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Supplementary Figure 1 

The HPN-DREAM network inference challenge: overview of in silico data tasks. 

Data were generated from a nonlinear dynamical model of the ErbB signaling pathway (Chen et al., 2009). Training data consisted of 
time-courses for 20 network nodes under three inhibitors targeting specific nodes, or no inhibitor, and under two ligand stimuli, applied 
individually and in combination at two concentrations. In total there were 20 different (inhibitor, stimulus) conditions as shown (top right). 
Time-courses comprised 11 time points and three technical replicates were provided. Node names were anonymized to prevent use of 
biological prior information. The sub-challenge 1 in silico data task (SC1B) asked participants to infer a single directed, weighted 
network using the training data. The aim of the sub-challenge 2 in silico data task (SC2B) was to predict stimulus-specific time-courses 
under unseen interventions. For SC1B, submissions were assessed against a gold-standard network extracted from the data-
generating model, with agreement quantified using AUROC score. For SC2B, predicted time-courses were assessed using held-out 
test data obtained under in silico inhibition of each network node in turn, with prediction accuracy quantified using root mean square 
error (RMSE). See Online Methods for further details of the in silico data tasks. 

Chen, W.W. et al. Input-output behavior of ErbB signaling pathways as revealed by a mass action model trained against dynamic data. 
Mol. Syst. Biol. 5, 239 (2009). 
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Supplementary Figure 2 

Context-specific ‘gold-standard’ causal descendant sets for the network inference sub-challenge experimental data task (SC1A). 

Context-specific networks submitted to SC1A were assessed using held-out test data, obtained under inhibition of mTOR. Each column 
in the heatmap indicates, for a given (cell line, stimulus) context c, the phosphoproteins that showed salient changes under mTOR 
inhibition relative to DMSO control (black cells) and those that did not (white cells). Such changes were determined from the test data 
using a procedure centered around a paired t-test. Phosphoproteins that show salient changes can be regarded as descendants of 
mTOR in the underlying causal signaling network. Columns therefore represent context-specific experimentally-determined sets of 
causal descendants of mTOR, Dc

GS, and were used as a ‘gold standard’ to assess inferred context-specific networks. Further details 
regarding the determination of the gold-standard descendant sets and the scoring procedure can be found in Online Methods. Missing 
data is indicated by gray cells (some phosphoprotein antibodies were only present in the (training and test) data for a subset of cell 
lines). Based on a figure in Hill, Nesser et al. (2016). 

Hill, S.M., Nesser, N.K. et al. Context-specificity in causal signaling networks revealed by phosphoprotein profiling. bioRxiv 
doi:10.1101/039636 (2016). 
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Supplementary Figure 3 

Network inference sub-challenge (SC1) final team scores and rankings. 

(a) Mean rank scores for the 74 teams that participated in the experimental data task (SC1A). Mean rank scores were used to obtain 
final team rankings. For the 40 teams that provided information regarding their approach, bar color indicates method type (see also Fig. 
3e, Supplementary Table 2 and Supplementary Note 5). Stars above bars indicate teams with statistically significant AUROC scores
(FDR < 0.05) in at least 50% of (cell line, stimulus) contexts (2 stars) or at least 25% of contexts (1 star) (multiple testing correction
performed within each context with respect to number of teams). (b) AUROC scores for the 65 teams that participated in the in silico
data task (SC1B). AUROC scores were used to obtain final team rankings. As in a, color indicates method type (see also Fig. 3f, 
Supplementary Table 2 and Supplementary Note 5). Stars above bars indicate statistically significant AUROC scores (FDR < 0.05).
(c) Comparison of mean rank and mean AUROC scores for SC1A. (d) Final ranks for SC1A (dashed blue line) and SC1B (dotted green
line) were averaged to obtain a combined score (solid red line) for the 59 teams that participated in both tasks. Teams ordered by
combined score (see “SC1A/B combined final rank” column in Supplementary Table 2). See Online Methods for full details of scoring
for SC1.
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Supplementary Figure 4 

Gold-standard causal network for the network inference sub-challenge in silico data task (SC1B). 

The gold-standard network, used to assess networks submitted to SC1B, was obtained from a data-generating dynamical model of the 
ErbB signaling pathway. Derivation of the network was non-trivial due to variables appearing in complexes within the model and full 
details can be found in Supplementary Note 8. Three unconnected dummy nodes were incorporated in the model and node names 
were anonymized in the training data. 
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Supplementary Figure 5 

Balance of positives and negatives in the gold-standards for the network inference sub-challenge (SC1). 

The gold standard for the experimental data task (SC1A) comprised sets of descendants of mTOR for each (cell line, stimulus) context, 
experimentally-determined using the held-out test data. Shown (left) are the number of positives and negatives for each context; that is, 
the number of phosphoproteins that are descendants of mTOR according to the test data (positives) and the number that are non-
descendants of mTOR (negatives). For the in silico data task (SC1B), the gold-standard consisted of the data-generating network. 
Shown (right) are the number of edges in this network (positives) and the number of non-edges (negatives). 
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Supplementary Figure 6 

Comparison of AUROC with an alternative scoring metric, AUPR, for the network inference sub-challenge (SC1). 

(a) Alternative team rankings were calculated by replacing AUROC with AUPR (area under the precision-recall curve) in the scoring
procedure. The alternative rankings were compared with the original AUROC-based rankings for both the experimental data task
(SC1A; left) and in silico data task (SC1B; right). (b) A further alternative ranking, combining both AUROC and AUPR, was obtained by
ranking teams based on an average of final rank under AUROC and final rank under AUPR, and was compared with the original 
AUROC-based rankings.
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Supplementary Figure 7 

Statistical significance of AUROC scores for the network inference sub-challenge experimental data task (SC1A). 

For each (cell line, stimulus) context, a null distribution over AUROC was generated and used to calculate an FDR-adjusted  P value for 
each team (Online Methods). (a) The number of significant (FDR < 0.05) AUROC scores obtained by each team across the 32 contexts 
(multiple testing correction performed within each context with respect to number of teams). Teams are ordered according to their final 
ranking in SC1A (based on mean rank score). (b) For each context, the number of teams (out of a total of 74) that obtained significant 
AUROC scores. For two regimes (BT549, NRG1) and (BT20, Insulin), no teams obtained a significant AUROC score. These two 
regimes were disregarded in the scoring process. 
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Supplementary Figure 8 

Crowdsourced analysis for the network inference sub-challenge in silico data task (SC1B). 

(a) Aggregate submission networks were formed by integrating predicted networks across the top N teams (as given by final team
rankings), with N varied between 1 (top performer only) and all teams (after removal of correlated submissions; Supplementary Note 
10).  Integration was done by averaging predicted edge weights (Online Methods). The blue line shows performance (AUROC) of the 
aggregate submission networks. Individual team scores are also depicted (red circles). 
(b) Predicted networks were integrated for subsets of N teams, selected at random. The blue line shows mean performance of the 
aggregate submission networks, calculated over 100 random subsets of teams (error bars indicate s.d.).  Crowdsourced analysis for 
the experimental data network inference task is shown in Figure 3c,d.
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Supplementary Figure 9 

Weighted combinations of two top performing approaches and aggregate prior network for the network inference sub-challenge 
experimental data task (SC1A). 

An extension of Figure 4b to show three-way combinations of (i) PropheticGranger – top performer for the experimental data task when 
combined with a prior network (here, the method is used without the prior network); (ii) FunChisq – top performer for the in silico data 
task and most consistent performer across both data types; and (iii) an aggregate prior network formed by integrating prior networks 
used by participants (Online Methods). The three approaches were combined by taking weighted averages of predicted edge scores for 
each (cell line, stimulus) context and performance assessed using mean AUROC. For example, the best performance (mean AUROC = 
0.82) was achieved by combining 20% PropheticGranger, 50% FunChisq and 30% aggregate prior network, and is highlighted with an 
“X”. See Supplementary Note 1 for full details of the PropheticGranger and FunChisq approaches. 
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Supplementary Figure 10 

Time-course prediction sub-challenge experimental data task (SC2A): phosphoproteins showing the largest changes under mTOR 
inhbition are predicted with least accuracy. 

SC2A tasked participants with predicting phosphoprotein time-courses for each (cell line, stimulus) context under an unseen 
intervention (mTOR inhibition - mTORi). Submitted predictions were assessed against held-out test data obtained under mTORi. For 
each team, root mean square error (RMSE) scores were calculated for each (cell line, phosphoprotein) pair (see Supplementary Note 
6). (a) Left: for each (cell line, phosphoprotein) pair, normalized RMSE1 for the top-ranked team (Team44) vs. absolute effect size. The 
effect size for a given (cell line, phosphoprotein) pair is a measure of the magnitude of abundance change under mTORi relative to 
DMSO control2. Note that this measure is based on the mTORi test data and is independent of team predictions. The strong positive 
correlation indicates that phosphoproteins showing little or no change under mTORi were predicted relatively well but phosphoproteins 
that showed large changes under mTORi were predicted badly. Right: examples of time-courses underlying the scatter plot (left). 
Shown are abundances of three phosphoproteins for cell line UACC812 under DMSO control and under mTORi, as predicted by 
Team44 and test data values. Note that normalized RMSE and effect size values are calculated across all stimuli, but only serum 
stimulus time-courses are shown here. (b) Scatter plots as in a for teams ranked 2 to 5 in SC2A. These results highlight the challenging 
nature of predicting protein abundance under unseen interventions but also point to a shortcoming of the RMSE score used here, 
namely that it does not sufficiently emphasize ability to predict proteins that change under intervention. For a future challenge, a 
modified metric that focuses on those proteins might therefore be useful.  
1To ensure comparability across cell lines and phosphoproteins, each RMSE score was normalized by the standard deviation of the 
test data used in the RMSE calculation. 
2Effect size is defined as the mean difference in phosphoprotein abundance between DMSO control and mTORi, normalized by the 
standard deviation of the differences. Means and standard deviations are calculated across all time points and stimuli for the given cell 
line. 
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Supplementary Figure 11 

Visualization sub-challenge (SC3) voting results and rankings. 

14 teams made submissions to the visualization sub-challenge. HPN-DREAM challenge participants were asked to select and rank 
(from 1 to 3) their three favorite submissions. The remaining unranked submissions were then assigned a rank of 4. Thirty-six 
participants participated in the voting process and the number of votes of each rank type is shown (bar plot, left axis). Final team ranks 
were based on the mean rank across the 36 votes (green line, right axis). 
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Supplementary Figure 12 

Robustness of rankings for the network inference sub-challenge (SC1). 

The test data was subsampled to assess robustness of rankings (Online Methods). Box plots show team ranks over 100 subsampling 
iterations, with 50% of the test data left out at each iteration. (a) Experimental data task - subsampling performed by removing 50% of 
phosphoproteins when assessing descendant sets for each (cell line, stimulus) context. (b) Experimental data task – subsampling 
performed by removing 50% of contexts from the scoring process. (c) In silico data task – subsampling performed by considering only 
50% of edges/non-edges in the gold-standard network. For all box plots, the central line indicates the median, and the box edges 
denote the 25th and 75th percentiles. Whiskers extend to 1.5 times the interquartile range from the box hinge. Data points beyond the 
whiskers are regarded as outliers and are plotted individually. 
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Supplementary Note 1: HPN-DREAM Network Inference Sub-

challenge (SC1) Methods 
 

 

Team submission files, code and prior networks (where available; see 
Supplementary Table 2) can be found on Synapse at 

https://www.synapse.org/HPN_DREAM_Network_Challenge, under the section 
“HPN-DREAM Community Resource”. 

 

SC1 Network Inference: Team1 – PropheticGranger with  

heat diffusion prior 
Summary 
“PropheticGranger”: our method is an extension of L1-penalized Granger causality constructed 
specifically to consider “future data”, combined with a prior derived from known biological 
pathways (this prior knowledge network was also submitted as a stand-alone prediction; see 
Team2 method). 
 
Introduction 
Our approach has two aspects: the prior based on curated, publicly available biological 
pathways that made no use of the HPN DREAM8 data, and the computational approach 
(Prophetic Granger Causality) that did use the HPN DREAM8 data.  For the in silico sub-
challenge, only the computational part of the method was used.  
 

Motivating the use of the prior is the observation that methods have an improved ability when 
they make use external data, as was demonstrated particularly well in the DREAM7 Breast 
Cancer Prognosis Challenge (Margolin, et al., 2013; Cheng, et al., 2013). We chose Pathway 
Commons (Cerami et al., 2011) as our external source of data due to its comprehensive 
coverage of the biological pathways implicated in breast cancer. We reasoned that proteins are 
more likely to be perturbed by the inhibition of other proteins nearby in the graph. To 
characterize the notion of network distance, we applied heat diffusion, which has been shown to 
produce biologically meaningful metrics that take into account multiple paths between graph 
nodes (Qi et al., 2008). 
 
We developed a method based on L1-penalized Granger causality to infer protein-protein 
regulatory relationships from time series data like the kind provided by the HPN challenge. 
Granger causality is a well-established method for extracting causal information from time series 
data in general, and has found use in systems biology (Shojaie and Michailidis, 2010). The L1-
penalized version is especially relevant because it can account for irregular time series where 
the data is spaced at increasing intervals (Bahadori and Liu 2012) such as the HPN DREAM8 
data.  Granger causality works by regressing onto the “past data” of a particular focus protein 
and finds any exogenous variables that account for variance beyond what is accounted for by 
the autoregression terms of the protein itself.  Proteins represented among the exogenous 
variables that provide explanatory power beyond the autoregressive terms are assumed to 
contribute in a causal way to the response of the focus protein. 
 

Nature Methods doi:10.1038/nmeth.3773
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We extended the L1-penalized Granger algorithm to also consider future time points, a method 
we refer to as “prophetic Granger causality” (PGC).  PGC uses all available data (i.e. both past 
and future) for each regression task, and declares the direction of causation based on the 
temporal ordering between variables. To identify variables that provide explanatory power 
beyond autoregression, we set the L1 penalty coefficient to the smallest value that produced an 
assignment of zero weight to all autoregressive terms. Any remaining terms with non-zero 
weights among the exogenous variables were then predicted as having a causal relationship to 
the response variable. 
  
Methods 
A prior network was constructed from Pathway Commons using the method described in detail 
in the Team2 write-up. In brief, the relevant causal links were extracted via a simulated heat 
diffusion process over the Pathway Commons interaction network. 
 
The only preprocessing performed was to address missing values and data replicates: missing 
data was omitted from the PGC regression formulations and the median across replicates was 
used to summarize each probe. 
  

 
 
 
 
 
 
 
 
 
 
 

 
 

Figure 1. Illustration of the Prophetic Granger causality method. The level of a target 

phosphoprotein at each time point (green) is considered as a linear regression of all other time 

points and phosphoproteins.  The L1 penalty provides a sparse solution, and is chosen such 

that the target phosphoprotein’s own past and future contributions (red) are zero, accounting 

for autoregression. Remaining non-zero regression coefficients for other phosphoproteins 

suggest causality. Phosphoproteins associated with the past or concurrent time points (blue) 

are interpreted as causally related to the target phosphoprotein. Conversely, the direction of 

causality is reversed for phosphoproteins associated with the future time points (yellow).  The 

different inhibitor conditions are treated as different examples of the regression task.  This 

process was repeated for each time point and for each phosphoprotein acting as a target. The 

resulting regression solutions were then combined into a single connectivity matrix 

Nature Methods doi:10.1038/nmeth.3773
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Prophetic Granger Causality takes as input a dataset with five attributes: time t, cell line l, 
condition c, inhibitor i, and phosphoprotein p.  An independent network is derived for each (cell 
line, stimulus)-pair, encoded as a directed weighted p x p connectivity matrix Cl,c with real values 

on [-1,1], where a value of -1 is the most inhibitory and 1 is the most excitatory connection 
influence.  
 
For a given stimulus-cell line pair, let D be the 3D data cube indexed by the triplet 
(i,t,p). We formulate a regression task for each time-probe pair (t,p), treating each inhibitory 
intervention as a separate example in that task. Specifically, for a given inhibitor i, our 
formulation subdivides D into three parts: the response yi = Di,t,p; an autoregression explanatory 
vector Ai made up of Di,t’,p, for all t’ not equal to t; and an exogenous explanatory matrix Xi made 
up of Di,*,p’, for all probes p’ not equal to p and all time points (see Figure 1). 
 
Following standard regression, we seek to express y as a linear combination of A and X: 

 

𝑦̂𝑖 = 𝛼𝑇𝐴𝑖 + 𝛽𝑇𝑋𝑖 + 𝛽0 = ∑ 𝛼𝑗(𝐴𝑖)𝑗𝑗 + ∑ 𝛽𝑘(𝑋𝑖)𝑘𝑘 + 𝛽0, 

 
where we concatenated the columns of X into a single vector, for notational convenience. 
 
We solve this regression problem by formulating an L1-regularized least-squares fit: 
 

min
𝛼,𝛽

∑(𝑦𝑖 − 𝑦𝑖̂)
2

𝑖

+ 𝜆 (∑|𝛼𝑗|

𝑗

+ ∑|𝛽𝑘|

𝑘

) 

 
This regression problem is solved by gradient descent (Friedman et al., 2010). The value of the 
meta-parameter λ is chosen such that all of the autoregression terms, α, are zero.  The smallest 
such value is given by: 

𝜆 = max
𝑗

|
1

𝑛
∑(𝐴𝑖)𝑗 (𝑦𝑖 − 𝑦𝑖

(𝑗)
)

𝑛

𝑖=1

| 

 
After training a model with the above λ value, any non-zero weight β in the model for (p,t) is 
interpreted as a causal relationship between the response phosphoprotein p at time t and the 
explanatory phosphoprotein p’ at time t’ that corresponds to that β.  In the absence of such 

weights (i.e., when all weights in the model are zero), the method concludes that there is no 
evidence for causality based on the given regression task. 
 
The final connectivity matrix C is constructed by normalizing and summing all non-zero 

coefficients from all regression tasks.  To normalize, we divided each weight by the sum of the 
absolute values of all weights in the same regression task, effectively giving all tasks the same 
voting power towards the final connectivity matrix. The directionality of each weight’s 
contribution toward C was established by the temporal ordering between the response 
phosphoprotein and the corresponding explanatory phosphoprotein.  Specifically, let Cp,p’ 
denote the belief that phosphoprotein p’ causes a response in phosphoprotein p.  For the 
regression task on target phosphoprotein p at time t, if there is a non-zero β term corresponding 
to explanatory phosphoprotein p’ at time t’, we update C with the following rule: 
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𝐶𝑝′,𝑝 ← 𝐶𝑝′,𝑝 +
𝛽𝑗

∑ |𝛽𝑘|𝑘
 if 𝑡 ≥ 𝑡′ 

 

𝐶𝑝,𝑝′ ← 𝐶𝑝,𝑝′ +
𝛽𝑗

∑ |𝛽𝑘|𝑘
 otherwise 

 
 
For the purpose of the HPN DREAM8 challenge, we reported the absolute value of the final 
connectivity matrix since the evaluation of challenge submissions made no distinction between 
inhibitor and promoter links.  For the in silico part of the contest, C was submitted as the result.  
In the experimental portion, the submission was combined with the biological prior by a simple 
arithmetic mean, after both matrices were scaled to [0,1] via a division by the largest entry. 
 
Discussion  
Note that the heat kernel does not use the training data in its calculation. Nonetheless, this 
matrix by itself achieved second place in the experimental network inference challenge (see 
entry for Team2).  The performance of this entry in the DREAM challenge can be seen as a 
confirmation that the contest recapitulates known biology, and is an important reminder that 
prior biological knowledge should always be taken into account in practical applications of 
machine learning to biology. 

 
L1-penalized Granger combined with the prior was attempted in the development phase, but did 
not perform as well as the prophetic version of the algorithm. This result highlights the utility of 
using all available data for the regression task, while allowing the direction of causality to be 
determined by the temporal relationship between observations.  We note that the power of the 
individual regression tasks is weak, since each is driven by only four inhibitor treatments.  
Nevertheless, this is balanced by the large number of regression tasks, leading to an effective 
ensemble of weak learners. 
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SC1 Network Inference: Team2 
Summary 
For experimental data, a biological prior is created by applying a simulated heat diffusion 
process to the constituent pathways from Pathway Commons. For in silico data, the network 
inference method ARACNE is used. 
 
Introduction 
There is a wealth of freely available biological pathway knowledge.  Our goal in the HPN-
DREAM challenge was to leverage the prior knowledge contained within the Pathway Commons 
resource to augment the methods for our other challenge submissions.  The process has 3 main 
steps: 1) selection of relevant pathways from Pathway Commons; 2) application of heat 
diffusion to the selected pathways; 3) combination of relevant submatrices from the resulting 
diffusion kernels. Each of these steps is described in more detail below. 
 
Method: Sub-challenge 1A 
1) Selection of Relevant Pathways from Pathway Commons 
To produce a biological pathway prior for the DREAM8 challenge, we started with 495 pathways 
from Pathway Commons version 3 (see https://www.synapse.org/#!Synapse:syn5588699). 
These pathways were downloaded from pathwaycommons.org in BioPax format. DREAM8 
organizers provide a file that describes the antibodies used in the RPPA experiments.  We used 
the antibody target information to identify individual pathways that contain at least two proteins 
represented on the RPPA platform in the HPN DREAM8 data.  The proteins were not required 
to be direct neighbours in the pathways.  We identified 263 DREAM8-relevant pathways that 
satisfied this criterion. Each pathway was reduced to a simple, undirected graph with nodes 
representing proteins and edges representing regulatory interactions.  For proteins that form a 
complex, each of the constituent subunits was assigned an edge to any target of the complex. 
 
2) Heat Diffusion on Selected Pathways 
The main assumption behind the method to construct the prior is that proteins close together on 
a network are more likely to interact in the context of the HPN DREAM8 experiments, compared 
to arbitrary protein pairs.  To this end, heat diffusion was utilized to quantify the closeness of 
proteins on a network. To compute a quantitative measure of distance between any two proteins 
in a graph, we calculated a single heat kernel for that graph.  Let Lp be the Laplacian of the 
graph derived from pathway p.  Then the heat kernel corresponding to a 0.1 time unit diffusion, 

as suggested by Qi et al. (2008) was calculated as 
 

 
 
 
where eA is the matrix exponential of the matrix A.  To generate a single biological prior matrix B 
from the individual pathway matrices Hp, we performed the following entry-wise update:   
 
B<-0 
for each pathway p 

for j,k in interrogated proteins 
if Hp(j,k) exists and j≠k 
B(j,k) <- Hp(j,k)  

end 
end 
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The diagonal entries B(j,j) are maintained at zero, precluding self-links. The same biological 
prior information was used in cases where multiple probes assayed the same protein. The 
resulting prior information matrix B was not specific to either the cell line or stimulus condition. 
 
Note that the code above contains a programming error in line five that we have purposefully 
reproduced here. As written, the final step of the code overwrites an entry in the accumulated B 
matrix. The final score for the (j,k) interaction is then set to the value of an arbitrary pathway-
specific network containing the (j,k) edge that is encountered last by the algorithm. While the 
official version of the code used for the HPN DREAM8 submission used this faulty 
implementation, we have since corrected the issue and found an improvement in accuracy 
(0.783 compared to 0.771) when B is set to the average of the Hp matrices.  
 
We applied the heat diffusion process to each of the 263 DREAM8-relevant pathways. The 
approach does not consider the directionality of edges in a graph, making use of the unsigned 
adjacency matrix A. For a given pathway, A[i,j] and A[j,i] are set to 1 whenever an edge is 
present between nodes i and j, and 0 otherwise. Let D be a diagonal matrix with D[i,i] equal to 
the number of genes that gene i interacts with (i.e., the degree of node i). The associated heat 
diffusion kernel is then given by the matrix exponential of –t*(D-A), where D-A is known as the 
Laplacian matrix of A and t is a “time step” parameter. In all of our calculations, we set the value 
of t to 0.1, which has been shown useful in the context of protein-protein network discovery 
(Vandin 2012, Paull 2013). 
 
3) Combine Relevant Submatrices from Diffusion Kernels 
We extracted submatrices from each diffusion kernel by keeping only rows and columns that 
corresponded to antibody-targeted proteins. The extracted submatrices were then combined 
according to the superimposition pseudocode above, creating one matrix containing only 
antibody-targeted proteins. Protein names were then mapped back to their corresponding 
antibody names after reading off of the summary matrix. To convert the combined matrix of heat 
diffusion scores to confidence values, we divided by the largest score found in the entire matrix, 
converting all values to lie in the [0,1] range. 
 
Method: Sub-challenge 1B 
This submission was created using ARACNE, as described in the entry for Team25, under the 
“ARACNE gene network reconstruction” section. 
 
Discussion 
The biological prior was submitted by itself to the sub-challenge 1A and ranked as the 2nd best 
method in the final scoring.  The top-scoring submission, made by Team1 (“Prophetic 
Granger”), used a causal inference algorithm combined with the biological prior by an equally-
weighted averaging between the two approaches. 
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SC1 Network Inference: Team3 
Summary 
Edges are removed from a literature-based network by considering time-lagged correlation 
between phosphoprotein pairs, fold-changes in abundance through time and results from the 
time-course prediction challenge 
 
Methods 
We devised an algorithm to infer fold changes of the phosphoprotein levels over time comparing 
each time point relative to t0. Species, which display high qualitative correlation with respect to 
amplitude and duration of the response over all experimental conditions considering each 
stimuli and inhibitor individually, were linked via edges. More precisely, when comparing two 
proteins we considered the changes from t to t + 1 for each individual inhibitor, stimulus, and 
cell line combination. Their directionality was determined from the speed of the dynamical 
behavior represented by the delay in responding to the stimulus and the steepness of the curve. 
In addition, information about ligand and inhibitor targets was used to determine the intersection 
between signaling pathways, especially in the case of SC1B. A threshold of 20% fold change 
with respect to the initial time point was applied. Changes in the protein abundance below that 
value were considered noise and not taken into account for potential edges, that is: not 
considering the species’ behaviour as relevant. We determined this threshold by estimating 
fluctuations in those cell lines with duplicate time-courses. The effect of ligands and inhibitors 
was not explicitly modeled for network inference but their qualitative effect on phosphoprotein 
dynamics was taken into account when we set up the model. 
 
For the initial model in SC1A, we relied rather heavily on information provided in literature and 
the online resource KEGG to ensure that our primary network would be as correct as possible. 
We reasoned that this initial model would contain all potential edges allowing us to refine the 
network by removing or reducing edges, for which we saw no evidence. Even at this stage we 
were able to individualize the networks to the cell lines based on literature research. 
 
The initial model for SC1A was tailored to the cell lines and stimuli according to the results 
obtained from our analysis resulting in an individual network per cell line and stimulus. An edge 
reported in literature, for which we could not determine any correlation in the dynamic behavior 
was removed from the network. Additionally, regulatory feedbacks via AKT and MEK, that had 
not been part of the initial model, were later included based on the inhibitor data. 
 
Refinement of network using time course prediction results 
Putative interactions and non-validated edges, based on literature and thresholding, were 
included in the parameter estimation for sub-challenge 2 (time course prediction) as a 
phosphorylation reaction catalyzed by the source of the edge. The edge pA  pB would then be 
represented as: 

𝑑𝑝𝐵

𝑑𝑡
= 𝑘1 ∗ [𝐵] ∗ [𝑝𝐴] 

In order not to introduce too much of a bias, we set the initial possible interval for the kinetic 
parameter k1 to include several orders of magnitude, ranging from 0.001s-1 to 100s-1. These 
ODE-based models gave us information about the ability of edges to reproduce the dynamical 
behavior seen in the data. If the parameter k1 for an edge received a value close to zero, we 
considered this edge to be eliminated from the network, thus further refining our networks to the 
individual cell lines and stimuli. 
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This algorithm was implemented in R with a custom-written script and required only a few 
minutes of computation time on a personal computer. 
 

SC1 Network Inference: Team4 
Summary 

An ensemble approach combining prior knowledge with results from L1-penalized Granger 
causality and the GENIE3 algorithm (the prior knowledge network was also submitted as a 
stand-alone prediction; see Team2 method).  
 
Sub-challenge 1A: The mean of L1-penalized Granger causality (non-prophetic version; see 
Team1), GENIE3 (see Team17) and a prior network (see Team2) were taken for each of the 
inferred phosphoprotein links. 
 
Sub-challenge 1B: The mean of L1-penalized Granger causality (non-prophetic version; see 
Team1) and GENIE3 (see Team17) were taken for each of the inferred phosphoprotein links. 
 

SC1 Network Inference: Team5 
Summary 
A random forest classifier, with a literature-derived network used as a "gold standard", predicts 
existence of edges from several measures of pair-wise association, calculated using multiple 
sources of data. 
 
Introduction 
Our approach uses a random forest classifier to infer casual networks. The instances (or 
observations) to be classified are all possible pairs of nodes (phosphoproteins) and the classes 
(or outcomes) are binary, indicating the presence/absence of an edge between the node pairs. 
The attributes for each node pair are several measures of association derived from the 
experimental proteomics data or in silico data provided with the challenge (EXP) and from prior 
knowledge (PK): literature-derived attributes and knowledge-based inferred functional relations 
and signalling networks. Class labels were derived using a manually curated “gold-standard” 
network.  
 
Methods 

We trained random forest (RF) classifiers using a manually curated network (MCN) and several 
attributes for each pair of phosphoproteins (from now on referred to as “proteins”) in sub-
challenges 1A and 1B. 
 
Manually curated network. The MCN consisted of 33 proteins and 38 edges and was formed 
using information in Uniprot-Swissprot for the 48 proteins in the sub-challenge 1A. 
 
RF attributes. We built an array of scores describing the potential causality between each pair of 
proteins. Scores are derived from the experimental or in silico data provided with the challenge 
(EXP) and from prior knowledge (PK), as described below. For the in silico sub-challenge 1B, 
where the nodes were anonymized, we used only EXP scores. 
  
EXP attributes. We used protein levels reported in sub-challenges 1A and 1B (our analyses 
used only the ‘main’ datasets for sub-challenge 1A). First, we calculated the mean and standard 
deviation of protein levels for each combination of protein, cell-line and inhibitor at time 0 (no 
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stimulus). We used these values to transform all the time-courses (for the corresponding 
combination of protein, cell-line and inhibitor) to z-scores. EXP attributes can be divided into two 
categories: (1a) continuous functions, and (1b) discrete scores. In the 1a category we used 
different correlation functions (Pearson, Spearman, and cross-correlation using Fast Fourier 
Transform and Wiener filtering of noise). For each protein, cell-line and inhibitor condition, we 
constructed a vector containing the normalized protein values at all time-points and all stimulus 
conditions. We used these vectors to calculate the correlation values between any given pair of 
proteins (X and Y), either at the same time point (comparing X(t) with Y(t)) or consecutive time 
points (comparing X(t) with Y(t+1)). In the category 1b we discretized the protein z-scores into 
binary values (0 or 1) using different thresholds (from 0.5 to 3.5, increasing by 0.5). Pairs of 
proteins were scored using several statistical measures for the comparison of their vectors: 
Probability of being related according to a Chi-squared test; Ratio between equal and different 
values in the vector; Mutual Information; and Direct information (Morcos et al., 2011). This 
results in, for each pair of phosphoproteins and for each association measure, several 
association scores corresponding to specific cell-line and inhibitor conditions. For each pair of 
phosphoproteins, these association measures were summarized with their centrality measures 
(mean and median) and their extreme values (maximum and minimum). 
 
