours, for example). FFS have displayed good tolerance in vivo (11, 19), and fulfil many of 

these requirements supporting the rationale for their study and development. These attributes 

have been reinforced in a more recent study (20), in which the efficacy of a clobetasol spray 

was associated with factors beyond simple patient compliance. 

The use of FFS technologies for topical application has been examined over the last decade 

both directly and indirectly. Indeed, some topical gels, already on the market, can be consid-

ered as FFS given that the gelling polymers used also display film-forming properties. After 

their application, a film is eventually formed on the skin, albeit more slowly than from a pol-

ymeric solution due to the higher viscosity. For example, DuraPeel™ (Nuvo Research Inc., 

Mississauga, Ontario, Canada) incorporation into a cream or a gel facilitates formation of 

clear films on the skin from which the drug substance may then be released for up to 12 hours 
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(21). A FFS based on PharmaDur
®
 (Polytherapeutics, Inc., Bridgewater, New Jersey) graft 

polymers also enables imperceptible and invisible films to be created in situ from gelling top-

ical solutions (22). 

With respect to the treatment of skin disease, an example of a FFS for drug delivery to the SC 

is Lamisil
®
 Once (Novartis Consumer Health SA, Nyon, Switzerland) which contains the an-

ti-fungal agent terbinafine for the treatment of dermatophytoses. The increased residence time 

of the product on the skin has permitted the daily applications of the conventional cream or 

gel formulations to be replaced with a single administration (23, 24). Another illustration is 

provided by the MedSpray™ (Patch in a Can
®

) technology (MedPharm, Ltd., Guildford, 

U.K.), an aerosol, propellant- and solvent-based polymeric FFS for topical, dermal and trans-

dermal drug delivery (25) that aims to create in situ a supersaturated, residual drug film. The 

performance of the approach has been studied using various corticosteroids (26-29), and a 

comparative clinical study of MedSpray™ 1% w/w terbinafine and Lamisil
®

 Once (topical 

solution), both dosed only once, has demonstrated comparable anti-fungal activity and posi-

tive consumer acceptability (Figure 1) (21). 

2.1 Film-formation mechanism 

FFS can be either dispersions or solutions of film-forming polymer, depending on the solubili-

ty of the polymer in the selected solvent; this difference in starting vehicle will influence the 

film-formation mechanism (Figure 2) and the mechanical properties of the resulting film (30-

32). Films formed from dispersions, especially emulsions, tend to appear cloudy and are less 

cosmetically acceptable as compared to the generally preferred transparent films formed from 

solutions. 
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In solution, the polymer chains are highly mobile but come into closer contact as the solvent 

evaporates, eventually forming a film. From a polymer dispersion, the film is created via the 

physical process of polymer particle coalescence, the particles deforming as capillary forces 

increase with solvent evaporation. Incorporation of a plasticiser is often required in this case 

to lower the minimum film-forming temperature (thereby softening the polymer particles and 

facilitating their coalescence) (31). For both types of film, the rate of film-formation and the 

microstructure of the film depend on the rate of solvent evaporation that can, in turn, give rise 

to differences in drug release profiles (30). 
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3 FFS vehicle 

Drug release from all topical delivery systems, and the rate and extent of the compound’s sub-

sequent skin uptake and penetration (i.e., local bioavailability and efficacy) depend sensitively 

on the composition of the applied formulation (15, 33-36). Interactions between drug, vehicle 

and skin are complex and determine how the active partitions into, and subsequently diffuses 

through, the barrier (18). Formulation optimisation is typically directed at maximising the 

penetration of the drug to its site of action, and this means maximising the thermodynamic 

activity (37, 38). Classically, the approach has been to develop formulations in which the drug 

is either at a concentration close to its saturation solubility, or is present as a suspension. For 

polymeric FFS, of either the solution or dispersion type, there is transformation of the formu-

lation post-application as volatile excipients evaporate to leave a residual film. The delivery 

profile likely comprises at least two phases, therefore: a rapid uptake of drug as it concen-

trates in the FFS when solvent(s) evaporate(s), followed by a slower profile governed by re-

lease from the residual film. A clear challenge, as a result, is not only to formulate effectively 

for the initial delivery of drug into the skin, but also to ensure that sufficient drug is left in 

molecular (as opposed to solid) form in the residual film since only the dissolved compound is 

capable of diffusing (33). Because of these constraints, it is self-evident that the optimal vehi-

cle will depend on the specific drug and perhaps on its intended concentration too (18, 33, 

39).  

