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Abstract. We analyze a finite element/boundary element procedure for a non-convex contact problem for
the double—well potential. After relaxing the associated functional, the degenerate minimization problem
is reduced to a boundary/domain variational inequality, a discretized saddle point formulation of which
may then be solved numerically. The convergence of the Galerkin approximations to certain macroscopic
quantities and a corresponding a posteriori estimate for the approximation error are discussed. Numerical
results illustrate the performance of the proposed method.
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1. INTRODUCTION

Adaptive finite element / boundary element procedures provide an efficient and extensively
investigated tool for the numerical solution of uniformly elliptic transmission or contact prob-
lems. However, models of strongly nonlinear materials often lead to nonelliptic partial differen-
tial equations, where the standard Hilbert space techniques are no longer appropriate to analyze
the numerical approximations by coupled finite and boundary element methods. In a previous
work [10] we showed that certain mixed L> — LP—Sobolev spaces provide a convenient setting
to study contact problems for monotone operators like the p—Laplacian. This article extends the
approach to nonconvex functionals, discussing the prototypical model case of a double—well
potential in Signorini and transmission contact with the linear Laplace equation. As a proof
of principle, it intends to clarify the mathematical basis — including well-posedness, conver-
gence, a priori and a simple a posteriori estimate — of adaptive finite element/ boundary element
methods involving a non-strictly monotone operator, by clarifying how the analysis in different
function spaces of the interior and the exterior problem can be combined.

In particular, in Lemma 2.1 we show that the solution of the exterior problem is reliably
computable with boundary integral methods, even if the solution of the interior problem is not
unique or only exists as a Young measure. More generally, we obtain the well-posedness of a
convexified, but not strictly convex problem with a priori and posteriori error estimates for the
error of Galerkin solutions in Theorems 3.1 and 4.1. Our estimates generalize those known for
the discretization of the Dirichlet or Neumann problem for the double—well potential to contact
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problems. They allow adaptive approaches similar to those studied for the nonlinear interior
problem. Our methods readily extend to certain systems of equations from nonlinear elasticity,
or to frictional contact and more elaborate a posteriori estimates as in [10]. The coupling of
finite elements and boundary elements is well-known to provide efficient, rapidly convergent
methods, which have been thoroughly investigated for elliptic problems [6, 13, 16].

Let Q C R” be a bounded Lipschitz domain and dQ = I'; UT's a decomposition of its bound-
ary into disjoint open subsets, I'; # 0. We consider the problem of minimizing the functional

1
‘P(ul,uz):/QW(VIM)—FE/QJVLQF_/Q]"MI—(t(),l/t2’39>

with nonconvex energy density W(F) = |F — Fi|* |F — F2|> (F1 # F» € R") over the closed
convex set

{(u1,u2) € WHH(Q) x W2(QE) : (uy — wp) |1, = uo, (u1 — w2)|r, < uo, uz € L5},

loc

_ 1.2/Acy . N —12/0c¢ _ 0(1) ;=2
32—{V€W/IOC(Q).AV—01nW (Q)’v_{ﬁ(|x]2”),n>2 .
The data f € L¥3(Q), tp € W—22(9Q) and uy € W22(9Q) are taken from the appropriate
spaces, and (-, -) denotes the duality pairing between W’%72(8Q) and W%’2(8Q).
Classical exact minimizers of W satisfy a transmission problem involving the derivative DW
of W:

—divDW(Vu;)=f inQ, Aup; =0 inQ°,
v-DW (Vu) —dyup =ty on dQ, uy —up =ug on I,
up—up <ug, v-DW(Vuy) <0, v-DW(Vuy)(u; —up —up) =0 onTj,

+ radiation condition for u, at .

Here v denotes the exterior unit normal vector. Therefore, the minimization problem for ¥ is
a variational formulation of a contact problem between the double—well potential W and the
Laplace equation, with transmission (I';) and Signorini (I'y) contact at the interface.

Nonconvex minimization problems of this type arise naturally when a material in Q passes the
critical point of a phase transition into a finely textured mixture of locally energetically equiv-
alent configurations of lower symmetry, the so—called microstructure, see e. g. [1]. Lacking
convexity in €, the existence and uniqueness of minimizers for W is not assured, see [12, 14].
In addition, a direct numerical solution of a non-convex variational problem typically faces the
challenge of the finite element approximation of rapid oscillations. In order to overcome this
difficulty, we follow the idea of [4], see also [7], to consider a relaxed problem by using the
quasi-convex envelope of the non-convex functional. The relaxed problem then admits solu-
tions, which are possibly not unique, and related stresses equal to the stress obtained by solving
the original problem in a generalized sense involving Young measures [9]. Beyond the stresses,
we show that additional average physical properties of the sequences minimizing ¥ can be
computed from the relaxed functional: the displacement in the exterior, the region, where min-
imizing sequences develop microstructure, or also the gradient of the displacement away from
the microstructure. Crucially for the use of boundary elements, the exterior boundary value on
the interface is not affected by the presence of microstructure.
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The increasingly fine length scale of the microstructure often prevents the direct numeri-
cal minimization, and starting with works of Carstensen and Plecha¢ [4, 5] computational ap-
proaches based on relaxed formulations have been considered. Relaxation amounts to replacing
the nonconvex functional by its quasi—convex envelope, in our setting the degenerate functional