PK attributes. Five approaches were used to predict a relationship between pairs of proteins in 

the experimental network inference sub-challenge, none of which used the proteomics time-
course data provided with the challenge: 3a) Known protein-protein interactions. We used 
BIANA (Garcia-Garcia et al., 2010) (http://sbi.imim.es/BIANA.php) to build a protein-protein 
interaction network with the proteins of the sub-challenge. We computed scores describing if 
there are known direct and/or indirect interactions between two proteins reported by any 
experimental method. 3b) Functional relations. We built a network as before, but we used the 
combined score provided by the database of STRING. 3c) iLoops predictions. Prediction of 
protein-protein interactions based on local structural features (Planas-Iglesias et al., 2013) 
(http://sbi.imim.es/iLoopsServer/). 3d) Functional similarity. We computed the putative functional 
relationship based on GO as described by Wang et al., 2007. 3e) Phosphorylation event 
predictions. We used the iGPS software to predict potential kinase-substrate pairs (Song et al., 
2012). The five approaches predicted a relationship with some score of reliability. We used 
these scores as attributes in the RF classifier. 
 
Random forest classifier. The attributes were used to train RF classifiers with WEKA 
(http://www.cs.waikato.ac.nz/ml/weka/). The edges contained in the MCN were used as a 
positive training class (presence of an edge) while a negative class (absence of an edge) of the 
same size was built with random connections between protein pairs (excluding those in the 
MCN). To avoid biases in the negative sample selection, 500 different RF classifiers were 
trained. We tested the classification performance using a 10-fold cross-validation. Redundant 
pairs with identical attributes were not found. Edge scores between all protein pairs were 
obtained by computing the mean of all RF classifiers. We allowed the RF classifier to override 
the MCN edges, thus allowing low scores for some MCN edges.  
 
This resulted in a "scored global network prediction". To convert this "global network" to the 32 
specific sub-networks (for each cell line and stimulus) required for the sub-challenge 1A, we 
applied a penalization factor to remove irrelevant edges depending on the cell-line and stimulus 
condition. Protein pairs in which both proteins had a level of variation greater than 1.5 standard 
deviations were not penalized (penalty factor of 1.0). In contrast, the penalty factor ranged from 
1.0 to 0.5, proportional to the lower level of variation showed by any protein in each protein pair 
(a level of variation close to 0 corresponds a penalty factor of 0.5, while a level of variation close 
to 1.5 standard deviations corresponds to a penalty factor of 1.0). 
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Edge directionality. In order to distinguish AB from BA, thus to infer the direction of causal 
relationships, additional RF classifiers (RFD) were trained using only EXP attributes. 10-fold 
cross-validation was then applied to a dataset consisting of MCN correctly directed pairs as a 
positive class and the MCN pairs with inverted direction as a negative class. Edge scores in 
which the incorrect direction was predicted were penalized by 0.75. 
 
Results and discussion 
We proposed an approach that combines the data from different conditional networks with 
knowledge-based and computational inferences to reproduce a global prediction of the causal 
network. Our method lacks a validation approach to transform the predicted global network to 
the 32 specific sub-networks required by sub-challenge 1A. Furthermore, the lack of a negative 
causality standard (i.e. negative feed-back loops) hampered our ability to set a correct direction 
for edges in some strong bi-directional cliques present in our models.  In a previous leaderboard 
round we applied just the random forest approach (without the "filters" to decipher the 
directionality of the edges). For sub-challenge 1B this achieved an AUROC of 0.68 compared 
with the final submission score of 0.60. 
 
References 

1. Morcos F. et al. Direct-coupling analysis of residue coevolution captures native contacts 
across many protein families. Proc. Natl. Acad. Sci. USA. 2011 Dec 6;108(49). 
2. Garcia-Garcia J, et al. Biana: a software framework for compiling biological interactions and 
analyzing networks. BMC Bioinformatics. 2010;11:56. 

3. Planas-Iglesias J, et al. Understanding protein-protein interactions using local structural 
features. J Mol. Biol. 2013 Apr 12;425(7):1210-24. 
4. Wang JZ, et al. A new method to measure the semantic similarity of GO terms. 
Bioinformatics. 2007;23:1274–1281. 

5. Song C, et al. Systematic analysis of protein phosphorylation networks from 
phosphoproteomic data. Mol. Cell Proteomics. 2012 Oct;11(10):1070-83.  
 

SC1 Network Inference: Team6 
Summary 
Network topology and parameters are optimized by minimizing an objective function based on a 
linear Ordinary Differential Equation (ODE) model, using a greedy search starting from a 
knowledge-based network topology. 
 
Introduction 
A signaling network can be described by a system of ODEs, whose parameters can be used to 
describe its dynamic behavior, once the interacting proteins and the type of these interactions 
are determined. An integrative approach is proposed to identify context-specific network models 
characterized by a set of parameters describing relationships between proteins, together with 
their degradations and synthesis processes. For each cell line/stimulus, the method uses the 
time-course data information and applies a greedy approach to infer the interactions among 
proteins, starting from a prior network derived from public databases. 
 
Methods 

The algorithm was applied to all cell lines, stimuli, time points and inhibitors, focusing only on 
the main datasets of the sub-challenge. When available, replicated measurements collected in 
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the same experimental condition and time were mediated. Data were normalized, for each 
protein, by its maximum concentration across all the experimental conditions. 
 
The approach is described according to the following steps: 
Prior knowledge network. A prior network topology was defined using the following resources to 
retrieve specific information about protein-protein interactions: KEGG pathways (Kanehisa et al., 
2014), Uniprot (The UniProt Consortium, 2014) and Phospho.ELM (Dinkel et al., 2010). 
 
Module-network inference and parameter estimation. For each protein, regulators were defined 
accordingly to the prior knowledge network topology and the dynamic data were modeled using 
linear ODEs: 
 

𝑄̇𝑝(𝑡) = −𝑘𝑑𝑒𝑔 𝑄𝑝(𝑡) + ∑ 𝑘𝑖,𝑝 𝑦𝑖,𝑝(𝑡) 

𝑞

𝑖=1

− ∑ 𝑘𝑖,𝑛 𝑦𝑖,𝑛(𝑡) 

𝑟

𝑖=1

+ 𝑘𝑖𝑛 + 𝑘𝑠𝑦𝑛𝑡ℎ 

 
Where Q_p is the concentration of the protein p, k_deg is the degradation rate, k_in is the 
constant input, k_synth is the synthesis rate, k_(1,p),...,k_(q,p) are the rates of the regulatory 
proteins that act positively on the protein p, k_(1,n),...,k_(r,n) are the rates of the regulatory 
proteins that act negatively on the protein p and y_i are the regulatory inputs from other 
proteins. Protein expression was modeled independently for each cell line and stimulus. 
Weighted Least Squares (WLS) were used for the parameter identification to simultaneously 
minimize an objective function for each inhibitory condition, using the standard deviations of the 
measurement error as weights. Indeed, the standard deviations appear to be essentially 
constant for each protein, but vary across different inhibitor conditions. Considering only the 
edges determined by the prior knowledge network and starting from one edge at a time, an 
approach that iteratively adds the most significant edge according to the F-test results was used 
to find the best subset of prior network edges that explain the data. The test was applied to the 
residual sum of squares (RSS), using a threshold on p-values equal to 5%. The initial values of 
the parameters were fixed within a biological range consistent with the literature: [0-20] min-1.  
 
Global network inference. A global network able to explain the data with the minimum number of 
edges was identified. Starting from the network obtained by assembling each protein modules 
previously identified, WLS and F-test were used to remove unnecessary edges. Results 
obtained from the identification of the protein modules were used as initial values of the 
parameters for the global model. 
 
Ranking. For each configuration (protein, regulators) selected by the F-test, a confidence based 
on the log(RSS), normalized in a 0.9-1 range, was associated to the corresponding edges. A 
confidence equal to 0.5 was assigned to the other edges previously removed but belonging to 
the initial prior network. 
 
In silico data. Protein dynamics were equally modelled with a linear system of ODEs. However, 
to generate temporal profiles, we integrated each equation of the system with a piecewise 
analytical solution, assuming constant regulators in each time step. This allowed us to 
independently search for the best set of regulators for each protein, starting with a model 
comprising all possible regulators and then iteratively removing the least useful regulator 
according to the F-test. Edges in the final network were ranked in decreasing order of the F-test 
p-value. For each configuration (protein, regulators), the fit to temporal data was carried out by 
minimizing the RSS through an evolutionary algorithm, Covariance Matrix Adaptation - Evolution 
Strategies (CMA-ES; Hansen et al., Evolutionary Computation 2003). The effect of the inhibitors 
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was modelled by clamping protein activity to a minimal value for the entire experiment, while the 
stimuli were simulated by adding a constant term (1 for high stimuli, 0.01 for low stimuli) to the 
differential equation corresponding to the stimulated proteins. 
 
The algorithms implementing the methods were written in both R and MATLAB language, 
requiring additional packages R.matlab, Statistical Toolbox, Control System Toolbox, 
Optimization Toolbox and the MATLAB implementation of the CMA-ES algorithm 
(https://www.lri.fr/~hansen/cmaes_inmatlab.html#matlab).  
 
Discussion 
The implemented model-based method using linear ODE system provides an accurate 
description of protein interaction networks in a time-dependent manner, which describes the 
most important dynamic features during both transient and steady state conditions. Moreover, 
the application of the F-test is able to decrease the number of redundant network edges, thus 
providing more accurate parameter estimations. 
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SC1 Network Inference: Team7 - FunChisq 
Summary 
“FunChisq”: a novel functional chi-square test to infer causal network topology based on 
nonparametric functional dependency from data discretized by optimal k-means clustering for 
each variable. 
 
Introduction  
Previous statistics employed in network inference such as correlation coefficients, mutual 
information, Pearson’s chi-square of association (Song et al., 2009), can detect linear or non-
linear associations, but not interaction directionality. Other regression methods, including those 
nonparametric methods using splines, can detect directionality but must assume a functional 
form in advance. To overcome the disadvantage of both types of approach, we developed a 
novel functional chi-square test called FunChisq (Zhang and Song, 2013) to infer the 
directionality of interactions by functional dependency without assuming parametric functional 
forms for interactions.  
 
Methods 
Data sets used. For the sub-challenge 1A (SC1A, experimental data collected from four breast 
cancer cell lines), we used only the main dataset. For the sub-challenge 1B (SC1B; in-silico 
data), we used the entire data set. 
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Prior knowledge. We did not use prior knowledge regarding network topology when performing 
network inference for SC1A. Due to anonymity of node identities, prior knowledge could not be 
used for SC1B. 
 
Pre-processing. Data for each protein were first quantized using R package Ckmeans.1d.dp 
(Wang and Song, 2011) with the number of quantization levels set to equal the number of 
components in Gaussian mixture models estimated by optimizing the Bayesian information 
criterion using R package mclust (Fraley 1999). When only one Gaussian component was 
selected by mclust, we changed it to three to capture low, intermediate, and high levels. For the 
SC1A experimental datasets, the actual number of quantization levels ranged between 2 and 6. 
For SC1B in silico dataset, the actual number of quantization levels ranged between 2 and 5. 

No additional pre-processing such as log transform was performed. 
 
Network inference by FunChisq. We developed a functional chi-square test to detect causal 
interactions by nonparametric functional dependency (Zhang and Song, 2013). We use the 
principle that a causal interaction is a mathematical function from cause to effect (Simon and 
Rescher, 1966). In the functional chi-square test, each interaction is assessed for its functional 
strength as evidence for causality. Temporal information was not used, though potentially it 
could strengthen network inference. Interactions were ranked by normalized chi-squares from 
FunChisq. Although many-to-one functional dependency is a user option of the software, we 
examined only one-to-one interactions in both SC1A and SC1B. Normalized chi-square scores 
of all possible directional pair-wise interactions were computed. We used the same program and 
parameters for both the experimental data (SC1A) and the in silico data (SC1B). 
 
Post-processing. As required for challenge result submission, the list of all interactions were 
sorted in decreasing order by the chi-square scores, which were further normalized to [0,1] by 
dividing distance from the minimum score by the range of all scores. Let 𝑋 be the ranked list of 
initial scores (the normalized chi-squares). We linearly mapped 𝑋 to [0,1] by 𝑋′ = (𝑋 −
min(𝑋))/(max(𝑋) − min(𝑋)) to obtain the final scores that we submitted. 

 
Implementation. The FunChisq code was written in C++. The pre- and post-processing code 
was implemented in R. We uploaded our software and R scripts to Synapse: syn2450780 
reproduces results for the SC1A experimental dataset and syn2450779 reproduces our 
submission for the SC1B in silico dataset. An R package FunChisq implementing the basic 
functional chi-square test is freely available from Comprehensive R Archive Network (CRAN). 
 
Discussion 
Before the final submission, we made only one leader board submission in the 7th week (also 
the last chance to receive feedback before final submission). We had first used FunChisq to 
eliminate any interaction with a greater p-value (less significant) than its reverse. Then we 
ranked interactions by normalized Pearson’s chi-squares of independence. The only leader 
board feedback we received for our initial submission reported promising ranking for SC1A but 
mediocre ranking for SC1B, suggesting there might exist many bi-directional interactions and 
eliminating weaker ones could have led to many false negatives. Towards the time of final 
submission, we decided to rely entirely on FunChisq to rank interactions without using the 
standard Pearson’s chi-square – the best performing approach as suggested by our evaluation 
of several possible alternative methods (all chi-square based) on DREAM5 network challenge 
data sets. There was no tuning of parameters, i.e., the maximum number of quantization levels 
to search for in pre-processing was all set to 9. This is not a sensitive parameter as long as it is 
large enough, because the automatically selected quantization levels were not greater than 5/6 
in SC1A/1B.  
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We only considered one-to-one interaction in generating the results for both network inference 
sub-challenges, though many-to-one interactions are implemented in the FunChisq software 
and FunChisq could also model combinatorial effects. This choice was made because in our 
past experience with DREAM5 network inference data sets, combinatorial effects could not be 
effectively identified. We ponder that the experimental perturbations might be insufficient to infer 
interactions involving more than two genes. 
 
After the benchmark software tool for SC1A was released, we found that the AUROC of 
FunChisq rose to the second after we tried a different way to use the data, while keeping the 
software setup same as before otherwise. Specifically, we inferred a single network for each cell 
line by merging the data from all 8 stimuli. Then, for each cell line, we submitted the same 
identical result 8 times (once for each stimuli) to the SC1A benchmark tool. The resulting 
AUROC of FunChisq increased from 0.7148 to 0.7724. This is a very important result as it 
suggests that even without using any prior, combining data from the same underlying network 
under different stimuli could dramatically improve network inference performance. 
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SC1 Network Inference: Team8 
Summary 
Gradient tree boosting regression and a Markov assumption are used to model the time series 
data, with network connectivity derived using a combination of the most frequently selected 
features over the boosting rounds and information from a prior knowledge network 

 

Introduction 

Our approach uses a traditional dynamic Bayesian network model, augmented to include 
gradient boosting regression to fit the response of each phosphoprotein. The salient features of 
this algorithm are (a) it learns a strong regression function from an ensemble of weaker 
regression trees, and (b) it re-weights the training data at each iteration to emphasize hitherto 
poorly modeled examples (Hastie et al., 2004). After the training phase the parents and edge 
weights for any particular node in the network can be recovered from the relative frequencies of 
the other nodes incorporated in the boosted model. The underlying methodology is based on an 
ensemble regression approach that can capture nonlinear interactions among covariates. Our 
approach was validated on known literature models (Xu et al., 2010) of signalling networks 
before applying to the challenge data. 
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Methods 
Dynamic Bayesian networks ‘unroll’ Bayesian networks by making the Markovian assumption 
that phosphoprotein activity at each time point depends only on the values at the previous time 
point. We use a gradient boosting approach to fit a model that predicts activity for each 
phosphoprotein individually using the values of all phosphoproteins at the previous time point. 
The predictions are then pooled and used as input for the next time step. Our method was 
identical for both the in silico and experimental components of the sub-challenge, with the 

exception of the biologically informed prior which enhanced performance on the experimental 
data.  The prior was manually curated by mining the literature on RTK signalling and 
incorporated as an initial feature weighting for each protein. 
 
Several pre-processing steps were performed prior to learning the model. Each experimental 
condition was mean-centered. Missing time points were mean-imputed to facilitate comparison 
between experimental conditions. Multiple replicates were averaged together to produce one 
time series for each experimental condition. Only the main data was used, not the full data. We 
explored training our model on both the response level and response rate, and found response 
level to have better performance. Parameters, including maximum tree depth, number of 
boosting rounds, and learning rate were set using a grid search and evaluated under cross-
validation. 
 
All feature weights are rescaled to the interval [0, 1] and are used to populate the adjacency 
matrix. In this approach, therefore, if antibody X was repeatedly used to build the predictive 
function for antibody Y, then we assume that X is a parent of Y in the network. This workflow is 
illustrated in figure 1 below for the case of fitting a boosted model to target species  
MAPK_pT202_Y204.   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Figure 1. An example of the output of our algorithm, fitting a boosted model to target species 
MAPK_pT202_Y204.  On the left is the train and test set performance from cross-validation 
folds on the provided training data. The center shows feature importances, measured as the 
number of times a given feature appears in the collection of weak learners. AKT, MEK Inhibitor 
is the categorical variable accounting for the presence or absence of the inhibitor. On the right 
is an extracted sub-module of our network, where edge weights are taken from feature weights 
in the model training step. In this case we reproduce known patterns in MAPK signalling. 
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Inhibitors were modeled using a perfect fixed-effects model (Spencer et al., 2012). The stimulus 
was not explicitly modeled. We dealt with stimuli in two ways: by grouping datasets across 
stimuli, and by training independent models for each stimulus. We found training separate 
models for each stimulus performed better than grouping across stimuli. 
 
Our algorithm was implemented in Python, using the scikit-learn library for model development 
and testing. The pandas library was used for data manipulation and preprocessing. 
 
Discussion 
The gradient tree boosting approach performs well on both in silico and breast cancer RPPA 

data, particularly when augmented with a small number of canonical edges in the form of a 
biological prior. We expect ensemble models such as gradient boosting regression to gain 
increasing traction in this field due to their advantages over traditional regression approaches, 
including robustness to overfitting and ability to identify nonlinear effects. 
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SC1 Network Inference: Team9 
Summary 
Network structure was predicted by integrating a prior knowledge network with results of time-
lagged correlation analysis on pair-wise phosphoprotein abundances. 
 
Introduction 
We used a simple approach to build a causal network that explains the different interactions that 
occur between the proteins in sub-challenge 1. The approach is based on a time-lagged 
correlation method that incorporates prior knowledge from the KEGG database. The motivation 
behind using a simple correlation approach lies in its ability to capture the relationships that 
occur between the proteins across time.  
 
Methods 
A time-lagged correlation method was used to solve sub-challenge 1. In addition, prior 
knowledge regarding the network was extracted from a public database and used to build the 
model. Time-lagged correlations between all possible pairs of phosphoproteins were examined. 
In order to avoid an unreasonably long lag time, the maximum lag time interval for the 
experimental data spans 3 time points1. The correlation 𝑹𝒊𝒋(𝝉) between protein i and protein j 

with a time lag 𝝉 is calculated as follows: 

𝑹𝒊𝒋(𝝉) =
𝑆𝑖𝑗(𝜏)

√𝑆𝑖𝑖(0)𝑆𝑗𝑗(0)
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where 

𝑆𝑖𝑗(𝜏) =  ∑(𝑋𝑖(𝑡) − 𝑋̅𝑖)(𝑋𝑗(𝑡 + 𝜏) − 𝑋̅𝑗),

𝑁−𝜏

𝑡=0

 

𝑋̅𝑖 is the averaged expression value of protein i across all time points and N is the number of 

time points. The value of 𝝉 that produces the maximum value for 𝑹𝒊𝒋(𝝉) is used as the lagged 

time for protein i and protein j 1.  
The threshold for the correlation score, which determines which edges should be considered, is 
tuned to ensure a manageable number of edges are identified.  The threshold value of 0.7 
obtained the highest rank, according to the leader board.   
 
The KEGG database2  was used to provide the external prior information for the time-lagged 
correlation model. For sub-challenge 1A, all KEGG maps that cover the proteins from the “Main” 
dataset were extracted. Since the data contain the expression level for phosphoproteins, the 
protein-protein relationships and the phosphorylation and de-phosphorylation interactions 
identified by the KEGG database were used. All the maps obtained from the KEGG database 
were merged, and a prior network was generated. If an edge is found between two proteins, and 
the type of the edge is a protein-protein interaction, a phosphorylation/de-phosphorylation, or an 
inhibition/activation interaction, an edge is created between the target phosphoproteins. The 
inhibition/activation information is integrated in the network through edge values of either +1 or -
1. The network inferred by the time-lagged correlation analysis is compared with the prior 
network inferred from the KEGG database. If there is an edge conflict with the prior network, the 
edge is deleted. For example, if the prior network has an edge between proteins A and B 
representing an inhibiting interaction, while in the predicted network the edge between A and B 
is an activation edge, then the edge is deleted from the final network.  
 
In the experimental sub-challenge, only the “Main” dataset is used. The same methodology for 
inferring networks is used in the experimental and in silico challenges. Moreover, no further 
processing or cross-validation schemes were performed. We implemented the time-lagged 
correlation equation from [1], as well as the pipeline that generates the final network files, with 
custom-written scripts in Perl. We did not use other tools or packages.  
 
Discussion 

During the challenge we follow two different paths to solve the problem.  It is found that a simple 
solution based on correlations between the phosphoproteins produces better results compared 
to a more complex approach based on Dynamic Bayesian Networks (DBNs)3.  Additionally, prior 
knowledge provided through the KEGG database proved to be very useful in inferring the 
network. One important conclusion is that simple approaches should always be considered first, 
as they can often produce very good results compared to more complex approaches. Future 
work includes improving the approach to model the effects of interventions in building the 
signalling networks with several nodes being inhibited, and utilizing cross validation to 
determine the threshold for the correlation method. Additionally, we plan to revisit the DBN 
approach. 
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SC1 Network Inference: Team10 
Summary 
We developed a de novo regression approach using a stationary Markov assumption and 
truncated singular value decomposition to predict network structure. No prior biological 
knowledge was used.  
 
Introduction 
We have developed a prediction algorithm for protein phosphorylation network inference using 
truncated singular value decomposition (SVD) Our method is based on a stationary Markov 
assumption and uses a regression method comparable to Lasso regression.  
 
Methods 
We make a first-order Markov and stationarity assumption [1]  that: every variable at a given 
time point ti only depends on variables at the previous time point ti-1. Furthermore, we assume 
that the value of a variable will not change without the influence of any other variables (including 
self-regulation). Equation 1 is the foundation of our method: 

Where Ek(ti) represents the phosphorylation value for protein k at the ith time point, 𝑅𝛼,𝑘 is the  

relationship factor indicating how much protein α will affect protein k, N is the number of proteins 
and ε is the error factor. KD α is the knockdown factor, set to 0 if α is targeted by an inhibitor, or 

to 1 otherwise. We replace 𝑅𝛼,𝑘
0 × 𝐾𝐷𝛼 with 𝑅𝛼,𝑘 in this notation. 

Combining Equation 1 for all proteins, all time points and all inhibitors, we can form the following 
equation: 

 
For the convenience of description, we assign an abbreviation for each matrix in Equation 1: 

 
where each element in T is the observed value for a protein at a given time point, while 
corresponding element in T+ is the observed value for the same protein at the next time point. 
Both T and T+ can be obtained from the input data and R is the unknown relationship factor 

matrix we are interested in inferring. The problem can be solved by: 

 
Because T is not a square matrix, it is not invertible. T-1 in Equation 4 is the pseudo-inverse of 
matrix T. There are numerous pseudo-inverse methods, such as singular value decomposition 
(SVD) [2], QR method, L1-regulation and L2-regulation. In order to handle the noise ε 
mentioned in Equation 1, we used truncated SVD [3], a variant of SVD, in our approach.  
The above procedure is repeated to infer a network (or relationship factor matrix) for each cell 
line/stimulus pair  
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Discussion 
We used the same method for sub-challenge 1 and sub-challenge 2. Its performance was 
mediocre in sub-challenge 1 (ranked 10 in SC1A (experimental), ranked 5 in SC1B (in silico),  

and ranked 3 for combined SC1A and 1B). However, it performed remarkably well in SC2, 
predicting network responses upon drug intervention, which was the winning method of this sub-
challenge (ranked 2 in SC2A (experimental), ranked 3 in SC2B (in silico), and first for combined 
SC2A and 2B).  We do not yet understand the difference of performance in SC1 and SC2, in 
which the latter was directly built on top of the former. One possibility is that in SC1 the gold 
standard of evaluation includes incomplete knowledge of signalling interactions in databases, 
which we did not use in our de novo model. This information could potentially be used to 
improve our model. On the contrast, SC2 involves only experimental measurement of 
phosphorylation levels, and rely on no prior knowledge in evaluation, to which our de novo 
model has an advantage in predicting the outcomes. 
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SC1 Network Inference: Team11 
Summary 
Boruta, a wrapper feature selection method, utilizing random ferns classifier as an importance 
source, is used to perform feature selection for each node in the network. 
 
Introduction 
In this approach, network inference was treated as a series of regression problems.  
Specifically, the abundance of each node was modelled as a function of other nodes' 
abundances, and the independent predictors of time and applied inhibitor. In this view, the 
application of a feature selection method to each such regression problem should reveal the 
source nodes of edges targeting corresponding target nodes. This approach will find all 
correlated edges, in addition to casual edges. Causal edges were identified as those where the 
target node abundance was found to depend on the presence of an inhibitor.  These causal 
edges were reported in the final result. 
 
Methods 
The full data set was used in the analyses, and pre-processed in the following way.  First, the 
data from all treatments were combined and then used to create a set for each stimulus-cell line 
pair in the experimental dataset, as well as a single set for the in-silico data. Second, time point 

0 was randomly down-sampled to avoid over-representation. For the experimental networks, the 
set of independent predictors consisted of time and inhibitor features, while for the in-silico 
network it also included stimulus features. After pre-processing, the following algorithm was 
used for network inference. For each node of the network, we create a regression problem 
where node abundance is modeled as a function of all other nodes' abundances and 
independent predictors: time and applied inhibitor, and, for the in silico network, stimulus 
features. Next, a feature selection method is applied to this problem and returns a list of 
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selected predictors. If this list does not contain the inhibitor feature, it is discarded and the 
algorithm proceeds to the next node. If the inhibitor is contained within the selected feature list, 
edges from the selected nodes to the currently investigated node are added to the inferred 
network. 
 
The feature selection was performed with the Boruta algorithm [1] utilizing a random ferns 
classifier as an importance source. The random ferns classifier was used because of its 
computational efficiency [2,3].  Because this algorithm is classification-only, regression 
problems generated by the network inference method were dynamically converted into 
classification problems by quantizing the decision into several equally sized bins. 
 
The entire method has 3 parameters: number of ferns (N), the ferns' depth (D), and the number 
of bins used to convert the problem from regression to classification before applying random 
ferns (nQ). The selection of N becomes irrelevant if it is sufficiently large, so a fixed value of 
10,000 was used. D and nQ control the complexity of interactions that can be modelled by a 
fern forest, and thus the recall of the method; however setting them too high may overload the 
model with noise and produce many false positives. To this end, for D and nQ, the method was 
applied for all combinations of D=3, 5, 7 and nQ=3, 5, 7.  The method has a stochastic 
component, and therefore a run for each parameter pair was additionally repeated 20 times to 
explore the prediction space for these parameters. For the final submission, an ensemble 
approach was utilised: specifically, all obtained sets of edges were simply joined, and the 
number of times each edge was detected was used as its confidence score. This approach did 
not rely on biological knowledge or manual tuning. The analysis was implemented in R [4] using 
the Boruta and rFerns CRAN packages. 
 
Discussion 
This method proved to be quite effective considering that it did not rely on the use of prior 
information, and made no assumptions about the data. There are two limitations to this 
approach. First, random ferns requires that the data be quantized, which likely leads to loss of 
information. The algorithm would certainly benefit from using a method that can assess attribute 
importance by directly performing regression. The second limitation is that Boruta is an all-
relevant feature selection method and therefore, in an ideal case, is expected to find at least a 
Markov blanket of a certain node X, that contains three types of nodes: 1) the nodes influencing 
it, 2) nodes influenced by X, and 3) other nodes that influence the nodes influenced by X. In 
practical terms, this means a significant portion of the edges detected may be false positives. To 
improve upon this, the proposed methodology could be followed by some refinement procedure 
that would further reduce the set of edges, or it could be used as a member of an ensemble of 
other methods. 
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SC1 Network Inference: Team12 
Summary 

Network inference based on (static and time-lagged) mutual information and Bayesian model 
averaging for linear regression (the latter was applied to in silico data only). 
 
Introduction 
With time series data, it is possible to do both dynamic network inference and static network 
inference. The question is how to combine the two types of inference to achieve a better 
prediction. Our observations in a number of artificial datasets indicate that dynamic inference 
tends to achieve a high AUPR (area under precision-recall curve) while static inference tends to 
achieve a high AUROC (area under ROC curve). If we use the static inference to filter out the 
least likely links, and use the dynamic inference to rank the remaining links, the performance 
could be improved. 
 
Another problem concerning this challenge is how to combine different datasets. There are two 
simple ways to do this. One is to do network inference for each dataset, and then combine the 
networks inferred together to generate the final network. Another way is to combine the datasets 
first, and then do a single network inference to generate the final network. The drawback of the 
first tactic is that if the datasets are too small, each inference is unlikely to generate meaningful 
result. While the shortcoming of the second tactic is that it tends to miss interactions that exist 
only in some of the datasets. In order to solve this problem, we developed an approach which 
first generates a number of “pseudo datasets”, and next do inference on each pseudo dataset, 
and then combine the inferred networks together.  
 
In addition, we also applied our newly developed network inference method, BMALR (Bayesian 
Model Averaging for Linear Regression), on the in silico dataset. BMALR applies a new close 

form solution for calculating the posterior probability of each edge, and it works well on 
DREAM4 and DREAM5 in silico data. 
 
Methods 
Experimental network inference challenge 
In the first step, we generated a scored draft network (denoted as Net_draft) for each cell line 
using an approach that is based on time-lagged mutual information. We first obtained a network 
(denoted as Net_tlCLR) based on time-lagged CLR (context likelihood relatedness) [1-2]. In 
addition, we generated a second network (denoted as Net_tlMIg) based on the time-lagged 
mutual information inference. We took around 5 time series as a group, and selected 16 
different groups. For each group, a time-lagged mutual information inference was applied. The 
ranked scores in all the groups are summed up to generate a score network, Net_tlMIg. Finally, 
we generated a draft network (Net_draft) by assigning the score of each link as the maximum 
score of the link in the ranked Net_tlCLR and ranked Net_tlMIg. 
 
In the second step, we generated a stimulus network (denoted as Net_stimu_stMI) for each 
stimulus using static mutual information inference method, which assumes the data at the time 
points of all the time series are in steady state.  
 