Table 1 lists properties of the FFS vehicle and the drug substance that may affect release and 

delivery into the skin. Many factors are interrelated and knowledge of their interactions is 

essential in understanding the mechanism(s) of drug delivery from FFS and its optimisation.  
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3.1 Metamorphosis of FFS vehicles 

Post-application to the skin, the quantitative composition of a FFS changes significantly, in 

particular through the loss of volatile excipients (18, 33), resulting ultimately in the creation 

of the residual polymeric film. In this process, the drug concentration increases, quickly 

reaching saturation, and with the distinct possibility of (albeit transient) supersaturation on the 

skin surface and/or in the upper SC (18, 40-42). Enhanced drug flux is therefore anticipated, 

even greater than the theoretical maximum for the period of supersaturation (25, 27, 37, 41, 

43-47). The latter phenomenon also supports the idea that FFS application enables a drug res-

ervoir to be established in the skin from which sustained delivery can be subsequently 

achieved.  Figure 3 schematically outlines the drug delivery consequences of this ‘metamor-

phosis’ of a FFS. 

Supersaturating formulations (i.e., those which result in the degree of saturation of the drug 

exceeding 1.0) are inherently thermodynamically unstable, and it is only a matter of time be-

fore crystallisation of the drug occurs within the residual film (48). If the solubility of the 

compound in this film is low, then further delivery is compromised because only drug in mo-

lecular form can diffuse (and re-dissolution is likely to be slow or negligible due to the low 

solubility) (28, 44, 49, 50). To mitigate against this challenge, and to inhibit crystallisation 

during storage (28, 29), anti-nucleating polymers have been a focus of research in the FFS 

area, as discussed further below in section 3.2.3. 

3.2 Formulation parameters and modulation of release 

The drug delivery characteristics of FFS are dependent, at the very least, on the following: 

solvent (30, 51), polymer type and concentration (10, 11, 52), plasticiser type and concentra-
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tion (16, 52-55), other incorporated excipients (e.g., penetration enhancer, lipid component) 

(11, 56-59), and the drug (39, 60-64). Each is now considered in turn.  

3.2.1 Drug  

Drug penetration across the skin is primarily determined by solubility, molecular structure, 

and lipophilicity (60, 64). In general, smaller compounds diffuse more readily across the SC 

than larger ones, and maximum fluxes of drugs with molecular weights greater than 500 Dal-

tons are very low (61, 65). Broadly speaking, skin permeability increases with increasing lip-

ophilicity (the SC being a lipophilic barrier, consistent with its principal role of retarding wa-

ter loss), at least up to a point (60). For very hydrophobic compounds, however, their very low 

water solubilities mean that uptake into the viable skin becomes the rate-limiting step (as op-

posed to diffusion through the SC). Consequently, it appears that a modest level of lipophilici-

ty, corresponding to an octanol-water partition coefficient (P) of 10-1000 (log P = 1-3) (65, 

66), coupled with finite oil and water solubilities, are ideal characteristics for good skin pene-

tration. With respect to FFS, while skin permeation remains dependent upon the nature of the 

drug, the type of polymer used differs also has an impact upon the release and percutaneous 

absorption of the active thereafter (39). In terms of the skin ‘reservoir’ effect mentioned earli-

er, it is evident that drugs, which are more lipophilic than the ‘ideal’ candidates for rapid 

penetration, would be more suitable for achieving the sustained delivery profile sought from 

the FFS residual film (63, 67, 68). It is also worth noting that other molecular structural fea-

tures have been linked to skin penetration, including the drug’s ability to accept or donate 

hydrogen bonds (factors that impact already, of course, on log P); with respect to FFS, it has 
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been reported that hydrogen-bonding between the drug and the film-forming polymer is a 

mechanism by which crystallisation of the former can be inhibited (45, 69). 

