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We report the first application of a novel amino-Li resin to water-based solid-phase

peptide synthesis (SPPS) applying the Smoc-protecting group approach. We demon-

strated that it is a suitable support for the sustainable water-based alternative to a

classical SPPS approach. The resin possesses good swelling properties in aqueous

milieu, provides significant coupling sites, and may be applicable to the synthesis of

difficult sequences and aggregation-prone peptides.
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1 | APPLICATION

In recent years, there has been a growing interest in synthetic

peptides. Indeed, they can be endowed with a plethora of different

functionalities and, therefore, are broadly applied in many fields—as

pharma–and cosmeceuticals, food additives, health and life-style

products, just to name a few. Considering only the pharmaceutical

industry, as of 2020, about 100 peptide drugs are already on the

market, about 170 are in clinical trials, and more than 200 in preclini-

cal development.1,2 Despite their tremendous commercial success,

current peptide production faces the problem of sustainability3–5; as

to date, peptide synthesis is still associated with the usage of large

amounts of highly hazardous reagents3 and solvents,6 and only little

focus lays on green chemistry and engineering.7 Indeed, current

peptide chemistry is one of the most consumptive chemical processes,

far from being environmentally friendly, and a number of approaches

has been to date reported to improve this situation.8–10

Though the first synthetic peptides have been successfully pro-

duced in solution, classical solution peptide synthesis (CSPS)11,12

requires very careful manipulation of protecting groups and

sophisticated, often multistep workup and isolation procedures.13

Therefore, CSPS is currently mostly considered for the synthesis of

rather short peptides.14

The field of solid-phase peptide synthesis (SPPS) was pioneered by

R.B. Merrifield; his technology allowed to significantly simplify the

assembly of peptide sequences as a growing peptide chain was

covalently linked to a special polymeric support and as a consequence

all nonreacted entities, for example, reagents and solvents, were

easily removed from the reaction upon washing.15,16 To date, a vast

number of challenging peptides has been synthesized using SPPS

approach. However, even today, more than 60 years after Merrifield's

seminal papers, peptide production still faces certain problems,

with sustainability issues being the most challenging ones. Indeed,

the most common reagents in SPPS are N,N-dimethylformamide

(DMF), N-methyl-2-pyrrolidone (NMP) and—in lower amounts—

dichloromethane, diethyl ether and tert-butyl methyl ether. They repre-

sent the biggest portion of wastes generated by chemical synthesis of

peptides; therefore, the use of “green” solvents is definitely an asset.

To overcome these environmental issues, many researchers proposed

alternative ways, among them liquid-phase peptide synthesis (LPPS)Dedicated to the memory of Michael Przybylski.
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that combines the advantages of SPPS and CSPS,17 as well as solution-

phase and SPPS in water, albeit with little success regarding yields

and product puritiy.18,19 In our earlier paper, we have described a

sulfonated version of an Fmoc protecting group, 2,7-disulfo-

9-fluorenylmethoxycarbonyl (Smoc), that allowed SPPS under aqueous

conditions as well as efficient postsynthetic purification of the pep-

tides.20 Thus, we have established a concept for efficient aqueous

solid-phase peptide synthesis (ASPPS) and optimized it in view of cou-

pling efficiency and N-terminal deprotection conditions. However, the

majority of current solid supports and linker systems are not suitable

for SPPS under aqueous conditions. It can be expected that effective-

ness of peptide assembly in water is strongly affected by the solid sup-

port that anchors the growing peptide chain, as in the case of peptide

synthesis in organic solvents.21 Briefly, the research field, dealing with

the issue of making polymeric supports “greener”, is still rather small.

Thus, it is focused on resin recycling—mostly of a 2-chlorotrityl-based

support22,23 and on the development of polymeric supports based on

renewable sources, as for example, the poly-ε-lysine-based SpheriTide

resin.24 However, according to the literature, this resin has only limited

compatibility with green solvents25 and the focus is still on the “classic”
polyethylene glycol-based resins.

To be applied to SPPS in general, but in particular also for water-

based peptide synthesis, the resin must match certain requirements.

