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ABSTRACT 

 

Vehicle routing instances designed for a proficient distribution network strategizing at 

maximizing traversal coverage had been consistently investigated for resolving dominant 

logistics scheduling issues involving cost reduction characteristics aside from emulating 

optimal travel patterns for minimizing possible traveling ranges while maximizing resource 

allocations.  The purpose of this research is to highlight the incorporation of shortest path 

routing heuristics for maximizing traversable nodes of a round trip distribution cycle, to stretch 

the qualities of sentient pathfinding capabilities from prominent intelligent graph traversal 

algorithm specimens to produce prudent output in terms of addressing cost optimality 

constraints.  This greedy pathfinding algorithm is regarded as proactive for application in 

several known neighboring routing characteristics, including customer clustering aspects in 

vehicle routing and location-allocation instances for optimal resource allocation. 

 

Keywords: Shortest path, route optimization, A* algorithm, Dijkstra’s algorithm, distance 

approximation 

 

ABSTRAK 

 

Keadaan pengangkutan kenderaan yang direka untuk strategi rangkaian pengedaran yang cekap 

dalam memaksimumkan liputan laluan telah selalu diselidiki untuk menyelesaikan isu-isu 

jadual logistik dominan yang melibatkan ciri-ciri pengurangan kos selain daripada meniru 

corak perjalanan optimal untuk meminimumkan julat perjalanan yang mungkin sambil 

memaksimumkan peruntukan sumber. Tujuan penyelidikan ini adalah untuk menonjolkan 

penggabungan heuristik laluan terpendek untuk memaksimumkan nod yang boleh dilalui 

dalam satu pusingan kitaran pengedaran, untuk meluaskan kualiti-kualiti kemampuan 

penemuan laluan daripada contoh algoritma laluan graf bijak yang terkenal untuk 

menghasilkan output yang berkualiti dalam menangani keperluan optimum kos. Algoritma 

penemuan laluan yang rakus ini dianggap proaktif untuk digunakan dalam beberapa ciri-ciri 

laluan bersebelahan yang dikenali, termasuk aspek pengkelasan pelanggan dalam 

pengangkutan kenderaan dan keadaan penentuan lokasi untuk peruntukan sumber optimum. 
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Kata kunci: Laluan terpendek, pengoptimuman laluan, algoritma A*, algoritma Dijkstra, 

anggaran jarak  

INTRODUCTION 

 

To set delivery priorities for different demand sectors, transport networks must plan routing 

variables, aggregate feasible transport, account for sufficient capacity, and set coverage 

priorities. Reducing unnecessary route diversions and promoting cost optimization is essential 

for a successful delivery network. Routing optimization studies show that priority delivery 

points are naturally selected to minimize operational costs. The shortest routes with multiple 

crossings can be combined to improve cost optimization. To avoid repulsive route deviations, 

strategic transit routes need to be identified to optimize cost allocation. Previous research has 

emphasized that the natural selection of priority distribution points reduces vehicle 

requirements and eliminates significant operating costs. By predetermining distribution 

priorities, clustering customer groups by distribution points improves task allocation methods. 

For example, intelligent pathfinding algorithms are computational intelligence applications 

that predict the shortest feasible travel routes.  This reduces vehicle utilization and facilitates 

cost savings in the process. Furthermore, by grouping customer groups, the advanced routing 

optimization algorithm guarantees the right distribution points, optimizes efficiency, and 

reduces waste. Accurate route planning can improve customer satisfaction by reducing delays. 

Furthermore, better route optimization is expected to reduce fuel consumption and emissions. 

Consequently, current research trends on route optimization approaches seek to instill 

important routing characteristics to improve efficiency, whether it is operational costs or 

resource allocation to specific sectors. Shortest route heuristic algorithms are being developed 

to incorporate this approach into the logistics and transportation industry, leading to increased 

efficiency, better customer service, and better fleet management. 

 

 

FIGURE 1. Variation of vehicle scheduling problems involving single and multi-distribution 

nodes 
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Myriads of routing strategies have been incorporated for addressing niche problems related to 

population density, maximum permissible coverage distance, and minimal time allotment for 

successful task deployment, apart from maximal load capacity for proactive freight distribution 

strategy.  The relevance of identifying shortest path distance had been a continuous discussion 

topic among prominent routing strategies to date, and the benefits of improvising them for 

addressing singular Travelling Salesman Problem (Pinto, Quadros, Rathod, & Mittal 2020) or 

multiple objective accommodations such as Multi-Depot Vehicle Routing Problem (Chen, Lv, 

Ning, & Wu 2023) have been in many different implementations with similar motivations for 

promoting cost optimality. 