*% K% 1
Y (uy,up) = / W™ (Vuy) + —/ Vur |? —/ Jur = (to, u2|90)-
Q 2 Jae Q
IfA= %(Fz —F)and B= %(Fl + F3), the convex integrand W** is given by the formula (cf. [4])

W™ (F) = (max{0, |F — B| — |A|?})” +4|A]?|F — B — 4(A(F — B))™.

More generally, we consider a stabilized functional
O () =¥ ) o [ (=P, (@20, fel¥(@).

For o > 0 this functional lifts the potential non-uniqueness of solutions by penalizing deviation
from a reference displacement f. The theory of relaxation for nonconvex integrands shows
that the weak limit of any minimizing sequence for ® = ¥ + & [, (u; — f)? minimizes ®**.
Macroscopic quantities like the stress DW** on Q defined by this weak limit coincide with the
averages such as the average stress [ DW (u) du(u) defined by the Young measure y associated
to the minimizing sequence. To extract the average physical properties of sequences minimizing
@, it is hence sufficient to understand the minimizers of the degenerately convex functional ®**.
Later work [2] showed how also the microstructure itself could be recovered numerically.

We are thus going to analyze a finite element / boundary element scheme which numerically
minimizes ®** and thereby approximates certain macroscopic quantities independent of the
particular minimizer. Our approach is based on previous works by Carstensen / Plechac [4, 5]
and Bartels [2] for double—well potentials with Dirichlet or Neumann boundary conditions and
shows how to combine them with techniques developed in [10] for strongly nonlinear interface
problems. It is readily modified to include the explicit Young measures in the interior part as in
Bartels [2]. Section 2 discusses the relaxed problem and identifies several quantities shared by
its minimizers. A priori error estimates for their computation and convergence are established
in Section 3. Section 4 contains an a posteriori estimate of residual type, on which an adaptive
grid refinement strategy may be based.

For later reference, we recall from [4] the following estimates for the relaxed double—well
potential (E,F € R"):

max{C |F|* — C,,0} <W**(F) < C3+C4|F|*, (1.1)

[DW*(F)| < Cs(1+|F ), (12)

[DW*(F) = DW**(E)|> < Co(1+ |F|* + |E]*)(DW**(F) — DW™(E))(F —E), ~ (1.3)
O(F)+Q(E)

8|A*|PF —PE[* +2 A(F = E)|>+2(Q(F) - Q(E))?

< (DW™(F) —DW™(E))(F —E) (1.4)

Al

where Q(F) = max{0, |F — B|* —|A|*} and PP is the orthogonal projection onto the subspace of
vectors orthogonal to A.
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2. ANALYSIS OF THE RELAXED PROBLEM

We first outline how the minimization problem for @** can be reduced to a boundary—domain
variational inequality. As it involves the exterior problem, it is not affected by the nonconvex
part of the functional. See e.g. [10] for a more detailed exposition.

Recall the Steklov—Poincaré operator

S W22(9Q) —» W 22(9Q),

a positive and selfadjoint operator (pseudodifferential of order 1, if dQ is smooth) with defining
property
dhuzpo = —S(u2/s0)

for solutions uy € % of the Laplace equation on Q€. The operator S may be expressed in terms
of the boundary integral operators V,K,K’,W as

S= 3 W+ (=KW (1-K),

where
Vo(x)=2 [ o()G(x,x)dsy, K¢ (x) = 2/ ¢(x") oy, G(x,x') dsy (2.1)
a2Q Q

K'o(x) = 20y, /a OG0 dse . Wolx) =20, /a 009, Glx ) dsy . (22)

G denotes the fundamental solution of the Laplace equation in R”.

