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Abstract An input-to-state stability theory, which subsumes results of circle criterion
type, is developed in the context of continuous-time Lur’e systems. The approach
developed is inspired by the complexified Aizerman conjecture.
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1 Introduction

We will be concerned with controlled Lur’e systems of the form

ẋ = Ax + B f (Cx) + Bev, (1.1)

where A, B, Be and C are matrices of appropriate formats, f is a locally Lipschitz
nonlinearity and v denotes the input or forcing. Obviously, system (1.1) can be thought
of as a feedback system, namely the linear controlled and observed system

ẋ = Ax + Bu + Bev, y = Cx

with nonlinear output feedback u = f (y).
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440 E. Sarkans, H. Logemann

Lur’e systems are a common and important class of nonlinear systems and there
is a large body of work on the absolute stability theory of these systems: see, for
example [6,7,16,19,27,28]. Traditionally, Lyapunov approaches to the stability theory
of systems of the form (1.1) consider unforced Lur’e systems (i.e., v = 0 in (1.1)),
whilst Lur’e systems with forcing (usually acting through B, that is, Be = B) have
been studied using the input–output framework initiated by Sandberg and Zames in
the 1960s, see, for example [27]. More recently, forced Lur’e systems have been
analysed in the context of input-to-state stability (ISS) theory, see [1,2,12,13] (and
[22] for discrete-time systems). In [1], an ISS result is obtained for Lur’e systems (1.1)
under the assumptions that Be = B, the underlying linear system has the positive real
property and the nonlinearity (which may have superlinear growth) satisfies a suitable
cone condition. Partial extensions of the classical Popov and circle criteria to an ISS
setting can be found in [2] and [12,13], respectively. The concept of ISS (for a general
controlled nonlinear system) appears first in [23] published in 1989. The theory of
ISS which has been subsequently developed, provides a natural stability framework
for nonlinear systems with inputs, merging, in a sense, Lyapunov and input–output
approaches to stability (the latter initiated by Sandberg and Zames in the 1960s). We
refer the reader to [3,25] for overviews of ISS theory.

In this paper, we derive an ISS result which is reminiscent of the complexified Aiz-
erman conjecture [9,10] (see [7,17,18,27] for details on the original real Aizerman
conjecture). More precisely, let K be a matrix of appropriate format and assume that
every complex matrix in the ball {F : ‖F − K‖ < r}, where r > 0, is a stabilizing
output feedbackgain for the linear system (A, B,C). Themain result of the paper (The-
orem 3.2) guarantees that, under this hypothesis, the nonlinear system (1.1) is ISS for
every locally Lipschitz nonlinearity f for which there exists aK∞ functionα such that

‖ f (ξ) − K ξ‖ ≤ r‖ξ‖ − α(‖ξ‖) for all ξ. (1.2)

As a corollary (see Corollary 3.10), we derive a clear-cut ISS version of the circle
criterion: it is shown that, under conditions very similar to those of the circle crite-
rion, the Lur’e system (1.1) is ISS. In particular, Corollary 3.10 contains earlier ISS
versions [12,13] of the circle criterion as special cases. Moreover, a further corollary
(Corollary 3.11) shows that the conditions of the usual textbook version of the circle
criterion for global asymptotic stability (see [7,16,27]) are actually sufficient for ISS.

Finally, we mention that if A is not Hurwitz and f is bounded (for example, if f
is of “saturation” type), then the nonlinearity is not “powerful” enough to counteract
large (but bounded) inputs (at least if im B ⊂ im Be) and the Lur’e system (1.1) is
not ISS (see [20] and Proposition 3.4 in the current paper). Correspondingly, it is not
difficult to show that if A is not Hurwitz, f is bounded and every complex output
feedback gain in the ball {F : ‖F − K‖ < r} is stabilizing, then there does not exist
α ∈ K∞ such that (1.2) holds (see Proposition 3.4).

1.1 Notation and terminology

As usual, R and C denote the fields of real and complex numbers, respectively. We
set R+ := [0,∞).
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Input-to-state stability of Lur’e systems 441

In the following, let F = R or F = C. For K ∈ C
m×p and r > 0, we define the

open ball in Fm×p with centre K and radius r :

BF(K , r) := {M ∈ F
m×p : ‖M − K‖ < r}.

For M ∈ C
n×m , let M∗ denote the Hermitian transposition of M (transposition if M is

real). The open right-half of the complex plane C is denoted by C+. The Hardy space
of all bounded holomorphic functions C+ → C

p×m is denoted by H∞(Cp×m). The
norm of a function H ∈ H∞(Cp×m) is given by

‖H‖H∞ = sup
s∈C+

‖H(s)‖,

where ‖ · ‖ is the operator norm on Cp×m induced by the 2-norms on Cm and C
p.

Let A ∈ C
n×n be Hurwitz (that is, all eigenvalues of A have negative real parts),

let B ∈ C
n×m and C ∈ C

p×n . The structured stability radius of A with respect to the
perturbation structure given by B and C is defined by

rF(A; B,C) := inf{‖�‖ : � ∈ F
m×p and A + B�C is not Hurwitz}.

The number rC(A; B,C) is said to be the complex stability radius, whilst rR(A; B,C)

is called the real stability radius, see [8,10]. Note that, even if A, B and C are real, the
perturbation � in the definition of rC(A; B,C) is in Cm×p.

Finally, we recall the definitions of certain classes of comparison functions. Let K
denote the set of all continuous functions ϕ : R+ → R+ such that ϕ(0) = 0 and ϕ is
strictly increasing. Moreover,

K∞ := {ϕ ∈ K : ϕ(s) → ∞ as s → ∞}.

We denote by KL the set of functions ψ : R+ × R+ → R+ with the follow-
ing properties: ψ(· , t) ∈ K for every t ≥ 0, and ψ(s, · ) is non-increasing with
limt→∞ ψ(s, t) = 0 for every s ≥ 0. Note that, following [24–26], continuity is
not imposed in the above definition of a KL-function. It is known that a discontinu-
ous KL-function can be bounded from above by a continuous KL-function, see [24,
Proposition 7]. For more details on comparison functions, we refer the reader to [15].

2 Preliminaries

Set � := R
n×n × R

n×m × R
p×n . With a triple (A, B,C) ∈ �, we associate the

following controlled and observed linear system

ẋ = Ax + Bu, y = Cx . (2.1)

The transfer function (matrix) G of (2.1) (or of the triple (A, B,C)) is given by

G(s) = C(s I − A)−1B.
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442 E. Sarkans, H. Logemann

The closed-loop system obtained by application of linear feedback of the form u =
Ky + v to (2.1), where K ∈ R

m×p and v ∈ L∞
loc(R+,Rm), is described by the triple

(A + BKC, B,C) ∈ �. The associated transfer function is

GK (s) := C(s I − A − BKC)−1B = G(s)(I − KG(s))−1.

We denote the set of stabilizing output feedback matrices for (A, B,C) by
SF(A, B,C), that is,

SF(A, B,C) := {K ∈ F
m×p : A + BKC is Hurwitz},

where F = R or F = C, and we will be speaking of real or complex stabilizing output
feedback matrices, respectively. Moreover, defining

SF(G) := {K ∈ F
m×p : GK ∈ H∞(Cp×m)},

we have that
SF(A, B,C) ⊆ SF(G). (2.2)

If SF(A, B,C) �= ∅, then (A, B,C) is stabilizable and detectable and equality holds
in (2.2).

The following lemma provides some simple properties of linear output feedback.

Lemma 2.1 Let (A, B,C) ∈ � with transfer function G, let K ∈ C
m×p and let

r > 0.

(a) SC (G) − K = SC

(
GK

)
.

(b) BC(K , r) ⊆ SC (G) if, and only if, BC(0, r) ⊆ SC

(
GK

)
.

(c) (GK )L = GK+L for all L ∈ C
m×p.

(d) BC(K , r) ⊆ SC (G) if, and only if,
∥
∥GK

∥
∥
H∞ ≤ 1/r .

Assume that, in Lemma 2.1, the matrix K is real, that is, K ∈ R
m×p. Then state-

ments (a) and (b) and the sufficiency part of statement (d) remain valid if BC and SC

are replaced by BR and SR, respectively. However, the condition BR(K , r) ⊆ SR(G)

does not imply that
∥∥GK

∥∥
H∞ ≤ 1/r .