In the last step, we generated the final network matrix by summing up the ranked draft network 
(Net_draft) and the ranked stimulus network (Net_stimu_stMI). The Net_draft was assigned with 
higher weight than Net_stimu_stMI. 
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In silico network inference challenge 
In the first step, we generated a network by dynamic learning (denoted as Net_dyn). To do this, 
we obtained a network (denoted as Net_tlMI) using time-lagged mutual information. In addition, 
we generated another network (denoted as Net_dynBMALR) using Bayesian model averaging 
for linear regression, which was developed by our team before this challenge. Finally, we 
generated the dynamic learned network (Net_dyn) by assigning the score of each link as the 
maximum score of the link in the ranked Net_tlMI and ranked Net_dynBMALR.  
 
In the second step, we generated a network for filtration (denoted as Net_filtr). Here, we 
obtained a network (denoted as Net_stMI) by static mutual information inference method, which 
assumes the data at the time points of all the time series are in steady state. In addition, we 
generated another network (denoted at Net_MIg) based on both static and time-lagged mutual 
information inference. In the generation of NetMIg network, we took around 5 time series as a 
group, and selected 16 different groups. For each group, static mutual information inference and 
time-lagged mutual information inference were applied. The ranked scores (including both static 
inference and time-lagged inference) in all the groups are summed up to generate a score 
network, which is called "Net_MIg". Finally, we generated the network for filtration (Net_filtr) by 
assigning the score of each link as the maximum score of the link in the ranked Net_stMI and 
ranked Net_MIg. 
 
In the last step, we generated the final network matrix in the following way. Based on the scores 
in Net_dyn and Net_filtr, we used a cut-off to define "strong links" and "weak links". Net_dyn 
assigns the scores of “strong links”. Net_filtr ranks the “weak links”, and the new scores of the 
"weak links" are ensured to be smaller than the scores of "strong links". 
 
Discussion 
There are two crucial problems for improving network inference. One is how to combine the 
results from different methods, and the other is how to combine the results from different 
datasets. In this challenge (including Leaderboard phase), we tried several combinations of 
different methods. Actually, our final submission turned out to be worse than our best attempt in 
the Leaderboard phase. For the experimental challenge, the difference between our best 
attempt in the Leaderboard phase and our final submission is that in our best attempt we did not 
use time-lagged CLR, but only use the group-based time-lagged mutual information. This 
indicates that the arbitrary combination tends to compromise the results, and can make the final 
performance worse. For the in silico challenge, our best attempt uses only time-lagged CLR. 
Our guess is that this in silico data is so non-linear that it is unfavourable to linear regression 
based method, including our BMALR.  
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SC1 Network Inference: Team13 
Summary 

A generalized outranking approach to aggregate data-driven predictions from multiple network 
inference methods with prior biological interaction data.  
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Introduction 
With our ensemble-based network inference we aim at a more reliable gene regulatory network 
prediction by (i) profiting from existing knowledge and (ii) compensating the limitations 
associated with single inference methods while benefiting from their individual strengths. In 
contrast to existing ensemble-based network inference methods (Marbach et al., 2012, Hase et 
al. 2013) we here (i) incorporate information from the STRING database in addition to the data-
driven predictions, and (ii) use a generalized outranking approach, based on Farah and 
Vanderpooten (2007), to aggregate primary rankings. 
 
Methods 
General approach 

Our approach, illustrated in Figure 1, can be divided into two parts: 1) A variety of existing 
network inference methods, including correlation-based, mutual information-based, and 
regression-based approaches, were used to obtain data-driven network predictions (i.e. primary 
rankings).  We incorporated predictions of GENIE3, TIGRESS, CLR, MRNETB, mutual 
information, partial correlation, and Pearson correlation (Marbach et al.  2012). For the latter 
three we performed a subsequent column-wise Z-score scaling to favor certain directionality of 
the edges. We additionally constructed a knowledge-driven primary ranking of known protein 
interactions to incorporate prior biological knowledge into our network inference. This ranking 
was based on a score combining all types of evidence obtained from the STRING database 
(Franceschini et al. 2013). 2) The primary rankings were aggregated to obtain a final ranking. 
We used a generalization of the outranking approach described in Farah and Vanderpooten 
(2007) to determine the top 500 edges in the final ranking. The remaining positions were 
populated by a weighted Borda count. For the in silico network inference challenge (Part B) the 
knowledge-driven primary rankings were excluded from the aggregation.  
 

 
Figure 1: Unsupervised ensemble-based network inference incorporating prior knowledge 

 
Implementations and parameter settings 

We integrated all data given in the “Main” datasets without any normalization, log-
transformation, or discretization and analyzed it as one sample. The data-driven predictions of 
existing network inference methods were obtained from R implementations of the respective 
algorithms with default parameter settings. The partial correlation was calculated with the 
“corpcor” package. MRNETB and CLR were run using the “minet” package. Predictions of 
GENIE3 and TIGRESS were run by utilizing R as a GenePattern client. The outranking and 
Borda count approach were implemented in Python. The parameters for the outranking (Farah 
and Vanderpooten 2007) were set as sp=1 (preference threshold), sv=4 (veto threshold), cmin=3 
(minimal concordance coalition size) and dmax=2 (maximal discordance coalition size).  
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The ranking weights w = (wagreement, wdisagreement, wBorda) were set to (1,1,1) and (3,1,2) for data-
driven primary rankings and knowledge-driven primary ranking, respectively.  
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SC1 Network Inference: Team14 
Summary 
Inferelator, an ODE-based method with model selection, is combined with prior information to 
infer network structure. 
 
Introduction 
We used our method called the Inferelator [Greenfield et al., 2013], which was originally 
developed to learn the structure of global gene regulatory networks. In order to build a 
mechanistic model of phosphorylation, we create time-lagged response and design variables, 
such that the abundance of a protein is time-lagged with respect to the abundance of potential 
targets. 
 
Methods 
For both sub-challenges, we used the latest version of the Inferelator [Greenfield et al., 2013], a 
method developed to learn the structure of global gene regulatory networks. The method was 
slightly modified to take as input the phosphoprotein dataset and manually curated signaling 
priors. In order to build a mechanistic model of phosphorylation, we create time-lagged 
response and design variables, such that the abundance of a protein is time-lagged with respect 
to the abundance of potential targets. We use a bootstrapping approach and resample (with 
replacement) the response and design matrices, running model selection (Bayesian Best 
Subset Regression) for each resample. This procedure is repeated 50 times, generating an 
ensemble of networks, which we rank combine into one final network. 
 
We used all cell lines, stimuli, time points and inhibitors, but split the data into 32 chunks. In 
sub-challenge A, for each of the 32 networks, we used only data from the specific cell line under 
the specific stimulus. We used only the ‘Main’ dataset. The only further data processing done 
was to average replicates. We browsed the KEGG website, read various literature, and did 
Google image searches to find known interactions among the proteins in the ’Main’ dataset. 
That information was encoded in a matrix that was part of the Inferelator input. 
 
The method is implemented in R and details are given in Greenfield et al. [2013]. The following 
modifications to the published method were implemented: 

1. Support for negative priors – the structure prior can contain a -1 denoting that an edge is 
very unlikely to be in the final model. By default all edges that are facing the opposite 
direction of the positive priors are set to -1. 
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2. We have implemented a heuristic to remove potential shortcut errors from the 
consensus network. In the final network, if all three edges A->B, B->C and A->C are 
present, the last one is removed if the first two are jointly present in more bootstraps. 

 
Our algorithm has the following tuning parameters: 

1. τ, the parameter defining the time shift between design and response. This was set to 5 
and 1 for sub-challenges A and B respectively. 

2. The value of g, the weight given to the three types of interactions in the prior. The three 
types of prior interactions are: -1 (should not be in model), 0 (no prior information), 1 
(should be in model). Based on the desired sparsity of the final networks, and our belief 
in the completeness of the network structure prior, we chose g = 0.01, 0.1, 1 for sub-
challenge A, and g = 1, 1, 1, for sub-challenge B. 

 
The actions of the inhibitors were modelled by setting the abundance of their targets to the 
minimum value in the entire input data set. Protein abundance is used as proxy for regulator 
activity. 
 
Processing the provided data and generating results for both sub-challenges took 457 minutes 
CPU-time. On a Linux machine with an Intel Core i7-870 CPU (4 cores clocked at 2.93 GHz) 
this was equal to 79 minutes wall clock time. 
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SC1 Network Inference: Team16 
Summary 
An adaptive lasso regression model was used to infer connections between proteins.  
 
Introduction 
Inferring causal phosphoprotein signalling networks is very important to understand underlying 
biological mechanisms and identify key molecules that could be targeted therapeutically. Here 
we studied this problem based on the assumption that the abundance of individual 
phosphoproteins directly affects abundance of other phosphoproteins in a linear manner. To 
predict the abundance of the target phosphoprotein, we formulated this problem as a feature 
selection problem. In other words, for each given target phosphoprotein, we consider how to 
determine the subset of phosphoproteins that best predict target phosphoprotein abundance 
across the different conditions. To solve this problem, we have adopted an adaptive lasso 
regression model [1,2] to infer the regulatory network of each protein with respect to other 
proteins using time-course data with perturbations. The adaptive lasso regression method 
derives a necessary condition to confirm the selected variables to be consistent. 
 
Methods 
Data pre-processing  
We used only the “Main” dataset in the following analysis. For the experimental data, we 
removed the data at zero time point due to too much missing data, and we combined all data of 
other time points together based on Formula (1). For the in silico data, there were 3 replicates 
for each of the 20 conditions under specific stimulus and treatments. We used a simple 
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averaging approach to merge the replicates, and combined data from all time points based on 
Formula (1). Moreover, we scaled the data to make the abundance level of each 
phosphoprotein have zero mean and unit variance. 
 
Adaptive Lasso regression model  
Assume there are K phosphoproteins measured at T time points in L environments or 
conditions. Let  

1 1 1( ,..., , ,..., )i i i KP P P P P   , 
1 1 2 2

1 1 1( ( ),..., ( ), ( ),..., ( ), ( ),..., ( ))i i i i i i L i L T

T T TP P t P t P t P t P t P t ,      (1) 

 
which represents the expression of protein i in all L environments. 
 
The problem can be formulated into the following format: 
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     
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where ( )ij ols  is the ordinary least squares solution. We conducted the prediction for each 

phosphoprotein separately and predicted its direct regulators from all other phosphoproteins.  
 
Algorithm 
We used the R package ‘msgps’ to solve this problem (2). We applied the same method for 
inferring the underlying networks in the experimental and in silico sub-challenges, respectively.  
 
Parameter selection 
We chose the generalized cross validation (GCV) method to select the parameters in our model 
[3]. 
 
Discussion 
Our approach was mainly based on the abundance level of a phosphoprotein affecting that of 
other phosphoproteins in a linear manner. It is simple, feasible, and applicable to even more 
complex situations. However, it doesn’t consider non-linear relationships among molecules. 
Further investigation on this method and its variants is needed based on more biological 
knowledge and experimental observations. 
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SC1 Network Inference: Team17 
Summary 
The GENIE3 algorithm was used to infer weights and directions for regulatory edges between 
phosphoproteins, with incorporation of a prior knowledge network (this prior knowledge network 
was also submitted as a stand-alone prediction; see Team2 method).  
 
Introduction 
The GENIE3 algorithm (Huynh-Thu, 2010) was the top performer of the DREAM4 multifactorial 
sub-challenge, where it was used to infer a general regulatory network over a set of diverse 
perturbations. While the DREAM8 challenge presented a significantly more complex prediction 
task, with time series and inhibitor data available to predict causality. We reasoned that the 
random forest framework used by GENIE3 might allow it to perform well. To adapt this algorithm 
to the DREAM8 network inference sub-challenges, we combined data for all treatments and 
time points for each experimental condition into a single multifactorial data matrix that was then 
used as input to the GENIE3 algorithm. Compared with the canonical strategy of looking at only 
past time points to build predictors of a single node’s activity, this strategy allowed us to 
maximize the density of training data available to the algorithm by using both past and future 
time point values for each regression task.  
 
Methods 
We used the GENIE3 algorithm to infer weights and directions for regulatory edges between 
antibodies. For each target protein, this algorithm uses a tree-based regression framework with 
the randomForest package in R (A. Liaw and M. Wiener, 2002) to build an ensemble of 1000 
trees that explained the variance of the phosphoprotein with a set of possible regulators (other 
proteins in the trees). Each candidate regulator was scored according to the improvement in 
predictive power it provided when applied as an explanatory variable to a target protein’s 
expression. Two ‘variable importance’ measures were provided by the randomForest package 
(A. Liaw and M. Wiener, 2002). One measure is the reduction in accuracy when a candidate is 
permuted within the dataset. The second measure is the decrease in the residual sum-of-
squares for a particular candidate node. In both cases, an aggregate measure was obtained by 
averaging over all trees. In the former case, the withheld (out of bag) data was used to assess 
the accuracy before and after permuting each candidate regulatory node. Because of the lack of 
compelling evidence suggesting that the performance of one of these particular importance 
measures is superior for the DREAM8 dataset, we ran the algorithm twice, once for each 
measure, and averaged the scores from each run into a combined set of edge predictions.  
 
Causal interactions between a putative regulator and a target are inferred from the variable 
importance scores given to each (regulator, target)-pair. For this study, rather than averaging 
the values of probes that map to multiple proteins, we considered each probe to be a distinct 
phosphoprotein, allowing the method to consider each active site individually. Each list of 
potential regulators for a given phosphoprotein was weighted by the variance reduction it 
provided (on variance-normalized data) and these lists were merged for all phosphoproteins 
with the GENIE3 method to produce a weighted list of predicted interactions.  
 
For each experimental cell line/stimulus condition l, data for all treatments i and time points t 
were combined into a single multifactorial data matrix that was then used as input to the 
GENIE3 algorithm. The regression problem for each target probe p and cell line/stimulus 
condition l then reduced to minimizing the squared error loss over all treatment and timepoint 
pairs (i,t): 
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, 
 

where xp(i,t) is the target phosphoprotein value for timepoint t and treatment i, x-p(i,t) are the 
values for potential regulators at (t,i) (all phosphoproteins, excluding p), and fp(y) is the function 
of the data to be optimized by our regression model. 
 
Regression trees solve this problem by recursively splitting the learning sample with binary 

tests, each based on one input variable (phosphoprotein) in 

   

x-p
, trying to reduce the variance 

of the output variable/phosphoprotein 

   

x p (Huynh-Thu, 2010; A. Liaw and M. Wiener, 2002). 
Votes from an ensemble of trees, each built from a bootstrapped sample of the data, is then 
averaged to produce the final predictions.  
 
For the final submissions for the 1A experimental challenge, predicted edge values were 
averaged with the values derived from the biological prior (see Team2 entry).   Because we 
observed that the prior greatly improved the performance of this entry during the course of the 
contest, we used a 60:40 split (prior:Genie3) to weight the average.  The final submission for 1B 
consisted of the Genie3 solution on its own without a contribution from the prior. 
 
Discussion 
Though not competitive with the top performing methods, the adapted GENIE3 approach 
performed well on this challenge and better than many methods specifically tailored for this 
time-series data. This supports the hypothesis that generic regression methods may outperform 
more specific models, particularly if they’re able to use a greater amount of training data.    
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SC1 Network Inference: Team18 
Summary 
Network inference is formulated as a linear programming problem designed specifically for 
perturbation time series data, and models signaling as information flow. 
 
Introduction 
Our model lpNet-dyn is based on linear programming, designed for perturbation time-series 
data. It assumes the signal to be an information flow that is propagated along the network, 
starting at the source nodes and ending at the sink nodes. It can be seen as an inverse max-
flow/min-cut problem, as we aim to reconstruct the underlying network given the flow of the 
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network after observing different cuts (perturbations) [1]. The formulation of the problem as an 
LP in combination with the discretization of the data allows for heuristic inference of quasi-
optimal networks in quasi-polynomial time. 
 
Methods 
Our method is based on linear programming, and was designed to take advantage of 
perturbation time-series data. It is an extension of the lpNet model previously developed by 
Knapp and Kaderali [1], which used perturbation steady-state data for the inference of signaling 
networks.  
 
In lpNet-dyn we assume the signal to propagate through the network as an information flow. It 
starts at the source nodes and ends at the sink nodes. The signal can be positive (activating) or 
negative (deactivating) and its propagation is interrupted by perturbations such as knock-down, 
knock-out, or overexpression experiments. 
 

Consider a network with 𝑛 nodes, 𝐾 perturbation experiments, and the values of each node are 
measured at 𝑇 different time points. Then  𝑥𝑖𝑘𝑡 ∈ ℝ0

+∀{𝑖, 𝑘, 𝑡} denotes the value of node 𝑖 ∈
 {1, … , 𝑛} in perturbation experiment 𝑘 ∈ {1, … , 𝐾}  at time point  𝑡 ∈ {1, … , 𝑇}. These values are 
stored in an observation matrix 𝑋. We consider a node to be inactive if its value 𝑥𝑖𝑘𝑡 is less than 
its threshold 𝛿𝑖 and consider it to be active if 𝑥𝑖𝑘𝑡 ≥ 𝛿𝑖. The value of 𝛿𝑖 is defined by the user, 
usually with consideration of the data. 
 
To specify whether a node was silenced in a given perturbation experiment we use an activation 
matrix 𝐵 ∈ {0,1}, where 𝑏𝑖𝑘 = 0 if node i has been silenced in perturbation experiment k, and 

𝑏𝑖𝑘 = 1 otherwise.  
 
The network is modeled as a graph 𝐺 = (𝑉, 𝑊), where the nodes 𝑣𝑖 represent the proteins, and 
the edges 𝑤𝑖𝑗 ∈ 𝑊 with 𝑤𝑖𝑗 ∈ ℝ0

+∀{𝑖, 𝑗} represent the influence of node 𝑖 over node 𝑗. If 𝑤𝑖𝑗 > 0 

node 𝑖 is activating node 𝑗, if 𝑤𝑖𝑗 < 0 node i inhibits node 𝑗, and if 𝑤𝑖𝑗 = 0 node 𝑖 does not 

influence node 𝑗. 
 

We assume the expression of a given protein to be the sum of its intrinsic activity, 𝑤𝑖
0, plus the 

sum of the incoming edges multiplied by the node values of the corresponding parents at the 
previous time point 𝑡 − 1: 

𝑤𝑖
0 + ∑ 𝑤𝑗𝑖𝑥𝑗𝑘𝑡−1

𝑗≠𝑖

 

We call this value the activity of a node/protein. Furthermore, we assume that only an active 
node, 𝑥𝑗𝑘𝑡−1 ≥ 𝛿𝑗, at t-1 can influence other nodes in the network at t. 

Assuming the network is sparse we minimize the edge weights 𝑤𝑗𝑖 in the following Linear 

Programming (LP) problem: 
 

𝑚𝑖𝑛
{𝑤𝑗𝑖

+,𝑤𝑗𝑖
−,𝑤𝑖

0,𝜉𝑙𝑡}
(∑ (𝑤𝑗𝑖

+ + 𝑤𝑗𝑖
−) + ∑ 𝑤𝑖

0
𝑖 +

1

𝜆𝑖,𝑗 ∑ 𝜉𝑙𝑡𝑙𝑡 )   (1) 

s.t.: 

if  𝑥𝑖𝑘𝑡 ≥ 𝛿𝑖  ⋀  𝑏𝑖𝑘 = 1 ⋀ 𝑥 𝑗𝑘𝑡−1 ≥ 𝛿𝑗  ⋀  𝑏𝑗𝑘 = 1: 

𝑤𝑖
0 + ∑ (𝑤𝑗𝑖

+ − 𝑤𝑗𝑖
−)𝑥𝑗𝑘𝑡−1 ≥𝑗≠𝑖 𝛿𝑖   (2) 

Nature Methods doi:10.1038/nmeth.3773



 33 

if  𝑥𝑖𝑘𝑡 < 𝛿𝑖  ⋀  𝑏𝑖𝑘 = 1 ⋀  𝑥𝑗𝑘𝑡−1 ≥ 𝛿𝑗  ⋀  𝑏𝑗𝑘 = 1: 

𝑤𝑖
0 + ∑ (𝑤𝑗𝑖

+ − 𝑤𝑗𝑖
−)𝑥𝑗𝑘𝑡−1 ≤𝑗≠𝑖 0 + 𝜉𝑙𝑡  (3) 

if  𝑥𝑗𝑘𝑡−1 < 𝛿𝑗  ⋁  𝑏𝑗𝑘 = 0: 

 𝑥𝑗𝑘𝑡−1 = 0     (4) 

  if  𝑖 ∈ 𝑉 ∖ 𝑆:  ∑ (𝑤𝑗𝑖
+ + 𝑤𝑗𝑖

−)𝑗∈𝑉,𝑗≠𝑖 ≥ 𝛿𝑖    (5) 

  if  𝑖 ∈ 𝑉 ∖ 𝐹:  ∑ (𝑤𝑗𝑖
+ + 𝑤𝑗𝑖

−)𝑗∈𝑉,𝑗≠𝑖 ≥ 𝛿𝑖    (6) 

     𝑤𝑗𝑖
+, 𝑤𝑗𝑖

−, 𝑤𝑖
0, 𝜉𝑙𝑡 ≥ 0    (7) 

where the objective function 1 minimizes the sum of the absolute values of the edge weights 

𝑤𝑗𝑖 = 𝑤𝑗𝑖
+ + 𝑤𝑗𝑖

−, baseline activities 𝑤𝑖
0, and slack variables 𝜉𝑙𝑡 ∈ ℝ0

+∀{𝑙, 𝑡}. The minimization is 

done while satisfying constraints 2-7, where constraint 7 is the intrinsic nonnegativity constraint 
in the LP formalism. Constraints 2-3 implement the basic assumption that if a protein 𝑖 is active, 
its activity should be greater than the respective threshold 𝛿𝑖, and if protein 𝑖 is inactive then its 

activity should be zero. Still, a slack variable 𝜉𝑙𝑡 is inserted in constraint 3 to account for noise in 
the data, which can lead to incompatible constraints that render the LP problem unfeasible. By 
checking whether the parent node 𝑗 is active and not silenced in constraint 4, we implement the 
assumption that only active parent nodes 𝑥𝑗𝑘𝑡−1 ≥ 𝛿𝑗 at time point 𝑡 − 1 can influence other 

nodes at 𝑡. The number of slack variables 𝜉𝑙𝑡 introduced is =  |{𝑥𝑖𝑘𝑡 ∶  𝑥𝑖𝑘𝑡 <  𝛿𝑖 , ∀{𝑖, 𝑘, 𝑡}}| , i.e., it 

is equal to the number of inactive nodes in the network. The introduction of slack variables is 
penalized in the objective function according to the value of parameter 𝜆. The best value for 𝜆 is 

determined using a k-fold cross validation (CV). We calculate the range of possible values for 𝜆 

going from 0 to 𝛯 =  𝐿 × 𝜎2(𝑥𝑖𝑘𝑡), where 𝜎2(𝑥𝑖𝑘𝑡) is the variance of the observations 𝑥𝑖𝑘𝑡, and 𝛯 
is the worst case scenario, in which all the introduced slack variables are unequal to zero. We 
repeat the CV a given number of times and compute the Mean Squared Error (MSE) each time. 
We then use the set of networks corresponding to the 𝜆 value that results in the minimum MSE. 
To sum up the networks inferred in the different CV steps in a single network, we divide the 
number of times an edge 𝑤𝑗𝑖 > 0 or 𝑤𝑗𝑖 < 0 is inferred by the number of inferred networks, and 

set the edge sign accordingly. If an equal number of negative and positive edges are inferred, 
its value in the final network is set to 0. 
 
Constraints 5 and 6 are a way to include prior knowledge about the network to be inferred. If the 
source nodes of the network, corresponding to receptor proteins in the cell membrane, are 
known in advance these can be included, and constraint 5 will force all other nodes to have at 
least one incoming connection. On the other hand, if the end nodes are known in advance - 
these can be, for instance, transcription factors - constraint 6 will force all other nodes to have at 
least one outgoing connection. For further details please refer to section 2.2-2.3 from [2]. 
 
The algorithm has 5 parameters, four of which are determined from the data and one (𝜆) whose 
value is estimated using cross validation. The latter has already been explained. The 

parameters to be determined from the data are: a) a threshold per node 𝛿𝑖, which distinguishes 
its active state from its inactive state. This value is set as the value of the node at the first time 
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point when no inhibitors are used; b) the average value of each node when it is active, which is 
calculated by taking the average value of all values of the node that are equal or greater than its 
threshold; c) the average value of each node when it is inactive, which is calculated by taking 
the average value of all values of the node that are less than its threshold; d) and e) the 
standard deviation values of each node when it is active and inactive, respectively. These 
values are usually a small percentage of the average values in b) and c). 
 
Parameters b)-e) are only necessary to predict the values of removed entries from the 
observation matrix 𝑋 in the cross validation step [1]. We used 50-fold cross validation. We 
randomly chose the entries that have been removed from the observation matrix, and we predict 
their values using a normal distribution with a very low standard deviation value (0.01). 
 
We modeled the actions of the inhibitors by considering the targeted proteins to be silent, i.e., 
once the signal reaches these proteins it cannot be propagated through them and 𝑏𝑖𝑘 = 0. We 
do not model the stimuli actions. 
 
The same methodologies for inferring the underlying networks in the experimental sub-
challenge and the in silico sub-challenge were applied, except for a) the modeling of the stimuli 

actions, b) the definition of the threshold value 𝛿𝑖, c) data normalization. 
 
Computation time and implementation 
The model was programmed in R, and it is now implemented as a Bioconductor package, lpNet 
(http://bioconductor.org/packages/release/bioc/html/lpNet.html). To solve the linear 
programming problem, we used the R package lpSolve v. 5.6.6 (http://cran.r-
project.org/web/packages/lpSolve/index.html). We used a computation cluster (sun grid engine 
version 6.2u5) with an average node architecture equal to an Intel Xeon 2GHz, 4GB RAM 
running a 64bit Linux-based operating system for the experimental sub-challenge. Depending 
on the network to be inferred, i.e. cell line + stimulus, the algorithm took between 3 and 16 days 
to infer each network. 
 
Data 
For the experimental dataset we used only the main datasets, and for each combination cell line 
+ stimulus we used only the data referring to that cell line and stimulus, considering all time 
points and inhibitors. We added two nodes, FGFR1 and FGFR3, whose values were set as NA, 
and normalized the data, i.e., for each cell line + stimulus, each node value was divided by the 
maximum value of that node across all perturbation experiments and all time points, after 
removing the outliers. For the experimental dataset we specified the source nodes as being the 
following source nodes: c-Met_pY1235, EGFR_pY1068, EGFR_pY1173, EGFR_pY992, 
HER2_pY1248, HER3_pY1298, FGFR1, FGFR3. The reason is that these proteins are known 
to be receptors in the cell’s membrane. 
 
Conclusion 
Both during the algorithm development and the challenge we concluded that the value of the 
threshold that distinguishes an active node from an inactive one is fundamental for the method’s 
performance.  Plus, one way to change the method’s execution time is to change k’s value in 
the k-fold CV step, the higher k’s value, the higher the execution time. However, k’s value needs 
to be defined in proportion to the observation matrix dimension (𝑛 × 𝐾 × 𝑇), since if it is too 
small a big percentage of the matrix entries are removed in the CV step and the results may not 
be reproducible between different executions of the model. 
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SC1 Network Inference: Team19 
 
Summary  

Edges contained in prior knowledge networks are selected and ranked using Pearson 

correlation scores between protein pairs and feature weights from a gradient boosting 

regression approach. 

 

Introduction 

Our method takes the edges from a previously constructed kinase network (Newman et al.) and, 

for each edge, calculates Spearman correlation between protein abundances for the pair of 

proteins that constitute the edge. These correlation scores are then used to rank edges. 

Additional edges, contained in the BioGrid database, are added in to our inferred network, 

weighted using a gradient boosting regression approach; a machine learning approach that has 

been proven to accurately reverse-engineer transcriptional regulatory networks from expression 

data used in the DREAM3, DREAM4, and DREAM5 challenges 

Methods 
In the pre-processing phase we log-transformed the data for both SC1A and SC1B.  

Experimental network inference challenge  
For each cell line-stimulus pair we performed the following procedure: 

In the first phase we created two groups of data: “all data” where we took all the data for all 
inhibitor conditions and “no inhibition data” where we only took the non-inhibited (DMSO) 
condition data. For both groups we calculated a Spearman correlation matrix for the proteins 
contained in the “full” dataset (i.e. we used the optional extra time points and antibodies for this 
analysis). 

In the second phase we intersected the above correlation matrix with the Newman et al. kinase 
network. We added the highest scoring edges to our final solution: 

a) edges from kinase network with p-value of Spearman correlation coefficient from “all 
data” less than or equal to 0.001 were ranked by their correlation coefficient and scaled 
to (1,0.85) range, 

b) edges from kinase network with p-value of Spearman correlation coefficient from “all 
data” less than or equal to 0.005 were ranked by their correlation coefficient and scaled 
to (0.85-0.7) range, 

c) edges from kinase network with p-value of Spearman correlation coefficient from “no 
inhibition data” less than or equal to 0.001 were ranked by their correlation coefficient 
and scaled to (0.7-0.6) range, 
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d) edges from kinase network with p-value of Spearman correlation coefficient from “no 
inhibition data” less than or equal to 0.01 were ranked by their correlation coefficient and 
scaled to (0.6-0.5) range, 

e) edges from kinase network with p-value of Spearman correlation coefficient from “no 
inhibition data” less than or equal to 0.05 were ranked by their correlation coefficient and 
scaled to (0.5-0.4) range. 

In the third phase we bounded the above edges ranked (1-0.4) to the proteins contained in the 
“main” dataset (i.e. phosphoproteins). We only allowed edges that: 

a) had a direct link in the “main” set, 
b) had a 1-hop link in the “full” set, but no 1-hop link in the “main” set. 

In the last phase we added the edges from a broader set of interactions reported in BioGrid 
database. We took “all data” from “main” set of proteins. We limited the possible edges to the 
ones found in Newman et al. kinase network and BioGrid (i.e. we limited the search domain to 
the edges known from the literature, but at possibly low confidence). We reasoned that these 
edges need a high support from the data in order to compensate for their low confidence in the 
literature. In order to assess how well these edges were supported in data we decomposed the 
network inference problem into a set of variable selection problems (one for each node). We 
solved each of them using the relative importance of features from the ENNET gradient 
boosting regression procedure. We used the default values of parameters of the algorithm. We 
scaled the edges to (0.4-0) range. 

In silico network inference challenge  
We took all data available. We decomposed the network inference problem into a set of variable 
selection problems (one for each node). We solved each of them using the relative importance 
of features from the ENNET gradient boosting regression procedure. We used the default 
values of parameters of the algorithm. We scaled the edges to (1-0) range. 

Discussion 

We learned that the machine learning-based methods must always be supported not only by the 
experimental data but also by existing biological knowledge in the network inference problem. In 
three distinct rounds we tried the following approaches for SC1A: report only the edges from the 
Newman et al. kinase network and BioGrid network, report only the edges indicated by the 
machine learning algorithm without use of any prior information (like in SC1B), and report the 
edges combined in the first and the second approach. Out of these three, the last approach 
gave the best result. However, we would need to analyze the gold standard networks to assess 
which interactions were especially easy/hard to find by our method. 
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SC1 Network Inference: Team21 
Summary 
Random forests were combined with mutual information to yield protein networks that were 
integrated with prior literature and logic-based domain knowledge. 
 