 

PROBLEM STATEMENT 

 

Finding the shortest path for a road network had turned into a critical component for 

constructing pathfinding applications.  The fundamental goal of these implementations is to 

anticipate the best-expected travel path for common purposes such as commodities distribution 

and drive guiding system, as well as to give the most options for carrying out responsibilities 

while operating at the lowest feasible operational cost.  Transportation system implementation 

studies use the shortest path issue solution technique to aggregate a better representation of 

distribution systems, aiding in the establishment of suitable distribution planning and 

deployment stages.  The following are some of the frequent issues encountered in efforts to 

address the shortest path problem in transportation networks: 

 

Identifying and simulating the best pathfinding approach for interconnecting linked places on 

a population cluster with various distance values  

The distance between the customer's vehicle and the warehouse where the requisition order is 

delivered determines the deployment period.  Estimates in the appropriate industries with 

strongly controlled commodities rules may be confusing due to issues such as redundancy 

when attempting to supply to several customers at once on the same route and inadequate 

infrastructure, such as broken roads and inaccessible depots.  In industries with highly 

regulated route requirements, factors such as redundancy and poor infrastructure might lead to 

confusing estimations (Sularno, Mulya, Astri, & Mulya 2021).  Sector prioritization is difficult 

due to fluctuating population concentrations and closeness to distribution centers.  Because of 

changing population density and proximity to distribution centers, it is difficult to prioritize 

sectors.  This issue could be remedied should routing models are structured towards the 

incorporation of sentient pathfinding capabilities that aggregated the shortest path to maximize 

the allocation of operating resources.  The shortest path problem is a routing approach used in 

mapping applications to find the quickest way to connect two trajectory locations on a single 

road network hypothesis.  Participants in a distribution network, such as customers and pick-

up points, are represented in a graph quandary, consisting of vertices and edges with actual 

real-world values that determine relative positioning and distance between each node, using 

the approximation of the shortest path on mapping geological topographies.     

 

Creating an efficient routing heuristic to reduce trip mileage and transportation costs 

Certain routing model objective functions, such as avoiding cost waste and maximizing vehicle 

disposition across the participating distribution network, could be further optimized for a 

routing system architecture by simulating route trips using the shortest path heuristic between 

two vertices.  The purpose of distribution network route optimization is to strike a balance 

between urban and rural accessibility. Annotating distribution points between prospect groups 

enables work scheduling to use suitable distribution chain patterns.  During deployment, route 

closeness and accessibility must be considered when developing and scheduling an integrated 
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transportation network that combines all important nodes into a systematic transport service 

across all sectors of interest.  For proactive planning, real-world variables can be employed 

during correlation to suit the pattern of a planned scenario pattern.   

 

Explain the significance of annotating the shortest path traveled along a distribution network 

in terms of enhancing overall routing optimality 

The primary challenge in resolving the shortest path problem in routing instances is its 

consistency in handling the most critical component of vehicle scheduling, which is the 

location-allocation problems.  In cases where routing capacities involve different population 

densities and demand area priority segregations, approximating shortest path designation 

among participating customers and pick-up points is critical for a smooth and uninterrupted 

routine distribution of supplies to be transported among the necessitating regions.  This requires 

systematic road networks, integrated interdependent transport networks, and critical path 

networks (Sun, Li, Wang, & Xue 2022).  Open urban design is essential for highly populated 

areas with well-organized growth because there are requirements for systematic road networks, 

integrated interdependent transit networks, and critical path networks.  In high-availability 

zones, different degrees of strategic distribution point allocation must be handled.  Cities are 

more likely to produce hotspot clustering for crucial distribution points within a road network 

due to their high population density.  Annotating distribution points between prospect groups 

provide appropriate distribution chain patterns for task scheduling (Ochelska-Mierzejewska, 

Poniszewska-Marańda, & Marańda 2021). 

