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Dissecting the Determinants of Domain Insertion Tolerance
and Allostery in Proteins

Jan Mathony,* Sabine Aschenbrenner, Philipp Becker, and Dominik Niopek*

Domain insertion engineering is a promising approach to recombine the
functions of evolutionarily unrelated proteins. Insertion of light-switchable
receptor domains into a selected effector protein, for instance, can yield
allosteric effectors with light-dependent activity. However, the parameters that
determine domain insertion tolerance and allostery are poorly understood.
Here, an unbiased screen is used to systematically assess the domain
insertion permissibility of several evolutionary unrelated proteins. Training
machine learning models on the resulting data allow to dissect features
informative for domain insertion tolerance and revealed sequence
conservation statistics as the strongest indicators of suitable insertion sites.
Finally, extending the experimental pipeline toward the identification of
switchable hybrids results in opto-chemogenetic derivatives of the
transcription factor AraC that function as single-protein Boolean logic gates.
The study reveals determinants of domain insertion tolerance and yielded
multimodally switchable proteins with unique functional properties.

1. Introduction

The recombination of protein domains is an important driver of
evolution. It allows nature to repeatedly build on the same set of
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stable protein folds and their corresponding
functions, while enabling evolutionary in-
novation by exploring novel combinations
and interdependencies thereof.[1,2] This ob-
servation has inspired protein engineer-
ing approaches that combine evolution-
ary unrelated protein domains into single
polypeptide chains, thereby creating hybrid
proteins with new-to-nature properties.[3–7]

From a synthetic biology perspective, a par-
ticularly interesting strategy is the inser-
tion of receptor domains into effector pro-
teins with the aim to allosterically cou-
ple the effector conformation to the recep-
tor state.[3,5,8] Receptor activation, e.g. via
chemicals or light, will induce an allosteric
signal relaying to the effector’s active site
(e.g., a catalytic surface or binding site),
thereby enabling highly targeted control of
the effector-mediated cellular function.

Although a number of hybrid proteins
have been created by domain insertion

engineering over the past years, their rational design remains
challenging and screening of larger libraries and iterative opti-
mization is commonly required to obtain functional hybrids.[9–13]

Importantly, the identification of an insertion site at which the fu-
sion of two protein domains results in their functional coupling
and does not irreversibly interfere with the activity of either pro-
tein part represents a largely unsolved problem. These persist-
ing challenges can be explained by our limited understanding of
the structural and biophysical requirements and constraints that
generally determine suitable domain insertion sites.

Advances in the generation of comprehensive domain inser-
tion libraries via transposon-[12,14] or oligonucleotide pool-based
cloning, [15] as well as the coupling of fluorescence-activated cell
sorting (FACS) to deep sequencing, facilitate the efficient gen-
eration and subsequent investigation of larger domain insertion
datasets.[11,12,16] Employing such experimental approaches, re-
cent studies investigated the impact of domain insertion on the
membrane localization of potassium ion channels.[16,17] Using
the resulting data to train random forest models, the authors an-
alyzed biophysical properties that contribute to domain insertion
permissibility in ion channels.[17] This previous research was cen-
tered around a single type of membrane protein as well as the im-
pact of domain insertion on subcellular protein localization. To
render domain insertion engineering a broadly-applicable strat-
egy, however, studying the domain insertion tolerance at the
functional level as well as deciphering the determinants of func-
tional coupling between re-combined protein domains will be
essential.
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Here, we set out to broaden the understanding of domain
insertion requirements in diverse protein classes. Toward this
goal, we inserted up to five structurally and functionally un-
related domains into several different, unrelated candidate ef-
fector proteins covering nearly all possible sequence positions.
Using gene circuits that relay effector activity to a fluorescent
readout, the resulting, comprehensive libraries of protein hy-
brids were screened for active variants by FACS and subsequent
next-generation sequencing (NGS). Training of machine learn-
ing models on the resulting datasets allowed us to dissect pa-
rameters that affect domain insertion tolerance and revealed se-
quence conservation statistics as the most powerful predictors
for domain insertion success. Finally, extending our experimen-
tal pipeline toward the screening of engineered, switchable ef-
fector variants yielded two potent optogenetic derivatives of the
E. coli transcription factor AraC that function as single-protein
chemo-optogenetic Boolean logic gates.

2. Results

2.1. A functional FACS-NGS Screen of Domain Insertion
Tolerance

To elucidate the domain insertion tolerance within an evolution-
arily and functionally diverse set of effector proteins, we first con-
structed comprehensive insertion libraries. The libraries com-
prised of effector proteins carrying insert domains at all possi-
ble sequence positions (Figure 1A). Four structurally unrelated
proteins that are widely applied in synthetic and cell biology
were chosen as effector protein scaffolds: the transcription fac-
tor AraC, the recombinase Flp, a previously described variant of
the TVMV protease,[18] and ơ-factor F (SigF) from Bacillus sub-
tilis (Figure 1B). Protein hybrid libraries were generated via sat-
urated programmable insertion engineering (SPINE) for all four
candidates using the PDZ domain from murine 𝛼1-syntrophin

Figure 1. Domain insertion profiling of functionally and structurally diverse proteins. A) Flow chart of the domain insertion screening workflow. B)
Overview of the screened PDZ-domain insertion libraries. The depicted structures of the parent proteins are AF2 predictions. PDB-ID of PDZ: 1Z86.
C) Enrichment score histograms for the different candidate proteins are shown. The Log2 norm. read counts correspond to the fraction of reads after
enrichment normalized to the fraction of read counts within the initial library. Data from the four candidate proteins AraC, Flp, TVMV protease, and
SigF with PDZ domain inserts are shown. Enrichments are mapped to the respective insertion site as indicated by the position of the acceptor proteins
preceding the insertion. Light green, dark green: individual replicates. Grey: variants with zero reads after enrichment. Red: variants missing in the initial
library. Insertion sites correspond to residues preceding the inserted domain.

Adv. Sci. 2023, 10, 2303496 © 2023 The Authors. Advanced Science published by Wiley-VCH GmbH2303496 (2 of 13)



www.advancedsciencenews.com www.advancedscience.com

as insert (Figure 1B).[15] With its small size of 86 amino acids, its
globular fold and the N- and C-terminus located in close proxim-
ity (∼10 Å), the PDZ domain is ideally suited for domain insertion
screening (Table S1, Supporting Information).[11] Further, to elu-
cidate how the domain identity would affect the functionality of
the resulting protein hybrids, four additional insert domains of
varying size and structure (see Table S1, Supporting Information
for details) were selected and fused at all possible sequence po-
sitions into one of the candidate proteins, AraC. These included
the AsLOV2 (Avena sativa) domain, the estradiol binding domain
from human estrogen receptor-𝛼 (ERD), an enhanced yellow flu-
orescent protein (eYFP)[19] and the synthetic rapamycin receptor
uniRapR.[20] Following the construction of all eight libraries, a
nearly complete coverage of all possible insertion sites was ob-
served by deep sequencing (Figure S1, Supporting Information).

