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Abstract—In large-scale disaster events, the planning of op-
timal rescue routes depends on the object detection ability
at the disaster scene, with one of the main challenges being
the presence of dense and occluded objects. Existing methods,
which are typically based on the RGB modality, struggle to
distinguish targets with similar colors and textures in crowded
environments and are unable to identify obscured objects. To
this end, we first construct two multimodal dense and occlusion
vehicle detection datasets for large-scale events, utilizing RGB
and height map modalities. Based on these datasets, we propose
a multimodal collaboration network for dense and occluded
vehicle detection, MuDet for short. MuDet hierarchically en-
hances the completeness of discriminable information within
and across modalities and differentiates between simple and
complex samples. MuDet includes three main modules: Unimodal
Feature Hierarchical Enhancement (Uni-Enh), Multimodal Cross
Learning (Mul-Lea), and Hard-easy Discriminative (He-Dis)
Pattern. Uni-Enh and Mul-Lea enhance the features within each
modality and facilitate the cross-integration of features from two
heterogeneous modalities. He-Dis effectively separates densely
occluded vehicle targets with significant intra-class differences
and minimal inter-class differences by defining and thresholding
confidence values, thereby suppressing the complex background.
Experimental results on two re-labeled multimodal benchmark
datasets, the 4K-SAI-LCS dataset, and the ISPRS Potsdam
dataset, demonstrate the robustness and generalization of the
MuDet.

Index Terms—Large-scale Disaster Events, Remote Sensing,
Multimodal Vehicle Detection, Convolutional Neural Networks,
Dense and Occluded, Hard-easy Balanced Attention
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Fig. 1. A visual example for the separable and non-separable objects in large-
scale disaster events.

EMOTE sensing (RS) imagery has long been utilized

across various fields of large-scale disaster events, in-
cluding early warning and damage evaluation. With the rapid
development of domestic and foreign satellites and aircraft,
as well as the popularity of unmanned aerial vehicles (UAVs)
[1], the spatial and spectral resolutions of RS data have been
continuously improved [2], providing basic data assurance for
applications in large-scale disaster events. Object detection
[3]-[5] in RS images is the technical basis for risk assessment
and rescue. However, research focusing on object detection,
e.g., vehicle detection, in large-scale events, which involves
challenges such as density, occlusion, and even distortion,
remains relatively limited.

In remote sensing (RS) object detection, especially when
utilizing deep learning (DL) models, high-quality labeling
is crucial for defining precise object boundaries and cate-
gories. This accuracy is vital for the model’s ability to learn
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and recognize distinctive features of each object class. The
Northwestern Polytechnical University Very-High-Resolution
dataset (NWPU VHR-10) [6], the INDIA aerial picture
dataset, UCAS-AOD [7], the Remote Sensing Object Detec-
tion (RSOD) dataset [8], and the Dataset for Object deTection
(DOTA) [9], are representative examples of publicly available
object detection datasets. The majority of these datasets are
sourced from Google Maps with RGB modality, with the
vehicle targets predominantly located in parking lots, roadside
areas, residential zones, and other relevant scenes. All datasets
are in RGB modality, with minor variations among the image
scenes. There is a significant difference between different
vehicle target classes, yet there is a high degree of similarity
within each class. Additionally, vehicles in these scenes adhere
to predefined parking rules and regulations. A selection of
annotated vehicle samples is presented above the dashed line
in Fig. 1.

Currently, there are numerous methods for detecting the
above vehicles. For instance, Ref. [10] utilized adversarial
learning to create vehicle images to diversify the dataset and
enhance detection accuracy. To concentrate on regions of
interest while minimizing the impact of occlusions, Zhang
et al. [11] developed a triple-head network incorporating
regional attention. Zhu et al. [12] proposed a Hard Samples
Metric Learning (HSML) strategy aimed at reducing intra-
class variance and lowering the rate of false detections.
Meanwhile, Huang et al. [13] developed an Object-Adaptation
Label Assignment (OLA) method that adapts neural network
learning to the specific characteristics of different objects, in-
directly addressing the challenge of densely packed boats and
vehicles. Unfortunately, RGB modality data alone falls short
of distinguishing between objects that are densely packed or
occluded within the small intra-class distance. This limitation
is particularly evident at large-scale events, for example, where
recreational vehicles (RVs), vehicles with tents mounted on
their roofs, and flat-topped rectangular tents are densely parked
in a limited area. This scenario is depicted in the example
images located below the dotted line in Fig. 1.