Proof of Lemma 2.1 The proofs of statements (a)–(c) are straightforward and are
therefore omitted.

We proceed to prove statement (d). Assuming that
∥
∥GK

∥
∥
H∞ ≤ 1/r , it is clear

that BC(0, r) ⊆ SC

(
GK

)
(by the “small-gain theorem”). Hence, by statement (b),

BC(K , r) ⊆ SC (G).
Weprove the reverse implicationbycontraposition.To this end, assume

∥∥GK
∥∥
H∞ >

1/r . We have to show that there exists L ∈ BC(K , r) such that L /∈ SC (G). By
assumption,

∥
∥GK (z)

∥
∥ > 1/r for some z ∈ C+. As is well known from matrix theory,

there exists M ∈ C
m×p with ‖M‖ = 1/

∥∥GK (z)
∥∥ < r and det(I − MGK (z)) = 0.

Now

M(GK )M = MG(I − MGK )−1 = (I − MGK )−1 − I,
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Input-to-state stability of Lur’e systems 443

and we conclude that M(GK )M has a pole at z. Setting L := K + M and using
statement (c), we see that GL = GK+M = (GK )M has a pole at z, showing that
L /∈ SC (G). Obviously, L ∈ BC(K , r), completing the proof of statement (d). �

Next we state a version of the well-known bounded real lemma which is convenient
for our purposes.

Lemma 2.2 Let (A, B,C) ∈ �. Assume that A is Hurwitz and that the transfer
function G of (A, B,C) satisfies ‖G‖H∞ ≤ 1. Then there exist a positive semi-definite
matrix P = P∗ ∈ R

n×n and a matrix L ∈ R
m×n such that

A∗P + PA = −C∗C − L∗L and PB = −L∗.

Proof By elementary stability radius theory, rC(A; B,C) = 1/ ‖G‖H∞ ≥ 1, see
[8,10]. Hence, by [8, Theorem 3.3], there exists a matrix Q = Q∗ ∈ R

n×n which
solves the algebraic Riccati equation

A∗Q + QA − C∗C − QBB∗Q = 0.

Setting P := −Q and L := −B∗P , it follows that P solves the Lyapunov matrix
equation

A∗P + PA = −C∗C − L∗L . (2.3)

Since A is Hurwitz, (2.3) has a unique solution which is given by

P =
∫ ∞

0
eA

∗t (C∗C + L∗L)eAtdt,

see, for example [10, Corollary 3.3.46]. Obviously, the matrix C∗C + L∗L is positive
semi-definite and it follows that P is positive semi-definite, completing the proof. �
In the following, we will consider linear systems of the form

ẋ = Ax + Bu + Bev, y = Cx (2.4)

where

(A, B, Be,C) ∈ �e := R
n×n × R

n×m × R
n×me × R

p×n

It is convenient to define the behaviour B(A, B, Be,C) of (2.4) (or of the quadruple
(A, B, Be,C)) by

B(A, B, Be,C) := {(v, u, x, y) ∈ T : (v, u, x, y) satisfies (2.4)},

where

T := L∞
loc(R+,Rme) × L∞

loc(R+,Rm) × W 1,1
loc (R+,Rn) × C(R+,Rp).
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444 E. Sarkans, H. Logemann

Obviously, in the above definition of B(A, B, Be,C), the solution x of the differential
equation in (2.4) has to be understood in the sense of Carathéodory. A triple (v, u, x, y)
is in B(A, B, Be,C) if, and only if,

x(t) = eAt x(0) +
∫ t

0
eA(t−s)(Bu(s) + Bev(s)

)
ds ∀ t ≥ 0

and y = Cx .
We now use the bounded real lemma to obtain a quadratic form useful in stability

analysis.

Proposition 2.3 Let (A, B, Be,C) ∈ �e and assume thatBC(K , r) ⊆ SC (A, B,C),
where K ∈ R

m×p and r > 0. Then there exists positive semi-definite P = P∗ ∈ R
n×n

with the following property: for every α ∈ K∞, there exists β ∈ K∞, such that, for
every (v, u, x, y) ∈ B(A, B, Be,C), the function V : Rn → R+ defined by V (ζ ) :=
〈Pζ, ζ 〉 satisfies

d

dt
V (x(t)) ≤ −r2 ‖y(t)‖2 + ‖u(t) − Ky(t)‖2 + ‖x(t)‖α(‖x(t)‖) + β(‖v(t)‖)

for almost every t ≥ 0.

For the proof of this result, the following simple lemma will be useful.

Lemma 2.4 If α ∈ K∞, then there exists β ∈ K∞ such that

s1s2 ≤ s1α(s1) + β(s2) ∀ s1, s2 ≥ 0.

Proof If s2 ≤ α(s1), then s1s2 ≤ s1α(s1); and if s2 > α(s1), then s1 < α−1(s2), so
that s1s2 < s2α−1(s2). Hence β(s2) := s2α−1(s2) satisfies all the requirements. �
Proof of Proposition 2.3 Set AK := A+BKC , and consider the system (AK , r B,C),
the transfer function of which is rGK , where G(s) = C(s I − A)−1B. By hypothesis,

BC(K , r) ⊆ SC (A, B,C) = SC (G) .

Hence, AK is Hurwitz and, furthermore, it follows from statement (d) of Lemma 2.1
that, r

∥∥GK
∥∥
H∞ ≤ 1. An application of Lemma 2.2 to the system (AK , r B,C) shows

that there exist a positive semi-definite matrix Q = Q∗ ∈ R
n×n and a matrix L ∈

R
m×n such that

A∗
K Q + QAK = −C∗C − L∗L and r QB = −L∗. (2.5)

Define the quadratic form U by U (ζ ) := 〈Qζ, ζ 〉 for all ζ ∈ R
n . Let (v, u, x, y) ∈

B(A, B, Be,C) be arbitrary. Writing w := u − Ky, then, trivially, the quadruple
(v,w, x, y) ∈ B(AK , B, Be,C) and we obtain that, for almost every t ≥ 0,
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Input-to-state stability of Lur’e systems 445

d

dt
U (x(t)) = 2 〈Qx(t), AK x(t) + Bw(t) + Bev(t)〉

= 〈
(A∗

K Q + QAK )x(t), x(t)
〉 + 2 〈x(t), QBw(t)〉

+ 2 〈Qx(t), Bev(t)〉.

Setting c := 2‖Q‖‖Be‖ and invoking (2.5), it follows that, for almost every t ≥ 0,

d

dt
U (x(t)) ≤ − ‖Cx(t)‖2 − ‖Lx(t)‖2 − 2

r
〈Lx(t), w(t)〉 + c‖x(t)‖‖v(t)‖

= − ‖y(t)‖2 −
∥
∥∥∥Lx(t) + 1

r
w(t)

∥
∥∥∥

2

+ 1

r2
‖w(t)‖2 + c‖x(t)‖‖v(t)‖.

By Lemma 2.4, for a given α ∈ K∞, there exists β ∈ K∞ such that

r2cs1s2 ≤ s1α(s1) + β(s2) ∀ s1, s2 ≥ 0.

Consequently, for almost every t ≥ 0,

d

dt
U (x(t)) ≤ −‖y(t)‖2 + 1

r2

(
‖u(t) − Ky(t)‖2 + ‖x(t)‖α(‖x(t)‖) + β(‖v(t)‖)

)
.

The claim now follows with P := r2Q. �
The next proposition (inspired by [1]) gurantees the existence of another quadratic

form which will be useful in the ISS analysis of Lur’e systems

Proposition 2.5 Let (A, B, Be,C) ∈ �e and assume that the pair (A,C) is
detectable. Then there exists a positive-definite matrix P = P∗ ∈ R

n×n and δ > 0
such that, for every (v, u, x, y) ∈ B(A, B, Be,C), the function V : Rn → R+ defined
by V (ζ ) := 〈Pζ, ζ 〉 satisfies

d

dt
V (x(t)) ≤ −δ ‖x(t)‖2 + ‖y(t)‖2 + ‖u(t)‖2 + ‖v(t)‖2 for a.e. t ≥ 0.