Introduction 
The motivation behind our ensemble approach came from our previous work with protein array 
data, as well as the premise of ‘wisdom of crowds.’ Inspired by the latter, each member of the 
team initially chose different subclasses of algorithms to focus on. General classes that our 
computational methods fall under include Ensemble, Regression, and Correlation. While we first 
used only the unsupervised network inference methods, we soon realized that they were 
insufficient in capturing the data’s structure and temporal changes. Innovation stemmed from 
integrating the unsupervised approaches with a logic-based method dependent on the relative 
time-courses of each protein, which was informed by the inhibition/stimulation conditions. We 
combined networks resulting from the logic-based approach with existing literature knowledge to 
define a set of prior-knowledge networks. A second innovation in this approach was how we 
obtained our literature knowledge, which was identified both manually and by mining publically 
available databases. 
 
Methods 
We used all parts of the data for the experimental sub-challenge including the “Full” dataset, 
except for its confidence scores.  Pre-processing consisted of replacing duplicate data points by 
their average. Missing data were not replaced or approximated. 
 
We used ensemble, regression, and correlation techniques for modelling. We initially used 
unsupervised network inference methods. We employed the context likelihood of relatedness 
algorithm (Faith et al. 2007) in Matlab and the Random Forest algorithm in R.  
 
In our final iteration, we integrated the unsupervised approaches with logic-derived networks 
and available literature data. The logic-based knowledge, obtained from a method we designed 
ourselves, depended on the relative time-courses of each protein, informed in part by the 
inhibition/stimulation conditions.  
 
To supplement the data provided in the challenge, we searched the worldwide web both 
automatically and manually in order to find relations between proteins in the experimental data 
set. We wrote scripts in Python and Java to mine protein data from Kegg and STRING (string-
db.org). We also relied on general web searches and manual MIMI (mimi.ncbi.org) queries for 
the proteins listed in the experimental data. 
  
Our final models were created by combining, with equal weight, networks derived from random 
forest and mutual information algorithms, with networks based on prior knowledge obtained 
through the literature searches and those derived from our logic-based approach. 
 
Discussion 
Our approach to generating protein signaling networks integrated information from prior 
knowledge, i.e., interactions reported in literature, with a theoretical analysis based on both 
Random Forest and Mutual Information.  In combining multiple theoretical methods, we hoped 
to incorporate some of the advantages inherent in the “wisdom of crowds” (WOC) approach 
elucidated in DREAM 5.  However, we found that RF alone (score = 2.24) outperformed our 
integrated approach using both RF and MI (score = 1.84, final submission) on the simulated 
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data (SC1B).  It is possible the dynamic nature of this time-series data, in contrast to the 
DREAM 5 data, may make the effectiveness of WOC sensitive to the method of integration.  
This may be an interesting topic for future research.  In addition, we found the theoretical 
component alone, without prior knowledge, performed well on the simulated data (SC1B) but 
was not sufficient to accurately predict networks derived from the experimental data set (SC1A).  
This highlights the importance of incorporating prior knowledge into the analysis of experimental 
protein networks.       
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SC1 Network Inference: Team22 
Summary 
Networks are inferred by combining prior information with the output of a lasso regression 
model, adopted to capture the time-varying effect of protein phosphorylation between adjacent 
time points. 
 
Introduction 
How to infer causal phosphoprotein signalling networks is a challenging task for understanding 
complex regulatory mechanism in key biological processes. Temporal analysis of time-series 
data can provide insights into the underlying mechanism of the biological processes. How to 
consider the effect of time changes on network topology will be valuable to infer the underlying 
networks. Another effect is that the underlying systems should be well designed and simplified, 
thus how to infer the sparse structure will be important to infer the networks. We adopted a 
standard lasso regression model for achieving this task, which was inspired by a very recent 
study [1].  
 
Methods 
Given K proteins with T time frames, we can obtain a K-by-T data matrix PK×T. We first 
considered analyzing the temporal causal relationships among the K proteins. We adopted the 
following matrix equation to reflect the causal relationships: 

1t tP WP 
 

where Pt denotes the t-th column of P, and WK×K  is the time-varying coefficient matrix and Wi,j 
depicts how the protein j at time t affects the abundance level of protein i at time t+1. A positive 
Wi,j indicates activation, others it means depression or inhibition. We set the diagonal line of W 
to zero to remove the self-regulation effects. Accordingly, the assumed lineal regulatory 
relationships between proteins i at time t+1 and all other proteins at time t could be expressed 
as: 
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Mathematically, we can formulate this problem into the following optimization model by 
considering the L1-norm penalty: 

1
2

1 1
1

min
T

t t

t

P WP W






 
 

The matrix W uniquely specifies a regulation network of K proteins, where each node is a 
protein and the edge weights indicate the interaction between each pair of nodes. In addition, 
the network structure should be sparse. To this end, we added a L1-norm regularization penalty 
to ensure the sparsity of the network.  
 
Finally, we can obtain the matrix W, where Wi,j denotes a directed edge pointing from protein j to 
protein i, and the value of Wi,j indicates the intensity of their regulatory relationship. 
 
We only used the “Main” dataset and did not employ the extra antibodies and time points in the 
“Full” dataset. For in silico data, there were 3 copies of each of the 20 conditions under specific 
stimulus and treatments. We combined all this time-varying profiles together to expand the 
amount of available data. For the 32 specified networks from the experimental data, we did the 
same thing with the 4 different treatments. Missing data were excluded from analysis. We 
constructed the causal relationships by analysing two contiguous timepoints from the same 
profile. We did log transformation of the in silico data before further calculation. For the 
experimental sub-challenge, we used the original data. The optimization model can be 
formulated as a standard lasso model and many advanced solvers can be available. We chose 
the build-in package of lasso in Matlab 2013a version for calculation. 
 
For the experimental data, we extracted some rough information of the pathways of the proteins 
from the KEGG dataset and added these prior edges to 32 predicted networks. For example, we 
noticed an inhibition relationship from AKT to p27 in the PI3K-Akt signalling pathway. Thus we 
added edges of inhibition from 'AKT_pS473' and 'AKT_pT308' to 'p27_pT157' and 'p27_pT198'.  
 
We did not make use of the network models learned in sub-challenge 1 to sub-challenge 2. The 
classical parameter selection criteria (e.g. BIC) produced unsatisfactory network results that are 
either too sparse or lack generic properties of biological networks. Therefore, we conducted a 
selection to guarantee small MSE and proper network density. 
 
Discussion 
We assumed there is a linear temporal regulatory relationship between the phosphorylated 
proteins and formulated this problem into a standard lasso regression model for inferring signal 
transduction networks. More detailed investigations to the data generation and underlying 
biological principles would contribute to improve the performance of this method. 
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SC1 Network Inference: Team24 
Summary sentence 
Bayesian network structure learning with Hill Climbing (experimental data) or Max-Min Hill 
Climbing (in silico data), combined with model averaging to identify weighted networks. 
 
Introduction 
We hypothesize that causal signaling networks can be modeled using causal Bayesian 
networks. Bayesian networks are increasingly being used for uncertain reasoning and machine 
learning in many domains, including biomedical informatics [1-3]. In the modeled Bayesian 
network, each node represents a protein. A benefit of Bayesian networks is that they represent 
probabilistic relationships, and therefore they can manage the perturbations in biological data. A 
second strength is that they can model the natural causal relationships in biology. A Bayesian 
network (BN) consists of (i) a Directed Acyclic Graph (DAG), where the node set consists of 
random variables and the edges represent relationships among the random variables, and (ii) a 
conditional probability distribution for each node given its parent nodes.  
Here we apply Bayesian network structure learning with model averaging for inferring the 
underlying networks in the experimental sub-challenge and the in silico sub-challenge.  
 
Methods 
The concept behind Bayesian network structure learning is to select a unique DAG model from 
input data. Two types of structure learning algorithm, constraint-based and score-based 
algorithms [4], have been developed for Bayesian model selection. The score-based Hill-
Climbing (HC) algorithm was used for the experimental sub-challenge and the Max-Min Hill-
Climbing (MMHC) algorithm was used for the in silico sub-challenge. HC is a greedy search on 
the space of the directed graphs. The optimized implementation uses score caching, score 
decomposability and score equivalence to reduce the number of duplicated tests [4]. MMHC is a 
hybrid algorithm that combines the constraint-based Max-Min Parents and Children algorithm to 
restrict the search space and the Hill-Climbing algorithm to find the optimal network structure in 
the restricted space [4].  
 
We implemented Bayesian network model averaging to average over different possible DAG 
models to obtain the final strength of the edges in the network. When averaging the models, we 
did not include edges with small weights in the averaged network, to ensure that the final 
network would contain only significant edges. 

 
The key steps of the method follow. First, to construct the Bayesian network, the method 
computes the strength of all possible edges based on the HC or MMHC algorithm, which was 
learned from bootstrapped data.  For the experimental sub-challenge, the data are the “main” 
data for each cell-line/stimulus context, and networks for each context were learned 
independently of each other. For the in silico sub-challenge we used the entire dataset. Second, 
the resultant Bayesian networks of the first step are averaged to get the averaged network. 
Finally, the strength of the edges present in the averaged network are formatted as  SIF and 
EDA files representing the final causal network. 
 
We implemented this method in R with the package “bnlearn” (developed by Scutari) [4, 5]. 
“bnlearn” is an R package for learning the graphical structure of Bayesian networks, estimating 
their parameters and performing inference. This package has implemented the HC and MMHC 
algorithms, which can be directly used to build the Bayesian network structure and calculate the 
strengths of the edges in the network. We also used the “averaged.network” in the package for 
model averaging. 
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Our method validation is based on the AUROC scores and rankings from the leader board. The 
algorithm selection of each part of the sub-challenges is also based on the results from the 
leader board. For example, we have compared different learning algorithms (e.g., grow-shrink 
and incremental association learning algorithms [4]) in the “bnlearn” R package for the 
experimental and in silico data, and finally we selected HC for experimental data and MMHC for 
in silico data. 

 
Discussion 
Bayesian network structure learning has been employed to learn the protein causal network 
structure from the provided experimental and in silico data. Bayesian model averaging was used 

to get the final strength of the edges in the protein causal network. The approach described 
here could be expanded to include prior network knowledge, as well as information about the 
action of inhibitors on particular proteins.  
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SC1 Network Inference: Team25 
Summary 
Ensemble network inference approach that incorporated a prior knowledge network with results 
from L1-penalized Granger causality, GENIE3, and ARACNE (the prior knowledge network was 
also submitted as a stand-alone prediction; see Team2 method). 
 
Data preprocessing 

The competition-provided data was aggregated by taking the median value across replicates 
and inhibitors, resulting in matrices of proteins (rows) by time points (columns), for each cell line 
and stimulus pair. These matrices will be referred to as the protein time series matrices.  

 
Experimental network inference sub-challenge 
The submission was the result of applying an ensemble that combined multiple inferred protein 
interaction networks generated by multiple methods. The interaction network was encoded as 
the square adjacency matrix representing a graph of pairwise interactions (edges) between 
proteins (nodes). The methods incorporated into the ensemble included L1-penalized Granger 
causality, GENIE3, ARACNE, and the biological prior (see respective summaries for Team1, 
Team2, and Team17). Each of these methods produces an inferred interaction matrix. The 
scores in each matrix were normalized by linearly scaling so that the values obtained were 
between 0 and 1 before combining. Note this formulation makes no distinction between 
activating and inhibiting interactions. The ensemble computed the median of the interaction 
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values (for each pair of proteins) across the 4 methods, to generate the final combined network 
with scores given by: 
 

𝑆𝑐𝑜𝑟𝑒𝐸𝑛𝑠𝑒𝑚𝑏𝑙𝑒 (𝐴, 𝐵) =  𝑀𝑒𝑑𝑖𝑎𝑛 { 𝑆𝑐𝑜𝑟𝑒𝐿𝐴𝑆𝑆𝑂−𝐺𝑟𝑎𝑛𝑔𝑒𝑟(𝐴, 𝐵), 𝑆𝑐𝑜𝑟𝑒𝐺𝐸𝑁𝐼𝐸3(𝐴, 𝐵), 𝑆𝑐𝑜𝑟𝑒𝐴𝑅𝐴𝐶𝑁𝐸 (𝐴, 𝐵), 

𝑆𝑐𝑜𝑟𝑒𝐵𝑖𝑜𝑙𝑜𝑔𝑖𝑐𝑎𝑙 𝑃𝑟𝑖𝑜𝑟(𝐴, 𝐵) }  

where (A,B) represents a pair of proteins.  
 

In silico network inference sub-challenge 
This submission was an ensemble created identically as was done for the experimental network 
inference sub-challenge except that no biological prior was used as part of the ensemble. This 
ensemble computed the median of the individual methods: LASSO-Granger, GENIE3, and 
ARACNE. 

 
ARACNE gene network reconstruction 
ARACNE (Margolin et al., 2006) was used to generate the symmetric adjacency matrix for the 
inferred network. ARACNE infers pairwise gene interactions using mutual information and then 
uses the information-theoretic data processing inequality to restrict to direct interactions. The 
Mutual Information (MI) between two proteins is estimated using a Gaussian kernel estimator: 

, 
where xi, yi are a series of measurements for two proteins (x and y), with i iterating over the 

M samples, and f is a Gaussian kernel estimator. The kernel estimator can approximate the joint 
probability distribution of two variables, zi = {xi, yi}: 

 

, 
where G is the standard bivariate Normal density function, and h is the kernel width. 

 
We downloaded ARACNE from 
http://wiki.c2b2.columbia.edu/califanolab/index.php/Software/ARACNE. ARACNE takes in a 
matrix of genes (rows) by experimental conditions (columns), and outputs a list of inferred 
interaction values for pairs of genes. To obtain directionality of causal links, we concatenated 
the proteins-by-time-points matrix with a time-lagged version of itself. Specifically, we row-
concatenated the [15min, 4hr] portion of the matrix with the one corresponding to [5min, 2hr]. 
Application of ARACNE to the time-lagged version of the matrix now allowed to detect 
dependency between proteins at different time points. 

 
We ran ARACNE on the time-lagged data to obtain scores for forward and backward temporal 
correlations between proteins in a time series. For each pair of interacting proteins, we kept the 
directed temporal edge with the largest magnitude (absolute value). Specifically, if 

Score(Aoriginal , Blagged)  >  Score(Alagged, Boriginal), we kept the causal link from A to B. 

Conversely, if Score(Aoriginal, Blagged)  <  Score(Alagged, Boriginal), then we interpret that it is more 

likely that B is a cause of A. 
 
LASSO-Granger: Granger Causality was applied as in the Prophetic Granger submission by 
Team1, except that here only time points prior to the variable being regressed were used. 
GENIE3: GENIE3 was applied as in the entry for Team17. 
Biological prior: The biological prior was obtained as described in the entry for Team2. 
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SC1 Network Inference: Team26 
Summary 
A protein signaling network is inferred by comparing phosphoprotein abundance levels between 
intervention and no-intervention treatments. 
 
Introduction 
This approach is motivated by the working definition of a ‘causal edge' used in this challenge. 
Specifically, the idea is that a causal edge might be detected by monitoring the change in the 
child node when the parent node is either intervened or not intervened. Causal edges between 
nodes can then be predicted by collecting and comparing the protein expression of each node in 
each treatment (intervention / no-intervention) over time. Finally, these causal edges are scored 
according to the differences in protein expression, and those above a set threshold are included 
in the final network. 
 
Methods 
We read the training datasets, containing normalized protein abundance measurements for in 
silico and experimental data, into R as data lists. We used the provided in silico relationship 

between stimuli, inhibitors, and their target proteins from the Synapse Wiki to create another R 
data list. For experimental data we obtained a prior network of relationships from the literature 
(Rhodes, 2008) (Gilmartin, 2011) (Pardo, 2009). We imputed missing data points in the 
experimental data set by averaging neighboring data points. We did not perform imputation for 
cases where missing data were at the first or the last position in the time series, or there was 
more than one data point absent in a row. Replicates in experimental data were averaged. 
 
We defined parent network nodes as nodes targeted by the treatments. We then used time 
series data for comparison between stimulus plus inhibitor (intervention) conditions with 
stimulus only (no intervention) conditions for all other nodes (possible child nodes), to obtain an 
Area Between Curves (ABC) by integration over all time points. If the parent node was treated 
with a known inhibitor (less parent) and the ABC of intervention for the child was positive (more 
child) the relation between the parent and child was defined as an inhibition and if the ABC of 
intervention for the child was negative, the relation between the nodes was defined as an 
activation. A normalized ABC for each child was calculated as the absolute value of the fraction 
of its value and the maximum change ABC occurring in the whole network leading to inhibition 
and activation scores between 0 and 1. In the final network only those edges were included 
which scored higher than 0.1. This arbitrary threshold score was decided upon based on 
observation of the expression graphs plotted for each of the two conditions for a larger number 
of parent-child edges. Thresholds greater than 0.1 appeared to describe visually different 
curves.  
 
This method was implemented in R using the “simp” function from the StreamMetabolism R 
package (Sefick Jr, 2013). All R scripts are available from GitHub at: 
https://github.com/gungorbudak/netinf-bigcat/ 
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Discussion 
In comparison to the other approaches used, this approach has ranked averagely for in silico 
data and low for experimental data in the leaderboard. Here we propose possible improvements 
to the algorithm. First, we did not check for actual treatment effects on the parents, and instead 
assumed parents responded as expected. Looking at actual changes might improve the 
analysis, especially for the experimental data. Second, the statistical evaluation of the time 
series data could be improved with a test that uses individual time points instead of a threshold 
value for the whole ABC, or one that uses repeat values of measurements to calculate the ABC 
repeatedly. Third, we did not evaluate indirect effects. We could in principle extend the 
approach to either allow any changed node to be a parent for any other (but that would be 
computationally hard) or only allow parent child relationships that are already known for 
biological databases like IntAct, or combine the two by allowing primary parent child 
relationships to be newly found while indirect relationships would only be allowed for known 
interactions. Finally, the network obtained could be further enriched, with more relations 
between nodes, by assigning antibodies found to inhibit others as intervening treatment and 
antibodies found to activate others as non-intervening treatment and repeating the process. This 
might also result in the discovery of novel relations to be included in the final network. 
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SC1 Network Inference: Team28 
Summary  
A novel network inference method using Partial Least Squares Regression (PLSR) with the 
Variable Influence on Projection (VIP) score as a measure of edge confidence 
 
Introduction 
Many existing network inference algorithms are computationally expensive and time-consuming. 
This inefficiency limits the number of nodes that can be feasibly incorporated into a network 
model. We therefore selected a regression-based approach, which offers simplicity, speed, and 
scalability. We developed a novel network inference method using Partial Least Squares 
Regression (PLSR)[1] with the Variable Influence on Projection (VIP) score[2] as a measure of 
edge confidence. PLSR has been found to give highly accurate results for collinear and complex 
inputs[1], which are inherent in signaling networks. To our knowledge, this is the first application 
of PLS-VIP for network inference. We also took the novel approach of combining a static (data 
explained by the same timepoint) and dynamic network (data explained by the preceding 
timepoint), to form a consensus model. We deemed this algorithm Dynamic Inference of 
NEtworks Using Singular values (DIONESUS).  
 
 

Nature Methods doi:10.1038/nmeth.3773



 45 

Methods 
In order to make an informative comparison among relationships of phosphoproteins, we 
normalized each sample to an internal reference from the same dataset. In the experimental 
network inference challenge (SC1A), the inhibitor was added to the cell media before the growth 
factor, so we considered an additional time point at -1 min to account for the differential effect of 
each perturbation. All concentrations of phosphorylation for the -1 min time point were assumed 
to be the same as concentrations in the DMSO treated condition at time point 0. The log2 fold 
change (L2FC) was calculated with respect to the -1 min time point. As a result, all L2FCs at -1 
min were effectively set to zero values and other input data points reflected the corresponding 
log change above or below this assumed steady state. In the companion in silico challenge 
(SC1B), all L2FCs were made in reference to the first time point (L2FC = 0 at 0 min) for each 
phosphoprotein. The arithmetic means of the L2FCs were computed over the biological 
replicates and used as an input to the algorithm.  
 
For SC1A, missing data were replaced with data for the DMSO-only perturbation at that time 
point. We hypothesized that translational, rather than post-translational, effects would dominate 
network dynamics at longer time-scales. Therefore, we did not include the 240 min data to infer 
edges representing information flow between phosphoproteins in the static network. The 240 
min data was however included in the dynamic network model. In order to account for the 
variance added by the perturbations, dummy categorical variables were included for the 
presence (indicated with a 1) or absence (indicated with a 0) for each growth factor and each 
inhibitor. All time points were used in Part B. 
 
Inference of Static and Dynamic Networks. The static network method regressed all explanatory 
variables (L2FC in phosphoproteins and categorical variables) against the phosphoprotein 
abundances at the same time point. The dynamic network method applied the same regression 
but for subsequent time points. For the DIONESUS algorithm, the explanatory variables were 
mean-centered with unit-variance to produce the X matrix. The values corresponding to the 
node being regressed against were set to zero to remove spurious connections as a result of 
auto-correlation. For each node, the dependent variables in the y-vector were defined as the z-
score of the L2FC for the node’s data points. For the dynamic network, the data at time point t 
was used to explain the data at time point t+1 using the same input matrix, X. We then solved 
for the vector of coefficients (beta) given the standard regression equation: [y=X*beta].  
 
We solved for beta using the Non-Iterative PArtial Least Squares (NIPALS) algorithm 
implemented as the nipals() function[3]. All calculations were coded and analyzed using Matlab 
2013a (Mathworks). The only tuning parameter was the number of principal components to 
include in the regression. Using the elbow rule, we employed three principal components as 
they explained over 90% of the variance without overfitting. The importance of each edge was 
calculated by z-scoring the VIP score for each regression problem using the vipp() function[3]. 
To account for experimentally inhibited phosphorylation activity, edge confidences were 
upweighted by the number of perturbations in which they were inhibited (e.g. if AKT-inhibitor 
was used in 2/5 of the training data, the edges connecting AKT to its daughter nodes were 
multiplied by 1+2/5). The edge importances were normalized between 1 and 0 and the final 
consensus network was formed by taking the arithmetic mean between the static and dynamic 
networks. We assumed that the scoring criterion would disproportionately weight true positives 
over true negatives so we chose a highly liberal threshold and included all non-self edges in the 
final submission regardless of confidence score.  
 
Discussion 
The DIONESUS algorithm introduces a novel PLSR-based inference approach that offers ultra-
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fast computation of network structure that may be critical for the reconstruction of large-scale 
genomic/proteomic/signaling networks, and rapid iterations between predictive modeling and 
experimental design. The strengths of this method are its speed, simplicity, and accuracy, which 
are especially notable considering that no cross-validation or prior knowledge was used. In 
future research, we would like to explore the scalability of each algorithm on a larger, phospho-
network from the assay of 91 phosphosites[4]. 
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SC1 Network Inference: Team29 
Summary 

An MCMC-based EM algorithm is used to infer network structure and parameters for a logistic 
regression model with latent variables representing protein phosphorylation and functional 
states.  
 
Introduction 
We cast the task of inferring causal relationships as a Bayesian network (BN) structure-learning 
problem. While it is possible to represent the observed phosphorylated proteins as vertices of a 
BN, this representation has the limitation that phosphorylation of a protein does not always 
change the function of a protein.   To address the task, we introduced a set of latent variables to 
represent the phosphorylation states of each phospho-protein, such that the observed 
phosphorylation signals can be modelled as signals contributed by proteins in two populations: 
phosphorylated proteins and un-phosphorylated proteins.   In addition, we introduced a set of 
latent variables to represent the activation states of each protein, such that the activation state 
of a protein, e.g. Protein A, can causally affect the phosphorylation state of another protein, 
Protein B.  This setting allows modelling the causal relationship between Protein A and Protein 
B independent of the phosphorylation states of Protein A, such that we model the situation that 
the Protein A is phosphorylated by its upstream protein but its function is blocked by a drug. 
 
Methods 
Learning BN structure including latent variables is a challenging task. Based on our biological 
knowledge, we constrain the search space to only find the causal edges between the activation 
state of a protein and phosphorylation state of other proteins. We developed an MCMC-based 
EM algorithm to infer the state of latent variables and to estimate the parameter associated with 
each edge in a framework of logistic regression. This setting enables us to search the structure 
of a BN through lasso regression between a node representing the phosphorylation state of a 
protein and candidate kinases in the data. Based on our knowledge regarding certain proteins 
studied in this project, we topologically sorted the proteins in the data, which further restricted 
the search space of edges between activation-state nodes and phosphorylation-state nodes to 
those satisfying the topological relationship.  After training, we collapsed the latent variables and 
translate the network into a network among phosphorylation antibodies.   
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Discussion 
Besides all the computational challenges we have overcome, the advantage of our method is 
the introduction of activation states of proteins as latent variables, which help us to model the 
causal relationship between proteins independent of the phosphorylation states. It allows us to 
capture the change in activation state of a protein resulting from factors other than 
phosphorylation by its upstream proteins, e.g., the drug-induced block of the function of a 
phosphorylated protein or a mutation that activate a protein without phosphorylation. We 
participated in the challenge only during the last week and did not use the leaderboard to fine-
tune our method. Refinements to this model may improve performance. 
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SC1 Network Inference: Team30 
Summary Sentence 
Time-lagged correlation scores are calculated between the abundance of a target protein and 
abundances of proteins in a set of potential regulators 
 
Introduction 
Recent advances in the field of regulatory and signaling networks have shed light onto the 
problem of network inference.  We have incorporated several of these ideas into our algorithm: 
1) the effect of a species on another is governed by Hill kinetics [Margolin]; 2) an individual 
species is not usually regulated by more than 3 other species [Liang]; and 3) inhibition is always 
stronger than activation [Saadatpour]. Rather than focus on time series data per se, we consider 
that successive measurement will inform causally-related protein pairs. We derive the causality 
from the correlation of state in the first measurement and a change of the value of a species 
between the two measurements. The correlation measure was inspired by the mutual 
information approach of [Liang]. Finally, based on the assumption of exclusivity, we separately 
searched for activators and inhibitors. 
 
Methods 
Broadly, our approach to identification of context-specific networks consists of data 
normalization and calculation of correlations between phosphoproteins. Here, we use the term 
species to depict any component of the system, including the stimuli. We used the “main” 
dataset, and divided it into independent files, one for each cell line and stimulus. This resulted in 
32 input files for SC1A, each corresponding to a single wiring diagram. 
 Our algorithm consists of the following steps: 

1. Normalize the data in such a way that the lowest and highest measured values of a 
species are assigned 0 and 1, respectively, with intermediate values uniformly projected 
in the range [0,1]. 

2. Find all pairs of subsequent measurements for each experiment. In cases where a 
measurement is missing, the next available time point is considered. 

3. For each pair, compute the vector of differences between values of species. 
4. For each species, compute an average of all the positive differences (among all the 

measurement pairs) and compute second vector of values, called production, describing 

the difference of the increase from the average. 
5. For each species, compute the cumulative correlation between the aforementioned 

differences and values of up to three species in a first measurement. 
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6. Use step (5) to independently determine a set of possible activators and inhibitors. 
Here, we always choose the combination of regulators with the highest cumulative 
correlation. 

 
The key features of the approach is the computation in step 5, where we use the logistic 
function: 
 logistic((max(x, max(z, y)) + x*y + x*z + y*z - y*x*z) / 3),  
where x, y, z are species of the system (possibly equal) and logistic is a standard logistic 
sigmoid function, which first uniformly maps its argument from [0,1] to [-6,6]. 
 
The expression over the arguments reflects that a single occurrence of a highly active regulator 
is more relevant than a mild occurrence of three of them. The logistic function simulates the 
sigmoid-like regulation pattern. The result of the logistic call is then multiplied by a “change” 
factor. When searching for inhibitors, the change factor equals the negation of a difference 
between measurement times. When searching for activators, we use the production value 
calculated in step 4. Finally, we remove the stimuli from the resulting graphs for the purpose of 
the submission. This method does not rely on any prior network knowledge from the literature. 
 
Discussion 

The performance of the computation was rather good (around a second for a file). As pointed in 
the step 6, we searched for a set of activators and inhibitors independently. This allows for 
higher total amount of regulators, if they have opposing effects, as it would be in the case where 
all regulators are considered. This is a strong computational boundary as the number of 
possible combinations to test grows exponentially with the maximal number of regulators 
considered. Splitting the dataset into 32 files, each having a single stimulus, allowed for 
simplification of the method. However, we have not adjusted the resulting data to account for 
the fact that there were collections of 8 datasets that were measured on the same cell line. 
Arguably, this meant that we discarded some of the prior knowledge, which could otherwise be 
used for quality adjustments of the results. We have included stimuli as components of the 
system. This step was unnecessary in hindsight and only resulted in an increase in the 
computational complexity. 
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SC1 Network Inference: Team31 
Summary 
An ensemble approach that combines prior information with the results from three existing 
methods: ordinary differential equations, dynamic Bayesian networks, and Bayesian 
Regression. 
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Introduction 
Various methods have been proposed for inferring molecular networks. We used 3 existing 
network inference methods and combined them to obtain a causal protein signaling network. 
The first 2 network inference methods individually use time series measurements to find the 
posterior probabilities of one node affecting the other. Between these 2 approaches, the first 
one uses ordinary differential equations (ODEs) and Gaussian processes to come up with the 
probabilities; the second one uses dynamic Bayesian networks (DBNs) for representing 
probabilistic relationship among interacting nodes.  A third network inference method based on 
Bayesian regression uses the inhibitor conditions to find the inhibitory and activating relationship 
among different nodes of the network. The confidence score on each edge of the network was 
deduced from posterior probabilities found from first two methods and absolute value of the 
edge scores found from the third method. 
 
Methods 
Network inference methods 

An ODE and Gaussian process based inference method [1] has been used as our first method 
to find posterior probabilities of one node of the network affecting the other. The second method 
[2], which was also used to calculate posterior probabilities, is based on dynamic Bayesian 
networks.  A third method [3] based on a Bayesian regression approach has been used to find 
the connection direction and scores of the edges of the network.  
 
For the experimental sub-challenge, we separated the “main” dataset into 32 different datasets 
(combination of 4 cell lines and 8 stimuli) and for the in silico sub-challenge, there was only 1 

dataset present. Each of the 33 datasets has time series proteomic measurements that have 
been used as input to the 3 approaches described above to find the network edge parameters.  
 
For first method [1], each of the 33 separated datasets has time series measurements for up to 
4 different inhibitors (exactly 3 inhibitors for in-silico data) applied to the cell line. So, we have 
split each of the 33 dataset into 4 or (less) number of sub-dataset based on number of inhibitors 
applied. If n (<=4) is the number of inhibitors present in the dataset, these n sub-datasets are 
considered as n different time-series measurements and put into the algorithm that gives the 

posterior probabilities of the nodes affecting each other.  
 