Let
~ ]

W22(Ty) = {v e W22(9Q) :suppv C I3}, X = WIH(Q) x W22(Ty).
The following affine change of variables
(w1,u2) = (u,v) = (ur — c,u +ua|aq — tilgq) € X

will be useful. Note that v is indeed supported in I'y: The boundary condition (u; —u)|r, = ug
assures v|r, = 0. Using S and this change of variables for a suitable ¢ € R, the exterior part of
@** is reduced to I' = dQ:

(i) = [ W (Vi) +a [ 243 (S(ulaa+),ulaa +v) ~ Auy) +C
=J(u,v)+C.
Here o > 0,
A(u,v) = (to+ Suo,u|yq +v) +/g(f+206f—2ac)u

and C = C(ug, 1) is a constant independent of u,v. Therefore, instead of ®** one may equiva-
lently minimize J over

o ={(u,v) €X:v>0and (S(ulgo+Vv—up),1) =0if n="2}. (2.3)

Here, the condition (S(u|yq +v—up),1) = —(dyuz, 1) = 0 for n = 2 assures the existence of a
harmonic extension uy in Q¢ with up = o(1) as |x| — oo.



FE-BE COUPLING FOR A TRANSMISSION PROBLEM INVOLVING MICROSTRUCTURE 5

A reformulation as a variational inequality reads as follows: Find (i, V) € <7 such that
/Q DW™ (Va)V (u— ) + (S(@|gg + 9), (u— ) | 5q +v — ) (2.4)
—1—206/ d(u—0) > A(u—d,v—7)
Q

for all (u,v) € .

Convexity and the closedness of .o assure that the relaxed functional J assumes its minimum.
Due to the lack of coercivity, the minimizer may fail to be unique, though certain macroscopic
quantities are uniquely determined.

Lemma 2.1. The set of minimizers is nonempty and bounded in X. The stress DW**(il), the
projected gradient PVil, the region of microstructure {x € Q : Q(Vii) = 0} and the boundary
value ii|yq + V are independent of the minimizer (i, V) € <7 of J (up to sets of measure 0). If
o > 0, it is unique and belongs to L*(Q).

For the proof, we recall the variant
lallwis@) S 1Valls@ + 1l 4o (2.5)
of Friedrichs’ inequality from [10].

Proof of Lemma 2.1. By (1.1) and the coercivity of S, we have

A A 1 ~ 2
@9 > CillVillfsq)+elaliz g, ~Covol @+ Gl +VI1 4o

) = N
+ ECSHMHW%’Z(F,) —If 20 f=2acl| a3 ) ldllwis o)

— lto + Sug|| alr, +V
o+ Stoll, -y s e+ 91, 15
— llto+Suoll - || I, 4
for any minimizer (4,V) € </ of J. Consequently
v - ) 112 _Clla
Va4 + elldll2 H'”'rﬁva%ﬂ(nﬁ”””w%ﬁz(r,) Cliallyiaq)

is bounded for some C > 0. The inequality (2.5) easily yields the boundedness of ||(#,V)||x.

If (d1,91), (,V;) € &7 are two minimizers, J is constant on { (i1, V1) + s(dy — iy, 0, — ¥) :
s € [0,1]}: If not, the restriction of J to this set would have a maximum > J (i, V) = J(ii2,V2)
for some 0 < s < 1, contradicting the convexity of J. Therefore

(' (B2, 92) = J'(d1,91), (B2 — 1,92 — 91)) = 0,
or for our particular J
0 — /(DW**(V ) — DW**(Vul))V(ﬁz—ﬁ1)+2oc/(ﬁz—ﬁl)z
Q Q
+ (S((t2 — ) g + P2 — P1), (12 — 1) [gq + P2 — P1).
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The three terms on the right hand side are non—negative, because S is coercive and W** convex,
and hence

i1 |pq + V1 =2y + V2 and (DW™*(Vilp) — DW™*(Viiy))V (i — 1) =0

almost everywhere, and hence the exterior boundary values i |yq + V1 = f2|9q + P2 coincide.
If o > 0, also #i; = il almost everywhere, independent of the minimizer. The inequality (1.3),

|DW**(Vity) — DW**(Viiy ) |*
< (14 Vi[> + |Viay |2 (DW** (Vity) — DW** (Vity )V (i — iy ),

implies DW**(Vii;) = DW**(Vily) almost everywhere, hence independent of the minimizer.
The assertions about the projected gradients and the region of microstructure are immediate
consequences of inequality (1.4),

[PV, — Va2 + (Q(Vi) — O(Vily))?
< (DW*(Viip) — DW**(Vit)))V (i — ).
0

In particular, the displacement i, on Q€ is uniquely determined and may be computed from
il|gq + v with the help of layer potentials. Due to the lack of convexity of W, neither i nor Vi
needs to be unique if o = 0. However, Lemma 2.1 allows to identify subsets of €, on which
these quantities are well-defined.

Corollary 2.1. a) Let ; 4 be the set of points x € Q for which the component of a hyperplane
perpendicular to A through x intersects I'y. Then the displacement ulq, , is independent of the
minimizer. '

b) The same holds for the gradient Vii outside the region of microstructure.