3.2.2 Solvent 

Polymeric films formed from solutions are more mechanically resistant than those created 

from dispersions (30, 51). This difference may be ascribed to differences in film microstruc-

ture (Figure 2) with a higher degree of polymer-polymer chain inter-penetration in films 

formed from solutions (30).  With respect to the drug, the casting solvent in FFS can affect the 

crystalline state of the drug in the residual polymer film (70). 

Obviously, the FFS solvent must be volatile to allow formation of the film and, for this rea-

son, organic solvents, such as the lower alcohols (ethanol, isopropanol), are preferred. Poly-

mer solubilities in organic solvents are typically high and, although less environmentally 

friendly than aqueous-based solvents, for example, the fast evaporation of volatile organic 

solvents leads to short FFS drying times and better convenience for the patient. Ethanol is the 

solvent of choice (71), and despite reports of it provoking skin irritation when used at high 

levels in dermal formulations, the FDA accepts >95% of the dehydrated solvent in topical 

solutions (72). Ethanol has also been described as a penetration enhancer (58) and there is no 

question that it facilitates the initial partitioning and uptake of lipophilic drugs into the SC 

upon application of a FFS. However, on the whole, the literature is limited in terms of the 

effect of the organic solvent used to create a topical FFS delivery system; indeed, when FFS 

were tested for transdermal delivery, little or no difference in delivery could be associated 

with the specific organic solvents used (ethanol, isopropanol and ethyl acetate, including bina-

ry mixtures thereof) (39). 
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3.2.3 Film-forming polymers 

Various polymers are potential film-formers, such as cellulose derivatives (11, 31, 73-75), 

acrylate polymers or copolymers (11, 31, 73, 74), methacrylate polymers or copolymers (11, 

12, 31, 59, 73, 74, 76, 77), silicones (11, 73), and vinyl polymers (12, 29, 59, 73-75) (Figure 

4). The nature and the concentration of the polymer affect the mechanical properties and cos-

metic attributes of the formed film (12, 31, 73, 75-78), as well as its ability to deliver the drug 

(10-12, 31, 39, 52, 76, 79). Personal experience demonstrates that the film formed on the skin 

is thick and rigid when the polymer concentration used is too high. Such non-flexible films 

are uncomfortable to wear, and show clearly that the sensorial, cosmetic attributes of the film 

should be considered during their development. As far as drug delivery is concerned, while 

hydroxypropyl cellulose films display long-term, zero-order drug release, for example, those 

formed with the more hydrophobic polyacrylate and polymethacrylate polymers produce an 

initial ‘burst’ release of the compound with the potential to establish a drug reservoir in the 

SC (Figure 5) (79). Differences in release kinetics can be attributed to factors such as the dif-

fusivity of the drug in the polymeric network and the physical state of the drug (crystalline, 

amorphous or dissolved) in the film, which in turn depend on the physicochemical properties 

of the polymer and drug and the interactions between them. 

The moisture sorption of polymeric films increases with increasing hydrophilicity of the pol-

ymer (53, 76). The plasticising effects of water on the polymer network (80, 81) can increase 

drug diffusivity and release. The water-solubility of hydrophilic films makes them less re-

sistant to removal (e.g., by washing or in perspiration) and unlikely therefore to have suffi-

cient skin substantivity to function as an external drug reservoir. As with hair care products, 

substantivity is not only determined by the water solubility of the polymer, but also by its net 
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charge and interaction with skin surface protein and lipids (82). As the skin surface has a net 

negative charge at physiological pH, films created with cationic polymers display higher sub-

stantivity than those formed from neutral or anionic polymers. Furthermore, attractive forces 

such as hydrogen bonding and van der Waals forces suggest the use of lipophilic and protein-

like polymers (83, 84). 