For second method [2], if n (<=4) is the number of inhibitors present in each of 33 dataset, the n 
sub-datasets are used separately to find posterior probabilities of the nodes affecting each 
other. All n probabilities for a single edge are then averaged out to find the final probability using 
this approach. 
 
The third method [3] does not care in which time point the data are taken, but in each 
measurement, one protein has to be inhibited. We’ve created a dummy node and made the 
expression of it very low to look like it’s been knocked out for all the time point measurements. 
To confirm closeness to steady state data, we’ve considered taking 2 hour data (in-silico data) 
and 4 hour data (experimental data) from the main datasets for each of 33 networks as steady 
state measurements. This approach gives edge scores that contain a confidence measure of 
how well the regulation is working; also a signed edge score determines if one node is activating 
or inhibiting the other. 
 
Combined approach 

The posterior probabilities found from first 2 approaches and the absolute value of edge scores 
found from approach 3 are considered and average of these 3 measures are taken as edge 
confidence score. A threshold of 0.1 was taken to cut some of the connections. If the network 
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has N nodes, then the edge score matrix M has a dimension of NxN. Element (i,j) represents 
confidence that node i is affecting node j.  if M(i,j)>M(j,i), then M(j,i) is set as 0. Then the signs of 
the edge scores are added back in using the confidence scores from approach 3. We’ve cut 
some of the edges found from our approach to make the network causal and directed.  
 
Additional details 
MATLAB codes were available for all the 3 approaches described. Implementation of those 
approaches using the experimental data and in silico data have been done by us, also the 
combination of the results from 3 approaches is done by our team. 
 
Prior biological knowledge on protein-protein interaction has been used to see if the connections 
obtained from our approach actually match with information found in the literature.  If anything is 
found, then the confidence score is boosted up for that edge. For both sub-challenges, if 
multiple measurements were present for a single time point, we’ve always taken average of 
them. 
 
Discussion 
We’ve kept our approach simple by inferring networks using existing methods and combining 
those methods to calculate confidence scores for edges in causal networks. To maintain 
simplicity, we did not use stimulus information for in silico data. Also, we’ve used prior biological 
knowledge on protein-protein interaction to boost up confidence score of an edge. 
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SC1 Network Inference: Team32 
Summary 

A consensus network learning method that integrates results from several representative 
network-inference algorithms, applied separately to data from each inhibitor condition. 
 
Introduction 
Recently, a large number of techniques, especially consensus learning approaches that 
integrate different algorithms, have become a potentially promising strategy to infer accurate 
gene regulatory networks from gene expression datasets [1]. To see whether consensus driven 
approaches can infer accurately protein signaling networks from protein abundance data, we 
examined methods that integrate multiple algorithms as well as results from different protein-
abundance datasets. A novel innovation in our consensus approach is to integrate results from 
different protein-abundance datasets, i.e., dataset with GSK690693, that with GSK690693 + 

GSK1120212, that with PD173074, and that with DMSO. The underlying methodology used in 
this study is our consensus learning approach, “Topknet” [1], which was published recently. In 
this study, Topknet integrate multiple algorithms based on random-forests, regression, directed 
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partial correlation (DPC), dynamic Bayesian networks (DBN), mutual information, and ordinary 
differential equations. 
 
Methods 
Method for experimental data  
We used all cell lines, stimuli, time points and inhibitors. We used the “Main” dataset but did not 
use extra antibodies and time points in the “Full” dataset. We did not normalize, log-transform or 
discretize the data and ignored missing data. We regard replicates as different samples. In Part 
A, we used Topknet [1] to integrate five representative network-inference algorithms that can 
infer causal links between two proteins, i.e., DBN, DPC, GENIE3, NARROMI, and TIGRESS. 
The procedure of our consensus learning method is composed of three steps. (i) From a dataset 
consisting of a single inhibitor or DMSO, a network-inference algorithm assigns an edge-score 
to each link and links are ranked according to their confidence levels, i.e., a link with higher 
edge-score has higher rank value. (ii) The rank values for each algorithm were normalized by 
scaling from 0 to 1 and the normalized values were regarded as edge-scores by the algorithm. 
(iii) For each link, the five network-inference algorithms assigned five edge-scores to each link. 
For each edge, Topknet [1] selects the highest edge-score among the five edge-scores and 
regards the selected edge-score as the score of the edge. For example, if the five algorithms 
assign five edge-scores, 0.9, 0.8, 0.2, 0.6, and 0.7 for a link, our method regards 0.9 as the 
edges score of the link. From four datasets (dataset with GSK690693, that with GSK690693 + 
GSK1120212, that with PD173074, and that with DMSO) under each cell line and stimulus, our 
consensus learning method generated four edge-scores for each link. We regarded the mean 
value among the four edge-scores as the edge score of the link under the cell line and stimulus. 
For example, if our method assigns edge-scores, 0.4, 0.6, 0.1, and 0.3 for a link from four 
datasets, the score of the link is regarded as 0.35. 
 
Methods for in silico data 

We used all stimuli, time points and inhibitors. We did not normalize, log-transform or discretize 
the data. Note that, because NARROMI, TIGRESS, and GENIE3 regard time points as 
samples, we combined all 20 time courses (each one corresponding to a different 
stimulus/inhibitor combination) of the in silico challenge to make one combined “time 

course”(with 220 time points) and used the combined dataset as input to the three algorithms. 
On the other hand, DBN used all 20 time-courses as inputs to infer one network. We used 
Topknet [1] algorithm to integrate four representative network-inference algorithms, i.e., GENIE3, 
TIGRESS, NARROMI, and DBN. The procedure used is composed of three steps. (i) A network-
inference algorithm assigns an edge-score to each link and links are ranked according to their 
confidence levels. (ii) As in Part A, the rank values for each algorithm were normalized by 
scaling from 0 to 1 and the normalized values were regarded as edge-scores by the algorithm. 
(iii) For each edge, Topknet [1] algorithm selects the highest edge-score among the four edge-
scores from the four network inference algorithms and regards the selected edge-score as the 
score of the edge. 
 
Silencing of indirect links 
The procedures for experimental data generated one edge-score matrix, G, for each cell line 
and stimulus, while that for in silico data generated one G from 20 datasets under different 
conditions. However, edge-scores in G may be affected by indirect and direct links. To address 
this issue, Barzel et al. developed a method to silence indirect effects [2]. Their method can 
transform G into a highly discriminative silenced matrix, S, that may be able to identify direct 
causal links. For each G, we applied the method by Barzel et al. to obtain S from G. We regard 
the transformed edge-scores in S as final edge-scores of links. 
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Existing tools and packages used in this study 
We implemented Topknet algorithm in R. The existing tools, packages, and algorithms that we 
used are: GENIE3 (http://www.montefiore.ulg.ac.be/~huynhthu/software.html), TIGRESS 
(obtained from GP-DREAM network inference website), and DPC 
(https://code.google.com/p/dpcnet/), and Matlab source codes for NARROMI 
(http://csb.shu.edu.cn/narromi.htm), and DBN (http://mukherjeelab.nki.nl/DBN.html). 
 
Tuning parameters 
Our method integrated five existing algorithms and four of them have tuning parameter. For 
DBN, we set max_in_degree = 4 and reg_mode = ‘full’. For Genie3, we set nb.trees = 1,000 and 
10,000 for Parts A and B, respectively. For TIGRESS, we set nstelPARS = 5 and 2 and 
nbootstrap = 100 and 10,000 for Parts A and B, respectively. The other parameters in the four 
algorithms are default. 
 
Discussion 
We applied a consensus learning method, “Topknet” [1], that can integrate various types of 
network-inference algorithms, although, in this challenge, we focused on the five representative 
network-inference algorithms. To find the best combination of algorithms, in future, we will try a 
large number of algorithms and various combinations of these algorithms. 
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SC1 Network Inference: Team34 
Summary 
A novel integrated approach was used to construct consensus signaling networks with high 
confidence interactions from three different network inference algorithms, weighted according to 
their agreement with a prior knowledge network. 
 
Introduction 

Protein kinases play a very important role in controlling cell growth, proliferation and survival. 
Abnormal behaviours of protein kinase signalling networks often result in specific diseases, 
including cancers. The knowledge of signalling pathways has been captured in manually 
curated biological databases such as the Protein Interaction Database (pid.nci.nih.gov) and 
KEGG (www.genome.jp/kegg).  Rich data from large-scale functional genomics studies are still 
largely untapped resources for understanding the signalling cascades. Although the research 
community has proposed many network inference algorithms, none of them can accurately infer 
the complete protein kinase signalling network and the results vary substantially. Here we 
describe a novel ensemble method for inferring signalling networks from dynamic proteomic 
data.  Specifically, we devised an integrated approach to construct consensus networks inferred 
with three network inference algorithms: dynamic Bayesian networks (DBN), Max-min hill 
climbing (MMHC), and graphical Gaussian models (GGM). Results from these three 
approaches were integrated to create a single network representation for each condition of the 
HPN-DREAM challenge. 
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Methods 
Our approach has three main steps: network inference prediction using standard algorithms, 
evaluation against known biological pathways, and calculation of edge confidence scores.  Each 
of these steps is detailed below. 
 
Step 1. Perform cross-validations of networks in each method using Monte Carlo algorithm to 
generate the edge score.  Initially we investigated five different network inference algorithms: 
generalized linear model (GLM), lasso and forward stage-wise regression model (LARS), 
dynamic Bayesian network using 1st order conditional dependencies (DBN), graphical Gaussian 
models (GGM) and max-min hill-climbing (MMHC). We used the Monte Carlo algorithm to 
handle replicates in the input data and generate the edge scores for networks constructed with 
each method. This approach allows repeated measurements, irregular sampling, and unequal 
temporal spacing of the time points. In each resampling, one zero time data point was used. 
The repeated sampling also helped the calculation of the edge score, which was equal to the 
frequency of an edge in the total number of networks. 
 
Step 2. We evaluated the method accuracy by comparing the inferred networks against existing 
biological pathways from KEGG.  To determine the algorithm accuracy and assign method 
weights. The overlapping rate between each network and KEGG pathways was calculated.  
Each method was assigned a method weight based on the accuracy rate. Weights of 50%, 30% 
and 20% were assigned to DBN, MMHC, and GGM correspondingly, which reflect the method 
accuracy. Two methods, GLM and LARS, were excluded from the later analysis due to the low 
overlapping rate. 
 
Step 3. Edge confidence scores were calculated from the sum of products of edge scores and 
method weights. A cut-off threshold for the confidence scores was selected on the basis of the 
score distribution, and only edges with high confidence scores were used to construct 
consensus networks. These consensus networks are more robust than the networks 
constructed by an individual algorithm. The resulting consensus networks represent the nodes 
and edges predictions from three different algorithms most likely supported by the prior 
knowledge.  
 
Implementation details 
The five network inference algorithms were applied with standard R functions or packages: R 
glm() function for GLM, lars package for LARS, G1DBN package for DBN, GeneNet package for 
GGM, and bnlearn package for MMHC. The Monte Carlo algorithm was used to handle 
replicates with as.longitudinal function in the R longitudinal package. The edge confidence 
scores, method weights and consensus networks were built using in-house Perl scripts. 
 
We used the data from all cell lines, stimuli, time points and inhibitors. For the experimental sub-
challenge, we used “Main” dataset only. The data were log-transformed prior to modelling. 
Missing data were not specifically handled. The same resampling method and algorithm weights 
learned from SC1 were applied to the network construction in the in silico challenge. 

 
Discussion 
It is an extreme challenge to infer the protein kinase signalling networks from the large scale 
functional proteomics experiment data. The difficulties include 1) The signaling network is a 
dynamic system which changes in different conditions and time points; 2) The protein 
interactions are very complex and non-linear; 3) The heuristic approaches modelling the 
network are subject to generate high false positive and negative results. To deal with these 
issues, we integrated networks from multiple network inference algorithms into a consensus 
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network structure. Different algorithms could detect different interaction signals in the network. 
The inferred networks were evaluated with KEGG pathways to determine the accuracy for each 
algorithm. The interactions consistent within and between methods were assigned high 
confidence score and selected for building consensus networks.  The result should be more 
accurately reflecting the signalling process than networks from each individual algorithm.   
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SC1 Network Inference: Team35 
Summary 
A dynamic Bayesian network approach that uses exact model averaging to determine the 
weight of each possible network edge. A related static Bayesian network approach was 
implemented as the submission for Team38. 
 
Method 
The method is a modified version of the Team38 submission, and full details are provided in that 
write-up. In brief, the key difference is as follows. As in the static approach, we make each 
protein a target, and make the remaining proteins predictors. However, we create records in 
which the predictors have their values at time t  and the target has its value at time 1t . Using 

these records, we then proceed exactly as described in the Team38 write-up for the static 
Bayesian network approach. 
 

 

SC1 Network Inference: Team36 
Summary 
A network inference method based on algorithmic information theory using the Normalized 
Information Distance and its computable version, Normalized Compression Distance. 
 
Introduction 
A series of information similarity distances from a proteomics time-course dataset on four breast 
cancer cell lines provided by the HPN-DREAM challenge were tested in the network 
reconstruction task. These similarity measures are based on Algorithmic Information Theory 
(AIT). Among its powerful features, AIT provides the means for optimal inductive inference, 
making it relevant to the task of biological network reconstruction, as biological data are 
regularly incomplete and noisy and therefore powerful formal inference methods are needed. 
The first measure used in the task of network reconstruction was the so-called Normalized 
Information Distance (NID). NID measures the similarity between 2 objects and retrieves a value 
between 0 and 1 defined as: 

NID(x,y) := max{K(x|y), K(y|x)}/max{K(x),K(y)} 
 
where K(x|y) := min{l(p) : U(y,p) = x}, that is the length of the shortest program p with input y 
running on a universal Turing machine U that produces x [Ref 1]. 
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Methods 
We applied the same methodology for inferring the underlying networks in both the experimental 
sub-challenge and the in silico sub-challenge.  All portions of the HPN-DREAM data were used, 

but only from the Main file. We lumped all data but also began to perform some experiments 
with combinations, especially taking single replicates over time and making comparisons 
between them. 
 
In the context of network reconstruction, two nodes x and y were considered to be (causally) 
related and therefore connected in the resulting network N if NID(x,y) < n. The choice of n is 
determined by the estimation of the Kolmogorov complexity K(Nm) of a set of sampled inferred 
networks with resulting different topology Nm for varying m. A complete graph, for example, has 
a low K value while a random graph has maximal K value. Thus n := m when K(Nm) reaches its 
greatest value for all Nm, under the assumption that the underlying data is not random and 
therefore the first network with maximal K is the most informative. 
 
One initial difficulty of measures based on Kolmogorov complexity is that their numerical 
calculation is difficult, if not impossible, due to their power; this is because measures based on 
AIT are guaranteed to asymptotically recognize any computable regularity, that is a regularity 
that can be written in a computer program as a statistical test running on a universal Turing 
machine. A common way to numerically approximate K and NID is using compression 
algorithms. The Normalized Compression Distance based on NID uses a compression algorithm 
as a means to approximate NID and is defined by: 
 

NCDC(x,y) = (C(xy) – min{C(x), C(y)})/max{C(x), C(y)} 
 
where xy is the concatenation of x and y and C(x) is the compressed length of x using 
compression algorithm C.  The more optimal the value of C, the closer it is in value to K(x), 
which yields a better approximation of NCD to NID. 
 
The compression deficiency hypothesis 
Correct directionality determination of nodes in the inferred network was key to being well 
ranked in the challenge leader board, but NID is commutative and we were therefore strictly 
speaking not able to determine the directions. However, given that NID(x,y) = NID(y,x) but 
NCDC(x,y) is not necessarily equal to NCDC(y,x) for some lossless compression algorithm C 
(ideally robust over different C), we formulated a hypothesis. The compression deficiency 

hypothesis is the bold idea that a compression algorithm performs better on node variable 
values if they are provided in the order of their relative causal relation rather than the reverse. 
We tested this hypothesis by feeding the compression algorithm with both C(x,y) and C(y,x) and 
determined the direction of a link forward, x->y, if C(x,y) > C(y,x), and y->x otherwise 

(bidirectionality for equality). If both networks had similar scores then the deficiency hypothesis 
would be rejected. Under the same hypothesis to test, we took the absolute value of the 
difference NCDC(x,y) - NCDC(x,y), as a confidence estimation of the directionality of the node 
connections. 
 
Discussion 
One result that we could discern in the HPN-DREAM challenge was that network reconstruction 
was robust under different lossless compression algorithms---at least for the two compression 
algorithms tested, Deflate and BZIP2, which are among the most commonly used and best 
performing in data compression. Indeed, in [Ref. 2] it was shown that algorithmic complexity 
approximations of graph and networks deliver stable results in agreement with the theoretical 
expectation using a technique based on algorithmic probability and also by uncompressibility. 
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The results from this challenge suggest that improvements on various fronts are possible in 
order to arrive at a reasonable alternative method for network reconstruction. Some preliminary 
results suggest that the method may be good at finding networks. This is because the main 
characteristic of Kolmogorov complexity is that it provides an information content value of an 
object independent of the ensemble and is therefore less sensitive to correlation loops. 
 
Alternatives to compression algorithms may constitute a possible improvement, given that 
correlation signals may be weaker than the noise from deficiencies introduced by compression 
algorithms from small sample effects. However, new ideas based on other algorithmic 
information measures suggest that the determination of link direction is possible and this 
remains something to be further explored. Additionally, the threshold technique described in the 
Methods section is independent of the inference network model and hence can be applied to 
other algorithms independently. 
 
Other similarity distances based on AIT have yet to be tested, and investigations are currently 
underway. For example, one idea to overcome this drawback is the use of a variation of K to 
which an important biological currency is added: time, like evolutionary time. Indeed, concepts 
such as Bennett’s logical depth do tell apart randomness from structure by taking into account 
the decompression time of compressed data. Methods based on Kolmogorov complexity are 
very novel and are in quite an early stage of development. We think it will prove to be a very 
interesting idea.  
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SC1 Network Inference: Team38 
Summary 
A (static) Bayesian network approach that uses exact model averaging to determine the weight 
of each possible network edge. A related dynamic Bayesian network approach was 
implemented as the submission for Team35. 
 
Introduction 
Epistasis is an interaction in which several genes combined affect disease, and the net effect on 

phenotype cannot be predicted by simply combining the effects of the individual loci. We had 
previous success learning epistatic interactions from high dimensional datasets using the 
Bayesian Dirichlet Equivalent Uniform (BDeu) score [1] for Bayesian networks [2] to score 
candidate interactions [3-7]. Because the proteins on a signal pathway could also interact to 
affect the network, we apply the same approach to learning edges that exist between proteins 
on a signaling pathway. 
 
We model using a Bayesian network approach, however, we do not try to learn an entire 
Bayesian network. Rather we make each protein a target, and make the remaining proteins 
predictors. A causal model is the directed acyclic graph (DAG) in which some subsets of the 
predictors are the parents, and the target is the child. We score all 0, 1, 2, 3, and k predictor 
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causal models M  using the BDeu score, which is the )|( MDataP . We assume all 0, 1, 2, 

3,…, and k predictor causal models are equally probable a priori, and finally compute 

)|( DataMP  for each model M . We then compute the probability of each edge using model 

averaging. We finally remove edges based on conditional independency considerations, as 
described in the Methods Section.  
 
Methods 
We provide a complete description of the method in this section. Since the method uses 
Bayesian networks and the BDeu score we first briefly review these concepts. Bayesian 
networks [2] are commonly used for uncertain reasoning and machine learning in many 
domains, including biomedical informatics [8-9], and in particular signaling pathways [10]. A 

Bayesian network (BN) consists of a directed acyclic graph (DAG) ),( EVG  , whose node set 

V  contains random variables and whose edges E  represent relationships among the random 

variables. A BN also includes a conditional probability distribution of each node VX   given 

each combination of values of its parents. Each node V in a BN is conditionally independent of 
all its non-descendants given its parents in the BN. Often the DAG in a BN is a causal DAG [2]. 
Using a BN, we can determine conditional probabilities of interest with a BN inference algorithm 
[2].  
 
The task of learning a BN from data concerns learning both the parameters in a BN and the 
structure (called a DAG model). In a score-based structure learning approach, we assign a 
score to a DAG based on how well the DAG fits the data. Cooper and Herskovits [11] introduced 
the Bayesian score, which is the probability of the Data given the model G. A popular variation 
of the Bayesian score is the Bayesian Dirichlet equivalent uniform (BDeu) score [12], which 
allows the user to specify priors for the conditional probability distributions using a single 
hyperparameter  , called the prior equivalent sample size. That score is as follows:  
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where ir  is the number of states of node iX , iq  is the number of different instantiations of the 

parents of iX , and ijks  is the number of times in the data that iX  took its k th value when the 

parents of iX  had their j th instantiation. 

The steps in our static Bayesian network approach for learning the edges in a signaling pathway 
from time series phosphorylation data on the proteins in the pathway are as follows: 
 
1) Discretize the values of each of the protein variables separately into 3 values, low, medium, 

high, using the equal distribution discretization method. 
2) Using these data, do the following for each protein: 

a) Make the protein the target and make the remaining variables predictors. A causal 
model is the DAG in which the variables in some subset of the predictors are the 
parents, and the target is the child. Score all 0, 1, 2, 3,..., and k predictor causal models 

M  using the BDeu score with prior equivalent sample size α. The BDeu score provides 

the )|( MDataP . Assume all 0, 1, 2, 3,…, and k predictor causal models are equally 

probable a priori, and finally compute )|( DataMP  for each model M using Bayes’ 

Theorem. 
b) Compute the posterior probability of each edge by averaging over all the models. That 

Nature Methods doi:10.1038/nmeth.3773



 58 

is, 
 

).|()|()|( DataMPMYXPDataYXP
M

   

 

where )|( MYXP   equals 1  if edge YX  is in model M  and equals 0 otherwise.  

3) After the above procedure is performed for all proteins, the result is a saturated directed 
graph, where the weight on each edge is the probability of the edge. 

4) Remove edges from this graph based on conditional independency considerations as 
follows: If the edge YX   exists and there is a directed path   from X  to Y  such that the 

edge from X to Y is weaker than a parameter β times the weakest edges on  .  

 
The method has three tuning parameters: α, the parameter in the BDeu score; k, the number 
possible parents to consider when performing model averaging; and β, the parameter used 
when deleting edges. For this submission, we used α=9, k=4, and β=1. If one does a grid 
search using many values of these parameters, it seems likely that the performance of the 
method could improve significantly, making it perhaps one of the more viable methods for 
accomplishing learning edges in a signaling pathway from phosphorylation data. Additionally, 
different discretization strategies could be tested. This method is strictly a tool for learning from 
data in that it does not incorporate any biological prior knowledge.  
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SC1 Network Inference: Team40 
Summary 
Direct cause-effect relationships, inferred from a large-scale literature-based phosphorylation 
network, are used to construct shortest-path trees that explain the experimental data. 
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Introduction 
The purpose of this submission was to make an initial assessment of the usefulness of graph-
based methods applied to large-scale literature-derived networks for the type of inference 
problem represented by the HPN-DREAM challenge. The algorithm operates on a master 
network of observed cause-effect relationships relating to protein phosphorylation with 4433 
protein nodes and 21594 directed edges. Cause-effect relationships in this network reflect 
diverse experimental contexts, and represent direct as well as indirect causal effects. One of the 
main challenges to construct meaningful subnetworks for possible causal mechanisms is to 
distinguish direct relationships from those that are indirect in nature, and which can potentially 
be explained by a causal sequence (or path) of direct effects.  
 
Here, we employ a heuristic stochastic algorithm that aims to distinguish direct from indirect 
cause-effect relationships by using the underlying network topology. The central idea is to 
identify direct edges as those that are likely involved in many causal paths, and therefore able to 
explain a large number of indirect edges. In particular we look at “transitive causal triangles” 
with edges A B, BC, and AC, where both (direct) edges AB and BC potentially 
“explain” the (indirect) edge AC. The algorithm samples a maximum entropy ensemble of 
subgraphs of the original large-scale network such that the expectation value of the total 
number of explained edges <Ne> assumes a particular value. The probability of a subnetwork 
with Ne explained edges in this ensemble is given by p ~ e), where <Ne> is a function of 
the control parameter  
 
Marginal edge probabilities p are used to define edge weights w = - log(p) where small values of 
w correspond to inferred direct causal effects, and larger values of w represent indirect 

relationships. Potential causal mechanisms are then constructed as trees assembled from 
shortest paths connecting inhibitor-affected proteins with proteins whose phosphorylation state 
was observed to have changed in the experiment. 
 
Method 
The method was only applied to the experimental data part of the HPN-DREAM challenge since 
it is based on prior knowledge and cannot be applied to in silico data. The method was 
implemented from scratch in Python and C. 
 
Pre-processing of phosphorylation data 
The actions of the different stimuli were not modelled. For the actions of the inhibitors we 
determined those phosphoproteins whose phosphorylation state changed significantly (>10% 
relative to DMSO vehicle with greater weight on early time points). No other time course 
information was used, and no extra time points were used from the “full” data set. All cell lines 
and stimuli were used separately to construct hypothesis networks. When mapping 
phosphoproteins, and proteins targeted by inhibitors to the master network, information about 
different phosphorylation sites on the same protein is lost. 
 
Directness inference 
As described in the introduction, edge weights reflecting the “directness” of the underlying 
causal effects are inferred in a large-scale phosphorylation network. This is done by sampling 
an ensemble of subnetworks using standard Markov-chain Monte Carlo with given parameter , 
by randomly switching edges “on” and “off”, and measuring marginal edge probabilities p. 
A total number of 1000 “sweeps” through the network is enough to determine edge probabilities 
with sufficient accuracy.  For the subsequent step of causal network construction we found  =1 

to be a reasonable choice, and performed no further optimization for this submission. 
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Causal network construction 
Dijkstra’s algorithm with edge weights as determined above was used to construct shortest 
paths from inhibitor-affected proteins to those phosphoproteins whose phosphorylation changed 
significantly (see above). The latter step essentially infers causal ordering of the observed 
effects based on prior-knowledge present in the large-scale network. 
 
Discussion 
This submission was an initial attempt to use a large-scale prior-knowledge-derived network for 
the inference of “mechanistic” causal network hypotheses from time-dependent phosphorylation 
data. A heuristic algorithm was devised to distinguish between direct and indirect effects present 
in the network.  Work remains to be done to assess strengths and weaknesses of this approach. 
Obviously the presented method can only be as good as the master network itself, i.e. can only 
include causal effects that have been previously observed (albeit in a possibly different context). 
Other constraints are the lack of phosphorylation site specificity, and the fact that directionality 
of causal effects (i.e. their activating or inhibiting nature) were not taken into account, both of 
which are not limitations in principle. 
 

SC1 Network Inference: Team41 
Summary 
Lasso-based regression with iterative random feature selection to identify regulators that best 
predict the expression level of target proteins. 
 
Introduction 
Many methods have been developed for network inference, each with its own set of limitations. 
We surmise that combining different methodologies will overcome the limitations of individual 
methods through complementary integration. To that end, we developed a novel lasso-based 
algorithm to identify the regulators that best predict the expression level of target genes and 
proteins. Our method integrates ideas from lasso regression and bootstrapping. A limitation of 
lasso regression is that selected features tend to be over-fitted to the tuning parameter λ, which 
leads to instability of results.  The instability in feature selection can be mitigated with 
bootstrapping-based methods where the data are randomly re-sampled. In the case of small 
sample size, however, re-sampling may not be effective. Another limitation of bootstrapping is 
that the true variable (regulator gene or protein) is likely to be missed (false negative) when 
strong indirect or direct regulators exist. To overcome these weaknesses, we developed a 
lasso-based random feature selection algorithm (LARF). In LARF, we regard a sparse linear 
regression as a feature selection because our goal is to identify the regulators that best predict 
the expression level of target genes and proteins. LARF is similar to bootstrapping, except that it 
selects variables among randomly pre-selected candidate features in each iteration over 
different tuning parameters of lasso optimization.  The result is that true features weakly 
correlated to the target gene or protein can be identified, excluding indirect or direct regulators 
from the feature set. The proposed method has been preliminarily tested with DREAM3 data, 
and also compared to state-of-the-art methods such as top-ranked methods in the DREAM3/4 
challenge. 
 
Methods 
To improve upon the problems of over-fitting and strong indirect regulation, we iteratively 
performed lasso regression over different λ with randomly predefined candidate features, rather 
than random samples as with bootstrapping. More precisely, the basic idea of LARF is that 
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lasso is iteratively performed with only randomly selected candidate features while increasing 
the tuning parameter, then giving weight to each feature by counting how many times each 
feature is selected in the iterations. We pre-defined the fraction of the number of all possible 

features as a parameter (0 < α < 1) for the candidate features. For example, when the number 
of all possible regulators is n=100, α=0.2 means that 20 random candidate features are used in 
a single iteration of lasso. After random featuring, random sampling is performed with parameter 
r, which decides how many samples are used from the original data. With randomly (uniform 
distribution) selected features and samples by parameter, we iteratively run lasso over 
increasing tuning parameter λ until lasso does not select any features due to a high λ. In each 
iteration, random candidate features and samples are re-defined again. The tuning parameter 
starts from zero and increases incrementally with a small step-size (e.g 0.001) to ensure that re-
featuring and re-sampling will be unbiased. For each iteration, the frequency matrix F is updated. 
The i-th row of F is the frequency of feature selection for target node i (Fi i is zero). We applied 
the method to the in silico data only and used all training data without any external data. The 
data were mean-centered prior to modeling. The method is implemented in Matlab with the 
LASSO toolbox. The parameter α and r is set to 0.5 and 1, which means random sampling is not 
applied. 
 
Discussion 

There are several reasons why our method may not have performed well. Importantly, LARF 
was originally designed for steady state data, and so we may need to reconsider how it is 

applied to dynamic time series data. In this challenge, we set a target node to 𝑋𝑖
𝑡+1and 

regulators to 𝑋\𝑖
𝑡 . A blind assessment of our method tested on in silico data was informative, and 

we aim to test this method with experimental data in another DREAM challenge. 
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Supplementary Note 2: HPN-DREAM Time-course Prediction 

Sub-challenge (SC2) Methods 
 
 

Team submission files and code (where available) can be found on Synapse at 
https://www.synapse.org/HPN_DREAM_Network_Challenge, under the section 

“HPN-DREAM Community Resource”. 
 

 

SC2 Time-course Prediction: Team3 
Summary 
We used COPASI to model reactions using mass-action kinetics with phosphorylated species 
as essential modifiers for subsequent reactions. 
 
Methods 
We implemented our network into COPASI, a software application for simulation and analysis of 
biochemical networks in which reactions are modeled using mass-action kinetics with 
phosphorylated species as essential modifiers for subsequent reactions. Stimuli and test 
inhibitors were included as global quantities. Test-inhibitors and stimuli may be applied to the 
model by setting the global quantity from “0” to “1” (found at: Model -> Biochemical -> Global 
Quantities). In general, when switching between these two values, all subsequent forward-
reactions of the inhibited target are reduced by (at least) 90%. The stimuli lead to a 10-fold 
increase of the reaction speed of forward-reaction of the stimulated target (receptor). 
Reproducing our results is possible by applying the specific test-inhibitor and stimulus set and 
running the time-course (found at: Tasks -> Time-Course). 
 