To enable functional screening of these libraries in Escherichia
coli, we next created reporter gene circuits that robustly couple the
activity of the effector protein to the expression or stability of a red
fluorescent protein (RFP) (Figure S2A, Supporting Information,
Methods). We then co-transformed E. coli Top10 cells with the re-
porters and their corresponding effector-insert hybrid libraries,
followed by an analysis of the reporter activity via FACS. Fluores-
cence histograms of the initial libraries showed a large fraction of
non-functional hybrid protein candidates as indicated by a large
proportion of non- or low fluorescent cells (Figure S2B, Support-
ing Information). Still, a small but considerable fraction corre-
sponding to medium to high fluorescent cells and hence active
protein hybrids was observed. Sorting this fraction resulted in a
clear enrichment of cells expressing high RFP levels in the case of
AraC and SigF and less pronounced, but still visible enrichments
in fluorescent cells for Flp and the TVMV protease (Figure S2C,
Supporting Information). Quantitative differences between the
four effector library pools were caused by varying proportions
of active versus inactive hybrid protein candidates in the initial
libraries as well as differences in the dynamic range of the re-
porter assays (Figure S2, Supporting Information, controls). To
ensure a significant enrichment of active variants, we sorted each
library in two consecutive rounds. Next, we assessed enrichment
or depletion of each individual domain insertion variant in the
sorted libraries by adapting the previously published DIP-seq
pipeline.[12] In short, the fraction of read counts corresponding
to a variant after enrichment was normalized by the fraction of
read counts from the initial library and the resulting scores were
log2-scaled. Variants that went extinct during sorting and thus
had a read count of zero were assigned a log2 value of −10, since
this represents the assay’s detection limit. To ensure the repro-
ducibility of the workflow, the whole screening and sequencing
process was performed in two independent replicates.

Results from different replicates correlated well, with a Pear-
son correlation coefficient (Pearson’s r) > 0.8 in all cases except
one (Pearson’s r for TVMV-PDZ= 0.65), while the level of enrich-
ment/depletion differed between replicates for individual vari-
ants (Figure S3, Supporting Information). As cross-validation of
our enrichment and analysis pipeline, we experimentally mea-
sured the activity (RFP expression) for a set of hybrids individu-
ally and compared it to the variant enrichment scores obtained
by NGS. As expected, a drastic difference in activity between the
enriched and the depleted variants was measured in most cases

(Figure S4, Supporting Information). For the following analysis,
the mean of the two biological replicates was used.

2.2. Domain Insertion Permissibility is Sequentially and
Structurally Clustered

Mapping the enrichment scores of the PDZ insertion libraries
to the amino acid sequences of the respective, four effector pro-
teins revealed that positions tolerating insertions occurred in
clusters spanning regions of ≈10–30 consecutive amino acids
(Figure 1C). Insertion tolerance thus appears to be regionally
confined, rather than being determined by features of individ-
ual residues or positions. Roughly 80 % of the insertions within
each protein were depleted, i.e., they do not tolerate domain fu-
sion (Figure 1C).

Moreover, the number of clusters with enrichments differed
substantially between the insert domains tested in combina-
tion with the AraC effector (Figure S5, Supporting Informa-
tion). For the LOV2 insert domain, we observed several insertion-
permissive regions throughout the sequence of AraC comparable
to those for the PDZ insert. In contrast, the other three insert
domains were enriched at substantially fewer positions, mainly
at the C-terminus of AraC. As LOV2 and PDZ are considerably
smaller (<150 AA) than the other tested domains, insert size ap-
pears to be a determining factor for insertion tolerance. In ad-
dition, the relative distance of the PDZ- and LOV2 domain’s ter-
mini (14.1 Å and 20.7 Å, respectively; note this is the distance
as measured from the terminal residues in the structures from
Table S4, Supporting Information) are smaller as compared to
the other insert domains, although uniRapR exhibits an only
marginally larger distance between N- and C-termini (24.4 Å)
(Table S1, Supporting Information). Interestingly, we hardly ob-
served insertion sites selective for just one specific insert domain.
This indicates that domain insertion permissibility is a general
property of protein regions rather than a lock-key relation be-
tween an insertion site and an individual insert domain.

Next, we mapped the enrichment scores onto structures of
the respective effector proteins. To this end, we used Alphafold2
(AF2)-predicted protein structures, as well as experimentally
resolved full length structures if available[21,22] (Figure 2A–D;
Figures S6–S8, Supporting Information). Importantly, the pre-
dicted structures were generally in excellent agreement with the
available experimentally validated (partial) folds (Figure S9, Sup-
porting Information). Structural analysis revealed strong deple-
tions around functionally critical regions, such as the DNA- and
arabinose-binding sites of AraC, the catalytic center of the Flp
recombinase, or the DNA-binding region of SigF (Figure 2A–
D; Figures S6 and S7, Supporting Information). For TVMV pro-
tease, depletions within the hydrophobic core and around the
active site were observed, albeit trends were overall less pro-
nounced for this candidate protein (Figure 2C; Figure S6C, Sup-
porting Information). Interestingly and in contrast to common
assumptions underlying domain insertion engineering strate-
gies, no clear enrichment at surface-exposed unstructured loops
could be identified for any of the candidates. Rather, insert sites
were observed at similar frequency in helices, sheets, and loops
(Figure 2A–D).
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Figure 2. Secondary structure and amino acid features alone do not explain the experimentally observed domain insertion patterns. A) Domain insertion
permissive positions are clustered at diverse, locally confined surface sites. The insertion scores from the PDZ libraries are mapped onto the AF2 structure
predictions of the candidate proteins namely AraC A) and Flp recombinase B) the crystal structure of the TVMV protease (PDB-ID: 3MMG) C) and an
AF2 structure prediction of SigF D). Functionally critical residues of AraC, Flp, and the TVMV protease are indicated in grey. E) Correlation between
variant enrichment and the average surface exposed area (ASA) of the residues neighboring an insertion site are plotted for AraC-PDZ. Spearman’s r is
indicated. F) Violin plot of the insertion score distribution with respect to different secondary structure elements is shown for the AraC-PDZ insertion
library. For each insertion site, the secondary structure assignment of the amino acids prior to and after the insertion was considered. The IQR is marked
by the box and the median is represented by a white dot. Whiskers extend to the 1.5-fold IQR or to the value of the smallest or largest enrichment,
respectively. G) Spearman correlations between all datasets and diverse positional features are shown (Table S2, Supporting Information. Linker idx:
Different amino acid specific linker propensity indices that were reported by the indicated authors.
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Next, to quantitatively analyze these qualitative observations,
we correlated the measured enrichments with a set of basic po-
sitional properties such as the average solvent accessible area
(ASA), secondary structure, and amino acid identity of the
residues neighboring a respective insertion site (Figure 2E,F;
Figures S10 and S11, Supporting Information). Of note, none
of these basic properties explained the observed enrichments.
In order to obtain a more comprehensive overview of protein
features that could affect domain insertion success, a larger set
of position-specific features was gathered (Table S2, Support-
ing Information, Methods). Further, these comprised a number
of biophysical amino acid properties, fetched from the “AAin-
dex” database, [23,24] as well as several previously published linker
propensity indices. [25–27] These indices describe to which ex-
tent amino acids tend to be present in inter-domain linkers.
Regions with high linker propensities are commonly expected
to be well suited for the insertion of domains. Further, we in-
cluded the pLDDT confidence score from AF2 models, which
was previously shown to correlate with intrinsically disordered
sites.[28] Moreover, the Kullback-Leibler divergence (KLD), a mea-
sure for sequence conservation, was extracted from multiple se-
quence alignments of the candidate protein with natural ho-
mologs. Finally, additional scores, such as the frequency of in-
sertions and deletions at every position in evolutionary related
sequences, were included (refer to Methods). Spearman corre-
lations between all enrichment scores for the screened libraries
and each feature revealed overall weak trends, with the major-
ity of the correlation coefficients lying in the range between −0.2
and 0.2 (Figure 2G; Figure S12, Supporting Information). This
observation is in agreement with previous results in the context
of ion channels.[16,17] Additionally, we confirmed that AF2-based
structure predictions of insertion variants could not explain the
observed enrichment trends (Note S1 and Figures S13 and S14,
Supporting Information).