Thus, a linker must be permanently bound to the polymeric support,

which has to assure anchoring of a growing peptide chain through the

whole process of peptide assembly, and all addressable groups must

be located outside the resin beads.26 Moreover, solid supports for

ASPPS must be compatible with water and efficiently swell in aqueous

media. Therefore, the commonly used divinylbenzene–polystyrene

polymers with their poor swelling capacity in water are not suitable

for this synthetic approach. Good loading capacity, in an ideal case,

more than 0.5 mmol/g, is also desirable. In addition, it must possess

only minor interchain interactions and be mechanically stable. To date,

from the set of available supports,26–31 the PEG-based coreless

ChemMatrix resin32,33 was found to be the most suitable for aqueous

SPPS.20 However, this support shares the common drawbacks of its

class, namely, low loading capacity, unpredictable swelling, and acid

lability. Recently, as an alternative, a second generation of amino-

polyacrylamide resin (amino-Li-resin,33,34 Figure 1) was developed

that has proven applicability for SPPS33 in view of its excellent swell-

ing in most polar organic solvents, including the green solvents most

commonly used in SPPS, water, and even in aqueous buffers.

Prepared by N,N,N0 ,N0-tetramethylethylenediamine (TEMED)-

initiated polymerization of N,N-dimethylacrylamide with N,N0-bis(acry-

loyl)piperazine as cross-linker, this polymer has an addressable

primary amine at its functionalizing 1-[1-(N-acrylyl)piperidin-4-yl]

methanamine moiety (shown in red at Figure 1). Obviously, this

aliphatic amine is more reactive compared with benzylamine or

F IGURE 1 Structure of Li resin. Addressable site is shown in red.
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benzhydrylamine usually applied in PS-based resins, which is of

particular importance in view of further incorporation of RAM linker

by amidation. In addition, the formed amide possesses enhanced acid

stability, compared with the PS-based counterparts, which is also

important during chain assembly and global cleavage.33

This resin was reported to display a high loading capacity

(0.5 mmol/g) and good chemical stability towards acidic and basic

reagents. Using this support, a set of peptides was successfully assem-

bled according to Fmoc-SPPS and applying classic DMF-based solvent

system, among them enkephalin- and RGD-derived pentapeptides, a

decapeptide H-VGAAIDYING-NH2, and a decaalanine-based trideca-

peptide bearing several lysines for solubility.33 These findings

prompted us to investigate the usability of amino-Li-resin as a solid

support for the Smoc-based aqueous SPPS (Smoc-ASPPS) approach.

Herein, we report synthesis of selected reference peptides using

Smoc-ASPPS on amino-Li resin and show that it is a suitable support

for water-based green variant of solid-phase peptide production.

Applicability of amino-Li resin to aqueous peptide synthesis was

examined on four reference oligopeptide sequences: H-YGGFL-NH2

(1), H-YIIFL-NH2 (2), H-QRNA-NH2 (3), and H-RGD-NH2 (4)

(Scheme 1). The choice of these peptides was based on the fact that

they are often used as test sequences to evaluate the applicability of

synthesis approaches and to water-based synthesis in particular.35

Peptides 1 and 2 are variants of a Leu-Enkephalin, an endogenous

opioid peptide neurotransmitter, found naturally in the brain of many

animals, including humans. Peptides 3 and 4 are two arginine-bearing

peptides, an arginylglycylaspartic acid 4 (RGD)—the most common

peptide motif responsible for cell adhesion to the extracellular matrix,

found in species ranging from Drosophila to humans,36,37 and a gluta-

minylarginylasparaginylalanine 3 was chosen as a model peptide to

demonstrate the ASPPS without side-chain protecting groups—an

additional step to greener peptide synthesis in view of atom economy.

The synthesis started with modification of Li-resin with

Fmoc-Rink amide linker (Figure 2) to make the support applicable to

peptide synthesis. Done in DMF under HBTU/DIEA activation

followed by Fmoc cleavage with 20% piperidine in DMF, it is one of

two nongreen steps upon assembly of peptides. The second one is

TFA cleavage of the fully assembled peptide from the support.

Notably, dried Rink-Amide Li (RA-Li) resin demonstrated good swell-

ing behavior in water (Figure 2).

Then, the Smoc-ASPPS was conducted as described in Section 2.

Briefly, Nα-Smoc protected amino acids were coupled under

EDC/oxyma activation in the presence of aqueous sodium bicarbon-

ate at ambient temperature. The C-terminal amino acids as well as the

second Ile in the sequence of Leu-Enkephalin peptide were attached

by double coupling to increase coupling efficacy, while all other amino

acids were introduced by single coupling. It is important to mention

that Nα-Smoc building blocks D, N, Q, R, Y possessed unprotected

side chains.20

High–performance liquid chromatography (HPLC) traces of

crude peptides, shown at Figure 3, clearly demonstrate that all

constructs were assembled in sufficient purity and good yield (see also

Section 2). Electrospray ionization mass spectrometry (ESI-MS)

analysis revealed that the observed mz signals corresponded to the

calculated ones.