Multimodal data [14], which integrates information from
various sensors or sources, such as visible light (RGB), in-
frared, light detection and ranging (LIDAR), synthetic aperture
radar (SAR), and optical photographic measuring, significantly
enhances the ability to detect and differentiate vehicles. This
integration leverages the strengths of each modality to over-
come the limitations inherent in any single data type, partic-
ularly in challenging conditions such as denseness, occlusion,
or similar appearance among objects. Sharma et al. [15]
utilized mid-level feature fusion to integrate data from visible
and infrared (IR) modalities. Sumbul et al. [16] developed
a unified object detection framework that integrates feature
representations and attention mechanisms from both visible
and LIDAR data. A significant challenge in multimodal object
detection is crafting effective fusion strategies. In response,
Hong et al. [17] prompted a promising research problem,
i.e., cross-region or cross-city land cover classification, and
proposed a novel multimodal deep learning method, called
high-resolution domain adaptation networks. However, cur-
rent multimodal datasets and their associated methodologies

mainly concentrate on object deformation, such as variations
in scale and orientation, while often neglecting issues like
irregular parking and obstructions, e.g., tents or branches. This
oversight leads to significant challenges in detecting vehicles
amidst dense occlusion at large-scale events.

To this end, we first construct and label two Multimodal
Vehicle Detection (MVD) datasets at large-scale events, incor-
porating both RGB and height map modalities. These datasets
are characterized by densely packed vehicles, occlusions, and
instances of partial deformation. RGB images provide color
and texture information about objects, aiding in the identifi-
cation of vehicular surface characteristics. Height maps offer
elevation data for objects, enabling the differentiation of ob-
jects with similar colors and textures in crowded environments
by their distinct heights. Furthermore, height maps can also
infer the presence of occluded objects based on their height
differences. Then, we propose a multimodal collaboration
network for dense and occluded vehicles. Specifically, we
design a Unimodal Feature Hierarchical Enhancement (Uni-
Enh) network and a Multimodal Cross Learning (Mul-Lea)
strategy to enhance the distinct features of each modality and
enrich the feature representation of vehicles. Following it, a
Hard-Easy Discriminative (He-Dis) pattern is designed to en-
hance the discriminability between hard and easy objects and
to minimize the impact of complex background interference.
The contributions of this paper are summarized as follows:

o A multi-modal vehicle detection dataset is constructed
and labeled, specifically targeting vehicles in dense and
occluded scenarios in large-scale events. These vehicles
are categorized as “hard vehicles” due to the complexity
of their detection conditions.

o A Multimodal Collaboration Network (MuDet) is pro-
posed to detect dense and occluded vehicles in large-
scale events. By integrating RGB and height map data,
it enhances features within each modality and improves
the completeness of feature fusion across modalities.
MuDet significantly enhances the discriminability and
separability of multimodal features.

e A unimodal feature hierarchical enhancement (Uni-Ehn)
network and a multimodal cross learning (Mul-Lea) strat-
egy are designed to enhance the distinct features of each
modality and enrich the distinguishing features of vehi-
cles. A hard-easy discriminative pattern (He_Dis) module
is designed to balance hard-easy object discriminability
and suppress interference from complex backgrounds on
objects.

o We evaluate the detection performance of the proposed
MuDet on two new multimodal vehicle detection datasets,
namely the 4K-SAI-LCS dataset and the ISPRS Potsdam
dataset, demonstrating substantial improvements over var-
ious existing methods. The codes and datasets will be
available for the sake of reproducibility and for develop-
ing the research direction of multimodal RSOD.

This paper is organized as follows: Section II introduces
the proposed MuDet framework in detail, including the Uni-
Ehn network, Mul-Lea strategy, He-Dis modules, and its loss
function. Quantitative experiments and visual analysis of the
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Fig. 2. The flowchart of the proposed MuDet for dense and occluded vehicle

proposed MuDet on two newly annotated multimodal datasets,
the 4K-SAI-LCS dataset and the ISPRS Potsdam dataset, are
discussed in Section III. Section IV summarizes and offers
prospects for the proposed MuDet framework.

II. PROPOSED MUDET FRAMEWORK

In this section, we provide a detailed description of the pro-
posed MuDet for dense and occluded vehicle detection. Fig. 2
illustrates the network architecture of MuDet. In detail, we first
introduce an unimodal feature learning and enhancement (Uni-
Enh) network designed to amplify the distinctive features of
each stream, aiming to capture intramodal relationships more
precisely. Then, the generated feature is sent to the multimodal
cross-learning (Mul-Lea) module to interactively learn features
between two heterogeneous modalities and improve the com-
pleteness of information fusion across these modalities. To
further enhance the detection of vehicles in dense and occluded
conditions, we developed a hard-easy discriminative (HE-Dis)
pattern that differentiates vehicles across varying levels of
density and occlusion.

A. Unimodal Feature Hierarchical Enhancement (Uni-Enh)

Convolutional Neural Networks (CNNs) feature a unique
architecture of local weight sharing, significantly benefiting
image processing and other areas by enabling the extraction
of highly discriminative object features from input images.
Currently, CNNs are the widely used method in the field
of remote sensing [18], [19]. Unimodal feature hierarchical
enhancement (Uni-Enh) involves dual-stream feature learning
via CNNs and features hierarchical enhancement of each stram
to more effectively capture intramodal relationships.