2.3. Machine Learning Reveals Statistical Features Predicting
Domain Insertion Tolerance

The absence of any clear correlation between the experimen-
tal data and positional protein properties raised the question if
a combination of the above features would enable the predic-
tion of domain insertion tolerance. To address this question, ma-
chine learning models were trained on the entirety of the gath-
ered insertion site properties in combination with amino acid
identity and secondary structure information as additional fea-
tures. The learning objective was to discriminate between en-
riched sites that tolerated the insertion of a domain versus de-
pleted positions, as these states appeared to be well separated in
the data (Figure 1C). As model architecture, we chose a gradi-
ent boosting classifier, [29], i.e., an algorithm that additively com-
bines multiple simpler machine learning models (in this case
basic regression trees) by minimizing a loss functions. Such
algorithms are known to perform particularly well on tabular
datasets. The model was trained for each protein using five-
fold cross-validation. We assessed the classifier’s performance
on each cross-validation test set, using standard metrics includ-
ing the area under the receiving operator characteristic (AUROC)
and average precisions (AP) (refer to the experimental section

for details). The models reached surprisingly good performances
on datasets derived from individual candidate proteins ranging
from a mean AUROC of 0.72 for SigF-PDZ to 0.92 for Flp-PDZ
(Figure 3A,B; Figure S15, Supporting Information). The corre-
sponding AP ranged from 0.41 (SigF-PDZ) to 0.82 (AraC-PDZ)
(Figure 3A,B; Figure S15, Supporting Information). The lower
AP values are caused by the high proportion of negative labels
in the respective datasets. Encouraged by these results, we op-
timized the model on a complete training set including all four
proteins, which resulted in a mean AUROC of 0.84 and a mean
AP of 0.54 (Figure 3C,D). To place the classifiers performance
into context, we compared it to several benchmarks on a previ-
ously withheld test set. These included a random choice base-
line, and the use of individual features as predictors. Our classi-
fier exhibited highly improved predictive power as compared to
all individual features, reaching an AUROC of 0.85 and an AP
of 0.56, suggesting that the entirety of input features implicitly
provided the information necessary for successful prediction of
domain insertion tolerance (Figure 3E; Figure S16, Supporting
Information).

Finally, we aimed at identifying the key features most infor-
mative for the prediction of domain insertion tolerance. To this
end, the influence of individual features on the model’s per-
formance was assessed by measuring the permutation impor-
tance of each feature as well as its Gini importance (Figure 3F;
Figure S17A, Supporting Information).[30] The permutation im-
portance measures the decrease of a model’s accuracy upon ran-
dom shuffling of the values for an individual feature. The Gini
importance, in contrast, measures the average importance of re-
gression tree nodes corresponding to a certain feature by calcu-
lating the respective gain in impurity. Both measures indicated
that most parameters were dispensable, while the alignment-
derived properties were most critical for successful prediction. In
that line, a model trained solely on information about the iden-
tity of insertion-adjacent amino acids did reach an AUROC of
0.64 (Figure 3G). As a consequence, we depleted features from
the input data in a stepwise manner, while ensuring the perfor-
mance of the model did not decrease upon feature removal. Fol-
lowing this procedure, we were able to train a reduced model,
only based on six features: KLD, deletion frequency, insertion
frequency, mean insertion length, pLDDT, and the linker in-
dex by Suyama et al.[25] With an AUROC of 0.87 and an AP
of 0.55, the reduced model performed as good as the original
one trained on all features (Figure 3H). Lastly, the feature im-
portance analysis was repeated with the reduced model. Akin to
the previous observations, KLD, insertion frequency, and dele-
tion frequency, i.e., evolutionary and statistical features derived
from MSAs, were detected as most important parameters ex-
plaining domain insertion tolerance (Figure S17B,C, Supporting
Information).

2.4. Identification of Potent Light-Switchable AraC Variants

Up to this point, we focused on features determining the preser-
vation of function upon domain fusion into an effector protein.
Taking our experimental screening approach one step further,
we next investigated to which extent insertions can mediate al-
losteric behavior, i.e., a functional link between an insert and the
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Figure 3. Gradient boosting classifier models reveal parameters informative of domain insertion tolerance. A,B) ROC curves of the model trained with
fivefold cross-validation on the AraC-PDZ dataset A) or the combined PDZ datasets of all candidate proteins B). Results from individual cross-validations
are shown in grey and the mean ROC is depicted in red (see Experimental Section 4.13 for details on the used metrics). C,D) Precision-recall metrics for
individual cross-validation folds are shown. The mean average precision (Mean AP) is indicated. E), The AUROC and average precision of the trained
classifier and different benchmarks are shown. The metrics were assessed on a previously withheld test set. F) Bar plot indicating the Gini importance
(i.e., mean decrease in impurity) of each feature for the model trained on the full dataset. G) The ROC metric of a gradient boosting model that was
trained exclusively on the amino acid identities is shown. H) ROC of a model that was trained on a subset of features comprised of Deletion frequency,
KLD, insert frequency, mean insertion length, the linker propensity index by Suyama[25] and the pLDDT score from AF2 structure predictions. A,B,G,H)
The ROC is depicted for individual folds in grey and the mean ROC in red. The mean AUC is marked in light red. Precise values are indicated.

effector. Such switchable hybrids are of great interest for various
applications in biology and bioengineering. Toward this goal, we
re-visited our initial AraC-LOV hybrid library. The AsLOV2 do-
main is known to reversibly unfold its two terminal helices in
response to blue light (≈450 nm), a property that has been har-
nessed for the development of light-switchable effector proteins
in optogenetics.[3,31] It was hence interesting to explore, whether
screening our comprehensive AraC-LOV library could readily re-
veal potent, optogenetic AraC variants.

