
https://doi.org/10.1007/s00145-021-09389-w
J Cryptol (2021)34:26

Secure Communication Channel Establishment: TLS 1.3
(over TCP Fast Open) versus QUIC∗

Shan Chen
Technische Universität Darmstadt, Darmstadt, Germany

dragoncs16@gmail.com

Samuel Jero
MIT Lincoln Laboratory, Lexington , USA

sjero@sjero.net

Matthew Jagielski
Northeastern University, Boston, USA

jagielski.m@northeastern.edu

Alexandra Boldyreva
Georgia Institute of Technology, Atlanta, USA

sasha@gatech.edu

Cristina Nita-Rotaru
Northeastern University, Boston, USA

c.nitarotaru@northeastern.edu

Communicated by Colin Boyd

Received 11 November 2019 / Revised 27 November 2020 / Accepted 6 December 2020
Online publication 24 May 2021

Abstract. Secure channel establishment protocols such as Transport Layer Security
(TLS) are some of the most important cryptographic protocols, enabling the encryption
of Internet traffic. Reducing latency (the number of interactions between parties before
encrypted data can be transmitted) in such protocols has become an important design goal
to improve user experience. The most important protocols addressing this goal are TLS
1.3, the latest TLS version standardized in 2018 to replace the widely deployed TLS 1.2,
and Quick UDP Internet Connections (QUIC), a secure transport protocol from Google
that is implemented in the Chrome browser. There have been a number of formal security
analyses for TLS 1.3 and QUIC, but their security, when layered with their underlying
transport protocols, cannot be easily compared. Our work is the first to thoroughly
compare the security and availability properties of these protocols. Toward this goal,
we develop novel security models that permit “layered” security analysis. In addition

∗This is the full version of a paper that appeared in the proceedings of ESORICS 2019. Shan Chen did
most of his work while at Georgia Institute of Technology. Samuel Jero did most of his work while at Purdue
University

© The Author(s) 2021

http://crossmark.crossref.org/dialog/?doi=10.1007/s00145-021-09389-w&domain=pdf

26 Page 2 of 41 S. Chen et al.

to the standard goals of server authentication and data confidentiality and integrity,
we consider the goals of IP spoofing prevention, key exchange packet integrity, secure
channel header integrity, and reset authentication, which capture a range of practical
threats not usually taken into account by existing security models that focus mainly on
the cryptographic cores of the protocols. Equipped with our new models we provide
a detailed comparison of three low-latency layered protocols: TLS 1.3 over TCP Fast
Open (TFO), QUIC over UDP, and QUIC[TLS] (a new design for QUIC that uses TLS
1.3 key exchange) over UDP. In particular, we show that TFO’s cookie mechanism
does provably achieve the security goal of IP spoofing prevention. Additionally, we
find several new availability attacks that manipulate the early key exchange packets
without being detected by the communicating parties. By including packet-level attacks
in our analysis, our results shed light on how the reliability, flow control, and congestion
control of the above layered protocols compare, in adversarial settings. We hope that
our models will help protocol designers in their future protocol analyses and that our
results will help practitioners better understand the advantages and limitations of secure
channel establishment protocols.

Keywords. Applied cryptography, Provable security, TLS, QUIC, Secure channel,
Availability, Network protocols.

1. Introduction

Motivation Nowadays, more than half of all Internet traffic is encrypted according to a
2017 EFF report [30], with Google reporting that 95% of its traffic is encrypted as of
October 2020 [35]. This trend has also been facilitated by efforts like the free digital
certificate issuer Let’s Encrypt servicing 87 million active (unexpired) certificates and
150 million unique domains at the end of 2018 [1].

This widespread Internet traffic encryption is enabled by protocols that allow two
parties (where one or both parties have a public key certificate) to establish a secure
communication channel over the insecure Internet. Typically, the parties first authenticate
all parties holding a public key certificate and agree on a session key—the key exchange
phase. Then, this session key is used to encrypt the communication during the session—
the secure channel phase. We will refer to such protocols as secure channel establishment
protocols.

The main secure channel establishment protocol in use today is Transport Layer
Security (TLS). The session key establishment of the widely deployed standard TLS
1.2 [61] requires 2 round-trip times (RTTs) of end-to-end communication for a full
connection and 1 RTT for resumption (which saves 1 RTT), before sending encrypted
data. TLS 1.2 typically runs on top of TCP [56] for reliable transport, which adds
another 1 RTT of establishing a TCP connection before the TLS connection. Further,
this TCP cost is paid every time the two parties communicate with each other, even if
the connection is interrupted and then immediately resumed. Given that most encrypted
traffic is web traffic, this cost represents a significant performance bottleneck, a nuisance
to users, and financial loss to companies. For instance, back in 2006 Amazon found that
every 100ms of latency cost them 1% in sales [48], while a typical RTT on a connection
from New York to London is 70ms [69].

Not surprisingly, many efforts in recent years have focused on reducing latency in
secure channel establishment protocols. The focus has been on reducing the number of

Secure Communication Channel Establishment Page 3 of 41 26

Table 1. Latency comparison of layered protocols .

Layered Full Resumption
Protocol Connection Connection

TCP+TLS 1.2 3-RTT 2-RTT
TCP+TLS 1.3 2-RTT 1-RTT
TFO+TLS 1.3 2-RTT 0-RTT
UDP+QUIC 1-RTT 0-RTT
UDP+QUIC[TLS] 1-RTT 0-RTT

interactions (or RTTs) during session establishment and resumption without sacrificing
much security. The most important protocols addressing this goal are TLS 1.3 [60],
Google’s Quick UDP Internet Connections (QUIC) [20,46,62], and the new design for
QUIC [36] (which we refer to as QUIC[TLS] [68] to indicate that it borrows the key
exchange from TLS 1.3).

With TLS 1.3, it is possible to achieve 0-RTT resumption, i.e., the client is able to
send encrypted 0-RTT data on the first flight to the server with session resumption. This
is achieved by utilizing a session ticket that was saved during a previous communication
and multiple keys (which we call stage keys) that can be set within one session, of which
some keys are set faster (with slightly less security) so that data can be encrypted earlier.
However, for the most common case where TLS 1.3 runs over TCP, the client still has
to wait 1 RTT before transmitting any encrypted data due to the aforementioned TCP
connection. One optimization for TCP, called TCP Fast Open (TFO) [17,59], extends
TCP to allow for 0-RTT resumption connections, so that the client may begin data
transmission immediately. The mechanism underlying this optimization is a cookie saved
from previous communication, similar to the ticket used by TLS 1.3. As a result, TLS
1.3 over TFO offers 0-RTT resumption.

Like TLS 1.3, QUIC uses weaker initial keys, under which data can be encrypted
earlier, and a token saved from previous communication between the parties. However,
unlike TLS, QUIC operates over the very simple UDP [55] rather than TCP. Instead
of relying on TCP for reliability, flow control, and congestion control, QUIC imple-
ments its own data transmission functionality, integrating connection establishment with
key exchange. These features allow QUIC to have 1-RTT full connections and 0-RTT
resumption connections.

In Table 1, we show the cost of establishing full and resumption connections for
several layered protocol options achieving end-to-end security. These include TLS 1.2
over TCP, TLS 1.3 over TCP, TLS 1.3 over TFO, QUIC over UDP, and QUIC[TLS] over
UDP. It is clear that the last three win in terms of the number of interactions. But how
does their security compare?
Related Work At first glance, the question is easy to answer. Recent works have done
formal security analyses of TLS 1.3 [10,11,14,18,19,21,24–27,42,43,47] and Google’s
QUIC [29,49]. Most works confirm that (the cryptographic cores of) both protocols are
provably secure under reasonable computational assumptions. Moreover, as shown in
[27,49], their 0-RTT data transmission designs cannot achieve the same strong security
guaranteed by classical key exchange protocols with at least one RTT. In particular, for

26 Page 4 of 41 S. Chen et al.

TLS 1.3 and QUIC, their 0-RTT keys do not provide forward secrecy and the 0-RTT
data suffers from replay attacks. (Note that it is possible to construct key exchange
protocols to provide both forward secrecy for 0-RTT keys and replay resistance for 0-
RTT data, but the existing constructions [4,23,33] require either large server-side storage
or computationally expensive public-key operations.) Overall, it might seem that all three
layered protocols mentioned above are equally secure.