Proof By detectability of (A,C), there exists H ∈ R
n×p such that A + HC is Hur-

witz. Consequently, there exists a (unique) positive-definite solution Q = Q∗ of the
Lyapunov equation

(A + HC)∗Q + Q(A + HC) = −I, (2.6)

see, for example [10, Corollary 3.3.46]. Define the quadratic form U by U (ζ ) :=
〈Qζ, ζ 〉 and let (v, u, x, y) ∈ B(A, B, Be,C). Then

d

dt
U (x(t)) = 2 〈Qx(t), ẋ(t)〉 for a.e. t ≥ 0.
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446 E. Sarkans, H. Logemann

Setting w := Bu + Bev and invoking (2.6), we conclude that, for almost every t ≥ 0,

d

dt
U (x(t)) = 〈Qx(t), (A + HC)x(t)〉 − 〈Qx(t), HCx(t)〉 + 〈Qx(t), w(t)〉

+ 〈(A + HC)x(t), Qx(t)〉 − 〈HCx(t), Qx(t)〉 + 〈w(t), Qx(t)〉
= −‖x(t)‖2 − 2 〈Qx(t), Hy(t)〉 + 2 〈Qx(t), w(t)〉 .

An application of the Cauchy–Schwarz inequality and subsequent use of the ele-
mentary inequality ab ≤ a2/c2 + c2b2 (which is valid for all real a, b and c,
c �= 0) show that there exist positive constants c1, c2, c3 and c4 such that, for all
(v, u, x, y) ∈ B(A, B, Be,C),

d

dt
U (x(t)) ≤ −c1 ‖x(t)‖2 + c2 ‖y(t)‖2 + c3 ‖u(t)‖2 + c4 ‖v(t)‖2

for a.e. t ≥ 0.

Setting c5 := 1/max{c2, c3, c4}, the claim follows with P = c5Q and δ := c1c5. �

3 ISS of Lur’e systems

In this section, we will apply the results provided in Sect. 2 to prove ISS properties
for Lur’e systems of the form

ẋ(t) = Ax + B f (Cx) + Bev, (3.1)

where (A, B, Be ,C) ∈ �e, f : Rp → R
m is locally Lipschitz and v ∈ L∞

loc(R+,Rme)

is the control (forcing, input) function. Obviously, (3.1) can (and should) be thought
of as the feedback system given by

ẋ = Ax + Bu + Bev, y = Cx; u = f (y).

Frequently, we shall refer to (3.1) as the Lur’e system (A, B, Be,C, f ).
It is convenient to define the behaviourB(A, B, Be,C, f ) of (3.1) (or of the Lure’e

system (A, B, Be,C, f )) by

B(A, B, Be,C, f ) :=
{
(v, x) ∈ L∞

loc(R+,Rme) × W 1,1
loc (R+,Rn) :

(v, x) satisfies (3.1) a.e. onR+
}
.

This definition may seem restrictive, since only trajectories defined on the whole half-
line R+ are included in the behaviour. However, in the following, we will impose an
assumption on f which implies that f is linearly bounded, and hence, for every initial
condition x(0) = x0 and every v ∈ L∞

loc(R+,Rme), there exists a unique absolutely
continuous solution of (3.1) which is defined on R+.

The following lemma is obvious and does not require a proof.
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Lemma 3.1 Let (A, B, Be,C) ∈ �e, let f : Rp → R
m be locally Lipschitz and let

(v, x) ∈ L∞
loc(R+,Rme) × W 1,1

loc (R+,Rn). Then (v, x) ∈ B(A, B, Be,C, f ) if, and
only if, (v, f ◦ Cx, x,Cx) ∈ B(A, B, Be,C).

The Lur’e system (3.1) (or the quintuple (A, B, Be,C, f )) is said to be input-
to-state stable (ISS) if there exist ψ ∈ KL and ϕ ∈ K such that, for all (v, x) ∈
B(A, B, Be,C, f ),

‖x(t)‖ ≤ ψ(‖x(0)‖ , t) + ϕ(‖v‖L∞(0,t)) ∀ t ≥ 0. (3.2)

The concept of ISS (for a general controlled nonlinear system) appeared first in [23].
For overviews of ISS theory, we refer the reader to [3,25].

We say that two functions V1, V2 : Rn → R+ are K∞-equivalent if there exist
α1, α2 ∈ K∞ such that α1(V1(ζ )) ≤ V2(ζ ) ≤ α2(V1(ζ )) for all ζ ∈ R

n . A continu-
ously differentiable function V : Rn → R+ is said to be an ISS-Lyapunov function
for (3.1) (or for (A, B, Be,C, f )) if V and ‖·‖Rn are K∞-equivalent and there exist
β, γ ∈ K∞ such that, for all (v, x) ∈ B(A, B, Be,C, f ),

d

dt
V (x(t)) ≤ −β(‖x(t)‖) + γ (‖v(t)‖) for a.e. t ≥ 0

It is a well-known result in ISS theory (see, for example [25]) that the existence of an
ISS-Lyapunov function guarantees ISS.

We are now ready to state and prove the main result of this paper.

Theorem 3.2 Let (A, B, Be,C) ∈ �e, f : Rp → R
m be locally Lipschitz, r > 0 and

K ∈ R
m×p. If BC(K , r) ⊆ SC (A, B,C) and there exists α ∈ K∞ such that

‖ f (ξ) − K ξ‖ ≤ r ‖ξ‖ − α(‖ξ‖) ∀ ξ ∈ R
p, (3.3)

then the Lur’e system (A, B, Be,C, f ) is ISS.

In particular, if A is Hurwitz, then the Lur’e system (A, B, Be,C, f ) is ISS, pro-
vided that there exists α ∈ K∞ such that ‖ f (ξ)‖ ≤ r ‖ξ‖ − α(‖ξ‖) for all ξ ∈ R

p,
where r = rC(A; B,C). This shows that the complex stability radius rC(A; B,C)

provides a measure of the robustness of ISS of the linear system ẋ = Ax + Bev with
respect to additive nonlinear perturbations F of the form F(x) = B f (Cx).

Proof of Theorem 3.2 It is sufficient to show that there exists an ISS-Lyapunov func-
tion for (A, B, Be,C, f ). This will be done by constructing two functions V and W
and then showing that V + W is an ISS-Lyapunov function.

SinceBC(K , r) ⊆ SC (A, B,C), it is clear that the system (A, B,C) is stabilizable
and detectable. Proposition 2.5 guarantees the existence of a positive definite Q =
Q∗ ∈ R

n×n and a positive δ > 0 such that, for every (v, u, x, y) ∈ B(A, B, Be,C),
the function U0 : Rn → R+ defined by U0(ζ ) := 〈Qζ, ζ 〉 satisfies

d

dt
U0(x(t)) ≤ −δ ‖x(t)‖2 + ‖y(t)‖2 + ‖u(t)‖2 + ‖v(t)‖2 for a.e. t ≥ 0.
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448 E. Sarkans, H. Logemann

Let (v, x) ∈ B(A, B, Be,C, f ). Then, by Lemma 3.1, (v, f ◦ Cx, x,Cx) ∈
B(A, B, Be,C, f ), and thus

d

dt
U0(x(t)) ≤ −δ ‖x(t)‖2 + ‖Cx(t)‖2 + ‖ f (Cx(t))‖2 + ‖v(t)‖2 for a.e. t ≥ 0.