Proof. a) The proof is almost identical to the corresponding proof in [4]. Let (d;,V}), (i#2,72) €
2/ be two minimizers, and consider w = ii, — ii;. Because PVi; = PVii, due to Lemma 2.1,
PVw = 0 almost everywhere. By definition, IP is the projection onto the orthogonal complement
of A, so that Vw is parallel to A almost everywhere. It is easy to see that, therefore, w may be
modified on a set of measure zero to yield an absolutely continuous function which is locally
constant along the hyperplanes perpendicular to A. With w|r, being 0 by Lemma 2.1, w also has
to vanish on almost every hyperplane hitting I’;.

b) is a consequence of PVi; = PVii,, DW**(Vil;) = DW**(Vily) and (1.4):

(Q(Via) + Q(Vin))|AV (it — ity ) |* < (DW** (Vitp) — DW**(Viy ) )V (di — i) = 0.

Outside the region of microstructure Q(Vii;),Q(Viiy) # 0, so that AVii; = AVii,. Together with
PVii; = PVii,, this implies Vii; = Vii,. O

3. DISCRETIZATION AND A PRIORI ESTIMATES

We are now going to analyze which quantities can be computed numerically with a Galerkin
method. For simplicity, we restrict to Q C R?.

Let {.7,} 1 be a regular triangulation of Q C R? into disjoint open regular triangles K, so
that Q = Uke, K. Each element has at most one edge on dQ, and the closures of any two of
them share at most a single vertex or edge. Let ix denote the diameter of K € .7, and pg the
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diameter of the largest inscribed ball. We assume that 1 < maxgc 7, z—i < R independent of &
and that h = maxge g, hg. The set of all edges of the triangles in .7, will be denoted by &,

and the set of nodes by D. Associated to .7}, is the space Wh1’4(Q) c WH4(Q) of continuous
functions whose restrictions to any K € .7, are linear.
The boundary d< is triangulated by {l/ € &, : 3K € .7, such that ] C KN JQ}. The corre-

1 1
sponding space of continuous, piecewise linear functions is denoted by W,’ 2 (dQ), and W, 2 (Ty)

_1
is the subspace of those supported on I'. Finally, W, 2’2(89) C W*%72(8Q) consists of piece-
wise constant functions,

= o N(WHQ) x W2 (0)

and X2 = W (Q) x W2 2(T).

We denote by i; : W, (Q) < W'4(Q), ji, : Wh%z(l“s) < W22(T,) and ky, : Wh_%’z(&Q) —
W’%vz((?Q) the canonical inclusion maps. A discretization of the Steklov—Poincaré operator is
defined as

1 * —lpx
Sn= 5 (W + (I = K')eu (kiV kn) "'k, (1 = K))

from the single resp. double layer potentials V and K and the hypersingular integral operator W
of the exterior problem. S, is well-known [6] to be uniformly coercive for small £ in the sense
that there exists 4y > 0 and an A—independent o > O such that for all 0 < h < hg

Sy up) > Ogllu 2 .

Furthermore, in this case

. _ -12
||(Sh—S)uHW_%72(aQ)§CS dlstw_%g(ag)(V 1= K)u, W, 27(0Q)) (3.1)

for all u € W22(9Q) and all 0 < h < hy.
As before, (i, 7) denotes a minimizer of J over .o, while (i, V) minimizes the approximate
functional

ok 1
Jh(”hvvh>:/QW (Vuh)+0‘/Q“%+§<Sh(uh’ag+vh),uh|ag+vh>—lh(uh,vh),

An(up,vp) = <t0+5h”0a”h|89+vh>+/Q(f+2af_2ac)“h7

over 7.
The equivalent variational inequality reads as follows: Find (i, V) € <7, such that

/QDW**(Vﬁh)V(Mh — iip) + (Sh(in| g + Vn) s (un — dn) |90+ vi — On) (3.2)

+206/9ﬁh(uh—ﬁh) > Ay (up, — i, vy — V)

for all (uy,vy) € 7,

For simplicity, abbreviate the stress DW**(Vii) by ¢ and the indicator Q(Vii) for microstruc-
ture by . Similarly, write o), and &, for the corresponding quantities associated to ;. The
following a priori estimate holds.
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Theorem 3.1. Let (i1, V) € o7 be a solution to the variational inequality (2.4), (i, V) € <), a
solution to the discretization (3.2). Then the resulting approximations of the stress ©, exterior
boundary values u|yq + v and the other quantities in Lemma 2.1 converge for h — 0.