However, a closer look reveals that the answer is not that simple. First, all aforemen-
tioned formal security analyses, except for [49] analyzing QUIC’s IP-spoofing protection
(also known as address validation), did not consider packet-level availability attacks, i.e.,
those targeting availability properties like reliable delivery of messages (via packets).
Therefore, it is not clear at the packet level what security can be achieved and what
attacks can be prevented by these protocols. In other words, we have no formal under-
standing of what security can be obtained when layering protocols. Also, TFO uses some
cryptographic primitives, such as a cookie, to prevent IP spoofing, but no formal analysis
has been done. Furthermore, the security of QUIC[TLS] has not been formally analyzed
(although some security aspects can be reduced to those of Google’s QUIC and TLS
1.3).
Our Contributions To compare security, we first need to define a general protocol syntax
for secure channel establishment and fix a security model for it. Since the only provable
security analysis that studies security related to packet-level availability attacks is [49],
we take their quick connections (QC) protocol syntax and the associated quick authen-
ticated and confidential channel establishment (QACCE) security model as our starting
point.
Protocol definition. To accommodate protocol syntaxes of TLS 1.3 and QUIC[TLS],
we extend the QC protocol to a more general multi-stage authenticated and confidential
channel establishment (msACCE) protocol, which allows more keys to be established
during each session. Note that QC is a two-stage extension (i.e., two keys established
within one session) to the ACCE protocol syntax proposed by Jager et al. [37], while
our msACCE further extends QC to capture multiple keys.
Security definitions. We extend QC’s associated QACCE security model [49] to
two msACCE security models that are general enough for all layered secure channel
establishment protocols listed in Table 1. Our first model is fairly standard and for core
cryptographic security goals Server Authentication and Channel Security, where the
former guarantees the client authenticates its intended server’s identity upon accepting
the final session key and the latter ensures data confidentiality and integrity. Our second
model is novel and for packet-level security beyond those captured by the standard goals,
which we illustrate below.

First, we follow QACCE [49] to consider IP-spoofing security and further extend
it to our stronger IP-Spoofing Prevention notion that additionally captures IP-spoofing
attacks in the full connections.

Next, we design several novel notions for packet integrity. We first define header
integrity to capture the integrity of the entire unencrypted packet header. (Note that
previous models like QACCE only cover the header integrity implied by the authentic-
ity security of the underlying authenticated encryption scheme.) To enable fine-grained
security analyses and comparisons, we split the above notion into two related ones,
Key Exchange (KE) Header Integrity and Secure Channel (SC) Header Integrity, which

Secure Communication Channel Establishment Page 5 of 41 26

Table 2. Security comparison .

TLS 1.3 QUIC QUIC[TLS]
+TFO +UDP +UDP

0-RTT Key Forward Secrecy [27,49] × × ×
0-RTT Data Anti-Replay [27,49] × × ×
Server Authentication ✓ ✓ ✓
Channel Security ✓ ✓ ✓
IP-Spoofing Prevention ✓ ✓ ✓
KE Header Integrity × × ×
KE Payload Integrity ✓ × ×
SC Header Integrity × ✓ ✓
Reset Authentication × × ✓

capture header integrity during the key exchange phase and secure channel phase, respec-
tively. Furthermore, we define the notion of KE Payload Integrity to cover availability
attacks that modify the payloads of key exchange packets. We note that unlike the avail-
ability attacks shown in [49], successful attacks under the above new notions do not
affect the client’s session key establishment and therefore are harder or impossible to
detect by the client.

Finally, we formalize the new goal of Reset Authentication to deal with attacks that
forge a reset packet to abruptly terminate (without completing) an honest party’s session,
i.e., it ensures that a session should be reset only by the intended party who lost its
state (e.g., due to server reboots). Such stateless reset security may be confused with
secure termination proposed by [12]. However, secure termination targets a very different
goal: it ensures that upon receipt of a termination message the receiver has received all
messages that were sent and will ever be sent by the sender, i.e., it ensures a session is
completed as expected. As modeled in [12], this property can be reduced to the security
of the underlying channel protocol, which in our case is guaranteed by Channel Security
(and hence not captured by our second model). Note that all termination message(s) are
encrypted and authenticated in the established secure channel, while a reset packet used
for a stateless reset typically cannot be protected because the issuing party has already
lost all session states including the keying material (Table 2).
Security analyses. Equipped with our new models, we study the security and avail-
ability properties provided by TFO+TLS 1.3, UDP+QUIC, and UDP+QUIC[TLS], with
results summarized below.

We first confirm that all protocols provably satisfy the standard security notions of
Server Authentication and Channel Security given that their building blocks are secure.
The results mostly follow from prior works and we just have to argue that they still
hold for the extended model. Similarly, prior results showed that QUIC is secure against
IP spoofing, which can be extended to our stronger notion for both UDP+QUIC and
UDP+QUIC[TLS]. As for TFO+TLS 1.3, its IP-Spoofing Prevention security relies
on TCP sequence number randomization and TFO’s cookie mechanism (but no prior
former analysis confirmed its security). We prove that TFO+TLS 1.3 does satisfy this
security assuming that the underlying TFO cookie generation function is a pseudorandom
function.

26 Page 6 of 41 S. Chen et al.

Regarding SC Header Integrity, we show that while UDP+QUIC and UDP+QUIC[TLS]
are secure, TFO+TLS 1.3, on the other hand, is insecure because it allows header-only
packets to be sent in the secure channel phases and does not authenticate the TCP headers
of encrypted packets. This theoretical result captures practical availability attacks that
the networking community has been slowly uncovering via manual investigation over
the last 30 years [3,16,31,32,38–40,44,45,52,57,58,63,70], such as TCP flow control
manipulation, TCP acknowledgment injection, etc.

We next show that none of the three protocols satisfies KE Header Integrity. For
TFO+TLS 1.3, this result leads to a TFO cookie removal attack that we discover, which
allows the attacker to undermine the whole benefit of TFO without being detected by
the communicating parties. Then, we show that UDP+QUIC is not secure in the sense
of KE Payload Integrity. This leads to a new availability attack that we call ServerReject
Triggering. Note that unlike the QUIC attacks (e.g., server config replay attack, connec-
tion ID manipulation attack, etc.) discovered in [49], ServerReject Triggering is harder
to detect. Similar attacks also work for UDP+QUIC[TLS]. We show that TFO+TLS 1.3,
on the other hand, achieves KE Payload Integrity.

We further show that neither TFO+TLS 1.3 nor UDP+QUIC provides Reset Authen-
tication, justifying the TCP Reset attack [70] relevant for TFO+TLS 1.3 and the Pub-
licReset attack for UDP+QUIC. On the other hand, we prove that UDP+QUIC[TLS]
does guarantee Reset Authentication with its new stateless reset feature, by relying on
the unpredictability of the reset tokens.

We note that the new UDP+QUIC[TLS] protocol achieves the strongest overall secu-
rity of the three designs. While formally it does not provide KE Payload Integrity, the
related attacks can also happen in TFO+TLS 1.3 in a similar way; the latter satisfies
KE Payload Integrity mainly because its availability functionalities are all carried in its
protocol headers rather than payloads. More importantly, UDP+QUIC[TLS] is the only
protocol that guarantees Reset Authentication.