 

RELATED WORK 

 

With the cases of cost optimality, shortest path heuristics have been associated with myriads 

of cost reduction characteristics imposed for routing models.  Among these features include 

customer clustering, greedy local search, and Travelling Salesman Problem.  Although the 

shortest path problem based on graph theory represents a single-pair shortest path problem 

which is the conventional location-allocation problem incorporating all vertices from the 

source vertex in a graph was experimented on several occasions and proved its relevance, the 

proposal of a more efficient but robust algorithm has been constantly explored and incorporated 

in popular vehicle routing problems, for example, multi-depot and capacitated VRP.  

Therefore, several novel shortest path graph pathing algorithms such as Dijkstra and A* have 

seen their potential to be incorporated with niche routing simulations for addressing routing 

issues and remain important over the years among their counterparts. 

 

In terms of estimating total distance coverage within a round trip, there could exist a 

discrepancy in location-allocation leading to the subpar allocation of operating costs (Sularno 

et al. 2021).  Urban areas are more likely than remote places with dispersed populations to 

experience outbreaks of hotspots because of their high population density. The accessibility 

between urban and rural areas is balanced as a result of route optimization.   Annotating the 

total distance achievable within a deployment period takes into account the distance between 

the transporting vehicle, participating customers, and the depot in which transits are done for 

fulfilling demand orders.  Several ambiguous factors could reduce the estimation accuracy of 

advanced commodity regulation for the participating sectors, for example, redundancy of 

distribution attempts for multiple customers within a single route and faulty infrastructures 

such as broken roads and inaccessible depots (Sularno et al. 2021).  Non-optimized scheduling 

arrangements would dampen the approximation of the initial estimated operating cost and 

influence the final operating expenditure as well, leading to subpar cost optimality.  Different 

distribution channels need information on travel distances and potential customers.  In this 
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way, transport networks can be optimized.  Route proximity and accessibility inputs must be 

considered when planning and scheduling in an integrated transportation network that connects 

all relevant nodes into a systematic transport service across all sectors of interest during 

deployment, as these inputs form the basis for task assignment.   

When it comes to the deployment of vehicles in high-availability regions such as cities and 

states, it is important to note that different levels of strategic allocation of distribution points 

need to be taken into account.  Different population density and their reach with the adjacent 

distribution centers made it difficult to designate corresponding priority sectors reflecting an 

organized routing arrangement (Nuzzolo, Persia, & Polimeni 2018; Yu, Jodiawan, & Redi 

2022).  Diversified urban planning is strategized in heavily populated areas with thriving and 

organized development, for example, the imposition of the systemized road network and 

responsive interdependent transportation infrastructures along with the establishment of more 

accessible residential areas interlinking among the critical pathways (Sun et al. 2022).  There 

is a varying degree in the allocation of strategic distribution points that were involved in vehicle 

deployment for areas with higher accessibility rates such as cities and prefectures as compared 

with rural communities that are less developed and less accessible in terms of interjecting road 

networks (Nuzzolo et al. 2018; Yu et al. 2022).  Urban areas are susceptible to more access 

points due to their centralized population spread as compared with rural prefectures with 

scattered population density.  There exists an imbalance when interlinking associated customer 

clusters with their distribution nodes for interjecting route optimization features among the 

urban and rural areas in particular due to accessibility.  Therefore, it is crucial to establish a 

better annotation of distribution points among its potential customer clusters to properly reflect 

strategic distribution chain patterns to maximize the efficacy of any scheduling tasks 

(Ochelska-Mierzejewska et al. 2021). 

 

Uneven distribution routes need to be supplemented with feed input regarding traversable 

distance and the number of available customers to establish a transportation network with 

sufficient credentials for optimizing cost estimations.  To establish an integrated transportation 

network connecting all associated nodes for systemized transportation of services across all 

participating sectors during deployment instances, feed input regarding route proximity and 

accessibility needs to be assimilated into the planning and scheduling of task distribution 

fundamentals so that a better-generalized representation of traversal link could be established.  

Feed data inclusive of the total distance between 2 points, linkable sections among the node 

components, and corresponding distance between vertex and edges along a convergence line, 

and limits on accessibility among corresponding regions need to be incorporated for a proactive 

subjugation of scheduling variables with its interoperability for actual scheduling route 

scenario patterns (Sun et al. 2022).  Real-world variables can be used during correlation to 

match the pattern of a planning scenario pattern for a more proactive planning variable, 

including distances between nodes, link sections between nodes, edges along convergence 

lines, and entry limits between corresponding areas (Sun et al. 2022). 