We, therefore, repeated the screen for the AraC-LOV library,
this time incubating the cultures under blue-light exposure prior
to FACS sorting. The resulting variant enrichment was then com-
pared to that of the same library sorted upon incubation of cul-
tures in the absence of light (Figure S5, Supporting Informa-
tion). Globally, we observed a high similarity between the re-
sulting enrichment scores for each position under both condi-
tions (Figure 4A; Figure S18A, Supporting Information). How-
ever, a subset of regions showed significant differences between
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Figure 4. LOV2 domain insertion screening yields chemo-optogenetic AND and NIMPLY gates. A) Scatterplot showing the relation between the en-
richment scores of individual variants for the libraries incubated in the light and dark. B) Characterization of light-responsive AraC variants. Inducers
were supplied in the indicated concentrations. The samples were incubated under light exposure or in darkness, followed by measurements of reporter
fluorescence (RFP) and OD600. Bars represent means from three independent replicates. Error bars show the SD. The corresponding logic gates are
indicated. C) Agar photograph generated via an AraC-S170-LOV2 controlled RFP reporter. Top agar mixed with inducers and bacteria carrying an RFP
reporter plasmid and the AraC-S170-LOV2 variants were plated on an ager plate, which also contained arabinose and IPTG. The plate was incubated
overnight, while being illuminated through a photo-mask of the logo on the left (without the text). D) Cultures were inoculated into media carrying 400
μm IPTG and 25 mm arabinose. The samples were incubated either in darkness or under blue-light exposure. At the beginning of the experiment and
every three hours from then, RFP fluorescence and OD600 were measured, followed by 1:30 dilution in fresh media. Points represent the mean of n = 3
biological replicates. Error bars indicate the SD. E) An AF2 prediction of the full length AraC (green) is shown alongside the crystal structure (grey and
white) of the arabinose binding domain. The relative positioning of the structures was obtained by superimposing the AF2 model onto a dimer crystal
structure. Insertion sites and key residues are highlighted and their function is indicated. PDB-ID: 2ARA.
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the enrichment scores obtained for the libraries cultured in the
dark and light (Figure S18B,C, Supporting Information). Strik-
ingly, further analyzing the insertion variants in these regions re-
vealed a plethora of presumably light-activatable as well as light-
inhibited AraC-LOV hybrids corresponding to multiple different
AraC insertion sites (Figure S18B,C, Supporting Information).

From this set of optogenetic variants, we chose two AraC-LOV
hybrids for further characterization, one light-ON switch carry-
ing the LOV2 insertion behind I113 (AraC-I113-LOV) and a light-
OFF switch with the LOV2 insertion behind S170 (AraC-S170-
LOV). We then assessed the performance of these AraC-LOV hy-
brids using the previously established RFP transcription reporter
in E. coli under varying arabinose concentrations, as well as light
conditions. Interestingly, the activity of both AraC-LOV hybrids
was co-dependent on the arabinose concentration and the light
stimulus (Figure 4B; Figure S18D, Supporting Information). The
AraC-I113-LOV samples showed a 23-fold increase in reporter
expression upon illumination at an arabinose concentration of
4 mm. At higher arabinose concentrations, increasing fluores-
cence levels were also observed for samples incubated in the dark,
indicating that the chemical inducer could, to some extent, over-
ride the light-mediated regulation. Vice versa, the AraC-S170-
LOV samples showed efficient, light-dependent repression of re-
porter activity practically to baseline with a 43-fold switch in re-
porter activity at 16 mm arabinose. Moreover, the light-regulation
was in this case not affected by high arabinose concentrations.
Comparing the overall activation of the AraC variants in response
to arabinose, the activity of the wildtype saturates already at an in-
ducer concentration of 4 mm, while the LOV2-hybrids, in particu-
lar AraC-S170-LOV, require higher arabinose concentrations (up
to 16 mm) to trigger maximum reporter activity. This suggests
that LOV2 insertion weakened the sensitivity of AraC to arabi-
nose. The observed behavior establishes the AraC-I113-LOV and
AraC-S170-LOV hybrids as single-protein Boolean logic devices
capable of integrating light and arabinose as inputs and function-
ing as AND and NIMPLY gates, respectively (Figure 4B; Note S2,
Supporting Information).

Next, we investigated if these new optogenetic AraC variants
facilitate spatiotemporal control of gene expression. Growing
the AraC-S170-LOV reporter strain on agar while illuminating
it through a photo-mask confined reporter RFP expression to
light-shielded regions and hence resulted in display of the pho-
tomask shape on the fluorescent cell layer (Figure 4C). Moreover,
incubating AraC-S170-LOV and AraC-I113-LOV reporter strain
cultures while alternating between light and dark conditions re-
sulted in reporter expression oscillation, the phase of which de-
pended on the AraC-LOV variant used (Figure 4D). Taken to-
gether, the results showcase the versatility of this new chemo-
optogenetic toolkit with respect to spatiotemporal control of gene
expression in E. coli.

On a structural level it is striking that most insertion sites re-
sulting in switchable AraC behavior are located within the re-
gion between the ligand-binding domain (LBD) and the DNA-
binding domain (LBD) of AraC (Figure 4E). This trend can be
explained by the functional role this region has, serving as a
dimerization interface upon AraC activation and by mediating
the relative flexibility of both domains.[32,33] It is thus no sur-
prise that LOV2 domain insertions in this area can influence
AraC function. Of note, AF2 structure predictions of AraC-I113-

LOV and AraC-S170-LOV capture the former variant in a more
compact conformation, which is in agreement with the less flex-
ible repressor state of wildtype AraC[32,33] (note: AF2 predicts the
LOV2 structure in its dark-adapted state) (Figure S19, Support-
ing Information). AraC-S170-LOV, in turn, was predicted to have
a more relaxed conformation, as would be expected for an active
AraC (Figure S19, Supporting Information). To further investi-
gate the robustness of allosteric coupling in both hybrid proteins,
we screened a set of point mutants for their effects on wildtype
AraC and its engineered derivatives (Figure S20, Supporting In-
formation). The majority of mutations did not improve the AraC-
I113-LOV switch, but rather reduced reporter activity, in the ac-
tive (light) state or increased leakiness, i.e., reporter activity in
the dark. Excitingly, several AraC-S170-LOV point mutants (e.g.,
T50S, G141D, and V284F; mutations correspond to residues in
wildtype AraC) showed an increased level of activity in the dark
as compared to the initial variant, while likewise retaining potent
reporter repression upon illumination. The mutations E3I and
T241C, in turn, permanently impaired the function of the AraC-
S170-LOV variant, while having no significant effect on AraC-
I113-LOV. Finally, none of the tested mutations had major ef-
fects on the activity of wildtype AraC. Collectively, our data high-
light (i) the variant-specificity of mutational effects in the engi-
neered allosteric AraC-LOV hybrids and (ii) their increased func-
tional and likely structural sensitivity toward minor sequence al-
terations. Moreover, the mutational data in conjunction with the
arabinose-dependency data (Figure 4B) indicate the interconnec-
tion of the natural arabinose-mediated allosteric regulation with
a LOV2-induced artificial allosteric pathway.