Even though QUIC[TLS] may not be able to sustain the competition in the long
run despite stronger security, we hope our models will help protocol designers and
practitioners better understand the important security aspects of existing and new secure
channel establishment protocols.
Paper Organization The rest is organized as follows. We provide an overview of relevant
design information for TFO, TLS 1.3, QUIC, and QUIC[TLS] in Sect. 2. Section 3
specifies our notations and preliminaries. Our msACCE protocol and its security are
formally defined in Sects. 4 and 5 presents the details of our security analyses. Section 6
concludes our paper.

2. Background

Network protocols are designed and implemented following a layered network stack
model where each layer has its own functionality, defines an interface for use by higher
layers, and relies only on the properties of lower layers. In this work, we are concerned
with three layers: network, represented by the IP protocol; transport, represented by
UDP, TCP, or TFO; and application, represented by TLS, QUIC, or QUIC[TLS].

Secure Communication Channel Establishment Page 7 of 41 26

0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+−+
| Source Port | Dest ina t ion Port |
+−+
| Sequence Number |
+−+
| Acknowledgment Number |
+−+
Data		U	A	P	R	S	F	
Of f se t	Reserved	R	C	S	S	Y	I	Window
		G	K	H	T	N	N	
+−+								
Checksum	Urgent Pointer							
+−+								
Options	Padding							
+−+

Fig. 1. TCP header [56] .

2.1. TLS 1.3 over TFO

TCP Fast Open TFO is an optimization for the TCP protocol. TCP itself provides the
following services to an application (or higher protocol): (1) reliability, (2) ordered
delivery, (3) flow control, and (4) congestion control. It is connection-oriented and con-
sists of three phases: connection establishment, data transfer, and connection tear-down.
TCP relies on control information from its header to implement this functionality. For
example, as shown in Fig. 1, control bits specify what type of packets are sent over
the network, which determines whether the packets are establishing a new connection,
sending data, acknowledging data, or tearing down the connection.

The disadvantage of layering protocols is that higher level protocols have no control
over the internal mechanics of lower level protocols and can interact with them only
through defined interfaces. A protocol using standard TCP for transferring data needs
to wait for connection establishment at the TCP layer to complete before it receives
notification of a new connection and can begin its own processing and data transfer.
A standard TCP connection is established with a three-way handshake, which consists
of three packets SYN, SYN-ACK, ACK as shown in Fig. 2. SYN carries a random
sequence number that is acknowledged by SYN-ACK, and SYN-ACK carries another
random sequence number that is acknowledged by ACK.

The TFO optimization introduces a simple modification to the TCP connection estab-
lishment handshake to reduce the 1-RTT connection establishment latency of TCP and
allow for 0-RTT handshakes, so that data transmission may begin immediately. TFO
fulfills the same design goals mentioned for TCP above, assuming the connection is
established correctly.

The mechanism through which 0-RTT is achieved is a cookie that is obtained by
the client the first time it communicates with a server and cached for later uses. This
cookie is intended to prevent replay attacks while avoiding the need for servers to keep
expensive state. It is generated by the server, authenticates client IP address, and has a
limited lifetime. Generation and verification have low overhead.

Cookies are sent in the TFO option field in SYN packets. The first two message
exchanges in Fig. 2a show how a cookie is obtained. The client requests a cookie by
using the TFO option in the SYN with the cookie field set to empty (nil), indicating
that it would like to use TFO. The server generates an appropriate cookie and places it
in the TFO option field of the SYN-ACK. The client caches this cookie for subsequent

26 Page 8 of 41 S. Chen et al.

(a)

Client Server

SYN,Cookie=nil

SYN-ACK,Cookie=
ck

ACK
ClientHello

ServerHello

{EncryptedExtensio
ns}

{CertificateRequest
*}

{ServerCertificate*}

{ServerCertificateV
erify*}

{ServerFinished}

{ClientCertificate*}{ClientCertificateVerify*}{ClientFinished}

[NewSessionTic
ket=tk]

[Application Data]

TFO
start TFO

generate
cookie

TLS
start

TLS
generate
ticket

(b)

Client Server

SYN,Cookie=ck
ClientHello,PSKid=tk
(Application Data*)

SYN-ACK

ServerHello

{EncryptedExtensio
ns}

{ServerFinished}

ACK
(EndOfEarlyData)
{ClientFinished}

[Application Data]

TFO
start
TLS
start

TFO
check
cookie

TLS
check
ticket

Fig. 2. TFO+TLS 1.3 (EC)DHE 2-RTT full handshake (a) and PSK-(EC)DHE 0-RTT resumption handshake
(b). * indicates optional messages. () indicates messages protected using the 0-RTT keys derived from a
pre-shared key (PSK). {} and [] indicate messages protected with initial and final keys.

connections to this server. If a cookie was not provided, the client instead caches the
negative response, indicating that TFO connections should not be tried to this server, for
some time.

In subsequent connections to this server (first message in Fig. 2b), the client places
its cached TFO cookie in the TFO option in the SYN packet. The client is also allowed
to send 0-RTT data in the remainder of the SYN packet. This might be an HTTP GET
request or a TLS ClientHello message. When the server receives the SYN, it will
validate the cookie. If the cookie is valid, it responds with a SYN-ACK acknowledging
the 0-RTT data and a response to the 0-RTT data. If the cookie is invalid (expired or
otherwise), a full handshake is required and any initial data is ignored.
TLS 1.3TLS 1.3 provides confidentiality, authentication, and integrity of communication
over a secure channel between a client and a server. This is accomplished in two phases—
the handshake protocol and the record protocol. The handshake sets up appropriate
parameters for the record protocol to achieve these three goals. These include parameters
like the cipher suite to use and the shared secret key. Unfortunately, the handshake in
TLS 1.2 takes 2-RTTs to complete. Additionally, the naive layering of TLS 1.2 over
TCP, as traditionally used for HTTPS, would require a full 3-RTTs before the HTTP
request could be sent. Fortunately, the recently standardized TLS 1.3 [60] provides
many improvements over TLS 1.2. Most relevant for our purposes, it enables 0-RTT
handshakes at the TLS level.

Secure Communication Channel Establishment Page 9 of 41 26

In a TLS 1.3 full connection (see Fig. 2a starting from the fourth message), the
client begins by sending a ClientHello message containing a list of ciphersuites
the client is willing to use with key shares for each and optional extensions. The
server responds with a ServerHello message containing the ciphersuite to use and
its key share. At this point, an initial encryption key is derived and all future mes-
sages are encrypted. The server also sends an EncryptedExtensions message
containing any extension data, a CertificateRequest message if doing client
authentication, a ServerCertificate message containing the server’s certificate,
a ServerCertificateVerify message containing a signature over the handshake
with the private key corresponding to the server’s certificate, and a ServerFinished
message containing an HMAC of all messages in the handshake. The client receives
these messages, verifies their contents, and responds with ClientCertificate and
ClientCertificateVerify messages if doing client authentication before fin-
ishing with a ClientFinished message containing an HMAC of all messages in the
handshake. At this point, a final encryption key is derived and used for encrypting all
future messages. If the server supports 0-RTT connections, one final handshake message,
the NewSessionTicket message, will be sent by the server to provide the client with
an opaque session ticket to be used in a resumption session.

In later TLS 1.3 resumption connections to this server, the client uses the session
ticket established in the prior full connection to do a 0-RTT connection. In this case,
the client sends a ClientHello message indicating a pre-shared-key ciphersuite, a
ciphersuite to use for the final key, and the cached session ticket. The client can then
derive an encryption key and begin sending 0-RTT data. The server will verify the ses-
sion ticket, use it to establish the same encryption key, and send a ServerHello
message containing the ciphersuite to use and its final key share. At this point, an
initial encryption key is derived and all future messages are encrypted. The server
also sends an EncryptedExtensions message containing any extension data and
a ServerFinished message containing an HMAC of all messages in the hand-
shake. The client receives these messages, verifies their contents, and responds with
an EndOfEarlyData message and a ClientFinished message containing an
HMAC of all messages in the handshake. At this point, a final encryption key is derived
and used for encrypting all future messages.
TLS 1.3 over TFO TLS assumes that lower layers provide reliable, in-order delivery
of TLS messages. As a result, TLS is usually layered on top of TCP, which provides
these properties. This usually results in a delay for the TCP handshake followed by a
delay for the TLS handshake. This is obviously undesirable. However, the combination
of TLS 1.3 and TFO enables true 0-RTT connections.