(3.4)
By (3.3),

‖ f (ξ)‖2 ≤ c0‖ξ‖2 ∀ ξ ∈ R
p,

where c0 := 2(‖K‖2 + r2). Setting

U := 1

1 + c0
U0 and ε := δ

1 + c0
,

it then follows from (3.4) that, for every (v, x) ∈ B(A, B, Be,C, f ),

d

dt
U (x(t)) ≤ −ε ‖x(t)‖2 + ‖Cx(t)‖2 + ‖v(t)‖2 for a.e. t ≥ 0. (3.5)

It is convenient to define constants

c1 := r
√

ε/2, c2 := √
ε/2, c3 := ‖C‖2

and to choose positive constants c4 and c5 such that

c4‖ζ‖ ≤ √
U (ζ ) ≤ c5‖ζ‖ ∀ ζ ∈ R

n, (3.6)

with

c4 = 1
√

(1 + c0)‖Q−1‖ and c5 =
√

‖Q‖
1 + c0

being a possible choice.
Furthermore, we define μ : R+ → R+ by

μ(s) := ε

4
min

{
c24s

3,
c1c4α(c2c4s/c5)

c3c5

}
∀ s ≥ 0,

whereα is theK∞-function from (3.3), the existence ofwhich is part of the hypothesis.
It is obvious that μ ∈ K∞. By Proposition 2.3, there exist positive semi-definite
P = P∗ ∈ R

n×n and β ∈ K∞ such that, for every (v, u, x, y) ∈ B(A, B, Be,C), the
function V : Rn → R+ defined by V (ζ ) := 〈Pζ, ζ 〉 satisfies

d

dt
V (x(t)) ≤ −r2 ‖y(t)‖2 + ‖u(t) − Ky(t)‖2 + ‖x(t)‖μ(‖x(t)‖)

+ β(‖v(t)‖) for a.e. t ≥ 0
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Let (v, x) ∈ B(A, B, Be,C, f ). Then, by Lemma 3.1, (v, f ◦ Cx, x,Cx) ∈
B(A, B, Be,C), and thus,

d

dt
V (x(t)) ≤ −r2 ‖Cx(t)‖2 + ‖ f (Cx(t)) − KCx(t)‖2 + ‖x(t)‖μ(‖x(t)‖)

+ β(‖v(t)‖) for a.e. t ≥ 0. (3.7)

Invoking (3.3), we have

‖ f (ξ) − K ξ‖2 − r2 ‖ξ‖2 ≤ −2α(‖ξ‖)r ‖ξ‖ + α2(‖ξ‖) ∀ ξ ∈ R
p.

Inequality (3.3) implies in particular that α(s) ≤ rs for all s ≥ 0, and so

‖ f (ξ) − K ξ‖2 − r2 ‖ξ‖2 ≤ −r ‖ξ‖α(‖ξ‖) ∀ ξ ∈ R
p.

Using this estimate in (3.7), we obtain

d

dt
V (x(t)) ≤ −r ‖Cx(t)‖ α(‖Cx(t)‖) + ‖x(t)‖μ(‖x(t)‖)

+ β(‖v(t)‖) for a.e. t ≥ 0. (3.8)

We will now “adjust” U by composing it with a suitable function h, that is, we will
be considering

W := h ◦U.

The function h : R+ → R+ is given by

h(s) =
∫ s

0
k(σ )dσ ∀ s ≥ 0,

where k : R+ → R+ is defined as follows:

k(0) := 0 and k(s) := min

{
s,

c1c4α(c2
√
s/c5)

c3
√
s

}
∀ s > 0.

Obviously, h is continuously differentiable and

0 ≤ h′(s) = k(s) ≤ rc1c2c4
c3c5

=: c6 ∀ s ≥ 0, (3.9)

where we have used again that α(s) ≤ rs for all s ≥ 0.
We claim that

h′(U (ζ ))
(−ε‖ζ‖2+‖Cζ‖2) ≤ −2‖ζ‖μ(‖ζ‖)+r‖Cζ‖α(‖Cζ‖) ∀ ζ ∈ R

n . (3.10)
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To avoid breaking the flow of the argument, we relegate the verification of (3.10) to
the end of the proof.

Invoking (3.5), it follows that, for every (v, x) ∈ B(A, B, Be,C, f ),

d

dt
W (x(t)) = d

dt
h
(
U (x(t))

) ≤ h′(U (x(t))
)[ − ε ‖x(t)‖2 + ‖Cx(t)‖2

+ ‖v(t)‖2 ]
for a.e. t ≥ 0.

Combining this with (3.10) shows that, for every (v, x) ∈ B(A, B, Be,C, f ),

d

dt
W (x(t)) ≤ −2‖x(t)‖μ(‖x(t)‖) + r‖Cx(t)‖α(‖Cx(t)‖) + c6 ‖v(t)‖2

for a.e. t ≥ 0, (3.11)

where we have used (3.9). Defining γ ∈ K∞ by γ (s) := β(s) + c6s2 for all s ≥ 0, it
follows from (3.8) and (3.11) that, for every (v, x) ∈ B(A, B, Be,C, f ),

d

dt
(V + W )(x(t)) ≤ −‖x(t)‖μ(‖x(t)‖) + γ (‖v(t)‖) for a.e. t ≥ 0. (3.12)

Consequently, if V +W and ‖·‖Rn areK∞-equivalent, then V +W is an ISS-Lyapunov
function for (A, B, Be,C, f ). To show that V +W and ‖·‖Rn areK∞-equivalent, note
that

(V + W )(ζ ) ≤ c7‖ζ‖2 = η1(‖ζ‖) ∀ ζ ∈ R
n, (3.13)

where c7 := ‖P‖ + c25c6 and η1 ∈ K∞ is defined by η1(s) := c7s2 for all s ≥ 0.
Moreover, noting that h ∈ K∞, it is clear that η2, defined by η2(s) := h(c24s

2) for all
s ≥ 0, is also in K∞, and it follows that

(V + W )(ζ ) ≥ h(U (ζ )) ≥ h(c24‖ζ‖2) = η2(‖ζ‖) ∀ ζ ∈ R
n . (3.14)

Inequalities (3.13) and (3.14) show that V + W and ‖·‖Rn are K∞-equivalent. We
have now established that V + W is an ISS-Lyapunov function for (A, B, Be,C, f ).

It only remains to prove that (3.10) holds. To this end, using (3.6), we estimate,

h′(U (ζ )) = k(U (ζ )) ≤ c1α(c2 ‖ζ‖)
c3‖ζ‖ ∀ ζ ∈ R

n, ζ �= 0.

Consequently,
c3‖ζ‖2h′(U (ζ )) ≤ c1‖ζ‖α(c2 ‖ζ‖) ∀ ζ ∈ R

n . (3.15)

We consider two cases.

Case a. If ‖Cζ‖2 > ε‖ζ‖2/2, then it follows from (3.15) and the definition of c1, c2
and c3 that

‖Cζ‖2h′(U (ζ )) ≤ r‖Cζ‖α(c2 ‖ζ‖) ≤ r‖Cζ‖α(‖Cζ‖).
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Case b. If ‖Cζ‖2 ≤ ε‖ζ‖2/2, then trivially,

‖Cζ‖2h′(U (ζ )) ≤ ε

2
‖ζ‖2h′(U (ζ )).

Therefore, we conclude

‖Cζ‖2h′(U (ζ )) ≤ max
{ε

2
‖ζ‖2h′(U (ζ )), r‖Cζ‖α(‖Cζ‖)

}
∀ ζ ∈ R

n . (3.16)

Furthermore, using again (3.6), we obtain

h′(U (ζ )) = k(U (ζ )) ≥ min

{
c24‖ζ‖2, c1c4α(c2c4‖ζ‖/c5)

c3c5‖ζ‖
}

∀ ζ ∈ R
n, ζ �= 0,

implying that

2‖ζ‖μ(‖ζ‖) ≤ ε

2
‖ζ‖2h′(U (ζ )) ∀ ζ ∈ R

n . (3.17)

Combination of (3.16) and (3.17) yields

h′(U (ζ ))‖Cζ‖2 + 2‖ζ‖μ(‖ζ‖) ≤ ε‖ζ‖2h′(U (ζ )) + r‖Cζ‖α(‖Cζ‖) ∀ ζ ∈ R
n,

which is equivalent to (3.10), completing the proof. �
The ISS property of the Lur’e system (A, B, Be,C, f ), guaranteed by Theorem 3.2,
means that there exist ψ ∈ KL and ϕ ∈ K such that the ISS estimate (3.2) holds for
all (v, x) ∈ B(A, B, Be,C, f ). As follows from ISS theory, the comparison functions
ψ and ϕ depend only on the K∞-functions μ, γ , η1 and η2, see (3.12)–(3.14). These
functions in turn depend only on A, B, Be,C , K , r andα, but not on f . Thismeans that,
in the context of Theorem 3.2, there exist comparison functions ψ ∈ KL and ϕ ∈ K
such that, for every f satisfying (3.3), the ISS estimate (3.2) holds. Furthermore, it can
be shown that if α is linear, then we can chooseψ and ϕ as follows:ψ(s, t) = Me−at s
and ϕ(s) = bs for suitable constants M ≥ 1 and a, b > 0.

As the following example shows, Theorem 3.2 does not remain true if the condition
on α is relaxed to α ∈ K.