3. Conclusion

In this study, we investigated the constraints of domain inser-
tion engineering at the functional and structural level. Thereby,
we considerably extended the existing body of work toward new
protein families and, for the first time, compared the insertion
tolerance of several evolutionary unrelated proteins side-by-side
directly using effector protein function as readout. In agreement
with previous studies, [16,17] our data showcases the absence of
any simplistic explanations for domain insertion permissibility.
In contrast, we demonstrated that gradient boosting classifiers
can help to decipher the importance of factors underlying do-
main insertion tolerance. Our models identified MSA-derived
conservation statistics as main determinants of domain insertion
tolerance, thus suggesting an evolutionarily informed approach
to be particularly promising for domain insertion engineering
(Figure 3). In this context, parallels can be drawn with statisti-
cal coupling analysis (SCA), a method for identifying co-evolving
residues based on the statistical evaluation of MSAs.[5,13,34] The
SCA-derived residue patterns termed “protein sectors” have been
proposed to be functionally critical and well suited for identify-
ing allosteric sites to engineer protein switches.[13] In contrast,
our work underscores the indicative value of evolutionary inser-
tion/deletion events.

We note that in context of domain insertions, the predictive
power of machine learning models is still constrained by the
amount of available training data, which is, in turn, restricted
by the current experimental capacity limits. The use of experi-
mental data, such as the presented insertion library screens, in
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combination with larger datasets extracted from public protein
sequence databases might provide an elegant solution to address
this limitation in data size.

In addition, it will be interesting to see to what extent the
observed trends are replicated across entirely unrelated protein
classes, such as enzymes, which are particularly vulnerable even
to minor structural changes in the active site or proteins the ac-
tivity of which depends on complex domain motions. In these
cases, the preservation of activity might rely on factors that can-
not easily be inferred from conservation statistics.

With respect to allosteric proteins, the screening pipeline
developed here was efficient in identifying allosteric switches
(Figure 4; Figure S18, Supporting Information). In previous
work, a GFP-maltose-binding protein insertion library was en-
riched alternatingly in the presence and absence of the input trig-
ger in three consecutive rounds.[12] Our adaption of the method
using parallel enrichment of the same library under different
conditions (here culturing samples in the presence or absence
of light) turned out to be sufficient to reliably identify light-
switchable proteins. A more stringent selection regime during
FACS could potentially render even a single round of enrichment
sufficient, which would further simplify and streamline the work-
flow for the engineering of switchable effector proteins.

We note that several optogenetic bacterial expression sys-
tems exist.[35–37] These include the light-responsive AraC vari-
ant BLADE, which is based on the Vivid LOV domain
from Neurospora crassa functioning via light-induced AraC
dimerization.[35] In contrast to these previous examples, the tran-
scription factors developed here are co-dependent on two stim-
uli, namely light and arabinose. This has interesting implications
for synthetic biology applications and gene circuit control. Tran-
scription factors co-dependent on two inputs enable the indepen-
dent control of the state (on/off) and amplitude of activation for
genetic programs. Previously, the combination of chemically in-
ducible transcription factors and light-responsive regulators had
to be combined within far more complex circuits to achieve the
same goal.[37–39] The optogenetic variants presented here highly
simplify such experimental setups by reducing the underlying
system to a single protein component (see Note S2, Supporting
Information). Such single-protein Boolean logic gates could con-
siderably streamline the design and increase the robustness of
complex genetic circuits and biocomputing programs by reduc-
ing the number of required components and through the direct
integration of signals within a single molecule.

In summary, our study pinpoints determinants of domain in-
sertion tolerance and showcases the power of unbiased domain
insertion screens for the engineering allosteric effector proteins
with applications in synthetic biology and beyond.

4. Experimental Section
Molecular Cloning: All constructs used in this study are listed in

Table S3 (Supporting Information). The corresponding amino acid se-
quences of the encoded proteins are shown in Table S4 (Supporting In-
formation). Plasmids were constructed using Golden Gate assembly.[40]

In brief, DNA fragments were amplified by PCR (Q5 2x Master Mix, New
England Biolabs (NEB)), with primers carrying type IIS restriction enzyme
recognition sites in their 5′-overhangs, which enabled the scarless as-
sembly of constructs. PCRs were performed according to the NEB stan-

dard protocols. For Golden Gate assembly, the procedure described by
Engler et al. was followed.[40] DNA-oligonucleotides were ordered from
Merck and Integrated DNA Technologies (IDT). Double-stranded DNA
fragments were purchased at IDT. Point mutants were cloned by intro-
ducing the changes via mismatching primers upon amplification of the
full plasmid and subsequent phosphorylation and ligation. PCR products
were resolved on 0.5x Tris-acetate-EDTA (TAE) 1% agarose gels and the
corresponding bands were cut out and purified using the QIAquick Gel
Extraction kit (Qiagen). Restriction enzymes and T4 DNA ligase were ob-
tained from NEB and Thermo Fisher Scientific. Following DNA assembly,
Top10 E. coli cells (Thermo Fisher Scientific) were transformed with the
respective construct, plated on agar, and incubated overnight at 37 °C.
Liquid cultures were inoculated from single colonies and grown overnight
at 37 °C while shaking at 220 rounds per minute (rpm). DNA was purified
using the QIAamp DNA Mini kit (Qiagen). All constructs were sequence-
verified using Sanger sequencing (Microsynth Seqlab and Genewiz). The
plasmid pTKEI-Dest, which served as a backbone for the insertion libraries,
was a gift from David Savage (Addgene plasmid # 79784 ).[12]