We used the network inferred from sub-challenge 1 as the basic structure for constructing our 
dynamic model. As mentioned in the network inference write-up document, our evolving model 
was used as cross-validation for the network and vice-versa. In this case we used COPASI’s 
ODE based modeling to describe the species’ time-courses. To avoid complications when 
opening the models we suggest using COPASI build 55. Using an earlier or later version may 
cause problems. The model was constructed with high simplicity to exclude as many unfounded 
assumptions as possible. 
R was used to compute small scripts to simplify organization and handling of the data files. R 
was also used for our script to analyze dynamics for the network inference (see SC1A-write-up 
file). Since we used the graphical interface of COPASI, no further programming language was 
used.  
 
Parameter fitting in COPASI may use automatic weighting methods to change the importance of 
data lanes. Since this led to rather bad fits, which completely ignored important dynamics, we 
manually adjusted this to be “1”. This greatly improved the quality of our fits. We tried several 
algorithms already included in COPASI, such as particle swarm, simulated annealing and 
evolutionary programming to get the best fit result. Switching between methods helped us to 
avoid a bias introduced by using only one method. Furthermore, the possibility of being stuck in 
a local minimum was greatly reduced. 
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Stimuli were included as species that served as essential activators of their respective 
receptors. Below is the Standard Rate Law for Receptor Activation:  
 

𝑣 = 𝑘1 ∗
[𝑠𝑡𝑖𝑚𝑢𝑙𝑢𝑠]

[𝑠𝑡𝑖𝑚𝑢𝑙𝑢𝑠] + 𝐾𝑎
∗ [𝑠𝑢𝑏𝑠𝑡𝑟𝑎𝑡𝑒] − 𝑘2 ∗ [𝑝𝑟𝑜𝑑𝑢𝑐𝑡] 

 
Where k1: rate of activation; stimulus: respective ligand; Ka: affinity of the ligand-receptor pair; 
substrate: unphosphorylated receptor; k2: rate of inactivation; product: phosphorylated receptor. 
 
Because the presence of an inhibitor was applied via a global quantity, the influence of the 
inhibitors on subsequent reactions were modeled via a mathematical term, reducing respective 
reactions by at least 90%, when the respective global value. The equation is modified to: 

𝑣 = 𝑘1 ∗
[𝑚𝑜𝑑𝑖𝑓𝑖𝑒𝑟]

[𝑚𝑜𝑑𝑖𝑓𝑖𝑒𝑟] + 𝐾𝑚
∗ (1 − 0.9 ∗ 𝐼𝑛ℎ𝑖𝑏𝑖𝑡𝑜𝑟) ∗ [𝑠𝑢𝑏𝑠𝑡𝑟𝑎𝑡𝑒] − 𝑘2 ∗ [𝑝𝑟𝑜𝑑𝑢𝑐𝑡] 

 
 
Where k1: rate of activation; modifier: active species; Km: affinity of modifier-substrate pair; 
Inhibitor: applied inhibitor; substrate: unphosphorylated species; k2: rate of inactivation; product: 
phosphorylated species. 
 
We modified the relevant rate laws for the affected proteins to include the test-inhibitor and 
decrease the reaction rate when applied. Since the inhibitors applied in the experimental data 
appeared to have an effect on the initial concentration of the phosphorylated species, we 
corrected some of the species’ initial concentration according to the test inhibitors. We used the 
same approach for the in silico sub-challenge, since COPASI is a versatile user interface for 

modeling. 
 
We can only guess how much computational time was used for sub-challenges 2A and 2B, 
since we relied heavily on the local computer cluster for our parameter estimations. On average, 
each model may have spent up to 200 h on the cluster, often with several parallel fits. 
 
It seemed necessary to us to build individual models for each cell line, which ideally was valid 
for all stimuli. For the parameter fitting we focused on the “Main” dataset but used the 
information about total protein concentration provided in the “Full” dataset to support our 
estimations. In some cases, such as MCF7 we noticed that the stimuli had little effect on the 
overall behavior of the cell line. In our parameter estimations we fitted against all experimental 
conditions at the same time. The inhibitors had been included as global quantities that 
significantly down-regulated the downstream reactions of the inhibitors’ respective target. 
 
If we could not represent dynamics that were clearly visible in the experimental data with our 
model, we checked for additional regulatory feedbacks not included in our networks for sub-
challenge 1 or our models. One case was the internalization of the activated EGFR, which 
significantly improved the fits for phosphorylated EGFR species in the BT20 model. To validate 
our model we used the provided inhibitor data, which showed us that certain feedback loops 
and edges had to be improved. One such feedback loop of AKT on itself, which was not 
included in our model initially, significantly improved the reaction to the inhibitors. 
 
Discussion 
During the course of the competition, we noticed many times how different cell lines may be and 
how changed the signaling pathways are compared to healthy cells. Our approach of building 
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one model for each cell line was a step in the right direction, but the models still need a lot of 
work and more experimental data to really describe the dynamics correctly.  
 
Working with the in silico model taught us the difficulty of evaluating data without the possibility 
to access prior information from the scientific literature about the system at hand. Clearly, our 
model is able to reproduce the great majority of the dynamic trends in the original data, but 
might still lack a few causal edges to explain some of the more complex interactions. Therefore, 
our resulting model heavily depends on the quality of the underlying signaling network. 
 
References 

1. COPASI Version 4.10 (Build 55) (copasi.org) 
 

SC2 Time-course Prediction: Team6 
Summary 
Predictions on real data are based on the network models learned in the network inference sub-
challenge, using Ordinary Differential Equations (ODE) models and least squares method for 
parameter identification.  
 
Introduction 
A signaling network can be described by a system of ODEs, whose parameters can be used to 
describe its dynamic behavior after the interacting proteins and the type of these interactions 
are determined. One advantage of such systems is that, once identified, it provides a powerful 
tool for data simulation. Since we based our predictions of network structures in the network 
inference sub-challenge on ODE systems, we were then able to easily predict protein time-
courses. 
 
Methods 
We identified stimulus-specific models such that for each protein, a module network was built 
considering a set of possible regulators and a pruning procedure based on an F-test was 
applied to remove redundant interactions. Then, the module networks were integrated in a 
single global network that was globally re-identified to obtain the final parametric estimation. The 
stimulus-specific ODE system with its set of parameters was used for prediction. Stimuli were 
considered as inputs in the network system acting on a set of upstream proteins opportunely 
selected according to prior biological knowledge. The overall approach is explained above in the 
SC1 network inference method description for Team6. 
 
For each stimulus, the parameters identified independently for the four different inhibitory 
conditions were averaged using a weighted scheme that takes into account the effect of 
different inhibitors on kinase action. Weights were calculated as the ratio between the 
concentrations of the inhibited proteins (AKT under GSK690693 inhibitor, AKT and MEK under 
GSK690693+GSK1120212 inhibitor, FGFR1 and FGFR3 under PD173074 inhibitor) at time 0, 
prior to addition of the stimulus, and the concentrations under the DMSO condition, was 
calculated and used as Because GSK690693+GSK1120212 effect is the result of the 
combination of two inhibitors, individual GSK1120212 effect was computed subtracting the 
effect of GSK690693 alone. A similar approach was used to mimic the effect of test inhibitors.  
 
Concerning simulated data, predictions are based on the network models learned in the in silico 
network inference challenge, where we associated a p-value to each edge, corresponding to its 
marginal effect on the goodness-of-fit of the system. To build the network, we selected all edges 
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with a p-value lower than 0.05, corresponding to a good balance between network sparsity and 
goodness of the resulting fit, assessed by visual inspection of the temporal profiles. To generate 
temporal profiles, we integrated each equation of the system with a piecewise analytical 
solution, assuming constant regulators in each time step. The effect of the inhibitors was 
modeled by clamping protein activity to a minimal value for the entire experiment, while the 
stimuli were simulated by adding a constant term (1 for high stimuli, 0.01 for low stimuli) to the 
differential equation corresponding to the stimulated proteins. The fit to temporal data was 
carried out by minimizing the Residual Square Sums through an evolutionary algorithm, 
Covariance Matrix Adaptation - Evolution Strategies (CMA-ES, Hansen et al., Evolutionary 
Computation 2003). 
 
The algorithm implementing the method was written in both R, C and MATLAB language, 
requiring additional packages R.matlab, Statistical Toolbox, Control System Toolbox, 
Optimization Toolbox and the MATLAB implementation of the CMA-ES algorithm 
(https://www.lri.fr/~hansen/cmaes_inmatlab.html#matlab). R code was used to organize 
input/output data and to generate some preliminary stats useful for the model fit. MATLAB and 
C code were used to implement definitive ODEs models and the approach to time-series 
prediction. 
 
Discussion 
Our ODE-based method enables to describe the topology and the dynamic properties of the 
considered protein networks. However, the choice of linear models, despite being appropriate 
for network topology reconstruction (as shown by our results in the network inference sub-
challenge), might fail in capturing non-linear protein interactions, lowering prediction accuracy. 
Thereby, improvement in the prediction of protein abundances might be gained by using non-
linear models, provided that the adopted models are a priori-identifiable and that the data are 
sufficiently informative to guarantee a posteriori identifiability. 
 

SC2 Time-course Prediction: Team8 
Summary 

Gradient tree boosting is used to predict forward steps in time series data, represented as 
successive points under a Markov assumption. 
 
Introduction 

Our approach uses the traditional dynamic Bayesian network model, augmented to include 
gradient boosting regression to fit the response of each phosphoprotein. The salient features of 
this algorithm are (a) it learns a strong regression function from an ensemble of weaker 
regression trees, and (b) it re-weights the training data at each iteration to emphasize hitherto 
poorly modeled examples (Hastie et al., 2004). Once a model is trained, predictions at a given 
time step can be used as input to predict future time steps. The underlying methodology is 
based on an ensemble regression approach that can capture nonlinear interactions among 
covariates. Our approach was validated on known literature models (Xu et al., 2010) of signaling 
networks before applying to the challenge data. 
 
Methods 
Dynamic Bayesian networks ‘unroll’ Bayesian networks by making the Markovian assumption 
that phosphoprotein activity at each time point depends only on the values at the previous time 
point. Given this representation, we use a gradient boosting approach to fit a model that predicts 
activity for each phosphoprotein individually, then pools those predictions and uses them as 
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input for the next time step. Our method was identical for both the in silico and experimental 
components of the sub-challenge. 
 
Several preprocessing steps were performed prior to learning the model. Each experimental 
condition was mean centered. Missing time points were mean imputed to facilitate comparison 
between experimental conditions. Multiple replicates were averaged together to produce one 
time series for each experimental condition. We explored training our model on both the 
response level and response rate, and found response level to have better performance. 
Parameters, including maximum tree depth, number of boosting rounds, and learning rate were 
set using a grid search and evaluated under cross-validation. No information about the network 
connectivity learned in Sub-challenge 1 was used. For the experimental dataset, no external 
data was incorporated into the model, and only the main dataset was used (not the full dataset). 
 
Inhibitors were modeled using a perfect fixed-effects model (Spencer et al., 2012). The stimulus 
was not explicitly modeled. We dealt with stimuli in two ways: by grouping datasets across 
stimuli, and by training independent models for each stimulus. We found training separate 
models for each stimulus performed better than grouping across stimuli. 
 
Our algorithm was implemented in Python, using the scikit-learn library for model development 
and testing. The pandas library was used for data manipulation and preprocessing. 
 
Discussion 
The gradient tree boosting approach performs well on both in silico and breast cancer RPPA 

data. Our performance on the real dataset was hindered by not integrating a biological prior into 
our model, however it was not immediately obvious how to do this. Predicted time series for 
target phosphoproteins consistently mimic the shape of the responses observed in the data as 
visualized in Figure 1. We expect ensemble models such as gradient boosting regression to 
gain increasing traction in this field due to their advantages over traditional regression 
approaches, including robustness to overfitting and ability to identify nonlinear effects. 
 
 

 
Figure 2. Exemplar measured and predicted time-courses. 
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SC2 Time-course Prediction: Team10 
Summary 
Our method predicts the projection of phosphorylation levels under unseen inhibitors using 
truncated singular value decomposition based on Markov and stationarity assumption. 
 
Introduction 
Mass-spectrometry-based methods can be used to quantify dynamic changes in phosphorylated 
proteins over time and therefore help us to predict the phosphorylation networks. However, such 
experiments are expensive and time-consuming, making them unlikely to be extended to very 
large scale including perturbation on most proteins. Additionally, computational modeling 
becomes vitally important for generalizing the observed time-course network dynamics to 
unseen situations, which remains a challenging task. To solve this problem, we developed a 
protein phosphorylation dynamics prediction method using truncated singular value 
decomposition (SVD). Our method is based on stationary Markov assumption and uses a 
regression method comparable to Lasso regression. Any time-course data could be used as 
inputs (with or without inhibitors) to predict the perturbation effects under other inhibitors within 
the same cell line. Our method is highly accurate (as measured by the mean root-mean-square 
error (RMSE) in DREAM8) and efficient, making it an ideal algorithm scalable to genome-wide 
studies. For the DREAM8 datasets, our algorithm takes less than one second per cell line and 
inhibitor combination. 
 
Methods 
Our method predicts the projection of phosphorylation levels under unseen inhibitors using 
truncated singular value decomposition based on Markov and stationarity assumption. Figure 1 
illustrates the workflow of our algorithm.  
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Our time-course prediction method contains five steps: 1) Adjust activity level of inhibited 
protein(s). 2) Determine the inference matrix representing the influence level of protein i on 
protein j in a specific cell line without inhibitors. 3) Estimating the starting phosphorylation levels 
of the proteins. 4) Adjust activity level of protein(s) under unseen inhibitors. 5) Iteratively predict 
the phosphorylation level across a time course. 
 
Assumption 
We make first-order Markov and stationarity assumption [1, 2]  that: every variable at a given 
time point ti only depends on variables at the previous time point ti-1. Furthermore, we assume 
that the value of a variable will not change without the influence of any other variables (including 
self-regulation). As a result, all the variables contributed are the value change of targeted 
variable. Equation 1 is the foundation of our method: 

Figure 1. Workflow of time-course prediction using truncated SVD.  
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Where Ek(ti) represents the phosphorylation value for protein k at the ith time point, 𝑅𝛼,𝑘 is the 

inference relationship factor indicating how much protein α will affect protein k, N is the number 
of proteins and ε is the error factor. KD α is the knockdown factor that equals to 0 if α is targeted 
by the inhibitor or equals to 1 otherwise.  
 
Inference Matrix R 
Combining Equation 1 for all proteins, all time points and all inhibitors, we can form the following 
equation: 

 
For the convenience of description, we assign an abbreviation for each matrix in Equation 1: 

 
Where each element in T is the observed value for antibody protein at a given time point, while 
corresponding element in T+ is the observed value for the same protein at the next time point. 
Both T and T+ can be obtained from the input data and R is the unknown inference matrix we 

interested. 
The problem can be solved by: 

 
Since T is not a square matrix, it is not invertible. T-1 in Equation 4 is the pseudo-inverse of 
matrix T. 
There are numerous pseudo-inverse methods, such as singular value decomposition (SVD) [3], 
QR method, L1-regulation and L2-regulation. In order to handle the noise ε mentioned in 

Equation 1, we used truncated SVD [4, 5], a variant of SVD, in our approach. Truncated SVD 
allowed us to minimize the effect of noise and then calculate the pseudo-inverse matrix. In 
truncated SVD, the first step is to decompose the target matrix into: 

 
Where U is an N×N unitary matrix, ∑ is N×T diagonal matrix and VT is the transpose of a T×T 
unitary matrix V. A convention is to order the diagonal matrix ∑ in a decreasing order, and the 
diagonal entries of ∑ are known as the singular values of original matrix T. Elements on the 

diagonal matrix ∑ are non-negative real numbers. 
Since there may be zero-value elements on the diagonal matrix ∑, its inverse matrix ∑-1 does 
not exist. In traditional SVD, the ∑-1 is calculated using following equation: 

 
Note that this is a pseudo-inverse operation in that ∑∑-1 ≠ I.  
Since the small values caused by noise in diagonal matrix may result in extremely large values 
in ∑-1, the noise is emphasized and dominates the inverses diagonal matrix using traditional 
SVD. To deal with the noise, a step in our method is the truncated SVD. A threshold is defined 
and elements of the diagonal matrix ∑ with values smaller than this threshold will be set to zero 
in ∑-1, so Equation 6 in truncated SVD is written as: 
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Finally, based on Equations 4, 5 and 7, the inference relationship matrix can be calculated as: 

 
 
Determine Starting Points 
Since we have no access to the phosphorylation levels at the first time point, a protein’s initial 
phosphorylation level under an unseen inhibitor was set to its average value under all training 
inhibitors.  Proteins targeted by one inhibitor could have very different phosphorylation levels 
compared to those under other inhibitors in the training data. We removed the data points for 
inhibited proteins in the training data when estimating the starting points. Due to the same 
reason, antibodies targeted by the new inhibitors are excluded in the prediction (and follow up 
evaluations). 
 
Adjust the Influence of Inhibited Antibodies 
The activity of the phosphorylation proteins targeted by inhibitors should be much lower than it 
is calculated in the inference matrix R in Equation 4. Therefore, the contribution of inhibited 
proteins towards other proteins will be reduced to 0 during the prediction. 

 
Note that the activity levels of a protein under different inhibitors may be combined together in 
Equation 2, 3, 4 and 8. 
Equation 9 is applied to both inferring the R matrix and predicting the levels of phosphorylation 
under unseen situation. 
 
Iteratively Predict the Phosphorylation Level across a Time-course 
After estimating the phosphorylation values at the first time point and adjusting the inference 
matrix based on the inhibitors, Equation 1 can be used iteratively to predict the breast cancer 
time-course perturbation in the rest time points. 
 
Execution Time 
Our method is efficient, which only takes less than one second to predict the time-course 
perturbation for one cell line, inhibitor combination. 
 
Discussion 
In the DREAM 8 challenge, we presented a time-course prediction method based on truncated 
SVD. Our method ranked number 1 in the experimental timecourse prediction challenge, as well 
as in the combined results of the experimental and in silico data sub-challenges. Our method 
could potentially be improved on two aspects. First, we could use alternative methods to 
determine the starting point. The method we used to determine the starting point highly 
depended on the assumption that inhibitors will not affect the phosphorylation levels of non-
targeted proteins, however this is not always correct. Second, we could reduce--but not remove-
-the influence of inhibited antibodies. Inhibitors usually reduce the activity level of its target 
differently, by 2 to 10 fold. With more information it is possible that the effects could be modeled 
more accurately. 
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 SC2 Time-course Prediction: Team28 
Summary 
The mean value of the inhibitor-free training perturbations was used to predict the time-course 
of phosphorylation kinetics for all test inhibitors. 
 
Method 
We chose a straightforward, simple, and computationally inexpensive method for predicting the 
time course of phosphoprotein levels. We took the arithmetic unweighted mean of the untreated 
(no inhibition) training data. The submission files were manually curated using Excel. The model 
for Part I was not taken into account for these predictions. There was no prior data or cross-
validation used.   
 
Discussion 
We believe that training data should be considered as a ‘prior’ when trying to make predictions 
of unknown inhibitors, as new time course predictions may remain close to the training data for 
most phosphosites. In future work, it would be useful to determine the ideal weights of the prior 
training data in order to most accurately predict new dynamics.  
 

SC2 Time-course Prediction: Team34 
Summary 
Time series data prediction was carried out using consensus networks and generalized linear 
models. 
 
Introduction 
Predicting time-courses under perturbations in the inferred signaling network is important to 
understand the function of a network. In this study, we had designed a novel method to 
integrate networks from three different inference algorithms. We used the Monte Carlo algorithm 
to handle replicates in the input data and generate the edge score for each inferred network. 
The networks were further evaluated with existing biological pathways from KEGG to determine 
the algorithm accuracy and assign method weights.  We calculated the edge confidence scores 
as the sum of products of edge scores and method weights. Only edges with high confidence 
scores were used to construct consensus networks. Then we applied generalized linear models 
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(glm) to carry out the prediction. In the glm, the dependent variables (Y) are the child nodes in 
the network and the independent variables (X) are the parent nodes. 
 
A robust network is the foundation of the time-course prediction. We had designed a novel 
approach to integrate networks from three different inference algorithms. Each edge in the 
network was assigned a confidence score and a cut-off threshold was determined based on the 
distribution of the confidence scores so that only reliable interactions will be kept in the network, 
which could improve the accuracy in our prediction. Generalized linear models extend ordinary 
regression to non-normal response distributions. This flexibility allows us to model the nonlinear 
relationship between nodes. 
 
Methods 
We used the data from all cell lines, stimuli, time points and inhibitors. For the experimental sub-
challenge, we used “Main” dataset only. The data were log-transformed, and we did not impute 
missing data. The Monte Carlo algorithm was used to handle replicates with as.longitudinal 
function in the R longitudinal package. The function allows repeated measurements, irregular 
sampling, and unequal temporal spacing of the time points. In each resampling, one zero time 
data point was used. The initial networks were calculated with three different algorithms: 
Dynamic Bayesian Networks (DBN), Max-Min Hill Climbing (MMHC), and Graphical Gaussian 
Model (GGM). Edges with high confidence scores were selected to build the consensus 
network. 
 
 
Generalized linear models were used to predict the time-series change under each inhibitor 
condition. For each consensus network, the node for the inhibitor target was excluded in the 
model. The initial values for building glm were selected from re-sampling of replicates with the 
Monte Carlo algorithm. In the glm, the dependent variables (Y) are the child nodes in the 
network and the independent variables (X) are the parent nodes. The predictions were carried 
out for each re-sampling of replicates.  Mean predicted values from the re-sampling of replicates 
were used in the submission. We did not use any external information in either portion of this 
time-course prediction challenge. We implemented our algorithms in R. 
 
Discussion 
It is an extreme challenge to infer the protein kinase signaling networks from the large scale 
functional proteomics experiment data. The difficulties include 1) The signaling network is a 
dynamic system which changes in different conditions and time points; 2) The protein 
interactions are very complex and non-linear; 3) The heuristic approaches modeling the network 
are subject to generate high false positive and negative results. To deal with these issues, we 
integrated networks from multiple network inference algorithms into a consensus network 
structure. Different algorithms could detect different interaction signals in the network. The 
inferred networks were evaluated with KEGG pathways to determine the accuracy for each 
algorithm. The interactions consistent within and between methods were assigned high 
confidence score and selected for building consensus networks.  The result should be more 
accurately reflecting the signaling process than networks from each individual algorithm.  The 
reliable consensus networks allow us model the perturbation accurately with generalized linear 
models. The mean values from re-sampling of replicates with the Monte Carlo algorithm reduce 
the variability and contribute to the accuracy. 
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SC2 Time-course Prediction: Team42 
Summary 

For the experimental data challenge, protein expression data for a given cell line, stimulus and 
time point are averaged across inhibitors. For the in silico data challenge, correlation was used 
to find a sparse causality network and fit a "pseudo-linear" system identified by minimizing mean 
squared error. 
 
Introduction 
We applied two different approaches to experimental and in silico data. Prior to developing a 
model for either dataset, we ran unsupervised exploratory analyses to ascertain global trends in 
the phospho-proteomic expression. Notably, we applied a Markov chain Monte Carlo matrix 
factorization algorithm, CoGAPS [1], to infer dominant temporal patterns in the global phospho-
proteomic profiles that were specific to each stimulus or inhibitor. Our analysis showed that 
most proteins in the experimental data are impacted more by stimuli and presence of inhibitor, 
than by the particular inhibitor selected. We therefore used an averaging model that 
incorporated information from each inhibitor in the training set. This model was the co-best 
performer for the experimental data. Further refining this model to filter the effect of direct 
therapeutic targets improved the accuracy in the Collaborative Round. 
 
On the other hand, the phosphoprotein time-courses in the in silico data depend equally on both 
the stimuli and inhibitors. Therefore, we treated the in silico data as an outcome of a nonlinear 
system. We approximated the nonlinear system by a linear model combined with a nonlinear 
term that guarantees the bounds of the expressions. This model was applied only to proteins 
directly altered by the therapeutic or immediate downstream nodes in a sparse network.  
 
Methods: Experimental  
Samples have strong correlation, regardless of stimulus or inhibition 

Preliminary correlation analyses performed in R showed that all samples have large Pearson 
correlations, regardless of stimulation or inhibition (Fig. 1). Samples treated with AKT inhibitor 
(GSK690693) alone or in combination with the MET inhibitor (GSK1120212) cluster distinctly 
from samples that were either untreated or treated with the FGFR inhibitor (PD173074). 
However, the clustering does not clearly delineate time points. 
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Figure 1. Heatmap of Pearson correlation coefficients computed for samples from each stimulus, 

inhibitor, and time point measured for the BT20 cell line. Darker blue indicates stronger correlation, 
according to the color key. Rows are colored according to the inhibitor and columns according to the 

stimulus, as indicated in the corresponding legends. 

 
CoGAPS analysis suggests dominant temporal signal of stimuli in most proteins 
To distinguish the temporal dynamics, we selected the subset of training data with FGFR 
inhibition with PD173074 and control, stimulated with PBS, serum, or FGF. We then applied the 
CoGAPS matrix factorization [1], to associate the expression of each phosphoprotein to a linear 

combination of temporal patterns across stimuli 
or inhibitors. This algorithm takes as input the 
phospho-proteomic data matrix, an estimate of 
uncertainty in the data, and number of 
dimensions. We used the replicates at time 
zero to estimate the relative uncertainty in each 
phosphoprotein, and assumed the uncertainty 
at each data point was given by that uncertainty 
estimate times the observed phosphoprotein 
expression. We selected 3 patterns for 
analysis, based upon the robustness estimates 
described in [2].  
 
We plotted the patterns inferred for the cell line 
BT20, separated by stimulus or inhibitor, as a 
function of time (Fig. 2).  These patterns 
distinguished differences in global 
phosphoprotein response between stimuli. 
However, inhibitors had a smaller effect on 
phosphoprotein expression.  
 
Averaging model 

As a result of the clustering and CoGAPS 
analyses, we hypothesized that the time-
courses of only a few direct target proteins were 

Figure 2. One of the temporal patterns in global 

phosphoprotein time-courses inferred with CoGAPS 
for BT20 cell lines distinguishes distinct protein 
upregulation for each stimulus.   
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affected over this time-course. Therefore, we used an averaging model for a given time and 
stimulus. Specifically, we applied linear interpolation to estimate the state of each 
phosphoprotein for each stimulus and inhibitor in the training set at the output times. We then 
computed the average phosphoprotein state across all inhibitors for the given stimulus, cell line, 
and time as the modeled time-course for all inhibitors in the test set. We replaced replicate 
measurements by a single average, prior to averaging across inhibitors.  
 
This preliminary model did not require any estimated network or parameters. Analyses were 
performed with R, using the package CellNOptR to load MIDAS files. Data was only pre-
processed with temporal interpolation and averaging across replicates. These analyses were 
performed only using the Main data, and did not consider the Full dataset. We did not use 
external information for this submission. 
 
Methods: in silico data 
Most dynamical systems can be approximated locally by a linear system. Therefore, we 
assumed that the time evolution of a state of each phosphoprotein (xi for the ith phosphoprotein) 
was a linear combination of the states of connected proteins and all inputs (e.g. stimuli and 
inhibitors, uik) as follows:  
 
 𝑥̇̃𝑖 = (∑ 𝐴𝑖𝑗𝑥̃𝑗 + ∑ 𝑏𝑖𝑘𝑢𝑖𝑘𝑘𝑗 )(1 − 𝑥̃𝑖)𝑥̃𝑖   (1) 

 
Here, as the pre-processing, we loess smoothened each phosphoprotein time-course xi in the 
training data. To standardize notation across proteins, we then normalized the smoothed data to 

rescale each phoshoprotein measurement such that x
i
® x

i
Î [0,1]. The multiplicative terms in 

eq. (1) represented an alteration to the standard linear system, which introduce fixed points at 
zero and one to reflect technical bounds in measurement of phosphoprotein expression. A=[Aij] 
represented the internal dynamics of the system and b=[bij] the effects of the stimuli and 
inhibitors. We also assumed that the inputs uk represent both stimulus and inhibition. If inhibitor 
k inhibits protein i, uik=-1 and was zero, otherwise. To model the stimuli, we assumed uik is 
nonzero if stimulator k activates protein i. If the amount of a stimulus was indicated as low, we 
set uik to 0.5 and 1 when high.  
We applied a variational approach to estimate parameters Aij and bij for the sparse, “pseudo-
linear” system of equations given by eq. (1). Specifically, we sought values of Aij and bik to 

minimize the following cost function: 
 
 

 

𝐽(𝐴, 𝑏, 𝑦) = ∑ ∑ (𝑥̃𝑖(𝑡, 𝐴, 𝑏) − 𝑦̃𝑖(𝑡))𝑖𝑡
2
 (2) 

 

where t indexed the measured time points and  represented the measurement of protein i 

at time t rescaled to be between zero and one.   was the result of solving eq. (1) for a 

given value of A and b using Matlab’s ode45 from the initial condition for no inhibition for each 

stimulus  To further ensure the bounds on , we enforced a threshold such that if when it 
exceeds the maximum for that stimulus learned from the data, we report the maximum value of 

 for that stimulus. We implemented our algorithm in Matlab, using the Data Rail, Optimization, 

and Curve Fitting toolboxes. 
 
We enforced sparsity in our network (A) to avoid over-fitting. We did not participate in the first 
challenge. However, we still needed a network to find the non-zero values of A estimated to 
optimize eq. (2). Although direct application of correlation may find the zero values in A, it 
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cannot reflect the causality essential to inference in this application. For example, e.g.

0, 0ij jiA A   means the protein j affects protein i’s dynamics, but does not imply that protein i 

likewise contributes to the dynamics of protein j at future time points. Therefore, we started from 

the directly stimulated proteins and assumed that a protein j has a causal link ( Aij  0 ) if it is 

significantly correlated to protein i. Thereafter, we discarded the stimulated and inhibited 

proteins and calculated the Spearman correlation between targets of stimulated (or inhibited) 
proteins and the remaining proteins.  
 
In order to make a sparse network with this algorithm, the significance level of the correlation 
becomes a parameter in our model. We chose the significant level of the correlation to have a p-
value below 0.01 (i.e. 0.001) so that each protein is influenced by at most three other proteins. 
Specifically, p-value of 0.01 led too many edges for our optimization to converge and 0.0001 led 

to no edges. As a result, we had 33 causal edges (number of Aij  0 for i j ) and for each 

protein we need to estimate the rate of decay (i.e. 20 Aii parameters). For two stimuli and three 
inhibitions, we need five parameters (i.e. b5,5, b8,8, b12,12, b12,21, b10,22, b20,22). So, we had a total of 
58 parameters.  We only had training data for inhibition of AB10, AB12, and AB20. Therefore, 
we assumed that all the bii's are equal for all other proteins. We estimated this constant bij with 
the median the obtained for the bii's for AB10, AB12, and AB20 when optimizing eq. 2.  
 