In a full connection to a TFO+TLS 1.3 server, the client requests a TFO cookie in the
TCP SYN and then does a full TLS 1.3 handshake once the TCP connection completes.
This takes 3-RTTs (see Fig. 2a), but provides a cached TFO cookie and cached TLS
session ticket.

In subsequent resumption connections to this server, the client can use the TFO
cookie to establish a 0-RTT TCP resumption connection and include the TLS 1.3
ClientHello message in the SYN packet. This ClientHello message can use
the cached TLS session ticket to start a 0-RTT resumption handshake. Thus, the TCP
and TLS 1.3 connections are established at the same time, as shown in Fig. 2b.

26 Page 10 of 41 S. Chen et al.

0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+−+
| Source Port | Dest ina t ion Port |
+−+
| Length | Checksum |
+−+

Fig. 3. UDP header [55] .

2.2. QUIC over UDP

UDP UDP [55] is an extremely simple transport protocol providing unreliable datagram
delivery, the ability to multiplex data between multiple applications, and an optional
checksum. A UDP sender simply wraps the message to be sent with a UDP header (see
Fig. 3) and the receiver unwraps the message and delivers it to the application, after
possibly verifying the checksum. No other processing is performed.

UDP has been typically used for applications where low latency is crucial, like video
gaming and real-time streaming video. As a result, it can traverse NAT devices and
firewalls that often block unknown or rare protocols.
QUIC QUIC is a transport protocol developed by Google and implemented by Chrome
and Google servers since 2013 [20,46,62]. It now provides service for the majority
of requests by Chrome to Google properties [67]. QUIC’s goal was to provide secure
communication comparable with TLS while achieving reduced connection setup latency
compared to traditional TCP+TLS 1.2. To do so, it provides the following services to
applications: (1) reliability, (2) in order delivery, (3) flow control, (4) congestion control,
(5) data confidentiality, and (6) data authenticity. For repeated connections to the same
server it also provides (7) 0-RTT connections, enabling useful data to be sent in the first
round trip. In short, QUIC provides a very similar set of services to TFO+TLS 1.3.

Instead of modifying TCP to enable 0-RTT connection establishment, QUIC replaces
TCP entirely, using UDP to provide application multiplexing and enabling it to traverse
the widest possible swath of the Internet. QUIC then provides all other guarantees itself.

QUIC packets contain a public header and a set of frames that are encrypted and
authenticated after initial connection setup. The header contains a set of public flags,
a unique 64-bit connection identifier, a variable-length packet number, and optional
version and nonce fields. All other protocol information is carried in control and stream
(data) frames that are encrypted and authenticated.

To provide 0-RTT, QUIC caches important information about the server that will
enable the client to determine the encryption key to be used for each new connection.
As shown in Fig. 4a, the first time a client contacts a given server it has no cached infor-
mation, so it sends an empty (Inchoate) ClientHello message. The server responds
with a ServerReject message containing the server’s certificate and three pieces of
information for the client to cache. The first of these is an object called an scfg, or
server config. The scfg contains a variety of information about the server, including a
Diffie–Hellman share from the server, supported encryption and signing algorithms, and
flow control parameters. This scfg has a defined lifetime and is signed by the server’s
private key to enable authentication using the server’s certificate. Along with the scfg,
the server sends the client a source-address token or stk. The stk is used to prevent
IP spoofing. It contains an encrypted version of the client’s IP address and a timestamp.

Secure Communication Channel Establishment Page 11 of 41 26

(a)

Client Server
InchoateClientHello

ServerReject
,STK=stk

ClientHello,STK=stk{Application Data*}

{ServerHello}

[Application Data]

QUIC
start

QUIC
generate
token

QUIC
check
token

(b)

Client Server
ClientHello,STK=stk{Application Data*}

{ServerHello}

[Application Data]

QUIC
start QUIC

check
token

Fig. 4. UDP+QUIC 1-RTT full handshake (a) and 0-RTT resumption handshake (b). * indicates optional
messages. {} and [] indicate messages protected with initial and final keys .

With this cached information, a client can establish an encrypted connection with the
server. It first ensures that the scfg is correctly signed by the server’s certificate and
is valid, then sends a ClientHello indicating the scfg it is using, the stk value
it has cached, a Diffie–Hellman share for the client, and a client nonce. After sending
the ClientHello, the client can create an initial encryption key and send additional
encrypted Application Data packets. In fact, to take advantage of the 0-RTT con-
nection establishment it must do so. When the server receives the ClientHello mes-
sage, it validates the stk and client nonce parameters and creates the same encryption
key using the server share from thescfg and the client’s share from theClientHello
message.

At this point, both client and server have established the connection and setup encryp-
tion keys and all further communication between the parties is encrypted. However,
the connection is not forward secret yet, meaning that compromising the server would
compromise all previous communication because the server’s Diffie–Hellman share is
the same for all connections using the same scfg. To provide forward secrecy for
all data after the first RTT, the server sends a ServerHello message after receiv-
ing ClientHello which contains the client’s newly generated Diffie–Hellman share.
Once the client receives ServerHello, client and server derive and begin using the
new forward-secret encryption key.

If a client has previously connected to a server, it can instead initiate a resumption
connection to the same server. This consists of only the last two steps of a full connection,
sending the ClientHello and ServerHello messages as shown in Fig. 4b.

2.3. QUIC with TLS 1.3 Key Exchange

A new version of QUIC [36], which also supports 0-RTT, describes several improvements
of the previous design. The most important change is replacing QUIC’s key exchange
with the one from TLS 1.3, as specified in the latest Internet draft [68]. We provide more
details (e.g., the new stateless reset feature) of this new QUIC (denoted by QUIC[TLS])
in Sect. 5.

26 Page 12 of 41 S. Chen et al.

3. Preliminaries

Notations Let {0, 1}∗ denote the set of all finite-length binary strings (including the
empty string ε) and {0, 1}n denote the set of n-bit binary strings. [n] denotes the set

of integers {1, 2, . . . , n}. For a finite set R, let |R| denote its size and r
$← R denote

sampling r uniformly at random from R. For a binary string s, let |s| denote its length in

bits. y ← F(x) (resp. y
$← F(x)) denotes y being the output of the deterministic (resp.

probabilistic) function F with input x . Let x ← a denote assigning value a to variable
x . We use the wildcard · to indicate any valid input of a function.
Public Key Infrastructure For simplicity, we do not consider certificates or certificate
checks but assume any public key associated with a party is supported by a public key
infrastructure (PKI) and hence certified and bound to the party’s identity. That is, we
omit PKI details but simply assume that the binding of public keys to party identities is
publicly known by default.

3.1. Pseudorandom Function

For a function family F : {0, 1}λ × {0, 1}n → {0, 1}m , consider the following security

experiment associated with an adversaryA. The challenger first samples a bit b
$← {0, 1}.

If b = 0, A is given oracle access, i.e., can make queries, to Fk(·) = F(k, ·) where

k
$← {0, 1}λ. If b = 1, A is given oracle access to f (·) that maps elements from {0, 1}n

to {0, 1}m uniformly at random. In the end, A outputs a bit b′ as a guess of b. The
advantage of A is defined as AdvprfF (A) = | Pr[b′ = 1|b = 0] − Pr[b′ = 1|b = 1]|,
which measures A’s ability to distinguish Fk (with random k) from a random function
f .
F is a pseudorandom function (PRF) if: (1) for any k ∈ {0, 1}λ and any x ∈ {0, 1}n ,

there exists an efficient algorithm to compute F(k, x); and (2) for any efficient adversary
A, AdvprfF (A) is sufficiently small (e.g., roughly 2−λ).