 

EXPERIMENTAL DEMOGRAPHY 

 

An emulation of the food distribution network is created from the actual distances and locations 

of the main supermarkets in Sibu, Sarawak. These destination nodes are converted into a non-

negative weighted graph representation with vertices and edges representing the starting 

position and the separation between the destination nodes and between two interconnected 

nodes. A scripting tool is programmed in Java to generate the overall transportation network 

model and visualize the waypoints, and the comparability of the shortest distance progress 

completed between the basic A* algorithm implementation and the proposed shortest path 
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heuristic is evaluated for similar problem instances.  The performance of the system is 

measured from the extended range of nodes along with the sum of the cumulative distances of 

both path heuristics compared. 

 

SHORTEST PATH TRAVERSAL HEURISTICS 

 

The shortest path approximation method emulates minimal traversal routes in distribution 

networks using pathing algorithms. The optimal shortest path is determined by summarizing 

the travel route with the least distance from participating vertices. Routing solution strategies 

are optimized through region division and localized initial solutions, enhancing depot pickup 

and optimizing logistic facility and transport deployment.  The concept of this method is 

motivated by the goal to minimize logistic costs along with vehicles deployed and can be 

incorporated into aggregating customer clusters relative to depots to maximize distribution 

satisfaction and obtain a distinct travel pattern for future reference (Luo, Wang, Tang, Guan, 

& Xu 2021). 

 

i. A* PATHING ALGORITHM 

The A* algorithm is a heuristic estimation method for forecasting that approximates the most 

optimal path-splitting strategy. The executed pathing mechanism prioritizes routes with the 

least recurring costs based on a weighted graph and is superior to blind search algorithms 

(Wang et al. 2022).  The path with the lowest cost is chosen in local optimization by evaluating 

neighboring node costs and selecting the path with the lowest cost tendency. The search 

continues until no unused nodes are found.  The A* pathfinding procedure adheres to heuristic 

criteria assimilation, aggregating subsequent traversals based on route characteristics and 

iterating constantly until the termination criterion is met (Foead, Ghifari, Kusuma, Hanafiah, 

& Gunawan 2021; Wang et al. 2022).  The fundamental underworking of the incurred steps is 

discussed as follows. 

Execution criteria 

1. Add the beginning location to the open list and empty the closed list during 

initialization. 

2. While there are more probable next steps on the open list and the destination node 

has not been found: 

i. Based on the heuristic and path costs, choose the most likely next step. 

ii. Remove from the open list and move to the closed list. 

iii. Identify and process each step's neighboring nodes. 

3. Determine the cost of reaching the neighbor.  For each neighbor node iteration: 

i. If the cost is less than the known cost for this site, it should be removed from the 

open or closed lists because a better route has been discovered. 

ii. If the location is not on the open or closed list, record the charges and add them 

to the open list for consideration in the future search. 

4. Loop steps 2-3 until the destination node is achieved. 
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FIGURE 2. Route Selection using A* Pathfinding Features 

 

Figure 2 shows the procedures for obtaining the estimated shortest path between the 

chosen starting and destination nodes.  Heuristic knowledge involving vertex and edge 

connections is applied using the concepts of A* pathfinding as a goal-directed method to 

identify priority nodes that are allegedly better composed than others and to try and reduce any 

inherent distances projected in the traversal network. After accounting for each shortest path 

that is involved in the trade-off, the devised optimized route, which originates at node H, is 

determined to be H-P-K-N-L (4+3+3+3=13). 

 

TABLE 1. Pseudocode for the Applied A* Algorithm 

1: Construct 

An open list containing only the original vertices 

Empty closed list 

2: If 

      The target vertex has not been reached 

3:       Insert the vertex with the lowest f score into the open list 

4: If 

      Current vertex = target vertex 

5: Stop 

6: Else  

      Insert the current vertex in the closed list queue 

      Compare with all currently available neighboring nodes  

7: For  

      Each neighboring vertex of the current vertex 

8:       If 

            The value of the neighboring vertex <g  of the current vertex  

            Place neighbor in the closed list 

9:                   Replaces the neighbor with the last smallest g value 

10:                         Current vertex = parent of the neighboring vertex  

11:                   Else if 

                        The current g is low  

                        Neighbors are listed in the open list 

12:                               Replaces the neighbor with the last smallest g value 