Example 3.3 Define α ∈ K\K∞ by α(s) := 1 − e−s and f : R → R by f (ξ) :=
ξ−sgn(ξ)α(|ξ |). Consider the one-dimensional forced Lur’e system

ẋ(t) = −x(t) + f (x(t)) + v(t).

Obviously, −1 + k is Hurwitz for all k ∈ C with |k| < 1 and

| f (ξ)| = |ξ | − α(|ξ |) ∀ ξ ∈ R.

Consequently, with the exception of the condition α(s) → ∞ as s → ∞, the hypothe-
ses of Theorem 3.2 are satisfied. Choosing v(t) = 1+ ε for some positive ε, we have
ẋ(t) ≥ ε for all t ≥ 0 and hence the Lur’e system is not ISS. �

123



452 E. Sarkans, H. Logemann

We note that, in the unforced case (v = 0), the equilibrium 0 in Example 3.3 is globally
asymptotically stable. In fact, it can be shown that if BC(K , r) ⊆ SC (A, B,C), then,
for any locally Lipschitz f : Rp → R

m , satisfying ‖ f (ξ) − K ξ‖ < r ‖ξ‖ for all
ξ ∈ R

p\{0}, the equilibrium 0 of the unforced Lur’e system

ẋ = Ax + B f (Cx)

is globally asymptotically stable.
The following result identifies a class of Lur’e systems for which condition (3.3)

does not hold and hence Theorem 3.2 does not apply. The result also shows that, under
a mild additional assumption, these Lur’e systems are not ISS.

Proposition 3.4 Let (A, B, Be,C) ∈ �e, f : Rp → R
m be locally Lipschitz, r > 0

and K ∈ R
m×p. Assume that A is not Hurwitz, f is bounded and BC(K , r) ⊆

SC (A, B,C). Then the following statements hold.
(a) There does not exist α ∈ K∞ such that ‖ f (ξ) − K ξ‖ ≤ r‖ξ‖ − α(‖ξ‖) for all

ξ ∈ R
p (that is, condition (3.3) does not hold).

(b) Under the additional assumption that im B ⊂ im Be, the Lur’e system
(A, B, Be,C, f ) is not ISS.

Proof (a) Since A is not Hurwitz, it is clear that r ≤ ‖K‖. Moreover,

r‖ξ‖ − ‖ f (ξ) − K ξ‖ ≤ r‖ξ‖ − ‖K ξ‖ + ‖ f (ξ)‖ ∀ ξ ∈ R
p.

Let ξ0 ∈ R
p be such that ‖ξ0‖ = 1 and ‖K ξ0‖ = ‖K‖. Then, for all a ≥ 0, we have

r‖aξ0‖ − ‖ f (aξ0) − K (aξ0)‖ ≤ a(r − ‖K‖) + ‖ f (aξ0)‖ ≤ sup
ξ∈Rp

‖ f (ξ)‖ < ∞,

yielding the claim.
(b) We first prove the claim under the assumption that (A, B) is controllable. Let
z(· ;w) denote the solution of the initial value problem

ż = Az + Bw, z(0) = 0.

Then there exists w ∈ L∞(R+,Rm) such that x := z(· ;w) is unbounded (because
otherwise the linear system (A, B, I )would be bounded-input–bounded-output stable,
and therefore, by controllability and observability of (A, B, I ), A would be Hurwitz,
which is not possible). By boundedness of f , we have thatw− f (Cx) ∈ L∞(R+,Rm),
and, since im B ⊂ im Be, there exists v ∈ L∞(R+,Rme) such that Bev = B(w −
f (Cx)). Thus,

ẋ = Ax + Bw = Ax + B f (Cx) + Bev.

Since v is bounded and x is unbounded, it follows that the Lur’e system is not ISS.
If (A, B) is not controllable, then combining an argument similar to that used above

with Kalman’s controllability decomposition yields the claim. �
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Results which are (vaguely) related to Proposition 3.4 can be found in [20], where
it is shown that, under suitable assumptions, a “small” signal ISS property holds for
Lur’e systems with nonlinearities of “saturation” type.

We now illustrate Theorem 3.2 by two examples.

Example 3.5 We consider a systemmodelling a sequence of linked chemical reactions
inspired by [21]:

ż1 = g(z3) − a1z1 + d1,

ż2 = z1 − a2z2 + d2,

ż3 = z2 − a3z3 + d3,

⎫
⎪⎬

⎪⎭
(3.18)

where z1, z2 and z3 represent the concentrations of reagents, a1, a2 and a3 are posi-
tive constants, d1, d2 and d3 represent external disturbances and the locally Lipschitz
nonlinearity g : R+ → R+ represents inhibition of creation of reagent z1 depending
on the concentration of reagent z3. The latter means that g is a decreasing function
and hence g has negative derivative (provided that g is differentiable). The feedback
loop corresponding to g, sometimes referred to as negative feedback, is common in
metabolic control mechanisms, see Section 7.2 from [21]. Setting

A :=
⎛

⎝
−a1 0 0
1 −a2 0
0 1 −a3

⎞

⎠, B :=
⎛

⎝
1
0
0

⎞

⎠, C := (
0 0 1

)
,

the system (3.18) can be written in the form

ż = Az + Bg(Cz) + d, (3.19)

where z := (z1, z2, z3)∗ and d := (d1, d2, d3)∗.
Note that z1, z2 and z3 are naturally non-negative. Since A is a Metzler matrix

(all off-diagonal entries are non-negative), B and C have non-negative entries and g
maps R+ into R+, it is well known that, for non-negative initial conditions and for
non-negative disturbances, the corresponding trajectories of (3.19) are non-negative
(here vectors are referred to as non-negative if each component is non-negative).

The matrix A is Hurwitz and thus, the transfer function G of the single-input
single-output system (A, B,C), given by G(s) = C(s I − A)−1B, is bounded and
holomorphic on C+. From a routine argument, it follows that

‖G‖H∞ = G(0) = 1

a1a2a3
.

Consequently, setting r := a1a2a3 > 0, we have

BC(0, r) ⊆ SC (A, B,C) . (3.20)

Since g : R+ → R+ is decreasing (and excluding the trivial case g(ξ) ≡ 0), it is clear
that there exists a unique number ξ† > 0 such that g(ξ†) = rξ†. A straightforward
calculation shows that the vector
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z† := −A−1brξ† = (a2a3ξ
†, a3ξ

†, ξ†)∗ �= 0

is the unique equilibrium of (3.19) with d(t) ≡ 0.
Before we can apply Theorem 3.2, we need to transform (3.19) in such a way that

the equilibrium z† is moved to the origin. To this end, define f : R → R by

f (ξ) =
{
g(ξ + ξ†) − g(ξ†) for ξ ≥ −ξ†

g(0) − g(ξ†) for ξ < −ξ†.

Let z(0) and d be non-negative and let z be the corresponding (non-negative) solution
z of (3.19). Defining the function x by x(t) = z(t) − z†, it follows that

ẋ = Ax + B f (Cx) + d. (3.21)

We note that 0 is an equilibrium of (3.21) with d(t) ≡ 0. Furthermore, if (3.21) is ISS
(with respect to the equilibrium 0), then (3.19) is ISS (with respect to the equilibrium
z†) for non-negative disturbances d, that is, there exist ψ ∈ KL and ϕ ∈ K∞ such
that, for all z(0) ∈ R

3+ and non-negative d ∈ L∞
loc(R+,R3+),

∥∥
∥z(t) − z†

∥∥
∥ ≤ ψ

(∥∥
∥z(0) − z†

∥∥
∥ , t

)
+ ϕ

(‖d‖L∞(0,t)
) ∀ t ≥ 0. (3.22)

Therefore, appealing to (3.20) and invoking Theorem 3.2, wemay conclude that (3.19)
is ISS, provided that there exists α ∈ K∞ such that

|g(ξ + ξ†) − g(ξ†)| ≤ r |ξ | − α(|ξ |) ∀ ξ ≥ −ξ†. (3.23)

Let us consider a typical negative feedback nonlinearity g:

g(ξ) := 1

1 + ξ
∀ ξ ≥ 0. (3.24)

It is easy to verify that, in this case,

|g(ξ + ξ†) − g(ξ†)| ≤ |ξ |
1 + ξ†

∀ ξ ≥ −ξ†. (3.25)

If r > 1/2, then a routine calculation shows that ξ† < 1 and so,

1

1 + ξ†
= g(ξ†) = rξ† < r,

showing that (3.23) holds with α given by α(s) = r(1 − ξ†)s. Consequently, if g is
given by (3.24), then (3.19) is ISS, provided that r = a1a2a3 > 1/2. We mention that
this conclusion can also be obtained by writing (3.21) in component form
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Fig. 1
∥∥
∥z(t) − z†

∥∥
∥
2
for different disturbances: d0(t) = 0, d1(t) = (| sin(t)|, | sin(√2t)|, | sin(π t)|)∗,

d2(t) = 1
2 d

1(t), d3(t) = 1
4 d

1(t), d4(t) = 1
8d

1(t)

ẋ1 = f (x3) − a1x1 + d1,

ẋ2 = x1 − a2x2 + d2,

ẋ3 = x2 − a3x3 + d3

⎫
⎪⎬

⎪⎭
(3.26)

and applying a suitable nonlinear small-gain ISS theorem for feedback interconnec-
tions of several subsystems, see [4, Theorem 11] or [5, Corollary 5.6].1 We will make
more systematic contact with small-gain ideas further below (see Corollary 3.8 and
the paragraph after the proof of Corollary 3.8).