Reporter Assays: All reporter circuits used the monomeric red fluores-
cent protein 1 (RFP) as readout.[41] The design of the genetic circuits is de-
picted in Figure S2A (Supporting Information). In short, the AraC reporter
was created by placing the RFP coding sequence under the control of a
pBAD promoter. In case of the Flp recombinase, RFP was expressed from a
constitutive promoter (J23102, http://parts.igem.org/Promoters/Catalog/
Anderson). However, the coding sequence was inverted and flanked by Flp
recognition target (FRT) sites. In the ground state, a dysfunctional mRNA
is transcribed and only upon inversion of the RFP open reading frame by
the recombinase, RFP is expressed. To measure TVMV protease activity, a
ssrA-like degradation tag[42] was fused to a constitutively expressed RFP;
a TVMV recognition site was placed in between RFP and the degradation
tag. Active TVMV protease would thus cleave off the degron resulting in
RFP stabilization and an increase in fluorescence. Many related potyvirus
proteases undergo a process called autolysis, [43] during which the pro-
tease cleaves off its own C-terminal region albeit at low efficiency. This
results in a truncated protease with decreased activity. To ensure that only
one TVMV protein species would be present during all assays, a previously
reported, truncated TVMV version[44] was used for insertion library gener-
ation. Finally, a reporter for SigF was constructed, based on a SigF-specific
promoter design previously reported by Bervoets et al.[45]

Domain Insertion Library Generation: To generate insertion libraries
covering all possible effector protein positions, saturated programmable
insertion engineering (SPINE) was used.[15] In short, the protein of inter-
est was subdivided into chunks of ≈50 amino acids. For each chunk, an
oligonucleotide sub-pool (Agilent) was designed, comprising 50 individ-
ual DNA sequences, each of which carried a Type IIS restriction enzyme
recognition site handles behind a specific amino acid encoding triplet. A
python pipeline for the automatic design of the required DNA sequences
provided by Coyote-Maestas et al.[15] was employed for oligo pool design.
The sub-pools were then individually cloned into an expression vector car-
rying the full-length coding sequence of the respective effector protein of
interest and transformed into chemically competent Oneshot Top10 E.
coli. To ensure at least 40-fold coverage of the library, serial dilutions were
plated on agar plates following transformation and the number of colony-
forming units was calculated. The plasmid sub-libraries were purified from
the bacteria using the QIAamp DNA Mini Preparation Kit (Qiagen). The
DNA concentration was measured using the Quant-iT dsDNA (HS) assay
kit (Thermo Fisher Scientific) and all sub-libraries for each individual ef-
fector protein were pooled using equal DNA concentrations. To ensure
that no wildtype protein contamination was carried on during cloning,
the insertion handle was replaced by a kanamycin expression cassette via
Golden Gate assembly. E. coli cells were transformed and plated on three
20 cm LB-agar plates, supplemented with 50 μg mL−1 chloramphenicol
and 25 μg mL−1 of kanamycin (Carl-Roth). Again, a library coverage of at
least 20× was ensured by serial dilutions and colony counting. The next
day, each plate was rinsed with 3 mL of LB and the colonies were gen-
tly scraped off with a spatula. The resulting liquid cultures were collected
from the plates and pooled for each protein. Plasmid DNA was then puri-
fied from the cultures and the kanamycin handle was replaced by the insert
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domain of choice, again using Golden Gate cloning. Finally, Oneshot
Top10 E. coli carrying the respective reporter plasmid were transformed
with the assembled libraries by electroporation. Following a recovery in su-
per optimal broth supplemented with 20 mm glucose (Carl Roth) (SOC) for
1 h at 37 °C and 220 rpm, transformed cells were grown in LB (50 μg mL−1

chloramphenicol and 25 μg mL−1 of kanamycin) overnight. Serial dilutions
plated on agar were performed. Plates were incubated overnight, and a li-
brary coverage was estimated from colony counts (coverage was >50-fold
for all samples). Finally, glycerol stocks of the libraries were prepared, by
mixing the cultures with sterile 50% (v/v) glycerol at a ratio of 1:1, and
stocks were stored at −80 °C until usage.

FACS-Based Library Enrichment: Precultures of LB media (50 μg mL−1

of chloramphenicol and 25 μg mL−1 of kanamycin) were inoculated from
glycerol stocks of E. coli strains carrying the insertion libraries. Positive
control samples expressing the wildtype effector protein without insert, as
well as negative controls expressing a different protein of similar size (not
activating the reporter) from the same plasmid backbone, were included.
The precultures were incubated for 16 h at 37 °C while shaking at 220 rpm.
The next day, 1 mL LB cultures were inoculated with 10 μL from the precul-
tures. These main cultures were supplemented with 16 mM L-arabinose
and 400 μm IPTG for AraC, 400 μm IPTG for the TVMV protease, 200 μm
IPTG for Flp, 100 μm IPTG for SigF for the first enrichment round, and
200 μm for SigF during the second round of enrichment. These cultures
were incubated for 16 h at 37 °C while shaking at 220 rpm. For the AraC-
LOV2 libraries, two identical replicates were generated, one of which was
incubated under blue light illumination and the other one in the dark. The
next morning, the samples were diluted 1:100 in 1×PBS (Thermo Fisher
Scientific) and kept on ice until sorting. FACS was performed on a FAC-
SAria Fusion flow cytometer (BD Biosciences) at the ZMBH FACS facility
(Heidelberg University). E. coli cells were identified and gated using the for-
ward scatter (FSC) and side scatter (SSC) values (Figure S21, Supporting
Information). The red fluorescent peak was sorted from each library. If no
clear peak was visible, the 5% cells with the highest RFP levels were sorted.
25 000 cells were sorted for each library into LB media. Next, the collected
cells were recovered for one hour in LB media without antibiotics at 37 °C
and shaking at 220 rpm. Subsequently, 50 μg mL−1 chloramphenicol and
25 μg mL−1 of kanamycin were added, followed by incubation of cultures
overnight. The next day, glycerol stocks were prepared from the cultures
representing sorted libraries. A second round of FACS-sorting and enrich-
ment was performed by repeating the procedure starting from the glycerol
stocks after the first round of enrichment. FACS data were analyzed using
the cytoflow python package (https://cytoflow.github.io/).

Next Generation Sequencing: The input libraries, as well as the en-
riched sorted fractions were subjected to heat lysis. Cells were pelleted and
resuspended in water. Aliquots were heated to 95 °C for 10 min, followed
by centrifugation at 10 000 g for 10 min to remove cell debris. The super-
natant was transferred to new tubes and stored at – 20 °C until further use.
The coding sequence of the libraries was amplified using the Q5 Hot Start
High- Fidelity DNA Polymerase (NEB) and the PCR amplicons were sepa-
rated from primer dimers on a 0.5x TAE 1% agarose gel. The bands repre-
senting the protein hybrid libraries were excised and DNA was purified us-
ing the QIAquick Gel Extraction Kit (Qiagen). The DNA concentration was
then measured with the Quant-iT dsDNA (HS) assay kit (Thermo Fisher
Scientific) using a plate reader (Tecan Infinite 200 Pro). Next, the DNA
was fragmented and the sequencing libraries were prepared using the Illu-
mina Nextera XT kit (Illumina). The manufacturer’s protocol was followed,
with two modifications. First, to prevent under-tagmentation, only 0.2 ng
of DNA was used as input and the tagmentation step was performed for
15 min, instead of 5 min. Second, during library preparation, the samples
to be pooled were barcoded using the Nextera XT Index Kit v2 (Illumina).
The final sequencing libraries were then purified using AMPure XP mag-
netic beads (Beckman Coulter) according to the manufacturer’s protocol.
A two-sided size selection was performed using 25 μL beads together with
50 μL input reaction during the first size selection step and 100 μL of beads
during the second step. Following library clean-up, the DNA concentration
was measured again using the Quant-iT dsDNA (HS) assay kit (Thermo
Fisher Scientific) and the different libraries were pooled at equal concen-
trations. Next, library quality was assessed on a Bioanalyzer (Agilent) us-

ing the Agilent DNA 1000 Kit. Finally, samples were sequenced using the
paired-end Illumina MiSeq and NextSeq sequencing services at the EMBL
Gene Core facility (Heidelberg).