The concentration of the film-forming polymer is crucial. If it is too low, then the film formed 

can be rather weak (39). On the other hand, a higher polymer content (resulting in a denser 

film network) may retard drug release (10, 28, 52). A higher polymer concentration also in-

creases the FFS viscosity and increases its drying time, upon application to the skin (28). 

Polymer blends have been used to design controlled-release coatings for solid oral dosage 

forms. Blending hydrophobic and hydrophilic polymers has proven effective, with the hydro-

philic polymer component forming pores upon hydration (30, 31, 55, 85). A similar approach 

has been demonstrated for topical polymeric films as well, to achieve a wide range of release 

rates and also, in some cases, a different release mechanism (10, 76, 77, 86, 87). However, 

polymer blend systems are more complex, and phase separation and plasticiser redistribution 

between the polymers, can occur leading to inconsistent performance (31, 88). 

Some film-forming polymers display anti-nucleating properties, i.e., they prevent or inhibit 

nucleation and crystallisation of the drug (43, 50, 70, 89, 90). Figure 6 illustrates the anti-

nucleating effect of hydroxypropyl cellulose and polymethacrylate copolymer on betame-

thasone 17-valerate (BMV). Mitigating against drug crystallisation is an obviously desirable 

feature of film-forming polymers, which can lengthen the period that supersaturation is main-

tained, and possibly permit a higher degree of supersaturation to be achieved. Because of the 

importance of maintaining solubilised drug in the topical film, inhibition of crystallisation is 
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key to the establishment of a drug reservoir for sustained delivery. The mechanism of anti-

nucleation involves preferential interaction of the polymer chains with the drug in molecular 

form thereby hindering solute-solute interactions that otherwise lead to formation of crystals 

(50, 86). Although other mechanisms of anti-nucleation have been suggested in the literature, 

the inhibition of crystallisation of the corticosteroid, hydrocortisone acetate, has been ex-

plained by its association with the polymer via hydrogen bonding(90). It follows that the anti-

nucleation efficiency of a polymer may depend sensitively upon the manner in which it inter-

acts at a molecular level with the specific drug of interest (Figure 6) (91, 92). 

3.2.4 Plasticiser 

Plasticisers are typically low molecular weight additives that impart flexibility to a polymer. 

Organic esters, phosphate esters, fatty acid esters, and glycol derivatives are examples of 

commonly used plasticisers (53, 73, 76, 93, 94). Incorporation of a plasticiser results in a less 

brittle, stronger, and more flexible film (94, 95). This improvement in mechanical properties 

is a consequence of the plasticiser increasing the free volume between the polymer chains, 

and thereby increasing their mobility (95). Plasticisation reduces the polymer glass transition 

temperature (Tg), above which the chains are mobile (95) and the formed film is flexible. Ide-

ally, this desirable feature is achieved below the skin temperature (~32°C) (96) allowing the 

film to adapt to the movement of the skin with improved substantivity. Furthermore, incorpo-

ration of plasticiser reduces the minimum film-forming temperature and facilitates polymer 

coalescence and film-formation.  

The nature of the plasticiser and its concentration determine its impact on film formation (53-

55, 97). Examples of plasticisers of varying lipophilicity are shown in Table 2. Generally, the 
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most efficient plasticisers have structural features in common with the polymer(s) into which 

they are incorporated. The impact of a plasticiser on drug release and delivery depends on 

whether a dispersion or solution FFS is being used. In the former case, the plasticiser-

facilitated coalescence of polymer particles results in a more complete and dense film, from 

which slow drug release has been shown (30, 54). In contrast, plasticisation of solution FFS 

does not affect film formation to the same extent, but generally increases both polymer chain 

flexibility, and drug diffusivity and release (27, 76, 79, 88, 93). Further, the compatibility of 

plasticiser and polymer can have an important effect on drug release as well (55); for exam-

ple, the lipophilic plasticisers, tributyl citrate (TBC) and dibutyl sebacate (DBS), incorporated 

into a hydrophobic, polyacrylate copolymer-based FFS, enhanced BMV release more than 

was observed when the polymer was the hydrophilic, hydroxypropyl cellulose (Table 3) (79). 