To consider a specific numerical example, let g is given by (3.24) and choose
a1 = a2 = 1 and a3 = 3/5. Then r = a1a2a3 = 3/5 > 1/2 and hence (3.19) is ISS.
Note that in this case ξ† = (

√
69−3)/6andconsequently z† = (

(
√
69−3)/10, (

√
69−

3)/10, (
√
69 − 3)/6

)∗. Simulations with initial state z(0) = (1/2, 1/2, 1/2)∗ and a
range of disturbances are shown in Fig. 1.

1 For example, using the notation of [4], we have γ11 = γ12 = γ22 = γ23 = γ31 = γ33 = 0,

γ13(s) = s

a1(1 + ξ†)
, γ21(s) = s

a2
and γ32(s) = s

a3
,

and defining αi (s) = εi s, where ε1, ε2 and ε3 are positive numbers such that (1 + ε1)(1 + ε2)(1 + ε3) <

r(1 + ξ†), it follows from [4, Theorem 11] that (3.26) is ISS, provided that r > 1/2.
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Finally, to conclude the example, wemention that the above arguments establishing
ISS also show that, if (3.22) holds, then, for all z(0) ∈ R

3+ and all disturbances
d ∈ L∞(R+,R3), possibly negative-valued, such that

ψ(‖z(0) − z†‖, 0) + ϕ(‖d‖L∞(0,∞)) ≤ min{z†j : j = 1, 2, 3} =: μ,

where z†j is the j-th component of z†,

the solution z of (3.19) remains in the non-negative orthant for all times (or, equiva-
lently, does not “escape” from the non-negative orthant in finite time). For example, if
ψ(‖z(0)− z†‖, 0) ≤ μ/2, then the solution z of (3.19) stays inR3+ for all times in the
presence of componentwise negative disturbances d satisfyingϕ(‖d‖L∞(0,∞)) ≤ μ/2.

�
Example 3.5 is a single-input single-output system in the sense that m = p = 1. In
the following example, we consider a system with m = 2 and p = 4.

Example 3.6 Consider (A, B, Be,C) ∈ �e, where

A =

⎛

⎜⎜
⎝

0 1 0 0
3 0 0 2
0 0 0 1
0 −2 0 0

⎞

⎟⎟
⎠, B =

⎛

⎜⎜
⎝

0 0
1 0
0 0
0 1

⎞

⎟⎟
⎠, C =

⎛

⎜⎜
⎝

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎞

⎟⎟
⎠

and Be ∈ R
4×me , Be �= 0, is arbitrary. It is obvious that A is not Hurwitz and thus, the

transfer function G of the minimal triple (A, B,C) is not in H∞(C4×2). A MATLAB
calculation reveals that,

K :=
(
0 0 0 0
15 −20/3 4/3 6

)
,

is a stabilizing output feedback matrix and we have
∥
∥GK

∥
∥
H∞ = 3.8383. Therefore,

by Lemma 2.1, there exists r > 1/4 (for example, r = 10/39) such that BC(K , r) ⊆
SC (G) = SC (A, B,C). Invoking Theorem 3.2, we conclude that the Lur’e system
(A, B, Be,C, f ) is ISS for every locally Lipschitz f : R4 → R

2 such that

‖ f (ξ) − K ξ‖ ≤ 1

4
‖ξ‖ ∀ ξ ∈ R

4. (3.27)

To provide a specific example satisfying (3.27), consider the function f : R4 → R
2

given by

f (ξ) = K ξ +
(
sin(‖ξ‖)/5
3g(ξ)/20

)
∀ ξ ∈ R

4,

where g : R4 → R is locally Lipschitz and such that |g(ξ)| ≤ ‖ξ‖ for all ξ ∈ R
4.

Then
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‖ f (ξ) − K ξ‖ =
√

1

25
sin2(‖ξ‖) + 9

400
g2(ξ) <

1

4
‖ξ‖ ∀ ξ ∈ R

4, ξ �= 0,

implying that the Lur’e system (A, B, Be,C, f ) is ISS. �
Theorem 3.2 says, roughly speaking, that linear stability (namely, BC(K , r) ⊆
SC (A, B,C)) implies ISS for all nonlinearities f : R

p → R
m satisfying (3.3).

In this sense, Theorem 3.2 is reminiscent of the Aizerman conjecture, see, for exam-
ple [9,10,17,27]. We emphasize though that stability of the linear feedback system
ẋ = (A + BFC)x has to hold for all complex output feedback matrices F satisfying
‖F − K‖ < r . It is easy to see that the ISS conclusion in Theorem 3.2 remains true
for all complex nonlinearities f : Cp → C

m satisfying (3.3) for all ξ ∈ C
p. We will

now identify a special case wherein the complex condition BC(K , r) ⊆ SC (A, B,C)

can be replaced by its real counterpart BR(K , r) ⊆ SR(A, B,C).
Recall that a square matrix M ∈ R

n×n is said to be Metzler (or essentially non-
negative or quasi positive) if all its off-diagonal entries are non-negative. It is well
known (and straightforward to prove) that M ∈ R

n×n is Metzler if, and only if,
eMtζ ∈ R

n+ for all ζ ∈ R
n+ and all t ≥ 0. We say that a matrix with real entries is

non-negative if all its entries are non-negative.

Corollary 3.7 Let (A, B, Be,C) ∈ �e, f : Rp → R
m be locally Lipschitz, r > 0

and K ∈ R
m×p. Assume that B and C are non-negative and A + BKC is Metzler. If

BR(K , r) ⊆ SR(A, B,C) and there exists α ∈ K∞ such that

‖ f (ξ) − K ξ‖ ≤ r ‖ξ‖ − α(‖ξ‖) ∀ ξ ∈ R
p, (3.28)

then the Lur’e system (A, B, Be,C, f ) is ISS.

Proof By hypothesis, B and C are non-negative and AK := A + BKC is Met-
zler. Since BR(K , r) ⊆ SR(A, B,C), we have BR(0, r) ⊆ SR(AK , B,C), and thus,
r ≤ rR(AK ; B,C). By a stability radius result for non-negative systems proved in
[11], rR(AK ; B,C) = rC(AK ; B,C), and hence, BC(0, r) ⊆ SC(AK , B,C), or,
equivalently, BC(K , r) ⊆ SC(A, B,C). The claim now follows from Theorem 3.2. �
The corollary below provides a “small-gain” interpretation of Theorem 3.2.

Corollary 3.8 Let (A, B, Be,C) ∈ �e, K ∈ SR(A, B.C), let f : R
p → R

m be
locally Lipschitz and let G denote the transfer function of (A, B,C). If there exists
α ∈ K∞ such that

‖GK ‖H∞
‖ f (ξ) − K ξ‖

‖ξ‖ ≤ 1 − α(‖ξ‖)
‖ξ‖ ∀ ξ ∈ R

p, ξ �= 0,

then the Lur’e system (A, B, Be,C, f ) is ISS.