13:                                     Current vertex = parent of the neighbor 

14:                   Else if 

                        The neighbor does not exist in both lists 

15:                               Add to open list and define as g 

            END 
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ii. PROPOSED GREEDY DIJKSTRA WITH HAVERSINE METRIC 

 

The shortest distance between two edges in a weighted graph is assumed to be straight-line 

propagation, but it is unlikely to be represented in real mapping scenarios. Challenges exist in 

finding the lowest-cost path between 23 vertices without relying on weighted graph 

assumptions, especially for non-symmetric geographical locations near traversable routes. This 

method combines alternative selection strategies for identifying minimized constituent edges 

in single-pair shortest path problems in graphing networks (Talan, Karishma; Bamnote 2015; 

Yuliani, Rozahi Istambul, & Angga Laksana 2021).  Road networks are emulated as vertex and 

edges as intersections and segments. The shortest path heuristic uses Dijkstra and Haversine 

metric concepts to formulate a tree structure with the best passable alternatives of node 

traversal (Alam & Faruq 2019; Rachmawati & Gustin 2020; Sularno et al. 2021; Wayahdi, 

Ginting, & Syahputra 2021).  The algorithm gradually increments fixed distance values, with 

the current intersection marked as a not-visited point. The distance sum for non-traversed 

intersections is updated if it is less than the current value, and the current intersection is marked 

as visited. A prohibition on repeated traversal is imposed on the visited vertex. The 

fundamental concept of interlinking neighboring distance is promoted through the combination 

of the proposed technique and comprehensive traversal, ensuring the shortest possible distances 

are accumulated.  The process is summarized as follows. 

 

Execution criteria 

1. Except for the starting point, all points should have their distances set to infinity. 

2. The starting point and all other points are both set to be non-visited nodes. 

3. The non-visited node exhibiting the smallest current distance is designated as 

the current node. 

4. The edge weight connecting the current node neighbors is added. If the distance 

to be traversed from the subsequent node is shorter than the current distance, that 

distance is applied as the new distance. 

5. The current node is marked as visited.  

6. The process is repeated (steps 3-5) until the destination node is achieved. 

 

 

 

 

 

 

 

 

 

FIGURE 3. Route Selection using the Proposed Shortest Path Heuristic 

 

The proposed pathfinding heuristic combines Dijkstra and BFS node branching traits, 

representing distances between nodes and fixed positioning for each node. These predecessor 

values are traversed to find the shortest path to all nodes. The relaxation technique is preferred 

for optimal traversal, choosing the predecessor node with the smallest distance to be aggregated 

with the current destination node. The path through the lowest-valued vertex, including A-B 

(2), B-D (2), and D-F (3) = 7, is found to be the best traversal path. The solution strategy 

considers the maximum number of nodes reached in a single round trip and the completion 

time the shortest path takes. 
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TABLE 2. Pseudocode for the Shortest Path Heuristics based on Dijkstra & BFS 

1: Construct: 

nodes with infinite distance, initialization of starting node = 0 

2: For each 

        Vertex, v 

3:         distance[v] : infinity 

        previous[v] : undefined 

4: distance[source] = 0 

5: Q = Set of all nodes in the graph 

6: While 

        Q is not null 

7:                 u: Node in Q with the smallest distance 

                remove u from Q 

8:         For each  

                Neighbour v of u 

9:                 alternate: distance[u] + distance_between (u, v) 

10:                 If 

                alternate: distance[u] + distance_between (u, v) 

11:                 If 

                alternate < distance [v] 

12:                         distance [v] = alternate 

                        previous [v] = u 

13: return  

14:         previous [] 

            END 

 

DISTANCE APPROXIMATION METRIC 

 

Conventional distance metrics such as Euclidean and Manhattan calculations are useful for 

computing unidirectional path traversals on weighted graphs, but not ideal for combining 

curved roads into linear edges for routing distance approximation.  This experimental study 

uses the Haversine distance metric to estimate the surface distance of routes on weighted graphs 

with non-negative edges. It is combined with a path algorithm using a location identifier 

derived from latitude and longitude. The algorithm calculates the shortest distance on a round 

trip by accounting for nearby nodes and the shortest distance. The heuristic is applied with 

presumptions such as a symmetrical network, an end-to-end route without duplication or return, 

and predetermined depot and customer locations.  The fundamental notation for Haversine is 

as follows: 