a) There is an h—independent C = C(ot) > 0 such that

2 A A
O —O +ol|i—1u + (i —1u +v—9
lo—anlly , +olla—anlq)+ 1@ —aloa+o=0l 1.

HIPVa —PViy||72 g + 1§ +En) ' PAV (@ — ) 72 + 1€ — EllF2 0

< C inf {||ﬁ—Uh||W14 +H(M—Uh)|aQ+V—Vh||

(Un, Vi) €ty ?(9Q) }

. 1 . N ~ 75,2 2
Fist g o0 (V1= K) @49 =), W, 27(00)%

b) For pure transmission conditions, I'y = dQ, the slightly better estimate

2 NPT AL 7 i |12
HG—GhHL%(Q)+OCHM_”hHL2(Q)+H”_”hHW%ﬁz(aQ)"f’HPV”_PV”h”LZ(Q)

+II(& + &) AV (@ — )72 ) + 1€ — Enll 72

< C inf {HVu—VUhHL4 +ocHu—UhHLz +Hu—UhH }
Upew, " (Q) 22(9Q)
+ dist 1289)(V’1(1—K)(u—u0) 22(9Q))?

holds.

Note the squared norms on the right hand side of the estimate in b), as compared to a). This
corresponds to the reduced convergence rates, by a factor of 2, which are well-known for the
numerical approximation of variational inequalities [8, 10].

Proof. We integrate (1.3) and use Holder’s inequality as well as the uniform bound on the norm
of minimizers (the first assertion in Lemma 2.1) to obtain

. 2 < . A A
o= oully , < [ (0= onVia—i) (33)

Most of the remaining terms on the left hand side are similarly bounded with the help of (1.4):

1PV —PVitn| 720 + (6 +8n) ' PAV (i — i) |20 + 16 — &nll72 )

5/(o—oh)v<a—ﬁ,,). (3.4)
Q
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Adding the inequalities (3.3) and (3.4), as well as a||ii — ﬁhH%Z(Q)

LHS? = ”G—Gh||24( )+a||ﬁ_ﬁh||i2§z

= an)loa+0 =0l o+ IBVE=BVinl )
(€ + &) 2AV(2— )l + 1€ — ShllF2(q)

S Jalo—on)(Vi—Viy) +2ald— sl 72
(S — )| g + 9 —0n), (4 — )| 9 + 9 — 0p)

— [ oVin—2a [ iy~ (S((dloq + 9)inlan + )

—/QGhVﬁ—Za/Qﬁhﬁ—<S(ﬁh|ag+ﬁh)7ﬁ|89+‘7>
+/ch¢+2a/gﬁ2+(S(ﬁ|ag+ﬁ),ﬁ|ag+ﬁ>

+/QGhVﬁh+2OC/Qﬁ%+<Sh(ﬁh|ag+9h),ﬁh|ag+9h>
+((S = Sn) (dnloq + Vn), lnl g + On)-

Let (U,V) € o, (Uy,V;) € o,. Applying the variational inequality (2.4) and its discrete coun-
terpart (3.2) to the third and fourth lines and rearranging terms leads to

LHS® < /GV(U—ﬁh)—i-Zoc/ﬁ(U—ﬁh)
Q Q
H(S(l|pa+7),Ulga +V —dnloo — On)
‘J"/QGhV(Uh_ﬁ)‘}'za/gﬁh(Uh_ﬁ)
+(S(din a0 +Vn), Unlaa + Vi — 1] 5o — ¥)
+A(G—U,9—=V)+ Al — Up, 0 — V)
+((S —Sn) (dn| g + Vn —uo), (dn — Un)loq +9n — Vi)
and then
LHS? < /GV(U—ﬁh)+2oc/ AU — i)
o Q
H(S(l|oo+7), (U —idp) oo +V —0p)
+/ GV(Uh—ﬁ)-i—Zoc/ﬁ(Uh—ﬁ)
(S(a |a9+v) (Uh—u)|aQ+Vh—V>
+/ G — )+2a/(uh—ﬁ)(Uh—ﬁ)
(S((a h—u)laQ+Vh—V) (Up— )| o+ Vi —7)
+l(u—U,v— )—l—l(uh—Uh,ﬁh—Vh)
+((S = Sn) (it g +V —uo), (ln — Un)|aq + On — Vi)
+((S = Sp) ((dn — @) |gq + n — 9), (@ — Un)laq + n — Va)- (3.5)
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Holder’s inequality tells us that
| (0= Wi=i) < llov =0l 5 o IV (Vs =110
and the continuity of S allows to bound
(S((ap — a)|oa+ 9 =), (Un— i) |gq + Vi — )
by a multiple of

|| (& h—u)|ag+vh—v|| (aQ)H(Uh—M)bQJth—VH 12090)