Firstly, we introduce a dual-stream CNN-based network for
feature learning. Each stream in the network is composed
of several CNN blocks, with each block consisting of a

detection in multimodal RS images.

3 x 3 convolutional layer, Batch Normalization (BN), and
Leaky ReLU activation. We define X € RXMXN a5 the
CNN features. To distinguish, Xpap € RIreBXMXN and
Xy € RIXMXN are ysed to represent the feature maps of
the RGB image and the height map (H), respectively. drap
and dp represent the number of RGB stream channels and the
number of height map stream channels, respectively. M x N
denotes the feature map size. The output of the [-th layer of
MuDet is denoted as X V.

x® f(W(l)X(l—l) + b(l)),l =1,2,---, N,

where XV denotes the feature maps of the [-th layer. f is a
nonlinear activation function. N indicates the layer number of
CNN. W and b are the learned weights and biases of the
[-th layer, respectively.

Then, we develop a hierarchical enhancement strategy to
amplify the distinctive features of each stream and integrate
the outcomes into a cross-attention mechanism, thereby aiming
to more precisely capture intramodal relationships.

For the RGB stream, we measure the grayscale values of the
RGB image X ggé p and employ gamma transformation with
diverse coefficients to refine details across both low and high

grayscale spectrums. Thus, the input of the RGB stream is

o (0) 0
X pop = V(AX fp), 2)
where A is a constant and ~y represents the gamma transfor-
mation function.
For the height map stream X (0), we employ grayscale
slicing to emphasize the height information of foreground
objects while masking the height values of background objects,
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Fig. 3. An illustration of the hard-easy discriminative pattern.

leveraging expert prior knowledge.

H, Conin < XW(i,5) < I
X0 ={ x96j5 1, <xP6)<h
H, L < XW(1,5) < Crnax
3)

where H; and H, are the experiential thresholds for back-
ground objects. X (P?)(i, j) represents the height map value
at a specific position (4, 7). The values Iy, I; denote distinct
slicing thresholds. The constants C,i, and Chyax signify the
minimum and maximum height values, respectively.

B. Multimodal Cross Learning (Mul-Lea)

The concept of cross-attention, as first introduced in the
transformer architecture for language processing due to its po-
tent semantic feature extraction and long-range feature capture
capabilities [20]. It asymmetrically combines two independent
sequences of embeddings, each with the same dimensions.
Here, the two sequences correspond to the features of the
two modalities. Given the feature map Zrgp = X %%Rg’g )
and Zyg = X %VH) of two modalities, the cross-attention
mechanism is defined as follows:

Z,in = Attention(Zrep, Z )
= ZraBZ Y Zran

= Softmax((Qj{g)V),

where Q = 91(ZragB). K = 92(Zg), and V = g3(ZraB),
with gi, g2, and g3 being 1 x 1 convolutions. Thus, Z,,;, is
also represented as follows:

91 (ZraB)92(Za)"
Vid

Opverall, the Uni-Enh block and the Mul-Lea block hierar-
chically enhance vehicle differentiation within each modality
and interactively learn features between two heterogeneous
modalities, respectively. They dynamically improve the com-
pleteness of information fusion both within and across modali-
ties, resulting in enhanced multimodal feature discriminability
and separability.

“4)

Zmiz = Softmax(( )93(ZraB))- (5)

C. Hard-easy Discriminative (He-Dis) Pattern

To enhance the distinction and detection of vehicles in
large-scale events, we designed a hard-easy discriminative
pattern. This pattern begins by calculating the confidence value
of features within each modality, followed by constructing
and thresholding easy-to-predict and hard-to-predict masks
to accurately detect vehicles. This pattern ensures precise
supervision of each modality, facilitating a more effective
vehicle location. Fig. 3 shows an illustration of the hard-
easy discriminative pattern. More specifically, we define the
confidence value as Conf,

C’onfRGB = Sigmoid(hRGB(ZRGB))
1 (6)

= 1+ e—hreB(ZRcB)’

Confy = Sigmoid(hy(Zg))
B 1 (7)
1+ e hu(Zn)’

where hrpap(.) and hy(.) represent the 1 X 1 convlutions.
To accurately differentiate between hard and easy vehicles,
we define a threshold 6. If the vehicle confidence predicted
by both the RGB stream and height map stream exceeds the
threshold 6, the vehicle predicted at position (i, j) is classified
as an easy-to-predict sample, and a mask M askeqs, i given.