We estimated the parameters to minimize average mean squared error (eq. 2) by applying 
Matlab’s fminsearch.  In general, we iteratively updated Aij, bij until convergence. Since the 
optimization was time-consuming when performed for all proteins simultaneously, we wanted to 
divide the optimization into a partial optimization for each protein. In so doing, the biggest hurdle 

was the interactions among the genes, i.e.  is a function of x
j
, where i j . We used an 

approximation to make the optimization for each gene independent.  Specifically, we used an 

iterative approach to solve for x
i
(t) in equation (1) in a given iteration based upon the values of 

obtained in the previous iteration. In this step, we estimated parameter values in parallel 

for each protein i by applying Matlab’s fminsearch function to optimize equation (2). We iterated 
this procedure until the parameters converge. The iterative procedure was initialized using the 

smoothed, interpolated phosphoprotein time-course from the measurements y
j
(t) . Because 

the computation time for parameter estimation was long, we only used resubstitution error as 
the measure of the improvement of the algorithm prediction.  
 
Discussion 
Time-course prediction of protein expression in response to inhibition is essential to infer the 
molecular mechanisms responsible for evolving therapeutic response in cancer. Over a short 
time course, most phosphoprotein time-courses are dominated by stimuli. As a result, we 
obtained accurate prediction of inhibitor response by computing an average of inhibitor 
response in the training set for a given time and stimulus.  We suspect multiple factors 
contribute to this observation. First, signal in the experimental data may be confounded by noise 
in the RPPA array. Secondly, factors more than phosphoproteins measured with the array may 
play roles in the regulation of these proteins. Finally, the drugs may kill the cells, leaving cell 
populations with distinct phosphoprotein profiles unrelated to inhibitor silencing. 
 
We hypothesized that encoding network structure and the appropriate response in sub-
populations of cells remaining after treatment may further improve estimates of the time-course 
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in inhibitor targets and their direct targets on regulatory networks. Therefore, we applied the in 
silico approach to the model the time-courses of a few, phospho-proteomic measurements. We 
used the canonical signalling pathways from cellsignaling.org to distinguish inferred molecular 
targets from upstream regulators, to determine non-zero terms Aij in eq (1). However, these 
attempts increased the RMS error. 
 
To understand the increase in the RMS error with the ODE model, we analysed the modelled 
phosphoprotein time-course of the direct therapeutic targets. AKT inhibition with GSK690693 in 
the training data showed an unanticipated increase in phospho-AKT expression in response to 
treatment (Fig. 3). The observed increase in phospho-AKT expression with AKT inhibition is 
consistent with the hypothesized mechanism of action for this inhibitor, and does not necessarily 
imply a commensurate increase in downstream targets of AKT. Based on this, we hypothesize 
that using this signal to infer coefficients for inhibitor effects (bik in eq. 1) may have lead to 
significant errors in modeling the effect of other inhibitors on their targets, which propagated 
through the network to all phosphoproteins. Solving a differential equations model with 
parameters derived from the appropriately filtered training data may still improve the accuracy of 
predicted phosphoprotein time-courses.  
 
With this insight, we modified our approach in the collaborative round of the challenge.  
Specifically, we applied our averaging model to all proteins, except phospho-AKT. For this 
protein, we used the interpolated values from the FGFR inhibitor (PD173074). Just filtering this 
unanticipated increase in AKT expression with AKT inhibition substantially decreased the z-
score (-3.37 in the averaging model, and -3.79 in the new model). The mean RMS error also 
dropped from 0.50 to 0.45. This is lowest RMS error reported on any leaderboard. 

 
Figure 3. AKT expression in BT20 without inhibition and with AKT inhibition with GSK690693. The black lines in the 
AKT inhibition plots are the "no-inhibition" control. 
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SC2 Time-course Prediction: Team43 
Summary 
Partial least squares and a prior knowledge network are used to predict time-courses. 
 
Introduction 
Partial least squares (PLS) is a projection method where the independent variables, 
represented as the matrix X, are projected onto a low dimensional space.  PLS uses both 
independent variables X and dependent variables Y. Partial least squares is a regression 
method that does not rely on normal data and can handle more variables than observations 
(Geladi and Kowalski 1986; Opiyo and Moriyama 2007). In this challenge I was able to predict 
experimental and in silico time series experiments PLS models.  PLS allowed me to obtain the 

results without using test datasets. This was possible because PLS algorithm is very robust that 
it allows for modeling datasets that has more variables than observations.  Secondly, PLS 
methods are not affected by normality of the data. 

 
Methods 
The approach used was PLS methods. The models for this challenge were created using 
information from experimental breast cancer proteomic dataset description. In addition, we used 
information from AKT Signaling Pathway found BioCarta website 
(http://www.biocarta.com/pathfiles/h_aktPathway.asp) to define network connections. The 
information provided in Table 1 was used to select datasets used to train predict phosphoprotein 
time-courses under 5 test inhibitors presented in Table 2. 
 
Discussion 
I used PLS method and Main dataset plus information from BioCarta and I was able to make 
good predictions. This shows models created by PLS methods are robust to make predictions 
without test datasets.   
 
 
Table 1. The information used for building the models  

Inhibitor Test inhibitor Target (s) 

AKT mTOR1, mTOR2 
AKT/MEK HER2, EGFR 
FGFR1 N/A 
AKT EGFR 
AKT/MEK BCR-ABL, SRC family kinase 
AKT/MEK IGFR/INSR 

 
 
Table 2. Inhibitors and Test Inhibitor Target (s) provided in Sub-challenge 2A 

Inhibitor Test inhibitor Target (s) 

Testinhib1 EGFR, HER2 
Testinhib2 BCR-ABL, SRC family kinases 
Testinhib3 mTOR1, mTOR2 
Testinhib4 EGFR 
Testinhib5 IGFR, INSR 
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Table 3. The datasets used for each cell line and the dataset used for prediction 

Cell line/inhibitor Inhibitor 

BT20-Testinib1 TR:PD173074:Inhibitors 
BT20-Testinib2 TR:GSK690693_GSK1120212:Inhibitors 
BT20-Testinib3 TR:GSK690693:Inhibitors 
BT20-Testinib4 TR:GSK690693_GSK1120212:Inhibitors 
BT20-Testinib5 TR:GSK690693_GSK1120212:Inhibitors 
BT549-Testinib1 TR:PD173074:Inhibitors 
BT549-Testinib2 No Inhibitors 
BT549-Testinib3 TR:GSK690693:Inhibitors 
BT549-Testinib4 No Inhibitors 
BT549-Testinib5 No Inhibitors 
MCF7-Testinib1 TR:PD173074:Inhibitors 
MCF7-Testinib2 TR:GSK690693_GSK1120212:Inhibitors 
MCF7-Testinib3 TR:GSK690693:Inhibitors 
MCF7-Testinib4 No Inhibitors 
MCF7-Testinib5 TR:GSK690693_GSK1120212:Inhibitors 
UACC812-Testinib1 TR:PD173074:Inhibitors 
UACC812-Testinib2 TR:GSK690693_GSK1120212:Inhibitors 
UACC812-Testinib3 TR:GSK690693:Inhibitors 
UACC812-Testinib4 TR:GSK690693_GSK1120212:Inhibitors 
UACC812-Testinib5 TR:GSK690693_GSK1120212:Inhibitors 
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SC2 Time-course Prediction: Team44 
Summary 
For a given protein, cell line, stimulus and time point, training data were averaged across 
inhibitors. This simple approach outperformed more complex Bayesian network approaches.  
Introduction 
In silico reconstruction of the signaling networks from perturbation data is a critical and still 
challenging task for better understanding of the biological processes. Different methods have 
been used to approach this problem that include linear1, Monte Carlo2 and dynamic Bayesian 
networks3. Here we applied three distinct formulations of the dynamical Bayesian graphical 
model to reconstruct the time-course abundances of a particular set of proteins, using the HPN-
DREAM dataset for training. While more complex models have more frequent parameters that 
cannot be estimated due to the limited size of the training dataset, simpler models exhibited 
significantly better performances. We also developed a simple Inhibitor Independent model that 

could overcome the other methods by ignoring small effect of the inhibitors. 
 
Method 
We used the whole discrete time series of the main dataset, with no particular preprocessing. 
Missing data were omitted, and the models were trained with the available data. For the 
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replicates we kept only the average value. The protein-protein interaction and signaling 
networks of the selected proteins were extracted from two databases (STRING and Ingenuity 
IPA), and the inhibitor targets were incorporated as an external data.  
 
Let S be the set of all inhibitors. For learning and validating different algorithms, we created the 
following framework: The same process was executed for each inhibitor x separately. First, the 
time series data of three different cell lines (BT20, MCF7 and UACC812) treated with inhibitors 
of S- {x} was used to train each model. Next using the data of the same cell lines treated with x 
was used to measure the accuracy of the results generated by each model, by Mean Squared 
Error (MSE) and also Pearson Correlation Coefficient (PCC).  
 
First we developed our in silico network reconstruction method based on the dynamical 
Bayesian graphical models, since they are widely used in modelling causal interactions4. 
Consider Zt= (zt

1,zt
2,...,zt

n) to be the abundances of proteins at time t, while n is the number of 
proteins. The general equation of the dynamical Bayesian graphical models is4:  

  (1) 

Where Pa(zt
i), the parents of zt

i, is the set of all proteins of the dynamical network that can affect 
on zt

i  between the time t - 1 to t. Distinct formulations of this equation result in different 
statistical models that are listed below. 
 
Vector Auto-regressive. This model is based on the following formulation:  
 1 1(Z | Z ) (W , ),t t tP N Z− − ∑:   (2) 
where N(.) denotes the normal distribution. In this model, the matrix Wn×n represents the causal 
interaction network. To eliminate the effects of one protein into the others (i.e. where the cell line 
is treated with that protein inhibitor), we set the corresponding row of W to zero.  
 
Sparse Vector Auto-regressive. In the sparse approach, we assumed that the interaction matrix 
W is sparse (many elements are zero). This assumption leads to the simpler model: the 
absolute values of the elements in W are exponentially distributed with constant mean λ. 

 
1 1(Z | Z ;W) (W , )

| | exp( ).
t t t

ij

P N Z
w λ

− − ∑:
:

 (3) 

 
Kalman Filter. This is more complicated model but with less parameters to be estimated. A 
vector of hidden variables Ht of length m represents the dynamics of the time series at time t. To 
reduce the number of parameters, we assumed that the hidden variable are less frequent than 
the proteins (m<n). The following equations represent the parent-child relationship:  

 1 1 1

2

( | ) N(A , )
( | ) N(B , ).

t t t

t t t

P H H H
P Z H H

− − ∑

∑

:
:

  (4) 

Causal interaction among the proteins can be obtained through the matrices Am×m and Bn×m. 
More precisely, the matrix Wn×n = BAB-1 denotes the causal relationships.  
When applied to the real data, we found the simpler methods are exhibiting better results. 
Hence we developed a surprisingly simple method (Inhibitor Independent) that for each protein 
p, time t, cell line l, inhibitor i and stimuli s, predicts the protein abundance matrix as 𝐴!,!,!,!,! =
!
!

𝐴!,!,!,!,!!∈! . The accuracies of different methods are provided below. 
 

1
1

(Z | ) ( | ( )),
n

i i
t t t t

i

P Z P z Pa z−
=

=∏
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Method Vector 
auto-regressive 

Kalman Filter Sparse 
Regression 

Inhibitor 
Independent 

MSE 29.40 28.90 5.07 1.47 

PCC 0.53 0.41 0.82 0.90 

 
Discussion 
By ignoring presence of inhibitors, our Inhibitor Independent method could surprisingly exhibit 
the best results for the experimental timecourse prediction sub-challenge among all the 
competitors, suggesting the minor effects of the inhibitors in the global network structure and 
time-course protein abundances. Our results also suggest the mean values of time series can 
be used as a suitable prior for other Bayesian methods. 
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Supplementary Note 3: Visualization Sub-challenge (SC3) - 

BioWheel 
 
 
Video and Tutorial: http://youtu.be/i9f6AYaIoOE  
HPN-DREAM BioWheel Visualization Tool: http://dream8.dibsbiotech.com 

 
With the advances in high-throughput 
technologies, the ability to categorize, 
analyze, and visualize “big data,” has 
become an increasing need within the 
biomedical community. Techniques like 
Reverse Phase Protein Analysis (RPPA) 
can provide rapid,  high- throughput 
characterization of a cell’s proteomic 
state, yielding insight into the altered 
cellular signaling profiles that accompany 
diseases such as cancer. Unfortunately, 
high-dimensional data of this type is 
often both noisy and complex, making its 
interpretation challenging for both 
researchers and clinicians. To address 
this challenge, we describe the 
functionality and advantages of 
BioWheel, a new visualization platform 
designed to improve discovery of data 
trends and facilitate the interpretation of 
time resolved molecular expression data. 
 

BioWheel displays high throughput 
timecourse data in an intuitive manner, 
and it has general applicability to numerous fields that generate high-dimensional data. Here we 
describe BioWheel’s application and implementation to display the DREAM 8 breast cancer 
RPPA proteomics data. Proteomics data associated with a single stimulus is plotted to depict 
protein expression levels by color, essentially as a heat map, but oriented in the shape of a ring, 
or wheel.  Time is plotted along the radial axis: time increases from the center towards the rim 
(Figure 1). For the DREAM 8 data, time ranges 0 min at the center to 4 hrs / 240 min, 
represented by the outermost row of the heatmap. Protein names are displayed along the 
circumference of the wheel.  Different experimental or drug perturbations, e.g., inhibitors, are 
designated by blocks beneath each protein name and specified by unique colors. Each protein 
is divided into the number of selected inhibitors, so in the DREAM 8 dataset, if all four inhibitors 
are displayed each protein will have 4 divisions. These blocks and the associated expression 
data form a set for each protein, which are separated by thin radial oriented lines, forming the 
spokes of BioWheel. At the inner circumference of the wheel, uniformly colored blocks (light blue 
in Figure 1) guide the viewer’s eye so that the different expression data sets appear as a single 
group for each protein.  These blocks outline the “hub cap” of the wheel, where an intricate 
pattern at the center is created by plotting the relationships (e.g., network connectivity) between 
each protein. 
 

Figure 3. Mock-up of BioWheel visualization tool. 
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BioWheel is interactive. By clicking 
the Stimulus button, the user will 
be able to switch between different 
stimuli, effectively re-plotting the 
data. When the Inhibitor option is 
selected, the user can select any 
combination of inhibitors to view, 
displayed by the outermost layer of 
colors. Color schemes and scale 
bars are also customizable. The 
current selection of heatmap colors 
in Figure 1 display a low protein 
expression level as blue, 
increasing through green, yellow, 
orange, until reaching red as the 
highest expression level. To gain 
even more specific information, the 
user can click a certain time point, 
and a histogram displaying the 
expression level data at that moment 
will come in to view (Figure 2). The 
innermost circle of BioWheel 
visualizes the proteins as small 
blocks, connected by arcs that 
represent know interactions and pathways, queried from the MiMi public database. By clicking on 
a specific protein, the user will be shown the time course data for that particular protein under the 
specified inhibitors (Figure 3). Inhibitors can be further toggled in the graphical window. When an 
arc connecting two proteins is clicked, a textbox will appear, providing related information from 
the MiMi database about the know protein interactions (Figure 4). 
 

In sum, BioWheel combines static 
information from multiple traditional 
heatmaps, temporal dynamics, 
network relationships and response 
to perturbations into one graph. For 
the RPPA breast cancer data, this 
quickly elucidates some important 
trends in the data. As an example, 
MAP2K1 expression clearly 
decreases in time under the 
influence of the inhibitor PD172974. 
Furthermore, the dynamics of 
MAP2K1 under various different 
inhibitors has notable similarities to 
the dynamics of AKT1S1 but no 
observable correlation with CHEK2 
(Figure 1; and see Video: 
http://youtu.be/i9f6AYaIoOE). 
Scientists and clinicians will be able 
to use this form of interactive data 
visualization as a discovery tool - to 

Figure 2. When a user clicks on one time point, BioWheel 

displays histograms that show expression levels of the 20 

proteins for the selected time, for 4 inhibitors. 

Figure 3. When a user clicks on a particular protein (in this 

example, CHEK1), time course data is displayed for that 

protein as a function of the selected inhibitors. 
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rapidly glean new relationships from the data. During the DREAM 8 Challenge, our team used 
this information to inform hypotheses regarding signaling network architecture, and help choose 
the types of modeling methods we employed.  
 
With the advent of rapid-throughput biomedical technologies, biomedical data like the sort 
presented as part of the DREAM 8 Challenge has become increasingly common. Recent 
studies have shown the benefit of incorporating prior biological knowledge into the interpretation 
of data and the design of algorithms applied to biomedical data (Küffner et al., Nature Biotech, 
2014; Noren et al., PLoS Comp Bio, 2015, in submission). Furthermore, humans are 
unparalleled in their ability to rapidly recognize complex objects and patterns visually (DiCarlo et 
al., Cell, 2012; Singwa, Nature Neuro, 2002). BioWheel capitalizes on this natural ability and 
allows the experts – biomedical experimentalists, clinicians and/or systems biologists – to make 
decisions on raw data prior to modeling or processing. Interactive visualization tools like 
BioWheel are poised to become integral methods for discovery, data sharing and model 
development. Adaptable versions of BioWheel, where any data can be uploaded online through 
a drag-and-drop option, can be licensed through the EASEL software platform designed by DiBS 
(www.dibsbiotech.com).  
 
  

Figure 4. Clicking on an arc connecting two proteins reveals known information 

about the relationship between the molecules from public databases (e.g., MIMi).  
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Supplementary Note 4: Correlation between scores for the 

network inference sub-challenge experimental data and in 

silico data tasks 
 
For the network inference sub-challenge, team scores for the experimental data task (mean 
AUROC) were compared with scores for the in silico data task (AUROC; Fig. 3b in main text). 
Pearson correlations were calculated and reported in main text for all teams that participated in 
both tasks (r = 0.35, 52 teams; some teams with correlated submissions were filtered out to 
avoid bias, see Supplementary Note 10) and for those teams that did not use prior information 
in the experimental data task (r = 0.68, 18 teams). These calculations included teams that used 
a different method for each task (Supplementary Table 2), which could lead to inflated 
correlations (here, “different method” means a difference that is not solely due to use of prior 
information). To investigate this we recalculated the correlations, excluding teams that used 
different methods in each task, and found good agreement with those reported above (r = 0.40 
for all 46 teams that used the same method in each task and r = 0.67 for the 15 teams that used 
the same method in each task, but did not use prior information in the experimental data task). 
 

Supplementary Note 5: Classification of methods 
 
41 of the 80 teams that participated in the network inference sub-challenge (SC1) provided 
information about their methods (Supplementary Note 7). This included a self-reported method 
classification. These classifications were then reviewed by challenge organizers by referring to 
full method descriptions provided by teams (Supplementary Note 1) and, in some cases, by 
discussing the classification directly with the team concerned.  
 
This process resulted in a classification consisting of eight groups: Bayesian networks, 
ensemble, linear regression, nonlinear regression (tree-based approach), ordinary differential 
equations (ODEs), pairwise score, prior network only and other (Fig. 3e,f in main text, Table 1 
in main text and Supplementary Table 2). The “ensemble” group consists of methods that 
combine several different approaches. The “nonlinear regression” group consists of tree-based 
approaches such as random forests and gradient tree boosting. The methods in the “pairwise 
score” group consider bivariate relationships only (for example, based on correlation). The 
“other” group contains methods that do not fit into any of the other seven groups. Some teams 
used different approaches for the experimental data task and in silico data task and therefore 

have a different method classification for each task. 
 
As discussed in main text, caution should be exercised when comparing performances between 
method classes. Boundaries between method classes are not well defined (for example, a 
Bayesian network approach with linear Gaussian conditional distributions could also fit into the 
linear regression category) and factors which are not captured by the method class, such as 
pre-processing steps and use of prior information, can influence performance. 
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Supplementary Note 6: Scoring metric for time-course 

prediction sub-challenge 
 
For the experimental data task, participants were asked to predict context-specific time-courses 
under 5 test inhibitors not contained in the training data (this included an mTOR inhibitor). The 
test dataset, obtained under mTOR inhibition, was used to assess participants’ mTOR inhibitor 
predictions. Predictions for the remaining 4 test inhibitors were not used for scoring, but were 
included as part of this task to ensure that the identity and number of test inhibitors for the 
network inference sub-challenge remained blinded.  
 
Prediction accuracy was quantified using root mean squared error (RMSE).To avoid bias due to 
data from different cell-lines and proteins being on different scales, a separate RMSE score was 
calculated for each (cell line, phosphoprotein) pair. Specifically, let 𝑥𝑝,𝑐,𝑠,𝑡 denote the gold-

standard abundance (as given by the test data, on a log2 scale) of phosphoprotein 𝑝 for cell line 

𝑐 and stimulus 𝑠 at time point 𝑡.  Any replicates in the test data were averaged (on the log2 
scale). Let the corresponding abundance value predicted by team 𝑚 be denoted by 𝑥𝑝,𝑐,𝑠,𝑡

𝑚 . 

Then, the RMSE score for team 𝑚 for (cell line, phosphoprotein) pair (𝑐, 𝑝) is given by 
 

RMSE𝑝,𝑐
𝑚 = √

1

𝑇𝑆
∑ ∑(𝑥𝑝,𝑐,𝑠,𝑡

𝑚 − 𝑥𝑝,𝑐,𝑠,𝑡)
2

𝑆

𝑠=1

𝑇

𝑡=1

 

 

where 𝑇 = 7 is the number of time points and 𝑆 = 8 is the number of stimuli. Therefore each 
RMSE score resulted from a comparison of 56 data. In the main text, data for each (cell line, 
phosphoprotein) pair is referred to as a “data block”. 

 
Statistical significance of RMSE𝑝,𝑐

𝑚  scores were assessed using simulated null distributions. A 

null distribution of 100,000 RMSE scores was obtained for each (cell line, phosphoprotein) pair 
by scoring time-courses generated by sampling data points at random from the training data. In 
particular, for a given (cell line, phosphoprotein) pair, 8 time-courses (one for each stimulus) 

each with 7 time points were formed by sampling from a subset of the training data. This subset 
consisted of all time points, stimuli and inhibitor regimes for the corresponding (cell line, 
phosphoprotein) pair (replicates were averaged prior to sampling). These 8 time-courses were 
then scored and the procedure repeated 100,000 times to obtain the null RMSE distribution. 
Gaussian fits to the null distributions were used to calculate p-values. For each (cell line, 
phosphoprotein) pair, the set of p-values (across all teams) underwent multiple testing 
correction using the Benjamini-Hochberg FDR procedure. There were 16 (cell line, 
phosphoprotein) pairs for which no team achieved a statistically significant score 
(Supplementary Table 5; FDR<0.05) and these pairs were disregarded in the scoring 
procedure. Teams were ranked according to RMSE within each (cell line, phosphoprotein) pair 
and a final ranking was obtained by taking the mean rank across all pairs. 
 
Scoring proceeded in a similar fashion for the in silico data task. Participants were asked to 
make predictions for each node under 20 test inhibitors (each node inhibited in turn; predictions 
were not required for the inhibited node) and test data was available to score predictions for 16 
of these test inhibitors. RMSE scores were calculated for each (test inhibitor, predicted node) 

pair. Let 𝑥𝑝,𝑖,𝑠,𝑡 denote the gold-standard abundance (as given by the test data, on a log2 scale) 

of node 𝑝 under inhibition of node 𝑖 for stimulus 𝑠 at time point 𝑡. Let the corresponding 
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abundance value predicted by team 𝑚 be denoted by 𝑥𝑝,𝑖,𝑠,𝑡
𝑚 . Then, the RMSE score for team 𝑚 

for (test inhibitor, predicted node) pair (𝑖, 𝑝) is given by 

 

RMSE𝑝,𝑖
𝑚 = √

1

𝑇𝑆
∑ ∑(𝑥𝑝,𝑖,𝑠,𝑡

𝑚 − 𝑥𝑝,𝑖,𝑠,𝑡)
2

𝑆

𝑠=1

𝑇

𝑡=1

 

 
where 𝑇 = 10 is the number of time points (the 45 minute time-point in the in silico test data was 

not used in scoring) and 𝑆 = 8 is the number of stimuli. Therefore each RMSE score resulted 
from a comparison of 80 data points. In the main text, data for each (test inhibitor, predicted 
node) pair is referred to as a “data block”. Statistical significance was assessed analogously to 
the experimental data task with null RMSE distributions generated for each (test inhibitor, 
predicted node) pair and time-courses sampled from data points in the training data for the 
corresponding predicted node (after averaging of replicates). This revealed two (test inhibitor, 
predicted node) pairs for which no team achieved a statistically significant score 
(Supplementary Table 6) and these pairs were excluded from scoring (dummy nodes were 
also excluded). Teams were ranked according to RMSE within each (test inhibitor, predicted 
node) pair and a final ranking was obtained by taking the mean rank across all pairs. 

 

Supplementary Note 7: Criteria to be a member of the HPN-

DREAM Consortium and to be eligible for a prize 
 
To be included as a member of the HPN-DREAM Consortium and listed as contributors of this 
manuscript, participants were required to complete an online survey to provide high-level details 
of their method (network inference and time-course prediction sub-challenges only) and submit 
a detailed write-up describing their method. These write-ups were edited and compiled by 
challenge organizers to form Supplementary Notes 1-3. Where applicable, all teams, including 
those not members of the HPN-DREAM Consortium, were included in analyses 
(Supplementary Table 2). For the network inference sub-challenge, 33 out of 80 teams are 

included as Consortium members. An additional 8 teams provided a limited amount of 
information about their methods in an initial brief write-up, but did not provide a full write-up. For 
these teams, summary sentences were included in Supplementary Table 2, but they are not 
members of the Consortium. For the time-course prediction sub-challenge, 9 out of 14 teams 
are included as Consortium members and for the visualization sub-challenge all 14 teams are 
included. 
 
For the network inference and time-course prediction sub-challenges, to be eligible for a 
challenge prize, top-performing teams had to meet two criteria in addition to the Consortium 
member inclusion criteria described above. First, teams had to submit code for their method 
which, upon execution by challenge organizers, reproduced their final submission. Code from a 
number of teams, including top-performing teams, has been made available through Synapse at 
https://www.synapse.org/HPN_DREAM_Network_Challenge, under the section “HPN-DREAM 
Community Resource”. Second, teams had to make submissions to both the experimental data 
and in silico data tasks of the corresponding sub-challenge. The top-ranked team for the time-
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course prediction sub-challenge experimental data task (Team44) did not participate in the in 
silico data task and so the teams ranked second (Team42) and third (Team10) were declared 
as best-performers (Supplementary Table 4; the team ranked second was not robustly ranked 

above the team ranked third resulting in two best-performers).  

Supplementary Note 8: Model for in silico data generation 
 
ErbB Signaling Model 

The model for this sub-challenge is an extended version of the ErbB signalling model by Chen 
et al. [1]. It is a mass action model of ErbB1-4 receptors (EGFR, HER2/Neu2, ErbB3 and 
ErbB4), and the MAPK and PI3K/Akt signalling cascades. The model can be stimulated by the 
two ligands Epidermal Growth Factor (EGF) and Heregulin (HRG). We extended the model by 
the three inhibitors Cetuximab (ErbB1), Pertuzumab (ErbB2) and U0126 (MEK). 

Implementation of inhibitors 

The inhibition of the phosphorylated form of a protein reduces its downstream kinase activity. 

The mode of action for the three inhibitors is the same: they sequester away the 

unphosphorylated form of the target kinase and therefore limit the amount of phosphorylated 

forms. 

Cetuximab (ErbB1) 

Cetuximab sequesters ErbB1 and prevents its activation. Implementation (see Table A.3) and 

kinetic rates (see Table A.2) of this inhibitor are based on [2]. 

 
Pertuzumab (ErbB2) 
Pertuzumab blocks ErbB2 dimerization. Implementation (see Table A.4) and kinetic rates (see 
Table A.2) of this inhibitor are based on [2]. 
 
U0126 (MEK) 
U0126 inhibits the phosphorylation of inactive MEK. For Implemented reactions see Table A.5, 
for the kinetic rates see Table A.2. 
 
SC2B Test Data Inhibitors 
Inhibitions in test data are implemented in a similar way to those in the training data, but in 
contrast to the training data we assume a complete or perfect effect such that the inhibited 
phosphoprotein is completely removed.  

 
Implementation of antibodies 
All antibodies are implemented to bind specific phosphorylation states of a protein. For example, 
ABx may contain all single phosphorylated forms of a protein, while ABy contains all doubly 
phosphorylated forms. 
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Readouts and Reference Causal Graph 
We parallel the definition of a causal graph introduced to the statistics in the context of structural 
equation models [3]. Every node of the graph corresponds to one molecular species and 
furthermore to one state in our ordinary differential equation (ODE). In the case where the states 
track the concentration of all involved species, we will generally have (linear) algebraic relations 
(mass-conservations) between states, implying that the ODE solution is constrained to some 
lower-dimensional linear subspace. Hence, the considered ODE system can be made 
equivalent to a differential-algebraic set of equations, where only a subset of species are 
retained in the differential part of this equation system. In the following we will use the full ODE 
description without those explicit algebraic constraints. In general, there is a directed edge from 
node 𝑖 to node 𝑗 if the right-hand-side (rhs) of the differential equation for state 𝑗 is a function of 

state 𝑖, i.e. 

𝑑

𝑑𝑥
𝑥𝑗 (𝑡) = 𝑓𝑗(𝑥𝑖(𝑡),⋅), 

where “⋅” should indicate a possible dependency of 𝑓𝑗 on other state variables. In the case of 

ODEs resulting from elementary mass-action reactions, all ODE right-hand-sides – and hence 
the causal graph – can be determined directly from the stoichiometric matrix 𝑆 of the reaction 
system. We call a reaction elementary if all species on left-hand-side (lhs) are consumed by it. 
For example the homo-dimerization is 2𝐴 ⇌ 𝐴: 𝐴 elementary, while 2𝐴 ⇌ 𝐴 + 𝐶 is not 
elementary1. The element 𝑆𝑖𝑗 denotes the net change of species 𝑖 through reaction 𝑗. We 

illustate this by considering the following reaction motif 
 

𝑅 ⇌ 𝑅𝑝 

𝑅𝑝 + 𝑀 ⇌ 𝑅𝑝: 𝑀 ⇀ 𝑅𝑝 + 𝑀𝑝 

𝑅𝑝 + 𝑀𝑝 ⇌ 𝑅𝑝: 𝑀𝑝 ⇀ 𝑅𝑝 + 𝑀𝑝𝑝 

𝑃 + 𝑀𝑝 ⇌ 𝑃: 𝑀𝑝 ⇀ 𝑃 + 𝑀 

𝑃 + 𝑀𝑝𝑝 ⇌ 𝑃: 𝑀𝑝𝑝 ⇀ 𝑃 + 𝑀𝑝, 

 
which constitutes a single stage of a mitogen-activated-protein-kinase (MAPK) cascade. More 
specifically, it represents the double-phosphorylation of protein MEK (𝑀𝑝𝑝) by a phosphorylated 

Raf protein (𝑅𝑝). Assume the forward reaction in the first line is the 𝑗-th reaction and 𝑅 is the 𝑖-th 

species then 𝑆𝑖𝑗 = −1, while the only other non-zero elements of the 𝑗-th column is 𝑆𝑘𝑗 = 1, with 

𝑅𝑝 the 𝑘-th species. In general 𝑆 is the incidence matrix (node-edge matrix) of a directed 

hypergraph. Hyperedges are introduced by reactions of higher arity, such as the bi-molecular 
reaction in line two of (1.1). The corresponding hypergraph for line two is shown in Fig. 1a. In 

order to determine the rhs dependency of the ODE for species 𝑖 we also need to determine the 
velocity of reactions in which species 𝑖 is participating. For a mass-action reaction the velocity is 
a monomial containing those states of species that are part of the lhs of the reaction. Moreover, 
for elementary reactions the species on the lhs of a reaction can be read off from the 
stoichiometric matrix. For instance, the forward reaction of the reversible reaction in line two of 

(1.1) consumes 𝑅𝑝 and 𝑀 and hence its velocity is 𝑅𝑝 ⋅ 𝑀, assuming unit reaction constants 

throughout2. In order to construct a causal graph the particular functional form of the rhs 
dependency is irrelevant and we can simplify the hypergraph to a normal graph that just retains 

                                                             
1
 For non-elementary mass-action reactions the substrate and the product stoichiometric coefficients are 

required to determine the effective dependencies. 
2
 We adopt the slight notational abuse of denoting the concentration or state variable corresponding to a 

molecular species directly by the name of that species. 