3.2. Stateful Authenticated Encryption with Associated Data

We follow [13,41] in extending the stateful authenticated encryption notion of Bellare
et al. [7] to capture a hierarchy of stateful AEAD security notions based on different
authentication levels. The following definitions are the same as [13], except that we
exclude the length-hiding property proposed by Paterson et al. [53] for conciseness.
Syntax A stateful AEAD scheme sAEAD is a 4-tuple (sG, sI, sE, sD) associated with
a message space M ⊆ {0, 1}∗, an associated data space AD ⊆ {0, 1}∗, and a state space
ST ⊆ {0, 1}∗. sG is a probabilistic algorithm that samples a random key k from a finite
non-empty key space K. sI is an algorithm that initializes the encryption and decryption
states ste, std . sE is a probabilistic encryption algorithm that takes as input k ∈ K, ad ∈
AD,m ∈ M and ste and outputs a ciphertext ct ∈ {0, 1}∗ with an updated ste. sD is
a deterministic decryption algorithm that takes as input k ∈ K, ad ∈ AD, ct ∈ {0, 1}∗
and std and outputs m ∈ M∪{⊥} with an updated std . The correctness requires that, for
any k ∈ K sampled by sG, any ste = st0

e , std = st0
d initialized by sI, and any sequence

Secure Communication Channel Establishment Page 13 of 41 26

of encryptions {(cti+1, st i+1
e)

$← sE(k, adi ,mi , st ie)}i≥0, the sequence of decryptions
{(m′

i+1, st
i+1
d) ← sD(k, ad,E(k, adi , cti , st id))}i≥0 satisfies mi = m′

i , i ≥ 0.
Security Consider the following experiment with an authentication level al ∈ [4]. In the

beginning, run sG to generate a key k and run sI to initialize ste, std . Sample b
$← {0, 1}

and set (u, v,outofsync) ← (0, 0, 0). Then, the adversary A is given access to the
following oracles:
Enc(ad,m0,m1):

1: u ← u + 1, (sent.ctu, st ′e)
$← sE(k, ad,mb, ste)

2: (sent.adu, ste) ← (ad, st ′e), return sent.ctu

Dec(ad, ct):

1: if b = 0, return ⊥
2: v ← v + 1, (m, st ′d) ← sD(k, ad, ct, std)
3: (rcvd.adv, std) ← (ad, st ′d)
4: if (al = 4) ∧ cond4 or (al ≤ 3) ∧ (m
= ⊥) ∧ condal , set outofsync ← 1
5: if outofsync = 1, return m, otherwise, return ⊥

The above “out-of-sync” condition (see procedure 4) varies with the associated authen-
tication level al ∈ [4]. We recall the four authentication conditions condal defined in
[13] as follows:

cond1: (�y : (ct = sent.cty) ∧ (ad = sent.ady))
cond2: (�y : (ct = sent.cty) ∧ (ad = sent.ady)) ∨ (∃w < v : ct = rcvd.ctw)

cond3: (�y : (ct = sent.cty)∧(ad = sent.ady))∨(∃w, x, y : (w < v)∧(sent.ctx =
rcvd.ctw) ∧ (sent.cty = ct) ∧ (x ≥ y))

cond4: (u < v) ∨ (ct
= sent.ctv) ∨ (ad
= sent.adv)

Note that condal constrains the adversary’s ability to make an “out-of-sync” Dec query
(which is necessary to get a non-⊥ value). That is, the more easily condal can be satisfied,
the more powerful the adversary is, and hence the higher authentication level the security
experiment captures. In particular, cond1 corresponds to the lowest authentication level
that only guarantees no forgeries; cond2 adds a clause to additionally capture replays;
cond3 extends cond2 to further capture reordering (note that cond3 constrained on
x = y is equal to cond2); finally, cond4 corresponds to the highest authentication level
that prevents forgeries, replays, reordering, and dropping.

In the end, A outputs a bit b′. The stateful AEAD scheme sAEAD is secure with
authentication level al if and only if Advaead-al

sAEAD (A) = |2 Pr[b = b′] − 1| is sufficiently
small (e.g., roughly 2− log |K|) for any efficient adversary A.

4. Multi-stage Authenticated and Confidential Channel Establishment

In this section, we define the syntax and two security models for multi-stage authenti-
cated and confidential channel establishment (msACCE) protocols.

26 Page 14 of 41 S. Chen et al.

4.1. Protocol Syntax

Our msACCE protocol is an extension to the quick connection (QC) protocol proposed
by Lychev et al. [49] and the multi-stage key exchange (MSKE) protocol proposed by
Fischlin and Günther [29] (and further developed by [24,25,27,47]). Even though the
authors of [49] claimed their QC protocol syntax to be general, TLS 1.3 does not fit
it well because TLS 1.3 has two initial keys and one final key in 0-RTT resumption
while QC captures only one initial key. On the other hand, the MSKE protocol and its
extensions focus only on the key exchange phases.

Our msACCE protocol syntax inherits many parts of the QC protocol syntax but
extends it to a multi-stage structure and additionally covers session resumptions (for-
mally, unlike QC), session resets, and header-only packets exchanged in secure channel
phases. msACCE also employs a more general stateful authenticated encryption syntax
(rather than a nonce-based one) to capture the encryption schemes of both TLS 1.3 and
QUIC.

The detailed protocol syntax is defined below.
A msACCE protocol is an interactive protocol between a client and a server. The

protocol consists of one or more stages and each stage consists of two phases (that are
formally defined later): key exchange and secure channel. The client and server establish
keys in key exchange phases and exchange messages encrypted and decrypted with these
keys in secure channel phases. Messages are exchanged via packets. A packet consists
of source and destination IP addresses IPs, IPd ∈ {0, 1}32 ∪ {0, 1}128, a header, and a
payload. Each party P has a unique IP address IPP . Note that for the network layer, we
only consider the Internet Protocol and its IP address header fields because our model
mainly focuses on the application and transport layers and additionally only captures the
IP-spoofing attack. Both parties can keep static state (shared among several sessions)
and volatile state (used only within one session). All states are initialized to the empty
string ε.

The protocol is associated with the security parameter λ ∈ N+, a key generation
algorithm Kg that takes as input 1λ and outputs a public and secret key pair, a header
space (for transport and application layers) H ⊆ {0, 1}∗ that may exclude some header
fields of the analyzed protocol (e.g., port numbers, checksums, etc.) if they do not
affect the security analysis, a payload space PD ⊆ {0, 1}∗, header and payload spaces
for reset packets (described later) Hrst ⊆ H,PDrst ⊆ PD, a resumption state space
RS ⊆ {0, 1}∗, and a stateful AEAD scheme sAEAD = (sG, sI, sE, sD) (with a mes-
sage space M ⊆ {0, 1}∗, an associated data space AD ⊆ {0, 1}∗, and a state space
ST ⊆ {0, 1}∗). The protocol is also associated with three disjoint message spaces
MKE,MSC,MpRST ⊆ M, where MKE,MSC consist of messages encrypted in key
exchange and secure channel phases, respectively, and MpRST consists of pre-reset
messages (described later) encrypted in a secure channel phase. Note that disjointness
of these message spaces is a reasonable assumption as practical protocols (such as those
in Table 1) enforce different leading bits for different types of messages.