M :{ 1 Confprap (i,3) > 6,Confy(i,5) >0
casy 0 others
®)
If the object confidence predicted by either the RGB branch
or the height map branch is greater than the threshold 6, and
the other is less than 6, indicating that not both modal features
can detect the object, then the object predicted at position
(i,4) is considered a hard-to-predict sample. Thus, two masks

Maskrap and Masky are given,

M _ 1 ConfRGB (7’3]) > Q,COTLfH(Z,]) <0
RGB = 0 others
9
M { 1 ConfRGB (Zvj)<9700an(Z7])>9
2= 0 others
(10)

Finally, all detected vehicles can be formulated as follows:

Z = MaSkeasy : (me: + ZRGB + ZH)
+ Maskrcp - (Zmiz + Zres) - (2 — Confrep)
+ Maskpy - (me + ZH) . (2 — COan)

(11)

The hard-easy discriminability strategy streamlines the dif-
ferentiation between hard and easy vehicles through soft
thresholding with the hard-easy mask, thereby significantly
improving the separation of dense and occluded vehicles.



SUBMISSION TO IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. XX, NO. XX, XXXX, 2023 5

Oriented Bounding Box Representation

L —>
PR

5 —>
P

L —>

Vimax PR S

Fig. 4. The details representation of the OBB.

D. Loss Function

In this section, we employ distinct loss functions to super-
vise hard and easy vehicles separately.

For the easy-to-predict vehicles, we employed two loss
functions: an object classification loss, denoted as L., and an
Oriented Bounding Box (OBB) regression loss, represented as
L,cg. Specifically, the classification loss is formulated using

focal loss [21], that is
LY = —(1 = p;)" log py, (12)
_Jp if p=1
Pt = { 1—p otherwise (13)

where p represents the predicted probability, and p = 0,1
denotes the true label. In alignment with the paper [21], we
set the hyperparameter v to 2.

To refine the regression results, the regression loss Li.cq
employs the definition provided in Ref [I3], utilizing OBB
for more precise object localization.

L9 =1—ToU(l;,1;)iz1,2,3.4

£ (81— 802 + (r — )2, (14
=1

where 1 and 1 represent the distances from the sampling point
to the horizontal bounding box (HBB) boundaries. s and §
denote the distances between the HBB vertices and the OBB
vertices. r and 7 are the ratios of the HBB to the OBB in
terms of area. ToU() signifies the Intersection over Union
(IoU) between two HBBs. Define the ground truth distances [
is composed of [y, I3, I3, 14, and the predicted distances [is
composed of fl, [2, Zg, ZA4. The area of ground truth HBB is
area = (1 +13) X (l2 4+ l4) and the area of predicted HBB is
area = (fl + f) x (o + 54). Then, the Overlapping area is
represented as

area®verior — (min (ll,fl) + min (lg, Zg))

X (min (lg, [2) + min (l4, &)) .

15)

The area of the circumscribed HBB of the two HBBs above
is represented as

area®r¢ = (max (Zl, f1> + max <l3, Z3>>

X (max (lz, fg) + max (14, f4)) .

The area of the union region of the two HBBs above is
—_—
represented as U, , = area,,, +ared,,, —area;f’zjrl“p. Thus,

(16)

R overlap
ToU (ll) _ area (17)
U
Thus, the loss of easy samples is
1 N
Legsy = i ; (L:ey + L;;ZS)7 (18)

where N represents the number of samples. Figure 4 provides
a detailed representation of the OBB.
For the hard vehicles, the total loss is
N

Lihard = (Maskrap + Masks ) (LT + L$™)).

N <
=0
19)
Ultimately, by individually supervising and learning ve-
hicles of varying difficulty levels, the model’s optimization
direction can be intentionally adjusted to further improve the
detection performance of dense and occluded vehicles. Thus,

the total loss is represented as

L= Leasy + Lhard~ (20)

III. EXPERIMENTAL RESULTS AND ANALYSIS
A. Data Annotation and Description

In this section, we label and present two multimodal vehicle
detection benchmark datasets for remote sensing imagery.
These datasets are distinguished from existing vehicle detec-
tion datasets by four unique features: 1) They are expressly
crafted for multimodal vehicle detection in the context of
large-scale events, with RGB information modal and height
maps modal. Each dataset has varied resolutions and is col-
lected using varied platforms. 2) They encompass densely
packed and irregularly arranged objects, including a variety of
vehicle styles as well as tents and branches. 3) They feature
a wide range of occlusions, such as those caused by tents
and branches. 4) They increase the complexity of vehicle
detection due to the presence of distorted vehicles and the
varied distribution of vehicles across large-scale areas.

The data annotation method employed utilizes the oriented
bounding box (OBB) format, represented as (z, Y., w, h, 6),
where (z.,y.) denotes the center coordinates, w and h specify
the width and height of the bounding box, and 6 represents
the rotation angle relative to the horizontal axis of the standard
bounding box. The detailed descriptions of the two multimodal
datasets are as follows:

2) 4K-SAI-LCS MVD Dataset:

The 4K Stereo Aerial Imagery of a Large Camping Site
(4K-SAI-LCS) dataset is a subset of aerial imagery acquired
from a large-scale site [22], [23]. This dataset encompasses
an expanse of 1.0 x 1.5 km. Utilizing the German Aerospace
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1: An Example of Large-scale Events: 4K-SAI-LCS MVD Dataset
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Fig. 6. Statistics of vehicle instances in two multimodal vehicle detection datasets.