For demonstration of the feasibility of ASPPS on Li-resin, YIIFL

was used as model peptide, as it has been shown to be synthesizable

on the Li-resin in organic media by Albericio et al and contains the dif-

ficult sequence Ile-Ile. To circumvent loss in yield and purity, ASPPS

of the second Ile was performed as double coupling step. However, as

the synthesis protocols were not optimized, there is still improvement

with respect to yield and purity possible. Moreover, we have success-

fully demonstrated the use of several amino acids (Asn, Gln, Tyr, Trp)

without side-chain protecting groups (see synthesis of QRNA) improv-

ing the atom economy of peptide synthesis.

To summarize, we demonstrated that the novel amino-Li resin is a

suitable support for the sustainable water-based alternative to a clas-

sical SPPS approach. It possesses good swelling properties in aqueous

milieu, provides significant coupling sites and may be applicable to the

synthesis of difficult sequences and aggregation-prone peptides. We

have extensive experience with Smoc-based SPPS using ChemMatrix

resin. Being a polymer based on polyethene cross-linked with PEG

supports and therefore polyacrylamide or polystyrene backbones, this

amphiphilic resin is an excellent support for ASPPS since it swells

extensively in a wide range of solvents, among them water, tetrahy-

drofuran (THF), methanol, dichloromethane (DCM) and DMF.

SCHEME 1 General scheme for the aqueous Smoc-based solid-phase peptide synthesis (SPPS) (Smoc-ASPPS) on amino-Li resin. Yields are
given as well as the structure of Fmoc-rink amide linker and reaction conditions. TFA: trifluoracetic acid. TIPS: triisopropyl silane.
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However, in our hands, its major drawback was PEG leakage upon

TFA cleavage. In addition, ChemMatrix resin has an extremely large

swelling volume, which becomes a problem upon industrial applica-

tion. In this respect, Amino-Li resin displays significantly better

performance. The next step would be application of this resin to the

synthesis of long peptides, especially those endowed with so called

“difficult sequences”, requiring on-resin cyclization or postsynthetic

oxidative folding.

F IGURE 2 Swelling of RA-Li resin in water. Left: dry resin. Right: resin swollen in water for 30 min.

F IGURE 3 (A) HPLC traces of crude peptides 1–4 at 220 nm. Peptide 1: gradient 0% to 60% CH3CN, purity 91%. Peptide 2: gradient 10% to
100% CH3CN, purity 86%. Peptide 3 at 220 nm, gradient 0% to 60% CH3CN, purity 48%. Peptide 4: gradient 0% to 40% CH3CN, purity 83%.
(B) ESI-MS spectra of peptides 1–4.
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2 | EXPERIMENTAL

2.1 | Modification of the amino-Li resin for peptide
synthesis

To use the amino-Li-resin (loading 0.5 mmol/g) for water-based

peptide synthesis, it was modified with an Fmoc-Rink amide linker. To

that end, the resin was swollen in DMF for 1 h. Coupling of the

Fmoc-Rink amide linker was performed using 3 eq. linker, 2.9 eq.

HBTU, and 6 eq. DIEA in DMF for 1 h at ambient temperature. After

washing three times with DMF, the Fmoc group was removed using

20% piperidine in DMF for 5 and 10 min. The resin was washed with

DMF and water and was dried in vacuum.

2.2 | General procedure for aqueous peptides
synthesis

The resin was swollen in water or water/acetonitrile mixture for 1 h at

ambient temperature in a syringe equipped with a frit. Loading of the

first Smoc building block was performed as double coupling for

2 � 25 min in 30% aq. CH3CN applying 4 eq. Smoc-amino acid, 4.5 eq.

oxyma, 5.5 equation EDC, and 3.5 eq. NaHCO3. Reaction mixture was

kept on a shaker with little agitation without stirring; therefore, no

significant fragility of the resin was observed; however, it cannot be

completely excluded. After washing three times with water, capping

with acetic acid was done. The Smoc-group was removed with 1 M

NaOH for 1 � 5 min, 1 � 10 min and washed three times with water.

If not otherwise mentioned, coupling of the following amino acids was

performed as single coupling for 45 min. After completion of the syn-

thesis, the resin was washed with aq. NaCl to remove ionically bound

Smoc derivatives. After washing with water, the peptide was cleaved

using 95% TFA, 2.5% water, and 2.5% TIPS for 1 h. If not otherwise

mentioned, the cleavage mixture was poured into ice-cold diethyl ether

to precipitate the peptide. The precipitated peptide was dissolved in

water/acetonitrile, freeze-dried, and analyzed.