During the protocol’s execution, the server keeps a (static) local time state loct
that represents its current time period, which is initialized to 0 and gets incremented
(by one) periodically. The server may keep a (static) configuration state scfg that is
updated whenever loct is incremented (e.g., for security reasons); if so, the protocol

Secure Communication Channel Establishment Page 15 of 41 26

Sender Receiver
pktprst = [mprst]

pktrst

generate
pre-reset message mprst

generate
reset packet pktrst

store
pre-reset state st

reset session if
pktrst is verified (based on st)

Fig. 5. Stateless reset. [] indicates messages protected in a secure channel .

is further associated with a server configuration generation function scfg_gen, which
takes as input 1λ, the server secret key (generated by Kg), and a timestamp (the content
of loct), then outputs a new server configuration state. Note that in the QC protocol
syntax [49] scfg is also updated at the beginning of each time period, but there the
notion of time was modeled rather informally. We refer to [5,64] for “timed” models
proposed to analyze authentication and key exchange protocols whose security relies
crucially on time synchronization, but this is not the case for the protocols analyzed in
this work (for which timestamps, if any, are essentially only used by servers to expire
resumption tokens). In order to not further complicate our already complex model,
we choose to simplify our time modeling by replacing timestamps with local loct
counters. The advancement of (server-side) time periods is triggered by the NextTP
oracle as described later in our security model.

A reset packet enables the sender, who lost its volatile session state due to some error
condition (e.g., server reboots, denial-of-service attacks, etc.) and hence lost its previous
connection with the receiver, to reset (i.e., terminate without completing) their session.
A pre-reset message (e.g., a reset token in UDP+QUIC[TLS]) may have been sent to the
receiver in a secure channel phase as a pre-reset packet before the sender lost its state,
in order to let the receiver verify the sender’s reset packet, as shown in Fig. 5. Note that
a pre-reset message can also be carried within an encrypted key exchange packet; we
consider only the case where it is encrypted as a separate secure channel packet to get
clean security models described later. For simplicity, we assume each party generates at
most one pre-reset message for each session. A non-reset packet is a packet that is not
a reset packet.

A header-only packet is packet that has no payload.
We say a party rejects a packet if its processing the packet leads to an error (defined

according to the protocol), and accepts it otherwise.
At the beginning of the protocol’s execution, each party takes as input a list of messages

Msnd = (M1, . . . , Ml), Mi ∈ MSC, l ∈ N (where the total message length |Msnd| is
polynomial in λ) as well as the other party’s IP address. Note that in reality the exchanged
messages may depend on each other, but modeling that complicates our already complex
protocol syntax and it has no real implications on our security analysis since as we will
show the adversary chooses all secure channel messages. Furthermore, for simplicity
we consider transmission of atomic messages rather than a data stream, where the latter
was modeled in [28] and later extended to capture multiplexing [54].

The protocol has two modes: full and resumption. Its corresponding executions are
referred to as the full and resumption sessions. Each resumption session is associated with
a unique previous full session, and we say the resumption session resumes its associated

26 Page 16 of 41 S. Chen et al.

full session. At the beginning of a full session, the server takes as input its associated
public and secret key pair (generated by Kg) and the client takes the server’s public key
as input. (This implies that the client knows the identifier of its intended communicating
peer when the protocol starts, so our protocol is analyzed in the pre-specified peer model
[51].) For a resumption session, each party additionally takes as input its own (static)
resumption state rs ∈ RS (set in the associated full session). In either case, the client
sends the first packet to start a session and each party may set its static state if it is not
set yet. In particular, if scfg_gen is defined and the server’s configuration state scfg
has not been set, the server sets loct to 0 and runs scfg_gen to set its scfg, which
may be further updated during the protocol’s execution.

A D-stage (for an arbitrary D ∈ N+) msACCE protocol consists of D successive
stages and each d-th (d ∈ [D]) stage consists of one or two phases described as follows:

(1) Key Exchange At the end of this phase, each party sets its d-th stage key kd =
(kdc , kds). At most one of kdc and kds could be ⊥ (i.e., unused); this captures the case
where a 0-RTT key consists of only a client encryption key while the server encryption
key does not exist. If this phase belongs to the final stage of a full session, each party
can send additional key exchange messages encrypted with kdc or kds after setting kd ,
e.g., post-handshake key exchange messages that are used for session resumption, post-
handshake authentication, key updates, etc.; at the end of this phase, each party sets its
own resumption state.

(2) Secure Channel This phase is mandatory for the final stage but optional for other
stages. In this phase, the parties can exchange messages from their input lists as well as
pre-reset messages, encrypted and decrypted using the associated stateful AEAD scheme
with kd . (For simplicity, we do not consider key updates inside the secure channel, which
was modeled in [34].) The client uses kdc to encrypt and the server uses it to decrypt,
whereas the server uses kds to encrypt and the client uses it to decrypt. They may also
send reset or header-only packets. At the end of this phase, each party outputs a list of
received messages (which may be empty).

Each message exchanged between the parties must belong to some unique phase at
some unique stage. One stage’s second phase and the next stage’s first phase may overlap,
and the two phases in the final stage may also overlap. We call the final stage key the
session key and the other stage keys the interim keys.
Correctness Consider a client and a server running a D-stage msACCE protocol in
either mode without sending any reset packet. Each party’s input message list Msnd,
in which the messages are sent among D stages according to any possible partition-
ing Msnd = Msnd

1 , . . . ,Msnd
D , is equal to the other party’s total output message list

Mrcv = Mrcv
1 , . . . ,Mrcv

D , in which the message order is preserved. Each party termi-
nates its session upon receiving the other party’s reset packet.
Relations to Prior ACCE-type Protocols With our more general protocol syntax, the
ACCE [37] and QC [49] protocols can be classified into 1-stage and 2-stage msACCE
protocols, respectively.

4.2. Security Models

We propose two security models, respectively, for basic authenticated and confidential
and novel packet authentication. Our models do not consider the key exchange and secure

Secure Communication Channel Establishment Page 17 of 41 26

channel phases independently, as was the case in the MSKE model (and its extensions)
used by some previous QUIC and TLS 1.3 security analyses [14,24–27,29,47], because
QUIC’s key exchange and secure channel phases are inherently inseparable and the TLS
1.3 full handshake does not fit into a composability framework, as discussed in [25,49].

(1) msACCE Standard Security Model
In this msACCE standard (msACCE-std) security model, we consider the standard

security goals for msACCE protocols: Server Authentication and Channel Security. Note
that for simplicity our msACCE-std model focuses on the most common unilateral server
authentication, but it can be extended to mutual authentication, e.g., as described in [42].

Our msACCE-std model is based on the standard security portion of the QACCE
model [49], but extends it to capture four authentication levels (following those of state-
ful authenticated encryption schemes) and any number of stages. Recall that QACCE
considers only two stages within a session and hence cannot be used to analyze the TLS
1.3 0-RTT resumption. Inspired by the “timed” models proposed by [5,64], our model
introduces a new NextTP oracle (defined later) to formally capture the advancement of
time periods on the server side, which was not modeled properly in QACCE. Finally,
like QACCE and other previous models, we consider a very powerful adversary who can
control communications between honest parties, can adaptively learn their stage keys,
and can adaptively corrupt servers to learn their long-term keys and secret states.