TABLE I

THE STATISTICS OF TWO MULTIMODAL OBJECT DETECTION DATASETS IN
REMOTE SENSING. OBB IS SHORT FOR ORIENTED BOUNDING BOX.

Attributes
Dataset
Annotation | # Categoried | #Instances | Image resolution
ISPRS Potsdam OBB 1 4,896 6,000 x 6,000
4K-SAI-LCS OBB 2 339,111 5,184 x 3,456

Center’s advanced optical 4K camera system, a total of 114
images were captured 54 images with a leftward orientation

and 60 images with a rightward orientation. These images were
obtained at altitudes of 600m and 650m above ground level,
respectively. Image pre-orientation is performed by using the
open source SRTM (The Shuttle Radar Topography Mission)
data and measured GPS positions of the image projection
centers. Precise image orientation is then accomplished by
bundle adjustment using automatically extracted SIFT (Scale-
Invariant Feature Transform)- tie points [24]. Afterward, the
3D point cloud is calculated using semi-global matching [25]—
[27].
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To preserve the original rich textures and the sharp bound-
aries of the vehicles in RGB images, instead of generating
true orthophoto (TOP) and DSM images, in this paper, the
multimodel dataset consists of the original RGB images and
height maps. Unlike DSMs, height maps use the original
image coordinates instead of geo-coordinates, facilitating a
more direct correspondence with the RGB imagery. To further
improve the point density, we use each test region with 4-
6 overlapping images. Point clouds, created from different
views, are merged and filtered. This process ensures that, after
projection, there is a one-to-one relationship between each
pixel in the 2D height map and its corresponding pixel in the
RGB image. Both the images and height maps have ground
sampling distances of 11 cm, and each scene has a resolution
of 5,184 x 3,456.

We have annotated the 4K-SAI-LCS MVD dataset in the
oriented bounding box (OBB) format using the LabelMe
toolbox. This newly labeled dataset is now employed for
multimodal occluded and dense vehicle detection. Fig. 5. 1
provide an example annotation image. The designated control
zone of the festival scene encompasses a spacious parking lot
and tent area. As a result, the primary objects depicted in the
scene images include vehicles, tents, roads, and sanitation fa-
cilities, effectively representing the campground environment.
The dataset presents significant challenges due to the dense
and irregular parking arrangements of vehicles, which fall into
diverse subcategories, including cars, transport vehicles, trans-
port trailers, recreational vehicles, and camping trailers. This
diversity leads to substantial intra-class variation. Moreover,
the visual resemblance between vehicles and tents significantly
complicates the task of vehicle detection, thereby increasing
the complexity of the dataset and placing higher demands on
the algorithms designed for detection. Fig. 5. II presents some
examples of vehicles with varying degrees of occlusion and
density.

1) ISPRS Potsdam City MVD Dataset:" The original Pots-
dam dataset was constructed for the “semantic segmentation
competition” by the ISPRS III/4 working group and was
first published in the ISPRS 2D semantic labeling contest.
Potsdam is a typical historical city and this dataset includes
38 different regions with true orthophoto (TOP) and digital
surface models (DSMs). The TOP images were captured using
Trimble INPHO OrthoVista, while the DSMs, detailing the
absolute elevation values for each pixel, were produced via
dense image-matching techniques utilizing Trimble INPHO
5.3 software. Both images feature a ground sampling distance
of 5 cm and a resolution of 6,000 x 6,000 pixels.

Different from existing segmentation labels, we have re-
annotated the Potsdam dataset in the OBB format for images
that encompass both VIS and height map data. It features
vehicles located in extensive building complexes, narrow
lanes, and densely populated residential zones. The designated
parking areas display notable overlaps and occlusions, posing
challenges in distinguishing black vehicles, particularly those
obscured by foliage. Fig. 5. II presents some examples of

Uhttp://www2.isprs.org/commissions/comm3/wg4/2d-sem-label-potsdam.
html.

vehicles with varying degrees of occlusion and density.

3) Dataset Statistic: Table I lists detailed instance counts
for the two multimodal vehicle datasets. Given the varying
scenes of image acquisition, the vehicle density in the 4K-
SAI-LCS dataset is higher than in the ISPRS dataset. The
4K-SAI-LCS dataset contains over 300,000 instances, while
the ISPRS dataset comprises approximately 5,000 instances.
The presence of differently dense targets also poses a signif-
icant challenge for detecting densely packed vehicles. Fig. 6
displays a curve graph comparing vehicle area to the number
of vehicles in both datasets. This graph highlights the diversity
and balanced distribution of vehicle objects within the two
datasets.