3.2.5 Other excipients 

The incorporation of penetration enhancers (58) into FFS can increase drug delivery (7, 11, 

98) and establish a larger reservoir in the SC (9). The extent of enhancement depends on a 

number of factors (including concentration), and binary mixtures of enhancers can induce 

synergistic effects (11). However, it is recognised that there is always the risk of skin irritation 

when enhancers are used (99, 100).  

The incorporation of a lipid excipient, such as medium chain triglycerides (MCT), into a FFS 

has been shown to result in a structured, two-phase polymeric film (Figure 7). The softer li-

pid-enriched inclusions provide an environment in which the solubilised drug is released 

quickly in an initial phase (59, 77, 92) and then in a sustained fashion thereafter (79, 92).  
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4 Expert Opinion 

Polymeric film-forming systems (FFS) created in situ are promising sustained delivery plat-

forms for topical drugs. With an appropriate vehicle composition, FFS can facilitate an initial 

‘burst’ release of drug, establishing a reservoir on and/or in the stratum corneum, from which 

a sustained, slower delivery to target sites in the lower skin layers can subsequently occur. 

Evaporation of the volatile solvent component of the FFS causes a ‘metamorphosis’ of the 

formulation that results in a residual polymeric film. A transient period of drug supersatura-

tion, perhaps extended by the judicious use of anti-nucleant polymers, during the transfor-

mation of the vehicle can be exploited to optimise the delivery profile.  

The current literature does not identify a unique “recipe” for an ideal FFS formulation. Rather, 

it is clear that the selection of polymer, plasticiser, volatile solvent(s) and other excipients 

must be tailored to the properties of the drug being delivered. Open questions pertaining to the 

pros and cons of hydrophilic versus hydrophobic polymers, the benefits of plasticis-

er/excipient incorporation, and strategies to inhibit drug crystallisation as the organic solvent 

evaporates, demand further research work at this time. 

In terms of the specific aim to use FFS as sustained drug delivery platforms for topical drugs, 

it is clear that the water solubility of films based on hydrophilic polymers limits their resi-

dence time on the skin and undermines their perceived utility. For the moment, hydrophobic 

polymer-based FFS show greater potential, their water-resistance permitting increased sub-

stantivity and a prolonged residence time on the skin, with the consequent formation of a drug 

reservoir both on and within the outer SC. The metamorphosis of the FFS is crucial for the 

formulation’s ultimate utility as a drug delivery platform: Is a supersaturated state achieved 

and for how long? Are the anti-nucleant properties of the polymer sufficient to retard/inhibit 
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drug crystallisation significantly? How can drug and polymer characteristics be matched to 

maximise favourable interactions to retard/inhibit crystallisation? What are the roles of plasti-

ciser and (for example) lipid excipients in an optimised FFS formulation?  

With respect to the selection of appropriate drugs for delivery with the FFS approach, it is 

logical that more lipophilic compounds have been studied in more detail. Their obvious affini-

ty for the lipophilic SC makes the establishment of a drug reservoir therein, and sustained 

release therefrom, more likely. The extent to which the delivery approach might be extended 

to more hydrophilic drugs is unknown.  

Although FFS have been shown capable of maintaining drug release in vitro over several 

days, there is a pressing need for long-term in vivo investigations, to fully clarify the potential 

of these formulations to sustain delivery to pharmacological targets in deeper skin layers and 

to achieve a prolonged therapeutic effect. At the same time, such studies can address optimi-

sation of the practical use of FFS, including identification of convenient and fool-proof appli-

cation methods and dose control (e.g., via the use of aerosols or sprays).   