The detailed security model is defined below.
Protocol Entities The set of parties P consists of two disjoint type of parties: clients C
and servers S, i.e., |P| = |C| + |S|.
Session Oracles To capture multiple sequential and parallel protocol executions, each
party P ∈ P is associated with a set of session oracles π1

P , π2
P , . . ., where π i

P models
P executing a protocol instance in session i ∈ N+.
Session Identifiers As part of the security model, session identifiers are used to model
entity authentication, session key confirmation, and handshake integrity. Compared to
the general definition of matching conversations [9,37] used for modeling entity authen-
tication, a session identifier sid is defined according to the protocol specifications and
security goals, often as a subset of the entire communication transcript. For instance,
QUIC’s sid in QACCE [49] is defined as the second-round key exchange messages,
i.e., ClientHello and ServerHello, while the first-round messages are excluded
to allow for valid but different source-address tokens or signatures. Similarly, TLS 1.2’s
sid in ACCE [42] is defined as the first three key exchange messages, while the rest are
excluded to allow for valid but different encrypted Finished messages. A msACCE
protocol may have different session identifiers in full and resumption modes, but for
simplicity we use the same notation sid.
Peers and Partners We say a client oracle and a server oracle are each other’s peer if
they share the same session identifier sid; we say they are each other’s partner if they
share the same first-stage session identifier sid1 (i.e., sid restricted to the first stage),
which intuitively means that they set the first stage key with each other. Note that a
client oracle may have more than one partner if sid1 consists of only message(s) sent
from the client oracle, which can be replayed to the same server to establish multiple
(identical) first-stage keys. (In practice, such 0-RTT replay attacks can be mounted to
different servers using the same public–secret key pair; however, 0-RTT key exchange

26 Page 18 of 41 S. Chen et al.

message(s) replayed to other servers using different public–secret key pairs should be
rejected.) Therefore, a session oracle’s partner may not be its final unique communication
peer.
Security Experiment In order to define security, we consider the following security exper-
iment run between a challenger and an adversary A. At the beginning of the experiment,
the challenger initializes the states of all parties and then runs Kg for all servers to gen-
erate their public–secret key pairs. The static states of all parties are properly set and in
particular scfg_gen (if defined) is executed for each server (where loct ← 0) to set
its scfg state. All other states are initialized to the empty string ε. The experiment is
associated with an authentication level al ∈ [4] for channel security. Each oracle π i

P is

associated with a random bit biP
$← {0, 1}. Let N ∈ N+ denote the maximum number of

msACCE protocol instances for each party and D ∈ N+ denote the maximum number
of stages in each session. The adversary A is given all public keys and IP addresses
associated with all parties and then interacts with session oracles and parties via the
following queries:

• Connect(π i
C , S), for C ∈ C, S ∈ S, i ∈ [N]. This query allows the adversary to

ask a specified client oracle to start a full session with a specified server. π i
C outputs

the first packet it would send to S in a full session according to the protocol.
This output packet is returned to A instead of S. After this query, we say S is the
intended server of π i

C . The session oracle created in this query (i.e., π i
C) must have

never been used before.
• Resume(π i

C , S, i ′), for C ∈ C, S ∈ S, i, i ′ ∈ [N], i ′ < i . This query allows the
adversary to ask a specified client oracle to start a resumption session with a specified
server to resume a specified full session between the two parties, if the associated
previous client oracle has set its resumption state. π i

C inputs the resumption state

set by π i ′
C and outputs the first packet it would send to S in a resumption session

according to the protocol, where the output packet is returned.
This query is only allowed if π i ′

C has set its resumption state. The session oracle
created in this query (i.e., π i

C) must have never been used before.
• Send(π i

P , pkt), for P ∈ P, i ∈ [N], pkt ∈ {0, 1}∗. This query allows the adver-
sary to send any packet to a specified session oracle and get its response in a key
exchange phase. If π i

P is in a key exchange phase, pkt is sent to π i
P and the response

is returned,
otherwise, returns ⊥.

• Reveal(π i
P , d), for P ∈ P, i ∈ [N], d ∈ [D]. This query allows the adversary to

learn any stage key of a specified session oracle.
The contents of π i

P ’s d-th stage key state kd is returned. After this query, we say
kd was revealed.

• Corrupt(S), for S ∈ S. This query allows the adversary to learn the long-term
secret and static state of a specified server. The long-term secret key,
configuration state (if any), resumption states, and other static state of S are returned.
After this query, we say S was corrupted.

• NextTP(S), for S ∈ S. This query allows the adversary to advance the time period
of a specified server.

Secure Communication Channel Establishment Page 19 of 41 26

Ifscfg is defined, it further allows the adversary to reconfigure the specified server.
The local time state loct of S is incremented by one and scfg_gen (if defined) is
executed to update the configuration state scfg;
the value of loct is returned. If scfg_gen is executed, we say S was reconfigured
(at time period loct).

• Encrypt(π i
P , d, ad,m0,m1), for P ∈ P, i ∈ [N], d ∈ [D], ad ∈ AD,m0,m1 ∈

MSC ∪ MpRST ∪ {rst}.
This query allows the adversary to specify any associated data and any two secure
channel or pre-reset messages of the same length, and then get the ciphertext of
one message determined by biP , the random bit associated with a specified session
oracle at a specified stage. This query also keeps a state mprst (initialized to ε) for
π i
P to store one of the specified pre-reset messages determined by biP and allows the

adversary to retrieve it on request. (Recall that each oracle has at most one pre-reset
message, so this query stores only the first pre-reset message and rejects others.)
The detailed procedures are listed as follows:

1: if m0,m1 are of different types (i.e., MSC or MpRST or {rst}) or |m0|
= |m1|
or π i

P is not in its d-th secure channel phase or kdp = ⊥ (where p = c if P ∈ C
and p = s if P ∈ S),
return ⊥

2: if m0,m1 ∈ MpRST, set mprst ← mbiP
if mprst = ε or return ⊥ otherwise

3: if m0 = m1 = rst, return mprst
4: (upon setting each encryption stage key, initialize ste with sAEAD.sI and set

u ← 0, sent ← ε)

5: u ← u + 1, (sent.ctu, st ′e)
$← sAEAD.sE(kdp, ad,mbiP

, ste)

6: (sent.adu, ste) ← (ad, st ′e)
7: return sent.ctu

• Decrypt(π i
P , d, ad, ct), for P ∈ P, i ∈ [N], d ∈ [D], ad ∈ AD, ct ∈ {0, 1}∗.

This query allows the adversary to specify any associated data and any ciphertext
to be decrypted by the partner(s) of a specified session oracle at a specified stage,
and then get the secret bit biP if the decrypted message is a valid secure channel
or pre-reset message and this query is “out-of-sync” (defined below); otherwise, it
gets ⊥.
The detailed procedures are listed as follows:

1: if π i
P is not in its d-th secure channel phase or

kdp = ⊥ (where p is set as in Encrypt), return ⊥
2: (upon setting each decryption stage key, initialize std with sAEAD.sI and set

v ← 0, rcvd ← ε, outofsync ← 0)
3: v ← v + 1, rcvd.ctv ← ct , (m, st ′d) ← sAEAD.sD(kdp, ad, ct, std)
4: (rcvd.adv, std) ← (ad, st ′d)
5: if m
∈ MSC ∪ MpRST, set m ← ⊥
6: if (al = 4) ∧ cond4 or (al ≤ 3) ∧ (m
= ⊥) ∧ condal , set outofsync ← 1
7: if (outofsync = 1) ∧ (m
= ⊥), return biP , otherwise, return ⊥

26 Page 20 of 41 S. Chen et al.

AdvantageMeasuresAn adversaryA against a msACCE protocol � in msACCE-std has
the following advantage measures (that each takes the security parameter as an implicit
input).
Server Authentication. We define Advs-auth

� (A) as the probability that there exist a client
oracle π i

C and its intended server S such that the following conditions hold:

1. π i
C has set its session key;

2. S was not corrupted before π i
C set its session key;

3. No interim keys of π i
C or its partner(s) were revealed;

4. There is no unique server oracle π
j
S that is π i

C ’s peer.