B. Experimental Setup

In the experiment, data preprocessing and augmentation
were applied to all images to prevent overfitting. For the 4K-
SAI-LCS dataset, input images were cropped to three sizes:
640 x 640, 800 x 800, and 1,024 x 1,024 pixels, each with
a 200-pixel overlap to maximize object information capture.
The training and testing sets were equally divided, maintaining
a 1 :1 ratio. To balance the volumes of the two multimodal
datasets, 12 original images from the ISPRS Potsdam City
Dataset, featuring aligned VIS and DSM scenarios, were
selected. These input images were cropped to 800 x 800
pixels, with a 400-pixel overlap for optimal object information
capture. The ratio of the training set to the testing set for the
ISPRS dataset was adjusted to 784 : 392 to align with the
experimental requirements.”

The initial and final learning rates are set at 1.5 x 10~* and
1 x 1075, respectively. We employ the Stochastic Gradient
Descent (SGD) optimization strategy, with a weight decay of
5 x 10~* and momentum of 0.9. The training process is de-
signed to run for a maximum of 200 epochs, with a confidence
threshold set at 0.2 and a Non-Maximum Suppression (NMS)
threshold of 0.45. Given the distinct information content of
height maps and RGB data, we utilize different backbone
networks for each data stream: ResNet18 for height maps and
Darknet53 for RGB data. The proposed MuDet architecture
is implemented using the PyTorch framework on an NVIDIA
GeForce RTX 3090 GPU.

C. Evaluation Metrics

Three common object detection evaluation criteria are uti-
lized for quantitative analysis, including Precision (P), Recall
(R), and Average Precision (AP).

p_ TP
TP+ FP

P 1)
R=Tp 1 N

where TP, F'P, and F'N represents true positive, false posi-
tive objects, and false negative objects, respectively. Generally,
higher values of these metrics indicate superior detection
performance.

AP is a global indicator, enabling fair comparison across
different detection methods. In our experiments, AP0.5 refers


http://www2.isprs.org/commissions/comm3/wg4/2d-sem-label-potsdam.html.
http://www2.isprs.org/commissions/comm3/wg4/2d-sem-label-potsdam.html.
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Fig. 7. Vehicle separation visualization results by modality increment by successively using RGB images, Height map images, RGB attention features, Height

map features, and our proposed MuDet on 4K-SAI-LCS dataset.

TABLE I
THE CONTRIBUTION OF DIFFERENT MODALITIES. THE BEST RESULTS ARE
SHOWN IN BOLD.

Modality Attention Backbone ISPRS Potsdam | 4K-SAILCS
AP0.5(%) AP0.5(%)

RGB - Darknet53 90.03 86.99
Height map - ResNet18 13.13 27.04
RGB Self Attention Darknet53 91.47 90.02
Height map Self Attention ResNet18 11.94 27.53
MuDet(v3) Mul-Lea Darknet53/ResNet18 93.63 92.57
MuDet(GGHL) Mul-Lea Darknet53/ResNet18 94.58 94.19
MuDet(v8) Mul-Lea CSPDarknet53/ResNet18 94.92 95.07

TABLE III
THE CONTRIBUTION OF THE FUSION METHOD. THE BEST RESULTS ARE
SHOWN IN BOLD.

Fusion method Network ISPRS Potsdam | 4K-SAI-LCS
APO.5(%) APO0.5(%)

Image-level Darknet53 93.12 87.89
Feature-level Darknet53/ResNet18 94.05 89.27
Uni-Enh+Mul-Lea Darknet53/ResNet18 94.37 91.11
Feature-level+He-Dis Darknet53/ResNet18 94.28 90.64
MuDet(v3) Darknet53/ResNet18 93.63 92.57
MuDet(GGHL) Darknet53/ResNet18 94.58 94.19
MuDet(v8) CSPDarknet53/ResNet18 94.92 95.07

to the Average Precision (AP) calculated at an Intersection
over Union (IoU) threshold of 0.5.

AP = zn: P(k)AR(k),

k=1

(22)

where k represents the threshold. P(k) denotes the precision
at the k-th threshold. is the precision at the k-th threshold.
AR(k) = R(k) — R(k — 1) calculates the change in recall
between consecutive k — 1-th and k-th thresholds.

D. Comparison with state-of-the-art MVD models

In the experiment, six commonly used methods for vehicle
detection in multimodal remote sensing (RS) images were
selected for both quantitative and qualitative comparisons.
These methods include You only look once (YOLOV3) [28],
RetinaNet [2 1], Fully Convolutional One-Stage object detector
(FCOS) [29], General Gaussian Heatmap Label Assignment
(GGHL) [13], Representative Points (RepPoints) [31], and
YOLOvVS [30]. Darknet53 was employed as the backbone
network across all methods, complemented by a multi-scale
feature pyramid network (FPN) for upsampling and fusion to
ensure a balanced comparison.

E. Ablation Study

In this section, we evaluated the contribution of the proposed
MuDet through two ablation analysis experiments. Specifi-
cally, 1) the contribution of the modality increment; 2) the
contribution of the fusion increment.