 

ℎ𝑎𝑣𝑒𝑟𝑠𝑖𝑛𝑒(𝜃)  = 𝑠𝑖𝑛2 𝜃

2
      (1) 

Assumption: Radius of earth’s surface = 6371km 

a = sin²(
𝜑𝐵 − 𝜑𝐴

2
) + cos φA * cos φB * sin²²(

𝜆𝐵 − 𝜆𝐴

2
)      (2) 

c = 2 * atan2 (√ a, √ (1−a))                         (3) 
d = R ⋅ c              (4) 
 
Where: 

φ = latitude, λ = longitude, and R = Earth's radius (6371 km) 
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PROBLEM CHARACTERISTICS 

 

The shortest route heuristic is simulated for distribution supply among 23 supermarket chains 

in Sibu, with a starting point at Sibu Central Market. These supermarkets act as pick-up points 

and interlink among their closest partnering nodes. The traversal process is a one-way cycle, 

with backtracking omitted. Figure 4 shows the workflow of the proposed shortest route 

approximation heuristic iteration, while Figure 5 shows the real-world mapping of the intended 

destination node for the proposed shortest pathing heuristic. 

 

 
FIGURE 4. Framework for the Proposed Shortest Route Heuristic 

 

 
FIGURE 5. Geographic demography of the 23 supply chains around Sibu, Sarawak 

 
TABLE 3. Coordinates Representing the Participating Foodstuff Distributors 

Node Coordinates (x, y) The interval from the initial node (km) 

Bataras 2.29295, 111.83435 1.2 

Bisonte  2.30952, 111.82063 3.2 

CCL Fresh 2.30112, 111.91330 12.4 

Central Market 2.28764, 111.82873 0 

Delta  2.31209, 111.84447 5.1 

Doremart 2.32842, 111.83981 5.7 

Doremart2 2.29550, 111.83664 1.3 

Eco Fresh 2.33049, 111.85705 7.5 

Everwin 2.32750, 111.85441 6.0 

Everwin2 2.29098, 111.82364 0.6 

Fair Price 2.29410, 111.82318 1.1 

Family 2.33059,111.85370 6.6 

Farley 2.26733, 111.86326 6.7 

G-Mart 2.29829, 111.89631 9.5 

JumboXpress 2.28767, 111.82895 0.3 
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Kim Hock 2.30163, 111.84276 3.0 

MDS  2.30866, 111.81881 3.1 

Medan 2.29351, 111.84233 1.9 

Medan (Li Hua) 
2.258953,111.838339

6 
4.9 

Rega  2.30503, 111.83561 4.3 

Sing Kwong 2.29901, 111.82561 1.5 

Sing Kwong2 2.26542, 111.85772 5.7 

Wonderful 2.32903, 111.85541 7.6 

 

RESULT AND DISCUSSION 

 

This section investigates the proposed shortest path approximation heuristic's performance on 

round-trip traversal for distribution purposes. From a list of significant food distributor 

locations, five nodes with the greatest distance from the beginning point are chosen. The goal 

is to compare the efficiency of both heuristics in expanding to the most nodes while meeting 

the journey target. 

 

Performance variation in the compared pathing heuristics is shown in Table 4.  The A* method 

outperforms the proposed routing heuristic in terms of computational speed. This tendency 

rises with route complexity since more traveled nodes are imposed during round trips. 

However, even when A* visits somewhat fewer nodes than the proposed heuristic, there is 

inconsistency in execution time relative to the number of traversed nodes. The suggested 

pathing technique exhibits consistency in incremental node disposition parallelism and 

execution time. 

 

TABLE 4. Computational Speed for Both Compared Pathing Heuristics 

Target Destination 
Execution Time for Node Traversal (/sec) 

A* Proposed 

CCL Fresh 37 53 

Eco Fresh 12 21 

Farley 35 43 

G-Mart 23 44 

Wonderful 40 41 

 

TABLE 5. Results of round-trip simulation using the A* algorithm and the proposed heuristic 

Target 

Destination 

Total Distance (km) Number of traversed nodes 

A* Proposed A* Proposed 

CCL Fresh 6.95 8.15 5 7 

Eco Fresh 8.10 7.47 2 7 

Farley 7.10 7.20 5 4 

G-Mart 10.3 9.70 3 4 

Wonderful 8.27 7.30 7 6 

Average 8.144 9.594 22 28 

 