(1.1) 
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the dependency information. For the discussed example the corresponding normal graph is 
given in Fig. 1 b. Note that this graph is equivalent to the graph that can be extracted from the 
zero-patterns of the Jacobian matrix corresponding to the system of ODEs. 

Figure 1. (a) Hypergraph representation of the reactions in line two of (1.1). (b) Corresponding normal 

graph extracted from the hypergraph; edges without arrow indicate bidirectional edges. 

 

 
Figure 2. (a) Causal graph of reaction system (1.1) on the single-species level. (b) Annotation to denote 

species aggregates (aggregates for P and R are not shown). (c) Resulting dependency graph between 
aggregates, where aggregates are denoted by “?”; edges without arrow indicate bidirectional edges. 

 
Most molecular techniques do not permit the measurement of a single molecular species but 
are rather able to measure a species in all complexations. For instance, the free form 𝑀 alone 

cannot be measured but 𝑀 + 𝑅𝑝: 𝑀 can be measured. We call such measurable linear 

combinations of species aggregates and we finally need to define a causal graph between 
aggregates in order to be consistent with experimental measurements. Aggregates do not 
correspond to partitions of the graph nodes but rather to coverings, i.e. the aggregates overlap. 
A direct approach to define the dependency structure among aggregates is to inherit the 
dependency structure from its constituents. That is, there is a directed edge from aggregate 𝑖 to 
𝑗 if there is a directed edge from any species in 𝑖 to any species in 𝑗. We will see later that this 

approach introduces spurious edges because it does not account for mass conservation 
relations. The steps in the proposed graph aggregation are illustrated in Fig. 2, where 
aggregates are defined in terms of all phosphorylated forms of a protein and all its non-
phosphorylated forms. We note that in the species-level causal graph of Fig. 2a there exists a 
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directed path from 𝑀𝑝 to 𝑅𝑝 apparently justifying the bidirectional edge between aggregate 

𝑀𝑝? and 𝑅𝑝? in Fig. 2c. However, by inspecting the system of ODEs we see that the aggregate 

𝑅𝑝? shows no functional dependency on any members of 𝑀𝑝?. To see this we write down the 

ODE of the involved species with unit rates, 
 

𝑑

𝑑𝑡
𝑅𝑝 = 𝑅 − 𝑅𝑝 − 𝑅𝑝 ⋅ 𝑀 + 2𝑅𝑝: 𝑀 − 𝑅𝑝 ⋅ 𝑀𝑝 + 2𝑅𝑝: 𝑀𝑝 

𝑑

𝑑𝑡
𝑅𝑝: 𝑀 = 𝑅𝑝 ⋅ 𝑀 − 2𝑅𝑝: 𝑀 

𝑑

𝑑𝑡
𝑅𝑝: 𝑀𝑝 = 𝑅𝑝 ⋅ 𝑀𝑝 − 2𝑅𝑝: 𝑀𝑝 

yielding 
𝑑

𝑑𝑡
(𝑅𝑝 + 𝑅𝑝: 𝑀 + 𝑅𝑝: 𝑀𝑝) = 𝑅 − 𝑅𝑝 

 
and hence show that the edge from 𝑀𝑝? to 𝑅𝑝? is spurious. We remark that such significant 

cancelation is due to the particular choice of aggregates. In order to remove such spurious 
edges we need to first determine the net effect of each reaction on the aggregate instead of the 
species. Hence we can define another stoichiometric matrix where the number of rows is the 
number of aggregates. If a reaction causes the increase of one and the decrease of another 
species that are both within the same aggregate, then the net effect of that reaction with respect 
to the concentration of the aggregate can be zero. More formally a reaction 𝑗 is inactive with 

respect to the aggregate 𝐴𝑘 consisting of species 𝑖 ∈ 𝐴𝑘 if 
 

∑ 𝑁𝑖𝑗 = 0𝑖𝜖𝐴𝑘
. 

 
For those reaction for which (1.3) does not hold, one needs to determine the functional 
dependency of aggregate’s 𝐴𝑘 concentration 𝑦𝑘(𝑡) with respect to reaction 𝑗 
 

𝑑

𝑑𝑡
𝑦𝑘(𝑡) =  

𝑑

𝑑𝑡
∑ 𝑥𝑖(𝑡) = ∑ 𝑁𝑖𝑗 ∏ 𝑥𝑝(𝑡)𝑆𝑝𝑗𝑛

𝑝=1 + 𝑅(𝑡)𝑖𝜖𝐴𝑘𝑖𝜖𝐴𝑘
 

 
where 𝑅(𝑡) denotes the contributions of all reactions other than the 𝑗-th one and where the 
matrix 𝑆𝑖𝑗 is obtained from 𝑁𝑖𝑗 by retaining only its negative elements and setting positive entries 

to zero3. The remaining rhs functional dependency of aggregate 𝐴𝑘 in terms of the original state 

variables 𝑥𝑖(𝑡) can be read off from (1.4). Defining the aggregate stoichiometric matrix 𝑁𝑘𝑗 =

∑ 𝑁𝑖𝑗𝑖𝜖𝐴𝑘
, the expression 

𝑑

𝑑𝑡
𝑦𝑘(𝑡) =  ∑ 𝑁̃𝑘𝑗

𝑚

𝑗=1

∏ 𝑥𝑝(𝑡)𝑆𝑝𝑗

𝑛

𝑝=1

 

 
makes apparent that the rhs of this ODE can in general not be written only in terms of aggregate 
variables 𝑦𝑖, i.e. cannot be of the form 

𝑑

𝑑𝑡
𝑦𝑘(𝑡) =  ∑ 𝑁̃𝑘𝑗

𝑚

𝑗=1

𝑣̃𝑗 (𝑦1(𝑡), … , 𝑦𝑞(𝑡)), 

                                                             
3
 Hence, we managed to reconstruct the stoichiometric substrate coefficients, by virtue of assuming 

elementary mass-action reactions. 
 

(1.2) 

(1.3) 

(1.4) 
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with 𝑞 ≤ 𝑛 the number of aggregates. Hence, the evolution of the aggregate concentration 
cannot be described in terms of a self-consistent (i.e. autonomous) 𝑞-dimensional ODE. In turn, 
however, it means that a causal graph over aggregates that explains all dynamics is impossible. 
Even though the aggregate causal graph is an incomplete account of the system, it needs to 
preserve causality relations. More specifically, it should not indicate causality, where there 

cannot be any. For instance, consider the ODE for the aggregate 𝑀𝑝? of reaction system (1.1) 

 
𝑑

𝑑𝑡
𝑀𝑝? =

𝑑

𝑑𝑡
(𝑀𝑝 + 𝑀𝑝: 𝑅𝑝 + 𝑀𝑝: 𝑃) = 𝑅𝑝: 𝑀 + 𝑀𝑝𝑝: 𝑃 − 𝑀𝑝: 𝑅𝑝 − 𝑀𝑝: 𝑃. 

 
The rhs cannot be written as a function only in terms of aggregates. Every summand of the rhs 
stems from one particular reaction but is sometimes associated with two aggregates. For 
instance, 𝑅𝑝: 𝑀 is element of 𝑅𝑝? and 𝑀? In the construction of the aggregate causal graph we 

follow the negative results and require that there must not be an edge from aggregate 𝐴𝑘 to 𝐴𝑗 if 

and only if none of the elements of the rhs of state 𝑦𝑘(𝑡) is contained in aggregate 𝐴𝑗. In turn, it 

means for our example that we need to draw an edge from 𝑅𝑝? to 𝑀𝑝? and from 𝑀? to 𝑀𝑝?. The 

resulting causal graph is depicted in Fig. 2c. For the considered ErbB signaling model the 
resulting causal graph between the phosphoforms, including all ErbB receptors is shown in Fig. 
3; extracted by automatic means through an algorithm based on the above considerations. 

 
Figure 3. Aggregate causal graph of the ErbB signaling model.  

Reproduced from Supplementary Figure 4. 
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Measurement Error Model 
The readout of a RPPA assay is the intensity signal per spot caused by the fluorescently labeled 
antibody. The finite dynamic range of the scanner is modeled as a logistic function resulting on 
the lower end into a detection threshold, and on the upper end into saturation. Moreover, we 
include a small additive Gaussian noise and multiplicative noise, giving rise to a lognormal 
component. The latter can be justified by the fact that error incurred in intensity quantification of 

the spots is proportional to the spot intensity. Denoting by 𝑦𝑖
(𝑘)

(𝑡𝑗) the concentration of 

aggregate 𝑖 at time 𝑡𝑗 in the 𝑘-th perturbation/stimulation condition we choose 

𝑧𝑖𝑗𝑘 = 𝛼 + 𝛽
exp[𝛾(𝑦𝑖

(𝑘)
(𝑡𝑗)−𝛿)]

1+exp[𝛾(𝑦𝑖
(𝑘)

(𝑡𝑗)−𝛿)]
𝜂𝑖𝑗𝑘 + 𝜖𝑖𝑗𝑘, 

 

where 𝜖𝑖𝑗𝑘~𝒩(0, 𝜎2) and 𝜂𝑖𝑗𝑘~𝑒𝒩(0,𝜔2). With 𝜔 = 0, (1.5) reduces to the model used in [4]. 

Moreover, note that we assume the absence of a batch effect, i.e. all sigmoidal parameters as 

well as the noise parameters are not a function of 𝑘. The dynamic range for 𝑦𝑖
(𝑘)

(𝑡𝑗) can be very 

large for ODE models. First, the protein concentration are in very different orders of magnitude, 

e.g. ErbB4 receptor in several hundreds and SOS proteins of order 107. Second, dynamic 
states may transverse many orders of magnitudes. Practically, using (1.5) this results in states 
that are well in saturation or are within the noise floor. In order to circumvent this problem, we 
assume that every antibody is optimized for the expected concentration of its protein. That is, 
low copy number proteins come with antibodies with large affinities. One way to achieve that 

numerically is to normalize the signal 𝑦𝑖
(𝑘)

(𝑡𝑗) by the mean concentration over all conditions and 

times for aggregate 𝑖. Such a normalized variable can then be defined as 
 

𝜉𝑖𝑗𝑘 = 𝜎𝑖 +
𝑦𝑖

(𝑘)
(𝑡𝑗)

𝜅𝑖
 

 
with the normalization  
 

 

𝜅𝑖 =
1

𝑁𝑀
∑ ∑ 𝑦𝑖

(𝑘)
(𝑡𝑗),

𝑀

𝑗=1

𝑁

𝑘=1

 

 
and addition of an aggregate specific offset 𝜎𝑖. The purpose of that offset is to bound the fold 
change. With standard fold change of 𝜎𝑖 = 0 we still encounter the problem of unrealistic 
dynamic ranges mostly due to low initial values. For instance, consider a species aggregate with 

average concentration of 𝜅𝑖 = 103 and with initial values of 10−16 (i.e. numerical precision) at a 

certain condition, then clearly the fold change has a dynamic range of at least 19 orders of 
magnitude (given that there must be at least one condition for which the concentration is higher 

than 103). Such a dynamic range is utterly unrealistic for a technical device (e.g. in the RPPA 
data, we see dynamic ranges of roughly three orders of magnitude). We decide to choose the 

offset in that normalized domain randomly as 𝜎𝑖 ∼ 2−𝛥 with 𝛥 ∼ 𝒰[8,0]. Hence, the offset added 

to the normalized time-course is at most the mean (20) of that time-course. Evidently, an 
aggregate-unspecific offset of just 𝜎𝑖 = 𝜎 could also be chosen, however, this gives rise to a 

significant overrepresentation of values around 𝜎 in the data. In order to generate 

measurements we thus replace 𝑦(𝑘)(𝑡𝑗) in (1.5) with 𝜉𝑖𝑗𝑘. In Fig. 4 we show the normalized 

concentration measure (1.6) and how it is transformed under the measurement characteristics 
(1.5). The histograms show the distribution of (1.6) for the whole dataset. The above 

(1.5) 

(1.6)

) 

 (1.5) 

(1.7)

) 

 (1.5) 
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randomization to distribute very small fold changes is clearly visible. Moreover, the three 
included dummy measurements that are constant throughout all conditions and time points (set 

to 2−2, 20, and 22) unfortunately leave their fingerprint. A further randomization to get more 
realistic distribution shapes would require the inclusion of a batch effect, e.g. all dummy states 
could have different levels for each batch. To assess the technical variability we compute the 

correlation coefficient 𝜌 between replicates. A scatter plot over the whole dataset for two 
replicates is shown in Fig. 5. 
 

 
Figure 4. Characterization of the measurement (1.5) in terms of input-output distribution shown for 
logarithmic and linear fold changes (1.6) for the complete dataset; random samples from (1.5) are 
overlaid to the noise-free sigmoidal characteristics. 
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Figure 5. Scatter plots of all values in the in silico dataset for two replicates. Correlation coefficient 

𝜌 = 0.96. 
 

 
Time-course prediction sub-challenge - test data normalization issues 
After publication of the final leaderboards for the time-course prediction sub-challenge (SC2B), 
two minor issues concerning the intensity levels in the gold-standard test data were discovered.  

The first issue was a missing offset term in the test data. Aggregate-specific offset terms 𝜎𝑖 were 
included in the additive noise term 𝜉𝑖𝑗𝑘 for the training data (see Eq. 1.6), but were not included 

when generating the test data. 

The second issue was the use of an incorrect normalization factor 𝜅𝑖 (see Eq. 1.7) when 
generating the test data. This normalization factor should remain constant for a complete set of 
training and test data. However, while generating the original test data it was recomputed using 
only a subset of the 20 training data conditions (no inhibitor conditions were used). As a result, 
different normalization factors were used to generate the training data and test data.  

To resolve these issues we regenerated the test data including the offset term and using the 
correct normalization factor. Submissions to SC2B were rescored using the corrected test data 
and the final leaderboards were updated. While final rankings of some teams were changed by 
this update, the top-performing team (Team34) remained the same and so the overall result of 
SC2B was unaffected. The updated scores can be found in Supplementary Table 4 and on the 
final leaderboards on Synapse 
(https://www.synapse.org/HPN_DREAM_Network_Challenge).The initial version of the final 
leaderboard is also available to download on Synapse 
(https://www.synapse.org/#!Synapse:syn4922077). 
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Appendix 

Species 

Table A.1.: List of species (excerpt) 
Name Note 

Cetuximab Cetuximab 
Pertuzumab Pertuzumab 
U0126 U0126 
  
c2 ErbB1:ATP 
c2:Cetuximab ErbB1:ATP:Cetuximab 
c2:Cetuximab:c2 ErbB1:ATP:Cetuximab:ErbB1:ATP 
  
c3 EGF:ErbB1:ATP 
c3:Cetuximab EGF:ErbB1:ATP:Cetuximab 
c3:Cetuximab: c3 EGF:ErbB1:ATP:Cetuximab: 

EGF:ErbB1:ATP 

  
c6 ErbB1:ATP 
c6:Cetuximab ErbB1:ATP:Cetuximab 
c6:Cetuximab: c6 ErbB1:ATP:Cetuximab:ErbB1:ATP 

  
c10 EGF:ErbB1:ATP 
c10:Cetuximab EGF:ErbB1:ATP:Cetuximab 
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c10:Cetuximab: c10 EGF:ErbB1:ATP:Cetuximab: 
EGF:ErbB1:ATP 

  

c45 Raf#P 
  
c47 MEK 
c47:U0126 MEK:U0126 

  
c72 (Raf#P)_i 
  
c74 (MEK:Raf#p)_i 
c72:U0126 (MEK:Raf#P)_i:U0126 
  
c141 ErbB2 
c141:Pertuzumab ErbB2:Pertuzumab 

c141:Pertuzumab:c141 ErbB2:Pertuzumab:ErbB2 
  
c155 ErbB2 
c155:Pertuzumab ErbB2:Pertuzumab 

c155:Pertuzumab:c155 ErbB2:Pertuzumab:ErbB2 
  
c524 ErbB1_h:ATP 
c524:Cetuximab ErbB1_h:ATP:Cetuximab 

c524:Cetuximab:c524 ErbB1_h:ATP:Cetuximab:ErbB1_h:ATP 
  
c529 EGF:ErbB1_h:ATP 
c529:Cetuximab EGF:ErbB1_h:ATP:Cetuximab 

c529:Cetuximab:c529 EGF:ErbB1_h:ATP:Cetuximab: 
EGF:ErbB1_h:ATP 

  
c530 ErbB1_h:ATP 
c530:Cetuximab ErbB1_h:ATP:Cetuximab 
c530:Cetuximab:c530 ErbB1_h:ATP:Cetuximab:ErbB1_h:ATP 
  
c531 ErbB1 
c531:Cetuximab ErbB1:Cetuximab 
c531:Cetuximab:c531 ErbB1:Cetuximab:ErbB1 
  
c532 ErbB1_h 
c532:Cetuximab ErbB1_h:Cetuximab 
c532:Cetuximab:c532 ErbB1_h:Cetuximab:ErbB1_h 
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Parameters 

Table A.2.: List of parameters (excerpt) 
Name Value 

kfCetuximab_1 stepfunc(time,TpInhibitor-
0.01,0,TpInhibitor,1.1E-10) 

kfCetuximab_1 1.1E-3 
  
kfCetuximab_2 7.64E-5 
krCetuximab_2 2.2E-3 
  
kfPertuzumab_1 stepfunc(time,TpInhibitor-

0.01,0,TpInhibitor,5.60-11) 
kfPertuzumab _1 9.5E-4 
  
kfPertuzumab _2 3.9E-5 
kfPertuzumab _2 1.9E-3 
  
kfU0126_1 stepfunc(time,TpInhibitor-

0.01,0,TpInhibitor,1.0-10) 
kfU0126_1 1.1E-3 
  
k44U0126 stepfunc(time,TpInhibitor-

0.01,0,TpInhibitor,1.07-5) 
kd52U0126 stepfunc(time,TpInhibitor-

0.01,0,TpInhibitor,0.033) 
 
Table A.3.: Implemented Cetuximab reactions. 
Name Reaction Rate 

Cetuximab_v1  

Cetuximab + c531 → C531:Cetuximab kfCetuximab_1*Cetuximab*c531 

Cetuximab + c531 ← c531:Cetuximab kfCetuximab_1*c531:Cetuximab 
Cetuximab_v2  
c531:Cetuximab + c531 → 
C531:Cetuximab:c531 

kfCetuximab_2*c531:Cetuximab*c531 

c531:Cetuximab + c531 ← 
C531:Cetuximab:c531 

kfCetuximab_2*c531:Cetuximab:c531 

  
Cetuximab_v3  

Cetuximab + c2 → c2:Cetuximab kfCetuximab_1*Cetuximab* c2 

Cetuximab + c2 ← c2:Cetuximab kfCetuximab_1* c2:Cetuximab 
Cetuximab_v4  
c2:Cetuximab + c2 → c2:Cetuximab:c2 kfCetuximab_2* c2:Cetuximab*c2 

c2:Cetuximab + c2 ← c2:Cetuximab:c2 kfCetuximab_2* c2:Cetuximab:c2 

  
Cetuximab_v5  
Cetuximab + c3 → c3:Cetuximab kfCetuximab_1*Cetuximab*c3 

Cetuximab + c3 ← c3:Cetuximab kfCetuximab_1* c3:Cetuximab 
Cetuximab_v6  

c3:Cetuximab + c3 → c3:Cetuximab:c3 kfCetuximab_2*c3:Cetuximab*c3 
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c3:Cetuximab + c3 ← c3:Cetuximab:c3 kfCetuximab_2*c3:Cetuximab:c3 
  
Cetuximab_v7  
Cetuximab + c10 → c10:Cetuximab kfCetuximab_1*Cetuximab*c10 

Cetuximab + c10 ← c10:Cetuximab kfCetuximab_1*c10:Cetuximab 
Cetuximab_v8  
c10:Cetuximab + c10 → 
c10:Cetuximab:c10 

kfCetuximab_2*c10:Cetuximab*c10 

c10:Cetuximab + c10 ← 
c10:Cetuximab:c10 

kfCetuximab_2*c10:Cetuximab: c10 

  
Cetuximab_v9  
Cetuximab + c6 → c6:Cetuximab kfCetuximab_1*Cetuximab*c6 

Cetuximab + c6 ← c6:Cetuximab kfCetuximab_1*c6:Cetuximab 
Cetuximab_v10  
c6:Cetuximab + c6→ c6:Cetuximab: c6 kfCetuximab_2* c6:Cetuximab* c6 

c6:Cetuximab + c6← c6:Cetuximab: c6 kfCetuximab_2* c6:Cetuximab: c6 
  
Cetuximab_v11  
Cetuximab + c532 → c532:Cetuximab kfCetuximab_1*Cetuximab*c532 

Cetuximab + c532 ← c532:Cetuximab kfCetuximab_1*c532:Cetuximab 
Cetuximab_v12  
c532:Cetuximab + c532 → 
c532:Cetuximab:c532 

kfCetuximab_2*c532:Cetuximab*c532 

c532:Cetuximab + c532 ← 
c532:Cetuximab:c532 

kfCetuximab_2*c532:Cetuximab:c532 

  
Cetuximab_v13  
Cetuximab + c524 → c524:Cetuximab kfCetuximab_1*Cetuximab*c524 

Cetuximab + c524 ← c524:Cetuximab kfCetuximab_1*c524:Cetuximab 
Cetuximab_v14  
c524:Cetuximab + c524 → 
c524:Cetuximab:c524 

kfCetuximab_2*c524:Cetuximab*c524 

c524:Cetuximab + c524 ← 
c524:Cetuximab:c524 

kfCetuximab_2*c524:Cetuximab:c524 

  
Cetuximab_v15  
Cetuximab + c529 → c529:Cetuximab kfCetuximab_1*Cetuximab*c529 

Cetuximab + c529 ← c529:Cetuximab kfCetuximab_1*c529:Cetuximab 
Cetuximab_v16  
c529:Cetuximab + c529 → 
c529:Cetuximab:c529 

kfCetuximab_2*c529:Cetuximab*c529 

c529:Cetuximab + c529 ← 
c529:Cetuximab:c529 

kfCetuximab_2*c529:Cetuximab:c529 

  
Cetuximab_v17  
Cetuximab + c530 → c530:Cetuximab kfCetuximab_1*Cetuximab*c530 

Cetuximab + c530 ← c530:Cetuximab kfCetuximab_1*c530:Cetuximab 
Cetuximab_v18  
c530:Cetuximab + c530 → kfCetuximab_2*c530:Cetuximab*c530 
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c530:Cetuximab:c530 
c530:Cetuximab + c530 ← 
c530:Cetuximab:c530 

kfCetuximab_2*c530:Cetuximab:c530 

 
Table A.4.: Implemented Pertuzumab reactions. 
Name Reaction Rate 

Pertuzumab_v1  
Pertuzumab + c141 → c141:Pertuzumab kfPertuzumab_1* Pertuzumab *c141 

Pertuzumab + c141 ← c141:Pertuzumab kfPertuzumab_1* c141:Pertuzumab 
Pertuzumab _v2  

c141:Pertuzumab + c141 → 
c141:Pertuzumab:c141 

kfPertuzumab_2*c141:Pertuzumab*c141 

c141:Pertuzumab + c141 ← 
c141:Pertuzumab:c141 

kfPertuzumab2*c141:Pertuzumab:c141 

  
Pertuzumab_v3  

Pertuzumab + c155 → c155:Pertuzumab kfPertuzumab_1*Pertuzumab*c155 

Pertuzumab + c155 ← c155:Pertuzumab kfPertuzumab_1*c155:Pertuzumab 
Pertuzumab _v4  
c155:Pertuzumab + c155 → 
c155:Pertuzumab:c155 

kfPertuzumab_2*c155:Pertuzumab*c155 

c155:Pertuzumab + c155 ← 
c155:Pertuzumab:c155 

kfPertuzumab2*c155:Pertuzumab:c155 

  
 
Table A.5.: Implemented U0126 reactions. 
Name Reaction Rate 

U0126_v1  
U0126 + c47 → c47:U0126 kfU0126_1*U0126*c48 

U0126 + c47 ← c47:U0126 kfU0126_1*c47:U0126 
U0126_v2  
U0126 + c48 → c48:U0126 kfU0126_1*U0126*c48 

U0126 + c48 ← c48:U0126 kfU0126_1*c48:U0126 
U0126_v3  
U0126 + c74 → c74:U0126 kfU0126_1*U0126*c74 

U0126 + c74 ← c74:U0126 kfU0126_1*c74:U0126 
  
U0126_v4  
c47:U0126 + c45 → c48:U0126 k44U0126_1*c47:U0126*c45 

c47:U0126 + c45 ← c48:U0126 Kd52U0126_1*c48:U0126 
U0126_v5  
c47:U0126 + c72 → c74:U0126 k44U0126_1*c47:U0126*c72 

c47:U0126 + c72 ← c74:U0126 Kd52U0126_1*c74:U0126 
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Supplementary Note 9: Leaderboard feedback and formation 

of the final leaderboards 
 
For the network inference and time-course prediction sub-challenges participants were provided 
with feedback via weekly leaderboards. There were separate leaderboards for the experimental 
data tasks and in silico data tasks. Frequency and content of feedback was chosen to give a 

balance between actively engaging participants and avoiding overfitting of models to the test 
data. The number of weekly leaderboards varied between four and seven depending on the 
sub-challenge and task. We think it highly unlikely that this small amount of feedback would 
have allowed teams to systematically optimize model parameters based on performance on the 
held-out test data. Indeed, a grid search over parameter space would typically require many 
calls to the scoring function. In addition, metrics provided gave information about overall 
performance only. For example, mean AUROC, mean rank and mean z-score were provided for 
the network inference sub-challenge experimental data task leaderboard, but no scores were 
provided for individual (cell line, stimulus) contexts. This prevented teams from adapting their 
methods based on known failure or success in individual contexts (an extreme example of such 
adaptation would be to use a completely different method for each context in order to optimize 
performance on the test data).  
 
For the time-course prediction sub-challenge, one of the metrics provided in the leaderboards 
was mean RMSE, where mean values were calculated over (cell line, phosphoprotein) or (test 
inhibitor, predicted node) pairs (Supplementary Note 6). Note that due to scaling issues, mean 
RMSE does not assign the same weighting to each pair and so is not correlated with mean 
rank. For this reason, mean rank was the metric used to assign final team rankings and we do 
not advise use of mean RMSE in analyses. 
 
After the weekly leaderboard phase, participants were able to make one further final 
submission. A final leaderboard was then formed by taking the most recent submission for each 
team. At final submission, teams were asked to provide an initial brief method write-up and 
these were used to identify and remove duplicates from the leaderboard (teams with different 
names, but same methodologies and participants). Additional metrics were provided in the final 
leaderboards, which can be found on the Synapse pages describing the challenge, together 
with all weekly leaderboards (https://www.synapse.org/HPN_DREAM_Network_Challenge). 

Supplementary Note 10: Removal of correlated submissions 

from analyses for the network inference sub-challenge 
 
For the network inference sub-challenge, a number of teams in the final leaderboard did not 
provide any additional information regarding their approaches (34 teams for the experimental 
data task and 26 for the in silico data task). It is possible that some of these teams used very 

similar approaches, for example, if a team changed its team name during the challenge. 
Including such submissions in our analyses could introduce bias and we therefore sought to 
remove them (in particular, for formation of the aggregate submission networks and for 
comparison of scores between the experimental and in silico data tasks). Pearson correlations 

were calculated between predicted edge scores for each pair of teams; for the experimental 
challenge, a correlation was calculated for each (cell line, stimulus) context and these were then 
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averaged. If two teams had (average) correlation of more than 0.75, in either of the tasks, then 
the lower ranked team was removed from analyses for both tasks (Supplementary Table 2). 

Supplementary Note 11: DREAMTools – a software package 

containing DREAM challenge scoring functions 
 
The scoring functions for the HPN-DREAM challenge are provided within “DREAMTools”, a 

software package that provides scoring functions used during the different DREAM challenges 
(Cokelaer et al., 2015). This Python package is available on GitHub 
(https://github.com/dreamtools/dreamtools) and on the Python Package Repository (PyPI) 
(https://pypi.python.org/pypi/dreamtools). 

The HPN-DREAM scoring functions return AUROC scores for the network inference sub-
challenge (SC1) and RMSE scores for the time-course prediction sub-challenge (SC2); see 
Online Methods for full details of scoring procedures. For the network inference sub-challenge 
experimental data task (SC1A) the function provides an AUROC score for each (cell line, 
stimulus) context together with a mean AUROC score, calculated across contexts. For the in 
silico data task (SC1B) a single AUROC score is returned. For the time-course prediction sub-
challenge experimental and in silico data tasks (SC2A & SC2B) a RMSE score is provided for 
each (cell line, phosphoprotein) pair (SC2A) or each (test inhibitor, predicted node) pair (SC2B). 
Mean RMSE scores, calculated across pairs, are also provided, but this metric does not provide 
a good indication of performance (Supplementary Note 9). 
 
Using the DREAMTools library, a Python script can be written to score a submission. For 
instance, the network inference sub-challenge (SC1A) can be scored as follows: 
 
 
 
 
 
 
 
 
where “sc1a_submission.zip” is the filename of the submission and this file should be formatted 
as described on the Synapse challenge pages 
(https://www.synapse.org/HPN_DREAM_Network_Challenge). See 
https://github.com/dreamtools/dreamtools/tree/master/dreamtools/dream8/D8C1 for scripts for 
the other sub-challenges. 

The DREAMTools library can also be used to rank a new submission relative to the submissions 
on the final leaderboard (i.e. provides the final ranking that would have been attained had the 
new submission been officially submitted to the challenge). See 
https://github.com/dreamtools/dreamtools/tree/master/dreamtools/dream8/D8C1 for further 
details. 
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    from dreamtools.dream8.D8C1 import scoring 
    sc1a = scoring.HPNScoringNetwork(sc1a_submission.zip) 
    sc1a.compute_all_aucs() 
    sc1a.get_auc_final_scoring()  # mean AUROC 
    sc1a.auc                                  # gives the individual AUROC for the 32 contexts 
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