1) Contribution of the Modality Increment.: Table II quan-
tifies the improvement in vehicle detection performance by
the incremental addition of modalities. Note that RGB images
offer rich color and texture information, whereas height maps
supply solely elevation data. Employing distinct backbones
for each modality, Darknet53/CSPDarknet53 for RGB and
ResNet18 for height map, enables the extraction of the
most valuable features from each modality while avoiding
overfitting. For unimodal, height information alone proves
insufficient for distinguishing vehicles without the comple-
mentary support of RGB data. The performance enhance-
ment achieved by integrating self-attention into each modality
falls short of the improvements in three variants of MuDet
(the YOLOv3-based MuDet (MuDet(v3)), the DDHL-based
MuDet (MuDet(GGHL)), and the YOLOv8-based MuDet
(MuDet(v8)), with the largest gap in performance exceeding
5%. Fig. 7 shows the visualization of vehicle separation re-
sults through incremental modality utilization, including RGB
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Fig. 8. The visualization results of MuDet on selected sample images from the 4K-SAI-LCS dataset. The vehicle density and occlusion are predominantly
due to the restricted event area, irregular parking within the area, and coverage by tents, respectively.

TABLE IV
AVERAGE PRECISION (AP) RESULTS IN COMPARISONS FOR THE 4K-SAI-LCS DATASET. THE BEST RESULTS ARE HIGHLIGHTED IN BOLD.

MuDet
YOLOvV3 [28] RetinaNet [21]  FCOS [29] GGHL [13] YOLOVS8 [30]  RepPoints [31] i
V3-based GGHL-based V8-based
Unimodal 81.75 83.44 84.81 86.99 87.26 87.98 - - -
Multimodal 82.91 84.78 85.91 89.27 88.53 90.71 92.57 94.19 95.07

images, height map images, RGB + self attention, height map
+ self attention, and yolov8-based MuDet, when applied to the
4K-SAI-LCS dataset. MCo-Net outperforms other methods in
separating densely packed vehicles.

2) Contribution of the Fusion Increment.: Table. III quan-
tifies the improvement in vehicle detection performance by
the various fusion strategies, including image-level fusion,
feature-level fusion, Uni-Enh+Mul-Lea, feature-level+He-Dis,
and three types of MuDet. Overall, both image-level fusion
and feature-level fusion result in the poorest detection per-
formance. The best MuDet (v8) achieves an approximate
6% improvement in AP for the 4K-SAI-LCS dataset and
a 1% improvement in AP for the ISPRS Potsdam dataset.

In contrast, the Feature-Level+He-Di method, which utilizes
feature fusion, demonstrates minimal improvement due to its
lack of consideration for the interplay among multimodal
features. Note that the vehicle categories within the ISPRS
Potsdam dataset are relatively uniform, and their density is
low. Consequently, the improvement offered by the feature-
level+He-Dis module is somewhat constrained.

F. Results and Analysis on the 4K-SAI-LCS Data

Table. IV lists the quantitative detection accuracy of the six
methods for the 4K-SAI-LCS dataset in terms of AP. Overall,
multimodal data significantly outperforms single modality data
in terms of AP value. Specifically, RetinaNet, due to its focal
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Fig. 9. PR Curves of the proposed MuDet in comparison with six methods.

loss design, reduces the weight of easily detected objects,
achieving a detection performance approximately 2% higher
than YOLOv3. FCOS, GGHL, and YOLOVvS, all anchor-
free methods, show distinct advantages over anchor-based
methods. FCOS enhances detection precision by predicting
object presence at each pixel, thus avoiding the complex
anchor matching process. GGHL employs a Gaussian heatmap
distribution technique to improve the learning capability of
objects of different sizes in various positions. YOLOv8 has
been redesigned with a regression-based loss function and
sample matching strategies, among other modules, offering
significant improvements in both speed and accuracy, approx-
imately 6% higher than YOLOv3. Unlike traditional anchor-
based methods, Reppoints models each object’s unique shape
and contour without relying on predefined anchor box sizes
or ratios, achieving optimal performance in single-modality
object detection that may be influenced by background or
semantically irrelevant foreground information. The proposed
MuDet increases detection accuracy across different network
backbones, including YOLOvV3, GGHL, and YOLOVS, by over
5% compared to their corresponding single modality. MuDet
introduces single-modality feature enhancement, multimodal
cross-fusion, and a strategy for balancing samples of varying
difficulty, effectively segregating vehicles, and eliminating the
impact of background information.

Fig. 8 shows the visualization results of the MuDet on
selected example images, demonstrating effective separability
for dense and occluded vehicles, such as RVs with open doors
and tents mounted on cars. However, a small fraction of white
recreational vehicles (RVs) were missed due to the absence of
open-door samples in the labeled 4K-SAI-LCS vehicle dataset.
Additionally, we have to admit that the 4K-SAI-LCS dataset
presents significant challenges for vehicle detection. Notably,
some vehicles are difficult to distinguish, with their similarity
to tents sometimes exceeding 80%.