Proof Setting r := 1/‖GK ‖H∞ , it follows that BC(K , r) ⊆ SC(A, B,C) and an
application of Theorem 3.2 yields the claim. �
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We note that Corollary 3.8 is not a special case of general nonlinear small-gain ISS
results as can be found, for example, in [14,26]. The reason for this is that, in general,
the H∞-gain ‖GK ‖H∞ and the ISS gain of the linear system (A + BKC, B,C) do
not coincide: the former is always less or equal to the latter and the difference between
these two gains can be large.

Next we derive a version of Theorem 3.2 which is reminiscent of the well-known
circle criterion (see [6,7,16,27]). To this end, let R(s) denote the field of real rational
functions, and recall that H ∈ R(s)m×m is said to be positive real if for every s ∈ C+
which is not a pole of H , the matrix H∗(s) + H(s) is positive semi-definite.

For convenience, we state the following well-known lemma.

Lemma 3.9 Let H ∈ R(s)m×m. If H is positive real, then H does not have any poles
in C+, −1 is not an eigenvalue of H(s) for every s ∈ C+ and

∥∥
∥(I − H)(I + H)−1

∥∥
∥
H∞ ≤ 1.

We are now in the position to state and prove a corollary of Theorem 3.2 which shows
that, under conditions very similar to those of the circle criterion, the Lur’e system
(A, B, Be,C, f ) is ISS.

Corollary 3.10 Let (A, B, Be,C) ∈ �e, f : R
p → R

m be locally Lipschitz,
K1, K2 ∈ R

m×p and let G denote the transfer function of (A, B,C). Assume that
(A, B,C) is stabilizable and detectable and that (I − K2G)(I − K1G)−1 is positive
real. If there exists α ∈ K∞ such that

〈 f (ξ) − K1ξ, f (ξ) − K2ξ 〉 ≤ −α(‖ξ‖) ‖ξ‖ ∀ ξ ∈ R
p, (3.29)

then the Lur’e system (A, B, Be,C, f ) is ISS.

Proof Setting

K := 1

2
(K1 + K2) and L := 1

2
(K1 − K2),

we rewrite the left-hand side of the sector condition (3.29) in terms of K and L:

〈 f (ξ) − K1ξ, f (ξ) − K2ξ 〉 = 〈 f (ξ) − (K + L)ξ, f (ξ) − (K − L)ξ 〉
= ‖ f (ξ) − K ξ‖2 − ‖Lξ‖2 ∀ ξ ∈ R

p. (3.30)

Note that in conjunction with (3.29) this implies ker L = {0}. Thus L∗L is invertible
and L� := (L∗L)−1L∗ ∈ R

p×m is a left inverse of L . Furthermore,

(I − K2G)(I − K1G)−1 = (I − K1G + 2LG)(I − K1G)−1 = I + 2LGK1 ,

showing that I + 2LGK1 is positive real. Thus, by Lemma 3.9,

∥∥∥LGK1(I + LGK1)−1
∥∥∥
H∞ ≤ 1.
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Trivially,

LGK1(I + LGK1)−1 = LGK1(I − (−LL�)LGK1)−1 = (LGK1)−LL�

,

and so, appealing to statement (d) of Lemma 2.1,

BC(−LL�, 1) ⊆ SC

(
LGK1

)
. (3.31)

By stabilizability and detectability of (A, B,C) and left invertibility of L , it follows
that (AK1 , B, LC) is stabilizable and detectable, where AK1 := A + BK1C . The
transfer function of (AK1 , B, LC) is equal to LGK1 and so (3.31) implies

BC(−LL�, 1) ⊆ SC

(
AK1 , B, LC

)
. (3.32)

Defining g : Rm → R
m by g(ξ) := f (L�ξ) − K1L�ξ for all ξ ∈ R

m , it is straight-
forward to show that

B(A, B, Be,C, f ) = B(AK1 , B, Be, LC, g). (3.33)

We claim that it is sufficient to prove that there exists β ∈ K∞ such that

‖g(ξ) + LL�ξ‖ ≤ ‖ξ‖ − β(‖ξ‖) ∀ ξ ∈ R
m . (3.34)

Indeed, if (3.34) holds, then it follows from (3.32) and an application of Theorem
3.2 that (AK1 , B, Be, LC, g) is ISS, and consequently, by (3.33), the Lur’e system
(A, B, Be,C, f ) is also ISS.

We proceed to establish the existence of a function β ∈ K∞ such that (3.34) holds.
To this end, note that

‖g(ξ)+LL�ξ‖2 = ‖ f (L�ξ)−K1L
�ξ + LL�ξ‖2 = ‖ f (L�ξ) − K L�ξ‖2 ∀ ξ ∈ R

m .

In conjunction with (3.29) and (3.30) this leads to

‖g(ξ) + LL�ξ‖2 ≤ ‖LL�ξ‖2 − ‖L�ξ‖α(‖L�ξ‖) ∀ ξ ∈ R
m .

Let ξ ∈ R
m and decompose ξ = ξ1 + ξ2, where

ξ1 ∈ im L = (ker L∗)⊥ = (ker L�)⊥ and ξ2 ∈ (im L)⊥ = ker L∗ = ker L�.

Then ‖LL�ξ‖ = ‖LL�ξ1‖ = ‖ξ1‖. Moreover, there exists c > 0 such that

‖L�ξ‖ ≥ c‖ξ‖ ∀ ξ ∈ (ker L�)⊥.
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It follows that

‖g(ξ) + LL�ξ‖2 ≤ ‖ξ1‖2 − c‖ξ1‖α(c‖ξ1‖)
= ‖ξ‖2 − (

c‖ξ1‖α(c‖ξ1‖) + ‖ξ2‖2
) ∀ ξ ∈ R

m . (3.35)

Defining β ∈ K∞ by

β(s) := 1

4
min{c α(cs/2), s/2} ∀ s ≥ 0,

we have that
4sβ(2s) = min{cs α(cs), s2} ∀ s ≥ 0. (3.36)

Now

√
s21 + s22 β

(√
s21 + s22

)
≤ (s1 + s2)β(s1 + s2)

≤ 2s1β(2s1) + 2s2β(2s2) ∀ s1, s2 ≥ 0,

and thus, by (3.36),

2
√
s21 + s22 β

(√
s21 + s22

)
≤ cs1 α(cs1) + s22 ∀ s1, s2 ≥ 0.

This, in combination with (3.35), yields

‖g(ξ) + LL�ξ‖2 ≤ ‖ξ‖2 − 2‖ξ‖β(‖ξ‖) ≤ (‖ξ‖ − β(‖ξ‖))2 ∀ ξ ∈ R
m,

showing that (3.34) holds and completing the proof. �
We recall that H ∈ R(s)m×m is said to be strictly positive real if there exists ε > 0

such that the rational matrix function s �→ H(s − ε) is positive real.

Corollary 3.11 Let (A, B, Be,C) ∈ �e, f : R
p → R

m be locally Lipschitz, let
G denote the transfer function of (A, B,C), and let K1, K2 ∈ R

m×p be such that
ker(K1 − K2) = {0}. If (A, B,C) is stabilizable and detectable, (I − K2G)(I −
K1G)−1 is strictly positive real and

〈 f (ξ) − K1ξ, f (ξ) − K2ξ 〉 ≤ 0 ∀ ξ ∈ R
p, (3.37)

then the Lur’e system (A, B, Be,C, f ) is ISS.

Note that the assumptions in Corollary 3.11 are identical to those imposed in the “clas-
sical” circle criterion which guarantees global asymptotic stability, see, for example,
[6, Theorem 5.1], [7, Corollary 5.8] and [16, Theorem 7.1].2 Interestingly, Corol-
lary 3.11 shows that the conditions of the circle criterion are actually sufficient for

2 Whilst in these results it is assumed that the linear system (A, B,C) is controllable and observable,
Corollary 3.11 requires only stabilizability and detectability.
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ISS. Also note that if ker(K1 − K2) is non-trivial, then, in general, Corollary 3.11
does not hold: indeed, if F ∈ R

m×p is such that G(I − FG)−1 /∈ H∞(Cp×m) (that
is, the feedback gain F is not stabilizing), f (ξ) = Fξ and K1 = K2 = F , then
(I − K2G)(I − K1G)−1 = I is trivially strictly positive real and (3.37) is satisfied,
but 0 is not an asymptotically stable equilibrium of the (uncontrolled) Lur’e system.

The following lemma will be useful in the proof of Corollary 3.11.