Both the A* method and the suggested pathfinding algorithm estimate the shortest paths to 

similar destinations. The A* algorithm, on the other hand, has a pathfinding fault in that it only 

finds the best nodes aligned in a straight line, which is impractical for practical applications 

with curved distances. The suggested pathfinding heuristic validates absolute annotated nodes 
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and distances to nearby nodes more thoroughly, allowing for more realistic solution 

approximation. Under a multi-level tree structure, the proposed greedy pathfinding heuristic 

performs better in bidirectional searches with low traversal distances.  The node with the most 

registered nodes and the least distance allocation is promoted to maximize route optimization 

by minimizing the trade-off between propagation distance and coverage area. 

 

The dissipation of route optimization between two pathing approaches is shown in Table 6. 

The shortest path heuristic is consistent in terms of node expansions and traveling distance, 

however, the A* algorithm varies in terms of node dissipation and propagation. The suggested 

method subjectively traverses relative nodes to show the optimum alternative distance, 

allowing for a more thorough assessment of routing options while collecting the highest 

feasible distance coverage. The A* method, on the other hand, does not extend the heuristic 

function, resulting in a contradiction in complex traversal networks. The proposed pathing 

heuristic is better compatible when combined with appropriate graph weightage and 

structurally linear tree architecture.  However, due to the loss of execution performance in more 

sophisticated networks, additional computing costs may be required. For relative cases, both 

strategies are separate, with A* for speedier solution discovery and the greedy pathfinding 

heuristic for in-depth node exploitation. Figures 6.1-6.2 show the A* and proposed pathing 

heuristics' performance.  For both testing instances, the source node starts at Sibu Central 

Market (light brown), traversing through medium nodes (green = branch 1, blue = branch 2, 

red = branch 3), before ending at the target node (A* = purple, proposed = yellow). 

 

TABLE 6. Comparison of traversed node distance using the A* algorithm and the proposed 

heuristic 

Target Destination 
Node traversed during the deployment 

A* Proposed 

CCL Fresh 

Centralmarket (0.0 Km) <-- 

Bataras (1.1 Km)  <-- 

Doremartpedada (1.55 Km)  <-- 

Fairprice (4.15 Km)  <-- Family 

(6.35 Km)  <-- Cclfresh (6.95 Km) 

Centralmarket (0.0 Km) -> 

Bataras (1.1 Km) -> Kimhock 

(2.2 Km) -> Delta (3.6 Km) -> 

Everwin (6.5 Km) -> Wonderful 

(7.3 Km) -> Cclfresh (8.15 Km) 

Eco Fresh 

Centralmarket (0.0 Km) <-- 

Everwinsanyan  (0.75 Km) <-- 

Ecofresh (8.1 Km)   

Centralmarket (0.0 Km) -> 

Bataras (1.1 Km) -> Kimhock 

(2.2 Km) -> Delta (3.6 Km) -> 

Everwin (6.5 Km) -> Wonderful 

(7.3 Km) -> Ecofresh (7.47 Km) 

Farley 

Centralmarket (0.0 Km)  <-- 

Bataras (1.1 Km)  <-- 

Doremartpedada (1.55 Km)  <-- 

Medan (2.5 Km)  <-- Farley (7.1 

Km) 

Centralmarket (0.0 Km) -> 

Bataras (1.1 Km) -> Kimhock 

(2.2 Km) -> Farley (7.2 Km) 

G-Mart 

Centralmarket (0.0 Km)  <-- 

Bataras (1.1 Km)  <-- Kimhock 

(2.8 Km)  <-- Gmart (10.3 Km) 

Centralmarket (0.0 Km) -> 

Bataras (1.1 Km) -> Kimhock 

(2.2 Km) -> Gmart (9.7 Km) 

Wonderful 

Centralmarket (0.0 Km)  <-- 

Everwinsanyan (0.75 Km)  <-- 

Ecofresh (8.1 Km)  <-- Wonderful 

(8.27 Km) 

Centralmarket (0.0 Km) -> 

Bataras (1.1 Km) -> Kimhock 

(2.2 Km) -> Delta (3.6 Km) -> 

Everwin (6.5 Km) -> Wonderful 

(7.3 Km) 

 



252 
 

 

 

 
6.1 (a) CCL Fresh 

 