Given the substantial impact that varying confidence thresh-
olds can have on model performance, it is crucial to analyze
their effects. Fig. 9 (a) illustrates the Precision-Recall (PR)
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curve for all comparative methods and the proposed MuDet
across different thresholds. It can be shown that the proposed
method not only achieves the highest precision for a given
level of recall but also has the largest area under the PR
curve, reaffirming the efficacy and superiority of MuDet.
However, the recall metric still warrants enhancement. This
likely stems from the significant intra-class variance and
subtle inter-class variance. The challenge in achieving precise
fine-grained separation becomes apparent when merging all
patterned vehicles into a broad “vehicle” category, especially
when distinct types, such as cars and trucks, are amalgamated
into a single category, hindering precise differentiation.

G. Results and Analysis on the ISPRS Potsdam City Data

Table V lists a quantitative performance analysis of the
ISPRS Potsdam city dataset, while Fig. 10 shows the visu-
alization results for sample images using our methods.

Overall, the detection performance on the Potsdam city
dataset is consistent with that on the 4K-SAI-LCS dataset,
further demonstrating that MCo-Net improves the detection
performance of dense and occluded vehicle objects. MuDet
achieves a significant improvement over unimodal YOLOv3
and multimodal YOLOvV3, with increases of 10% and 8%,
respectively. Relying solely on single-modality data raises
the likelihood of inaccurate detections or missed vehicles.
Especially dark vehicles are obscured by tree branches or
closely match the color of the branches. Furthermore, com-
pared to competitive multimodal methods based on YOLOvS8
and Reppoint, MuDet achieves improvements of up to 3% and
1.5%, respectively, further verifying the method’s robustness.

Fig. 9 (b) shows the PR curve for all comparison methods
and the proposed MuDet under dynamic thresholds. MuDet
obtains the largest area under the PR curve, similar to the per-
formance on the 4K-SAI-LCS dataset, further demonstrating
MuDet’s effectiveness and superiority. However, at equivalent
levels of accuracy, this dataset exhibits a lower recall rate com-
pared to the 4K-SAI-LCS dataset. This discrepancy is likely
attributed to varying occlusion levels from tree branches and
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Fig. 10. The visualization results of MuDet on selected sample images from the ISPRS Potsdam city dataset. The vehicle density, occlusion, and distortion
are primarily attributed to parking lots, branches, and the image capture process, respectively.

TABLE V
AVERAGE PRECISION (AP) RESULTS IN COMPARISONS FOR THE ISPRS POTSDAM CITY DATASET. THE BEST RESULTS ARE HIGHLIGHTED IN BOLD.

MuDet
YOLOv3 [28] RetinaNet [21]  FCOS [291 GGHL [13] YOLOVS8 [30]  RepPoints [31] ure
V3-based GGHL-based V8-based
Unimodal 85.66 88.10 88.80 90.03 90.39 91.46 - - -
Multimodal 87.42 88.42 89.08 94.05 91.70 93.65 93.63 94.58 94.92

vehicle deformation, which not only diminishes the contrast
between background and foreground but also amplifies the
intra-class variation of vehicle targets, leading to a reduced
recall rate.

Fig. 10 shows some detection results on the ISPRS Potsdam
city dataset. While this dataset has a lower vehicle density
compared to the 4K-SAI-LCS dataset, it also features other
challenges, such as black vehicles obscured by tree branches
and vehicles with deformations. For these vehicles, MuDet
achieved commendable detection results. However, there re-
mains a considerable opportunity for further refinement, par-
ticularly in improving the detection of vehicles with significant
deformations or those extensively occluded by tree branches.

IV. CONCLUSION

In this article, we initially develop two multimodal datasets
for dense and occluded vehicle detection in large-scale sce-
narios, employing both RGB and height map modalities.
Subsequently, we propose a multimodal collaboration network,
termed MuDet, for dense and occluded vehicle detection in
large-scale events. MuDet is designed to fully exploit unimodal
enhanced features, multimodal cross-features, and patterns that

distinguish between hard and easy vehicle detection. Leverag-
ing the integrated data from RGB and height maps, MuDet
excels in differentiating vehicles based on color, identifying
vehicles with similar colors and textures in crowded scenes
through their unique height values, and detecting occluded ve-
hicles, thereby enhancing its utility in complex environments.
Extensive experiments conducted on two newly constructed
and labeled image datasets demonstrate MuDet’s superiority
in MVD compared to commonly employed detection methods.
However, MuDet currently does not adapt well to two
multimodal datasets with significant distributional variance.
Therefore, future work will focus on exploring domain adapta-
tion techniques in multimodal contexts to improve the model’s
ability to generalize effectively across various domains.
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