€ —1U +v,—7 — - +V,—v
1= )laa 54 =F12 o+ NV =Dloa+ V=01

for small € > 0. Similarly, the last two lines of (3.5) are, up to prefactors, bounded by

el —)laa+ 012y + 1+ DI = Dlaa+ Vil

S-S +9—up)||?
+[[(S = Sp) (d]gq + uo)HW 00)

We choose (U,V') = (i, V). For € > 0 sufficiently small, the terms of order € can be combined
with the left hand side to obtain

LHS* S HGh—GH4 HV<Uh_u>”L4 )+ 2al|a, —allp2q) | Un — allr2(q)

B a2 PR T
+[(Un M)|aQ+Vh V|| 1200 )+||(S Sp) (o + 9 —uo)| w20

+/ GV(Uh—ﬁ)+2oc/ a(Up — i)
Q Q
+(S(it]gq +7), (Up — )| g + Vi — V) — AUy — i1, V), — 7). (3.6)

If I'; = dQ, the variational inequality (2.4) becomes an equality, the sum of the last two lines
in (3.6) vanishes and b) follows. In the general case, I'; C dQ, we estimate the last two lines of
(3.6) by

||G||Lg(g)||V(Uh—ﬁ)||L4(gz)+||f+206f—206€—206ﬁ|| 4 ||Uh—ﬁ||L4 Q

+HS@laq +9—uo) =t 1. H(Uh—u)|ag+Vh—VH

22(90Q) 2(99Q)’

recalling that
AU = .V = 9) = {10+ Suo, (Us ~ D)o + Ve = 1)+ [ (£ +207~20) (U~ ).

This shows the estimate in a).
By Lemma (2.1), the set of minimizers is bounded in X, so that all constants may be chosen
independent of (&, 7). O
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4. ADAPTIVE GRID REFINEMENT

In order to set up an adaptive algorithm, we now establish an a posteriori estimate of residual
type. It allows to localize the approximation error and leads to an adaptive mesh refinement
strategy. A related and somewhat more involved estimate for the linear Laplace operator with
unilateral Signorini contact has been considered in [11].

Let (4,V) € <, (i, V),) € <7, solutions of the continuous resp. discretized variational inequal-
ity. We define a simple approximation (m,i, 7,0) € <), of (i1,7) as follows: m,i is going to be
the Scott-Zhang interpolant of #, and 7,V = V.

The next lemma collects the crucial properties of Scott-Zhang interpolation (see e.g. [15]).

Lemma 4.1. Let K € 9}, and E € &,. Then with g = Uﬁmk;&@K/ and O = UﬁmE;é@E/ we
have:

”ﬁ_nhﬁHL“(K) hKHl’A‘HWL“(a)K) )

<
1/2,, ~
< m/?lal

|a— ”hﬁHLz(E)

22 (0op)’

We are going to prove the following a posteriori estimate:

Theorem 4.1. Let (i1,V) € o7 be a solution to the variational inequality (2.4), (i, V) € %), a
solution to the discretization (3.2). Then there holds,

2 N A
O — O] + ot — i =+ || (i —it +Vv—7
lo=oul’s . +alli=inlg +I@=aloa o=l .

HIPVa —PViy||72 g + 1§ + &) PAV (@ — ) |72 g + 1€ — &nllF2 0

) _ R R —12
SnNo+nc+ns+dist 1, (V I(I_K)(”h’89+vh_”0)vwh 27(0Q))?

W 22(9Q)

where

3/4 1/2
= (zh4/3||f+za<f—c—mniﬁi ) +< ) hEiHvE'GhJ|liz<E>> ’

ENJdQ=0

nc = nei+nea= Y, (Ve on)+llpe) + /VE Oh)— Vn »
ECTy ECI

1/2
ns = ( Y. ke [ISh(inloq + On —uo) + (Vaq - O4) _t0”%2(15)> :
ECoQ
Here, (Vg - 0p,)+ = max{vg - 0,0} and (Vg - 0;)— = min{vg - 6,0} denote the positive
resp. negative part of Vg - 0y,

Remark 4.1. a) The main point of this estimate is to show that the a posteriori estimates for
the contact part [11] and the double—well term [4] are compatible. More sophisticated bounds
related to a different choice of 7, generalize to our setting in a similar way. For example, in a
related setting [11] use a more considerate (sign—preserving) choice of 7,V to gain a power of &
in Nc,; at the expense of modifying

Nc2 = Z / VE - Op) - ﬂhvh

ECT
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b) As in [10], it is straight forward to introduce an additional variable on the boundary to obtain
estimates that do not involve the incomputable difference S, — S.