 
6.1 (b) Eco Fresh 

 

 
6.1 (c) Farley 

 



253 
 

 

 

 
6.1 (d) G-Mart 

 

 
6.1 (e) Wonderful 

 

FIGURE 6.1 Results of the Route Traversal at Respective Nodes using A* Pathfinding 

Algorithm  

 

 
6.2 (a) CCL Fresh 
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6.2 (b) Eco Fresh 

 

 
6.2 (c) Farley 

 

 
6.2 (d) G-Mart 
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6.2 (e) Wonderful 

 

FIGURE 6.2. Results of the Route Traversal at Respective Nodes Using the Proposed 

Pathfinding Heuristic 

 

Table 7 illustrates the result findings from the overall simulation of the comparison between 

the compared baseline A* pathfinding algorithm and the proposed greedy shortest path 

heuristic in incorporating the custom customer array among the designated key distribution 

destinations. 

 

TABLE 7. Total Value of the Traversed Distance and Nodes based on the Tested Shortest 

Path Heuristics 

Target 

Destination 

Total Distance (/m) Number of traversed nodes 

A* Proposed A* 
Time 

(sec) 
Proposed 

Time 

(sec) 

Bataras 1200 1200 1 5 3 23 

Bisonte 5900 3900 3 19 6 32 

Delta  8700 9200 4 27 16 61 

Doremart 4530 12000 5 33 14 62 

Doremart2 1650 1650 2 20 8 45 

Everwin 7000 6300 3 26 11 48 

Everwin2 1200 2100 1 9 1 9 

Fair Price 4250 2600 3 28 14 56 

Family  6450 9700 5 38 10 44 

JumboXpress 300 300 1 22 4 30 

Kim Hock 4200 4200 2 21 14 54 

MDS  3600 3600 3 19 4 24 

Medan 3550 2750 3 24 13 62 

Medan (Li 

Hua) 
4900 4800 1 11 2 12 

Rega 8500 6700 3 26 12 48 

Sing Kwong 3500 1500 2 16 1 12 

Sing Kwong2 7700 8000 5 35 4 21 
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The next Table 8 summarizes the highlight point for the execution of the 2 tested routing 

heuristics in estimating the shortest possible traversal path via the representation of distance 

nodes as an unweighted graph.  

 

TABLE 8. Comparison of Traits between the 2 Tested Pathing Algorithms in Estimating 

Shortest Distance Metric 

Characteristics A* Proposed Heuristic 

Execution concept 

Acquires the lowest-cost 

paths between participating 

nodes and the closest 

distance to the problem 

definition using additional 

heuristic knowledge 

Propagation with node 

traversal exhibiting the 

lowest cost 

Traversal optimization 

probability 

Iterative toward the target 

solution 

Capable to produce an 

optimal solution for 

weighted and unweighted 

graphs based on certain 

circumstances 

Speed 

Emphasizes the critical 

nodes and swifter due to the 

relatively smaller search tree 

Speed gradually reduces with 

the complexity of the search 

tree 

Expansion range 

Targets only the closest node 

in relative with the problem 

definition, scours through 

neighboring node 

Uniform contours spread 

through all directions until 

the solution is found 

Exhibited computational 

cost 

Requires less computational 

cost, but is not highly 

accurate and representative 

Incremental execution cost, 

but more definitive and 

absolute in representing 

overall solution cost 

Graph representative 

(weighted/non-weighted) 

Only accommodate positive 

values 
Non-negative input 

 

CONCLUSION 

 

This study explores the underlying rudimentary scheduling systems reflecting location-

allocation concerns, with the goal of better optimizing feature representation for customer 

clustering inside distribution network cycles.  The enhancement of shortest path approximation 

in supporting the identification and rapid planning of essential distribution nodes is considered 

as advantageous in increasing cost optimality and future deployment progress.  This research's 

conceptualization is thought to be plausible for further investigation for implementation in 

major vehicle traversal-related fields of research, such as vehicle routing difficulties and 

logistic scheduling instances such as disaster logistics.  Experiment results suggest that the 

heuristic can be used to optimize mapping routing and path planning efficiencies.  

Improvements in the routing scheduling aspects are seen as viable through the research 

implementation in terms of integrating supplementary feed data representing the road network 

for better path classification subjugation, and further collaborating with clustering methods to 

locate proper routes on a smaller and more compact scale. 
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