Lemma 3.12 Let H ∈ R(s)m×m be proper and assume that H(∞) + H∗(∞) is
positive definite. Then H is strictly positive real if, and only if, H ∈ H∞(Cm×m) and
H(iω) + H∗(iω) is positive definite for all ω ∈ R.

The above lemma is an immediate consequence of a standard characterization of the
strict positive real property, see, for example [7, Theorem 5.17] or [16, Lemma 6.1].

Proof of Corollary 3.11 Set M := K2 − K1, let ρ ≥ 0 and define

Hρ := (
I − (K2 + ρM)G

)
(I − (K1 − ρM)G)−1 .

By hypothesis, H0 is strictly positive real. We claim that that there exists ρ̂ > 0 such
that Hρ is strictly positive real for all ρ ∈ [0, ρ̂]. To this end, note that

Hρ = I − (1 + 2ρ)MG
(
I − (K1 − ρM)G

)−1
. (3.38)

Since H0 is strictly positive real, Lemma 3.12 yields that H0 ∈ H∞(Cm×m) and,
furthermore, there exists δ > 0 such that

H0(iω) + H∗
0 (iω) ≥ δ I ∀ω ∈ R. (3.39)

Since ker M = {0}, the matrix M is left invertible, and it follows from (3.38) (with
ρ = 0) that G(I − K1G)−1 ∈ H∞(Cp×m). Consequently, there exists ρ̃ > 0 such
that G

(
I − (K1 − ρM)G

)−1 ∈ H∞(Cp×m) for all ρ ∈ [0, ρ̃] and the map

[0, ρ̃] → H∞(Cm×m), ρ �→ Hρ

is continuous. Invoking (3.39), we conclude that there exists ρ̂ ∈ (0, ρ̃] such that,
for each ρ ∈ [0, ρ̂], Hρ(iω) + H∗

ρ (iω) ≥ (δ/2)I for all ω ∈ R. An application of
Lemma 3.12 shows that, for all ρ ∈ [0, ρ̂], Hρ is strictly positive real and, a fortiori,
positive real.

The claim will follow from Corollary 3.10, provided we can show that, for ρ ∈
(0, ρ̂], there exists α ∈ K∞ such that

〈 f (ξ) − (K1 − ρM)ξ, f (ξ) − (K2 + ρM)ξ 〉 ≤ −α(‖ξ‖)‖ξ‖ ∀ ξ ∈ R
p.

(3.40)

Invoking (3.37), a straightforward calculation shows that

〈 f (ξ) − (K1 − ρM)ξ, f (ξ) − (K2 + ρM)ξ 〉 ≤ −ρ(ρ + 1)‖Mξ‖2 ∀ ξ ∈ R
p.
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By left invertibility of M , there exists μ > 0 such that ‖Mξ‖ ≥ μ‖ξ‖ for all ξ ∈ R
p,

and so,

〈 f (ξ) − (K1 − ρM)ξ, f (ξ) − (K2 + ρM)ξ 〉 ≤ −μρ(ρ + 1)‖ξ‖2 ∀ ξ ∈ R
p,

showing that (3.40) holds with α(s) = μρ(ρ + 1)s. �
We now reformulate the sector condition (3.29) in the special case wherein (A, B,C)

is a single-input single-output system (that is, m = p = 1). In the single-input single-
output setting, this reformulation seems more natural than (3.29).

Corollary 3.13 Let (A, B, Be,C) ∈ �e, where (A, B,C) is a single-input single-
output system (that is, m = p = 1). Let f : R → R be locally Lipschitz, let
k1 < k2 and let G denote the transfer function of (A, B,C). Assume that (A, B,C)

is stabilizable and detectable and that (1 − k2G)/(I − k1G) is positive real. If there
exists α ∈ K∞ such that

k1ξ
2 + α(|ξ |)|ξ | ≤ f (ξ)ξ ≤ k2ξ

2 − α(|ξ |)|ξ | ∀ ξ ∈ R, (3.41)

then the Lur’e system (A, B, Be,C, f ) is ISS.

Note that there exists α ∈ K∞ such that (3.41) holds if, and only if,

k1ξ
2 < f (ξ)ξ < k2ξ

2 ∀ ξ ∈ R, ξ �= 0

and

| f (ξ) − kiξ | → ∞ as |ξ | → ∞, i = 1, 2.

Proof of Corollary 3.13 The result will follow fromCorollary 3.10, providedwe show
that there exists β ∈ K∞ such that

( f (ξ) − k1ξ)( f (ξ) − k2ξ) ≤ −β(|ξ |)|ξ | ∀ ξ ∈ R. (3.42)

To this end, set

k := k1 + k2
2

and r := k2 − k1
2

> 0,

and note that, by (3.41),

−rξ2 + α(|ξ |)|ξ | ≤ f (ξ)ξ − kξ2 ≤ rξ2 − α(|ξ |)|ξ | ∀ ξ ∈ R,

or, equivalently,
| f (ξ) − kξ | ≤ r |ξ | − α(|ξ |) ∀ ξ ∈ R. (3.43)

Hence,

( f (ξ) − kξ)2 − r2ξ2 ≤ −2r |ξ |α(|ξ |) + α2(|ξ |) ∀ ξ ∈ R.
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Since

( f (ξ) − kξ)2 = ( f (ξ) − k1ξ)( f (ξ) − k2ξ) + k2ξ2 − k1k2ξ
2 ∀ ξ ∈ R

and k2 − r2 = k1k2, it follows that

( f (ξ) − k1ξ)( f (ξ) − k2ξ) ≤ −2r |ξ |α(|ξ |) + α2(|ξ |) ∀ ξ ∈ R.

Finally, by (3.43), α(s) ≤ rs for all s ≥ 0, implying that

( f (ξ) − k1ξ)( f (ξ) − k2ξ) ≤ −2r |ξ |α(|ξ |) + r |ξ |α(|ξ |) = −r |ξ |α(|ξ |) ∀ ξ ∈ R.

Consequently, (3.42) holds with β := rα. �
Example 3.14 Consider the one-dimensional linear system ẋ = u + v with feedback
u = f (x), resulting in the Lur’e system

ẋ(t) = f (x(t)) + v(t). (3.44)

Here we have (A, B, Be,C) = (0, 1, 1, 1) and G(s) = 1/s. Let k1 < 0 and k2 = 0.
Note that, for every k1 < 0,

1 − k2G(s)

1 − k1G(s)
= s

s − k1

is positive real (but not strictly positive real). Let f be given by

f (ξ) =
{−ξ3 for |ξ | ≤ 1

−sgn(ξ)
(
ln(|ξ |) + 1

)
for |ξ | > 1.

(3.45)

It is clear that, for any k1 < −1, k1ξ2 < f (ξ)ξ < 0 for all ξ �= 0, and, as |ξ | → ∞, we
have that | f (ξ) − k1ξ | → ∞ and | f (ξ)| → ∞. Consequently, there exists α ∈ K∞
such that

k1ξ
2 + α(|ξ |)|ξ | ≤ f (ξ)ξ ≤ −α(|ξ |)|ξ | ∀ ξ ∈ R.

It follows now from Corollary 3.13 that the Lur’e system (3.44) is ISS. Note that the
equilibrium 0 of the uncontrolled (v = 0) system (3.44) is not exponentially stable.
Also note that if f is replaced by a saturating nonlinearity g, for example,

g(ξ) =
{−ξ3 for |ξ | ≤ 1

−sgn(ξ) for |ξ | > 1,

then, by Proposition 3.4, the resulting Lur’e system is not ISS. �

123



464 E. Sarkans, H. Logemann

4 Conclusions

We have developed an ISS theory for a class of Lur’e systems. The main result of this
paper (Theorem3.2) is an ISS resultwhich is reminiscent of the complexifiedAizerman
conjecture in the following sense: if every linear feedback gain F in the complex ball
BC(K , r) stabilizes the system (A, B,C), then the Lur’s system ẋ = Ax+ B f (Cx)+
Bev is ISS for every locally Lipschitz nonlinearity f for which there exists α ∈ K∞
such that ‖ f (ξ) − K ξ‖ ≤ r‖ξ‖ − α(‖ξ‖) for all ξ . As corollaries we have obtained
a new nonlinear small-gain condition for ISS of Lur’e systems (Corollary 3.8) and
several ISS versions of the classical circle criterion (Corollaries 3.10, 3.11 and 3.13).
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