2.3 | Synthesis of H-YGGFL-NH2 (1)

The RA-Li resin (loading 0.5 mmol/g) was swollen in water for 1 h at

ambient temperature. The first amino acid was loaded as double

coupling using 3 eq. Smoc-aa, 3.5 eq. oxyma, 4 equation EDC, and

3 eq. NaHCO3 for 2 � 25 min in water. Coupling was performed as

single coupling using 3 eq. Smoc-aa, 3.5 eq. oxyma, 4 equation EDC,

and 3 eq. NaHCO3 for 45 min in water.

Removal of the Smoc-group was performed using 1 M NaOH for

1 � 5 min and 1 � 10 min. All Smoc-aa were used without side-chain

protecting groups.

Washing steps were done with water, and cleavage was per-

formed as described above to yield 15.85 mg of Leu-Enkephalin 1 as

white powder (yield 57.2%).

ESI-MS: calculated mass for C28H38N6O6: 554.65 g/mol;

measured m/z 555.3 [M+H]+.

2.4 | Synthesis of H-YIIFL-NH2 (2)

The Rink-amide modified Li-resin (RA-Li resin, loading 0.5 mmol/g)

was swollen in water for 1 h at ambient temperature. The first amino

acid was loaded as double coupling using 4 eq. Smoc-aa, 4.5 eq.

oxyma, 5.5 equation EDC, and 3.5 eq. NaHCO3 for 2 � 25 min in

30% aq. CH3CN. Capping was performed with 4 eq. acetic acid,

4.5 eq. oxyma, 5.5 equation EDC, and 7.5 eq. NaHCO3 for 30 min.

Coupling was done as single coupling except for the second Ile,

for which a double coupling was used. Single coupling was performed

using 4 eq. Smoc-aa, 4.5 eq. oxyma, 5.5 equation EDC, and 3.5 eq.

NaHCO3 for 45 min in 30% aq. CH3CN.

Removal of the Smoc-group was performed using 1 M NaOH for

1 � 5 min and 1 � 10 min.

Washing steps were done with water, and cleavage was

performed as described above.

As the peptide sequence is too hydrophobic and does not

precipitate in ether, the cleavage cocktail was poured in water and

lyophilized to yield 22.4 mg of peptide 2 as white powder (yield 70%).

ESI-MS: calculated molecular mass for C36H54N6O6:

666.86 g/mol; measured m/z 667.5 [M+H]+.

2.5 | Synthesis H-QRNA-NH2 (3)

The RA-Li resin (loading 0.5 mmol/g) was swollen in water for 1 h at

ambient temperature. The first amino acid was loaded as double

coupling using 4 eq. Smoc-aa, 4.5 eq. oxyma, 5.5 equation EDC, and

3.5 eq. NaHCO3 for 2 � 25 min in 30% aq. CH3CN. Coupling was

performed with the same equivalents as single coupling for 45 min.

Removal of the Smoc-group was performed using 1 M NaOH for

1 � 5 min and 1 � 10 min. All Smoc-aa were used without side-chain

protecting groups.

Washing steps were done with water, and cleavage was

performed as described above to yield 5 mg of 3 as white powder

(yield 51.4%).

ESI-MS: calculated molecular mass for C18H34N10O6:

486.5 g/mol; measured m/z 244.5 [M+2H]2+, 487.4 [M+H]+.

2.6 | Synthesis of H-RGD-NH2 (4)

The RA-Li resin (loading 0.5 mmol/g) was swollen in water for 1 h at

ambient temperature. The first amino acid was loaded as double

coupling using 3 eq. Smoc-aa, 3.5 eq. oxyma, 4 equation EDC, and

3 eq. NaHCO3 for 2 � 25 min in water. Coupling was performed as

single coupling using 3 eq. Smoc-aa, 3.5 eq. oxyma, 4 equation EDC,

and 3 eq. NaHCO3 for 45 min in water.
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Removal of the Smoc-group was performed using 1 M NaOH for

1 � 5 min and 1 � 10 min. All Smoc-aa were used without side-chain

protecting groups.

Washing steps were done with water, and cleavage was per-

formed as described above to yield 12.9 mg of 4 as white powder

(yield 72%).

ESI-MS: calculated molecular mass for C12H23N7O5: 345.36

g/mol; measured m/z 346.4 [M+H]+.
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