Experimental Characterization of Individual Variants from the Domain In-
sertion Screen: Individual protein hybrids were isolated from the sorted
fractions or cloned individually and stored as glycerol stocks in 25%
glycerol (Carl Roth). The variants tested are listed in Table S3 (Support-
ing Information). Precultures of Oneshot Top10 cells carrying a RFP re-
porter plasmid specific to the respective protein hybrid, as well as a plas-
mid encoding the respective switchable variant, were inoculated from
glycerol stocks into lysogeny broth (LB) (Carl Roth), supplemented with
50 μg mL−1 chloramphenicol (Carl Roth) and 25 μg mL−1 of kanamycin
(Carl Roth). Cultures were prepared in technical triplicates in 96-well plates
(Corning), using a volume of 200 μL per well. The precultures were incu-
bated for 16 h at 37 °C while shaking at 220 rpm. Main cultures were sim-
ilarly prepared in 96-well plates, using LB supplemented with 50 μg mL−1

chloramphenicol and 25 μg mL−1 of kanamycin, using the same induction
scheme as for the FACS screen. The cultures were inoculated with 3 μL
from the respective precultures and grown at 37 °C and 220 rpm for 16 h.
Following incubation, RFP fluorescence and OD600 were measured on a
plate reader (Tecan Infinite 200 Pro). For RFP measurements, an excitation
wavelength of 490 nm and an emission wavelength of 520 nm were used.
The reported RFP/OD600 values were calculated by dividing the measured
fluorescence by the OD600 levels. Three independent biological replicates
prepared and measured on different days were generated for each variant.

Illumination Setup: For the illumination of liquid cultures, a custom-
made LED setup was used. Eight blue light high-power LEDs (type
CREE XP-E D5-15; emission peak ≈460 nm; emission angle ≈130°; LED-
TECH.DE) were mounted onto an aluminum plate and connected to a
Switching Mode Power Supply (Manson; HCS-3102). The LED-plate was
installed upside down within a shaking incubator, so that the LEDs could
illuminate the surface area of the shaking platform from a distance of
≈30 cm. Liquid cultures were incubated in multi-well plates and illumi-
nated at a constant intensity of 50 μmol m-2 s−1 (≙ 5 W m−2).

For the illumination of agar plates (see “agar plate photography” be-
low), a custom-made array of 96 LEDs (LB T64G-AACB-59-Z484-20-R33-
Z, Osram, emission peak 469 nm, viewing angle 30 °, Mouser Electron-
ics) mounted onto a circuit board was used, applying a light intensity of
15 μmol m−2 s−1 (≙ 1.5 W m−2). This device was again powered by a
Switching Mode Power Supply (Manson; HCS-3102). A photo-mask made
from black vinyl (Starlab) was cut out by hand and was directly attached to
the bottom of the agar plate. The plate was then placed above the LED ar-
ray at a distance of ≈5 cm. The whole setup was installed inside a standard
bacteria incubator (Minitron, Infors). The LED devices were custom-made
by the workshop of the biology department at TU Darmstadt.

Characterization of AraC-LOV2 Hybrids: Precultures of Oneshot Top10
cells (Thermo Fisher Scientific) carrying the RFP reporter plasmid for AraC
and an IPTG inducible expression plasmid encoding the transcription fac-
tor or its derivatives, were inoculated from glycerol stocks into LB (Carl
Roth), supplemented with 50 μg mL−1 chloramphenicol (Carl Roth) and
25 μg mL−1 of kanamycin (Carl Roth). Cultures were prepared in 48-well
plates (Corning), using a volume of 0.5 mL per well. The precultures were
incubated for 16 h at 37 °C, while shaking at 220 rpm. Main cultures
were similarly prepared in 48-well plates, using LB supplemented with
50 μg mL−1 chloramphenicol and 25 μg mL−1 of kanamycin, together with
different amounts of IPTG (Carl Roth) and L-arabinose (Carl Roth). IPTG
concentrations used in each sample are indicated in the corresponding
figures/legends. The cultures were prepared in duplicates and inoculated
with 5 μL from the respective precultures. Subsequently, one replicate was
incubated under blue light exposure, while the other replicate was kept
in the dark within the same incubator. The growth conditions were again
at 37 °C and 220 rpm for 16 h. Following incubation, RFP fluorescence
and OD600 were measured in a plate reader. As before, an excitation wave-
length of 490 nm and an emission wavelength of 520 nm were used and the
fluorescence was normalized to the OD600. Experiments were performed
in three independent replicates.

Activity measurements of the AraC derivatives carrying point mutations
were performed identically using an arabinose concentration of 8 mm.

Adv. Sci. 2023, 10, 2303496 © 2023 The Authors. Advanced Science published by Wiley-VCH GmbH2303496 (10 of 13)



www.advancedsciencenews.com www.advancedscience.com

Agar Plate Photography: Prior to the experiment, agar plates were pre-
pared using 1.5% LB-agar, supplemented with 50 μg mL−1 chlorampheni-
col and 25 μg mL−1 of kanamycin, 400 μm IPTG and 25 mm L-arabinose
(all Carl Roth). A preculture of the AraC-S170-LOV reporter strain was
incubated overnight at 37 °C and 220 rpm. The next day, 0.6% LB-agar
was freshly prepared and cooled to ≈40 °C. Next, 3 mL of the liquid agar
were supplemented with IPTG and L-arabinose to final concentrations of
400 μm and 25 mm, respectively. Finally, 300 μL of the preculture was
quickly added to the agar, mixed by shaking and distributed on the pre-
viously prepared agar plates. After 30 min at room temperature, the top
ager had solidified, and the photo-mask was glued to the bottom of the
plate. Finally, the plate was incubated at 37 °C overnight, under constant
blue light illumination. Images were acquired on the next day using a UV
light source, high-pass filter, and camera.