Proof of Theorem 4.1. As in the proof of Theorem 3.1, we start with the inequality

LHS? .= |c—oy||>.  +allid—da,||% o +||(2—a P71
| h“L%(Q) 18— dnll72 () + 1@ — dn) o hHW%vz(aQ)

PV~ PYiy| [} )+ 11 (€ +80)"2AV (@ — i) |72y + 1€ = il 72 0
S /(G—Gh)V(ﬁ—ﬁh)+2a/(ﬁ—ah)2

Q Q

+(S((a— )| g0+ P — ), (@ — p)| 90+ D — D).

Using the variational inequality (2.4) and its discretized variant (3.2) results in

LHS? < l(ﬁ—ﬁh,\?—ﬁh)—/QG;,V(A—ﬁh)—Za/ﬁh(ﬁ—ﬁh)

+((Sh—8) (ln|gq + Pn), (4 — in) | 9o + 0 — On)

ﬂ,h(ﬁ—uh,ﬁ—vh)—/ GhV(ﬁ—uh)—2(X/ ﬁh(ﬁ—uh)
Q Q

IN

—(Sh(dnlan+Pn), (@ —up)|go + 9 —va)
+((Sp = S) (lin| g+ On —uo), (4 —in)| g +V —Vn) -

Explicitly,

LHS? < /Q(f+2af—2ac—2aﬁh)(ﬁ—uh)— Y /[vE-Gh](ﬁ—uh)

ENoQ=0"E
— (Sh(tin| g + P — uo) + (Vaq - On) —to, (it — up) |9 + 0 — vp)

+/F(V89'Gh) (0 —vp)
+((Sp— ) (dn| go + P — uo), (4 —dn)|go + ¥ — Vn)

for all (uy,,v;) € o),. Here, vg and v, denote the outward—pointing unit normal vector to an
edge E C K, resp. to dQ, and [V - 0y,] is the jump of the discretized normal stress across E. We
have used divoy, = 0O for discretization by piecewise linear functions, as well as that ¥ and vy,
vanish on I';. According to estimate (3.1) for §;, — S and Young’s inequality, the last term can be

1
estimated by diStW71 o (VYA = K) (dh] g0 + Ph—uo), W, 2’2(89))2, which is not explicitly

32(90)

computable.
We are going to choose (uy,vy) = (i, m,0). Then, the first three terms on the right hand
side can be estimated with the help of Lemma 4.1 and Holder’s inequality:

- . 3/4
Jo 207 =)~ md) 5 il (AL [ 17+ 2007 e -a)*)
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‘ X /E[VE.Gh](ﬁ_nhﬁ) ’Suﬁuwi@(ag)( ) hE/EHVE'GhHZ)l/z

ENoQ=0 ENJQ=0
and

|(Sn(@tn|aq +Vn —uo) + (Voo - On) —to, (it — mpth) | 9o + V — 7t4V) |
< A A
S (HMHW%,Z((—)Q) + HVHW%,z(a %72(89))

Sh(@nloq + 0 = o) + (Voo - on) —toll 45 oo -

Q) + HVhHW

The trace theorem shows that \|12||W }200) is bounded by |||y 12(q). and therefore also by

4|14 (@)- Note that the boundedness of the set of minimizers, Lemma 2.1, provides an explicit
wid(q)- The W_%’2(8Q)—n0rm

uniform bound on both ||, V||x and ||@, V4||x, including |||

leads to ng [6].
The remaining term requires a slightly more precise analysis. Decompose

(Vag-0n) = (Vag - On)+ — (Vag - On) -

into its positive and negative parts. For a classical exact solution, the Signorini condition re-
quires (vyq - 0)+ = 0, and we estimate the corresponding term as above:

1/2
b — mp¥ p b 2
‘/FS(VQQ'Gh)JF (V—m)| < (HVHW%.z(aQ)‘f’HVhHW%‘z(aQ)) (/FS](VE.G;,)+| ) )

For the negative part, we use that v, = ¥, and ¥ > 0 from (2.3):

—/FS(V(;Q-G;,)_ (ﬁ—vh) = Z (VE'Gh)—/E(vh_‘;)

ECT

< Y (VE-Gh)—/Eﬁh-

ECT

The a posteriori estimate follows. U

The a posteriori error estimate in Theorem 4.1 leads to an adaptive mesh refinement procedure
as in [10]: Given an initial triangulation ZZ(O), the adaptive algorithm generates a sequence
Zl(z) of triangulations based on the error indicator ng + 1n¢ + N5, a refinement criterion and a
refinement rule, by following the established sequence of steps:

SOLVE — ESTIMATE — MARK — REFINE.

The efficiency of this approach has been shown in [4] for the double—well problem with Dirich-
let boundary conditions. The adaptive algorithm was extended to strongly nonlinear interface
problems solved by FE-BE procedures in [10], in the case of p-Laplacian-type operators. The
estimate in this paper combines these two approaches, which we expect to be similarly efficient.