In conclusion, it appears that polymeric film-forming systems do have a positive role to play 

in the next generation of topical formulations designed to offer sustained drug delivery to and 

into the skin. The superior cosmetic attributes of FFS, compared to conventional semi-solid 

topical products, coupled with the potential for less frequent dosing regimens, are attractive 

features in terms of patient compliance and therapeutic outcome, especially for the treatment 

of chronic skin diseases. 
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Figures and Tables, plus legends 
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Figure 1. Treatment success rates after a single application of either MedSpray™ 1% w/w 

terbinafine or Lamisil
®

 Once (topical solution).  Redrawn from data in reference (19). 
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Figure 2. Schematic illustration of the mechanism of polymeric film-formation from a poly-

mer FFS solution (via interaction between mobile polymer chains) and dispersion (defor-

mation and coalescence of polymer particles).  
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Table 1. Key properties that influence drug delivery from polymeric film-forming systems. 

 

FFS  Drug  

Solvent Solubility 

Co-solvent Physical state of drug in the formed film 

Drying time Molecular weight 

Film-forming polymer Chemical structure  

Film-formation mechanism Hydrogen bond donating/accepting groups 

Supersaturation Log P 

Anti-nucleation Diffusivity 

Plasticiser Drug load 

Penetration enhancer Drug-vehicle-skin interactions 

Water-resistance  

Skin substantivity  

Residence time  

Film flexibility  

Contact surface area  

Surface energy of film  

Film diffusivity  

Moisture sorption   

Swelling  
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Figure 3. Schematic representation of drug thermodynamic activity (upper panel) and con-

centration in solution (lower panel) during the ‘metamorphosis’ of a FFS. Initially, both 
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thermodynamic activity and solubilised concentration increase as volatile excipients evapo-

rate. Drug then either reaches its limiting solubility (activity maximises, solubilised concen-

tration peaks and then begins to fall precipitately), or transient supersaturation occurs creat-

ing a thermodynamically metastable state of relatively high solubility. Ultimately, however, 

this situation cannot be sustained and the system evolves to a residual film in which drug sol-

ubility is markedly reduced (but optimally sufficiently finite to continue to provide continued 

input of the compound into the skin). 
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Figure 4. Chemical structures of the repeating units of selected film-forming polymers: (a) 

simple polyvinyl polymers, (b) polyacrylates, (c) polymethacrylates, (d) silicones, and (e) cel-

lulose derivatives. 
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Figure 5. In vitro release of betamethasone-17-valerate from a hydroxypropyl cellulose and 

polyacrylate copolymer film (mean ± standard deviation; n=3). The inset is a zoom of the 

initial burst release from the film.  Redrawn from data in reference (79). 
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Figure 6. Upper panels: Stimulated Raman scattering (SRS) images of deuterated BMV crys-

tals formed in/on the skin within 30 minutes post-application in either ethanol (left image) or 

in a FFS based on hydroxypropyl cellulose (right image). SRS contrast is obtained at 2120 

cm
-1

 corresponding to the –CD2 stretching vibration. Lower panels: Micrographs illustrating 

the differential anti-nucleation efficiency of FFS prepared with BMV and either hydroxypropyl 

cellulose (left image) or polymethacrylate copolymer (right image). 
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Table 2. Examples of plasticisers used in polymeric film-forming systems. 

 

Plasticisers 

Acetyltributyl citrate, acetyltriethyl citrate 

Dibutyl phthalate, diethyl phthalate, dimethyl phthalate 

Dibutyl sebacate, diethyl sebacate 

Triacetin 

Tributyl citrate, triethyl citrate 
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Table 3. Enhancement ratios of the cumulative release of BMV in 72 hours from hydrophilic 

and hydrophobic polymer-based FFS when plasticised with either TBC or DBS (data taken 

from (79)). 

 

 Plasticiser 

FFS polymer TBC DBS 

Hydroxypropyl cellulose 2.1 2.8 

Polyacrylate copolymer 2.6 3.4 
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Figure 7. Atomic force microscopy image showing the two-phase structure of a hydroxylpro-

pyl cellulose film incorporating MCT.  