Reversible Optogenetic Gene Expression Control: In a 48-well plate
(Corning), 0.5 mL cultures were prepared, using LB media, supplemented
with 50 μg mL−1 chloramphenicol and 25 μg mL−1 of kanamycin, 400 μm
IPTG and 25 mm L-arabinose (all Carl Roth). The wells were inoculated
with 5 μL of precultures that had been prepared as described above. The
samples were then incubated at 37 °C and 220 rpm for 3 h in darkness,
followed by 3 h incubation under blue light exposure and a final step of
3 h in the dark. Prior to the first incubation step and after each following
incubation period, the RFP fluorescence and the OD600 were measured
in a plate reader. Following every incubation period the samples were di-
luted 1:30 into new plates with pre-warmed fresh media, containing all
supplements. The final relative fluorescence was obtained by normalizing
the RFP values to the measured OD600. Three independent replicates were
generated by repeating experiments on different days.

Structure Prediction with AlphaFold2: Full-length structures of AraC,
SigF, the TVMV protease, Flp, as well as the AraC-LOV2 fusions were ob-
tained by AlphaFold2[21] using the Colabfold implementation.[22] Struc-
tures were predicted using the “colabfold_batch” command with the
“MMseqs2 (UniRef+Environmental)” MSA preferences. For the proteins
without insertion, five models were run with three recycling iterations. To
reduce compute time, only one model was predicted for the AraC-LOV2
hybrids, using a single recycling step. Images of the models were gener-
ated using UCSF ChimeraX (version 1.4).[46,47] To compute the position-
wise RMSDs for between the AraC-LOV2 hybrids and the respective wild-
type structures, the AF2 structures of AraC and the LOV2 domain were
separately superimposed onto the prediction of the fusion proteins and
RMSDs were calculated amino acid-wise. Computations were performed
on the KIT Horeka cluster.

Besides AF2-predicted structures, several previously published experi-
mental structures are shown in several figures (Table S5, Supporting In-
formation).

NGS and Data Analysis: To analyze the sequencing data, fastq files
were de-multiplexed using the Sabre tool (https://github.com/najoshi/
sabre). The domain insertion frequencies were then calculated using a
slightly modified version of the DIP-seq library.[12] Briefly, the sequencing
data were subjected to quality control, i.e., corrupted or mutant reads were
filtered out. Next, reads that contained the insert sequence were selected
and the insertion site was determined. Then, the enrichment scores were
calculated using the following Equation 1:

Enrichment scorei = log2

[
count enrichedi∑n
i count enrichedi

∕
count initiali∑n
i count initiali

]
(1)

where i are the insertion positions within a given protein, count enriched
represents the read counts after enrichment, and count initial indicates the
read counts of the initial library that was used as input to the sorting ex-
periments. Insertions that were missing from the initial libraries were not
taken into account during the analysis. Insertion variants that entirely dis-
appeared during sorting and could thus not be log2-scaled, were assigned
a value of −10, which was in the range of the lowest experimentally ob-
tained enrichment scores.

To gather position-wise protein features, diverse feature sources were
used. Biophysical properties and linker propensity indices were fetched

from the AAindex database.[23,24] Information about secondary structure,
accessible surface area and pLDDT score were extracted from the AF2-
predicted structures. To map these features to the enrichment scores, the
mean of the respective feature corresponding to the two amino acids that
neighbor the insertion site were assigned to the enrichment. For the ma-
chine learning applications described below, the categorical features, such
as secondary structures, were binarized similar to one-hot encodings, with
the difference that every position could have two possible positive labels
(if the secondary structure assignments of the two neighboring residues
differ). The KLD, as well as the insertion and deletion statistics were based
on sequence alignments. To this end, similar sequences were gathered us-
ing position-specific iterated basic local alignment search (PSI-BLAST) ,
[48,49] with an expect threshold of 0.01 and a PSI-BLAST threshold of 0.005.
The maximum number of sequences was limited to 5000. Based on these
sequences, an MSA was calculated with MUSCLE, [50] using the Super5
algorithm with standard parameters. Finally, the KLD was calculated as
indicated in Equation 2:

Divergancei =
∑

a
fi (a) ⋅ log10

fi (a)

b (a)
(2)

where the divergence is determined for the position i and f(a) is the fre-
quency of the amino acid a at the given position, while b(a) represents the
background frequency of the amino acid. Background frequencies were
defined as the AA frequencies in SwissProt.[51] Of note, the definition of
the gap background frequencies is non-trivial, as discussed by Teşileanu
et al.[52] Here, gaps were not included and the KLD is only based on AA
frequencies. The position-wise insertion and deletion frequencies as well
as the scores for the mean and median insertion lengths were calculated
from pairwise alignments between the sequence of the protein of interest
and its related sequences gathered by PSI-BLAST.

Gradient Boosting Models: In order to train predictive models on the
insertion data, the enrichment scores were first binarized. All sites exhibit-
ing a positive enrichment were assigned the label 1 and all sites with neg-
ative insertions were labeled 0. All position-wise properties collected dur-
ing data analysis were used as features. In addition, each amino acid and
each secondary structure element represented individual additional fea-
tures. Dataset construction and model training were performed using the
Scikit-learn framework.[53] Individual datasets for every candidate protein,
as well as a complete dataset using the combined data of all four proteins
were constructed. A 80:20 train-test split was applied and the features were
min-max scaled prior to training. As model architecture, Gradient boosted
regression trees were used.[29] Gradient boosting models are ensemble
models that iteratively use simple models to optimize a loss function.
Here, the gradient boosting classifier implementation from “Scikit learn”
was used, which employs regression trees as base models. The model was
optimized on the training data set using five-fold cross-validation. Hyper-
parameters were optimized on the complete dataset using grid search.
For the final model, 100 estimators were trained using squared error and
a learning rate of 0.1. The maximum depth of the trees was limited to
four and the exponential loss was chosen. The maximum number of fea-
tures parameter was kept at “auto”. The receiving operator characteris-
tic (ROC) and precision-recall plots were chosen as performance metrics.
ROC curves illustrate the classification performance setting the true pos-
itive classification rate in relation to the false positive classification rate
for different classification thresholds. The area under the ROC thus sum-
marizes the relation between true positives and false positives in a sin-
gle value. Precision recall plots instead, show the precision that a model
reaches in relation to its recall or sensitivity. The average precision refers to
the weighted mean of the calculated precisions. The permutation impor-
tance and loss of impurity were calculated using the respective Scikit-learn
functions.

Statistical Analysis: The domain insertion screen was performed in
two independent replicates. Pearson correlations were calculated, to as-
sess the similarity between replicates. For the analysis of domain inser-
tion tolerance, the mean of the two replicates was used. In order to an-
alyze the influence of positional protein features on domain insertion
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permissibility, Spearman correlations between the measured enrichment
scores and the respective features were calculated and the Spearman r val-
ues are reported. The experimental validation of individual variants and the
characterization of the AraC-LOV hybrids were performed in n= 3 indepen-
dent replicates. The mean of the measurements, as well as the standard
deviation are indicated in the respective figures.

Supporting Information
Supporting Information is available from the Wiley Online Library or from
the author.
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