5. NUMERICAL EXPERIMENTS
Let Q = (0,1)%, F; = (—1,0), F, = (1,0) and
3

1
folx) = =55 (= 0.5)° — S (- 0.5)%,
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f(x,y) := fo(x). We also define

ix,y) = Jo(x) for0 <x<1/2,
’ L (x—0534x-05 for1/2<x<1.

In problem (2.4) we set Iy =0, f =0, ug := it|yq, 1o := %ﬁ and o = 1. A similar example
with local boundary conditions has been studied in [4].
We obtain the non-linear problem: Find 2 € W'#(Q) such that

| oW (VayVa+2 [ aut (S@laa),ulae) = o+ Suoulaa) + [ fu+2 [ fu (.1
Q Q Q Q

for all u € W!#(Q). We know that the solution of (5.1) is the minimizer of

3 = [ W0+ [ (= PP+ 5 (S(daa) ulan) — o+ Suosulaa) = [ fu (52)

which we will use to measure the convergence.
Problem (5.1) can be linearized by the Newton-Algorithm.

Algorithm 5.1 (Newton). (1) Choose u(® € W'#(Q).
(2) Find 8u € W4(Q) such that

/DZW**(Vu(”))(VSu,Vu)+2/ Su-u+ (S8uly0,uly0)
Q Q
= —/ DW**(Vu("))Vu—Z/ u ™y
Q Q

— (5™ oq) ula) + o+ Suosulan) + [ fu+2 [ Fu

forall u € WH*(Q).
(3) Update
w1 = ) 4 5y

@) If [[dullyraq) > 1078 goto 2

Table 1 gives the energy error (J,(u;,) —J(u))'/? and the numerical convergence rate ¥ for
a sequence of uniform meshes (triangular elements). Ity,, is the number of Newton steps and
7(s) the total computing time for solving the linear systems iteratively using the CG algorithm.
The computations have been done using the software framework maiprogs on a Xeon E5-2640
processor, 2.4GHz, 256GByte memory.

In Figure 1 we show the indicator for microstructure & := Q(Vii). Recall from Lemma 2.1
that the region of microstructure is given by {x € Q : Q(Vit) = 0}, so that in this example we
have microstructure in the left part of the domain. The approximation to the corresponding
solution # is displayed in Figure 2. Table 1 illustrates the convergence in the energy J to its
extrapolated value —1.420846 as the number of degrees of freedom is increased. The conver-
gence rate is around —0.34 with respect to degrees of freedom, or 0.67 with respect to the mesh
size h. From the proof of Theorem 3.1, the difference Jj,(uy,) — J(u) controls the error

2 A A2 A oA ~ A2
O — O] +ojlu—iu +|(i—1u +v—v
=0l o+ lla =l + G —anloa+ =0l

HIPVa —PViy[|72 g + 1§ + &) PAV (@ — n) |72 ) + 1 — &nll72 -
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DOF Jh(uh) (Jh(uh) —J(u))1/2 Y Ityneyw ”L'(S)
25 -1.39482 0.16131 — 8  0.0350359
81 -1.41004 0.10394 -0.373940 10  0.0857504
289 -1.41646 0.06622 -0.354421 12 0.3176073
1089 -1.41924 0.04011 -0.377901 12 1.3824396
4225 -1.42023 0.02479 -0.354911 14 10.198651
16641 -1.42060 0.01555 -0.339924 19  117.28788
66049 -1.42075 0.00976 -0.338222 29  1638.0605
263169 -1.42081 0.00613 -0.336551 42 .2661E+05

TABLE 1. Experimental convergence rates Y in the energy, Newton iteration
numbers /7y, and runtime 7(s) (uniform mesh)

DOF lunllzz@) Munllzziq) = llullz2q) Y
25 0.2794074598 0.00065 —
81 0.2790474065 0.00029 -0.694171
289 0.2788991366 0.00014 -0.576218
1089 0.2787571712 48E-05 -2.522545
4225 0.2787653556 .34E-05 -0.268460
16641 0.2787609993 .10E-05 -0.882613
66049 0.2787623532 .35E-06 -0.755459
263169 0.2787620217 22E-07 -2.018029

TABLE 2. Experimental convergence rates ¥ in L?(€) (uniform mesh)

This assures that o, 4, @|yo + 9, PVa, E1/2AVa and & converge with (at least) this rate, even
though the exact solution is not known.

Table 2 confirms the convergence of the L?(Q)-norm of the approximate solutions to the
extrapolated value |[ul[2(q) = 0.2787620. Note that the convergence is faster than for J, but the
empirical convergence rate is highly variable.
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