The above captures the attacks in which the adversary impersonates a server to make
the client mistakenly believe that it shares the session key with the server. Note that
the above condition 3 can be relaxed to allow revealing all but the first stage key of
a π i

C ’s partner that observes the same session identifier at only the first stage but not
the next one, because such a partner’s key exchange message is never received by π i

C .
Such condition relaxation also holds for other security notions defined in this work.
We also note that Server Authentication does not depend on the authentication level al.
To see this, consider a weaker Server Authentication notion defined in the same way
except its security experiment has no Decrypt query and the Encrypt query takes only
one message as input. One can easily reduce our Server Authentication security with
an arbitrary authentication level al to the above weaker Server Authentication security.
Therefore, Server Authentication is al-independent.
(level-al)Channel Security.We defineAdvcs-al

� (A) as |2 Pr[biP = b′]−1|, whereal ∈ [4]
is the specified authentication level and (P, i, b′) is output by A, such that the following
conditions hold:

1. If P = S ∈ S, π i
S has a peer π

j
C ; if P = C ∈ C, denote S as π i

C ’s intended server;
2. If S was corrupted, then 1) S was corrupted after π i

P set its last stage key and 2)
for any (d-th) stage key of π i

P that is not required to provide forward secrecy, no
Encrypt(π i

P , d, ·, ·, ·) queries were made before S was (if ever) reconfigured after
π i
P set its d-th stage key.

3. No stage keys of π i
P or its partner(s) were revealed;

4. If an Encrypt(π i
P , ·, ·, ·, ·) query was made on two distinct pre-reset messages,

then later no Encrypt(π i
P , ·, ·,rst,rst) queries were made.

The above captures the attacks in which the adversary compromises the confidentiality
or integrity of secure channel messages without revealing stage keys or the hidden pre-
reset message or corrupting the server before the client sets its last stage key (which may
not be the session key). If some stage key is not supposed to provide forward secrecy,
the adversary is further prevented from accessing the communication of that stage if the
server was not reconfigured before it was corrupted.

(2) msACCE Packet-Authentication Security Model
In this msACCE packet-authentication (msACCE-pauth) security model, we consider

security goals related to packet authentication beyond those captured by the msACCE-
std model. Note that msACCE-std essentially focuses only on the packet fields in the

Secure Communication Channel Establishment Page 21 of 41 26

application layer, while msACCE-pauth further covers transport-layer headers and IP
addresses.

First, we consider IP spoofing prevention as with the QACCE model, but, as illustrated
later, generalize one of the QACCE queries to additionally capture IP spoofing attacks
in the full sessions. Then, more importantly, we define four novel packet-level secu-
rity notions (elaborated later): KE Header Integrity, KE Payload Integrity, SC Header
Integrity, and Reset Authentication, which enable a comprehensive and fine-grained
security analysis of layered protocols.

In particular, KE Header and Payload Integrity, respectively, capture the header and
payload integrity of key exchange packets. Such security issues have not been investi-
gated before and, as we show later, lead to new availability attacks for both TFO+TLS
1.3 and UDP+QUIC. Furthermore, we employ SC Header Integrity to capture the header
integrity of non-reset packets in secure channel phases. Note that, unlike the availability
attacks shown in [49], successful attacks breaking our security notions are harder or
impossible to detect by the client as they do not affect the client’s session key establish-
ment, so these attacks could be more harmful in this sense. Finally, our model captures
malicious undetectable session resets in a secure channel phase with Reset Authentica-
tion.

As with the msACCE-std model, msACCE-pauth captures multiple stages and consid-
ers a very powerful adversary. It also inherits the same definitions of protocol entities,
session oracles, session identifiers, peers, and partners. The security experiment and
advantage measures are defined below.
Security Experiment Consider the same experiment setups as in msACCE-std, except
that no random bit biP is needed. The adversary A is given all the public parameters
and interacts with the session oracles via the same Connect,Resume,Send,Reveal,
Corrupt,NextTP queries as in the msACCE-std model, where Encrypt and Decrypt
queries are not needed because msACCE-pauth does not consider data confidentiality
and integrity that are already captured by msACCE-std, as well as the following:

• Connprivate(π i
C , π

j
S ,cmp), for C ∈ C, S ∈ S, i, j ∈ [N],cmp ∈ {0, 1}.

This query allows the adversary to run a complete or partial full session between
any specified client and server oracles without observing their communication. This
query always returns ⊥. Ifcmp = 1, π i

C and π
j
S run a complete full session privately

without showing their communication to A. If cmp = 0, π i
C and π

j
S run a partial

full session privately such that the last packet sent from π i
C right before π

j
S sets its

first stage key is blocked. Note that this query extends the QACCE Connprivate
query [49] to model IP-spoofing attacks targeting both full and resumption sessions,
with help of an input flag cmp.

• Pack(π i
P , ad,m), for P ∈ P, i ∈ [N], ad ∈ AD,m ∈ MSC ∪ MpRST ∪

{prst,rst}.
This query allows the adversary to specify any associated data and any message in a
secure channel phase, then get the packet output by a specified session oracle. It also
allows the adversary to ask a specified session oracle to output its pre-reset packet,
which is either for a specified pre-reset message (if m ∈ MpRST) or for a real one

26 Page 22 of 41 S. Chen et al.

(hidden from the adversary) generated according to the protocol (if m = prst), or
output its reset packet (if m = rst). The detailed procedures are listed as follows:

1: if π i
P is not in a secure channel phase, return ⊥

2: if m ∈ MpRST ∪{prst} and π i
P has output its pre-reset packet before, return ⊥

3: if m = rst, π i
P outputs its reset packet, which is returned

4: if m
= rst, π i
P outputs the (encrypted) packet that it would send to its partner(s)

according to the protocol, for the specified associated data ad and message m
if m ∈ MSC or for the pre-reset message if m ∈ MpRST ∪ {prst}, then this
packet is returned

• Deliver(π i
P , pkt), for P ∈ P, i ∈ [N], pkt ∈ {0, 1}∗. This query allows the

adversary to deliver any packet to a specified session oracle and get its response in
a secure channel phase.

If π i
P is in a secure channel phase, pkt is delivered to π i

P and its response (if any) is
returned, otherwise, returns ⊥.
Advantage Measures An adversary A against a msACCE protocol � in msACCE-pauth
has the following associated advantage measures (that each takes the security parameter
as an implicit input).
IP-Spoofing Prevention. We define Advipsp� (A) as the probability that there exist a client

oracle π i
C and a server oracle π

j
S such that the following conditions hold:

1. π
j
S has set its first stage key right after a Send(π

j
S , (IPC , IPS, ·, ·)) query;

2. S was not corrupted before π
j
S set its first stage key;

3. For any session oracle π
y
S of S that shares the same time period (i.e., loct value)

with π
j
S , the only queries made by A about C (before π

j
S set its first stage key)

were:

– Connprivate(π x
C , π

y
S , ·) for some x ∈ [N], or

– Send(π
y
S , (IPC , IPS, ·, ·)), where (IPC , IPS, ·, ·) was the last packet received

by π
y
S right before it set its first stage key.

The above captures the attacks in which the adversary fools a server into accepting a
spurious connection request seemingly from an impersonated client, without observing
any previous communication between the client and server in the same time period asso-
ciated with the accepting server. Such attacks can lead to exhaustion of server resources,
i.e., denial of service, by triggering excessive stage key derivation and probably 0-RTT
data processing.
KE Header Integrity. We define Advint-keh� (A) as the probability that there exist a client

oracle π i
C and a server oracle π

j
S such that the following conditions hold:

1. π i
C has set its session key and has a peer π

j
S ;

2. S was not corrupted before π i
C set its session key;

3. No interim keys of π i
C or its partner(s) were revealed;

4. In a key exchange phase before π i
C set its session key, π i

C (resp. π
j
S) accepted a

packet with a header that was not output by π
j
S (resp. π i

C).

Secure Communication Channel Establishment Page 23 of 41 26

The above captures the attacks in which the adversary modifies the protocol header of
a key exchange packet of the communicating parties without affecting the client setting
its session key. In the above definition, we assume that a client sets its session key
immediately after sending its last key exchange packet(s) (if any). Then, a forged packet
that leads to a successful attack cannot be any of these last packet(s), which have not yet
been sent to the server. The same assumption is made for KE Payload Integrity defined
below.
KE Payload Integrity. We define Advint-kep� (A) as the probability that there exist a client

oracle π i
C and a server oracle π

j
S such that the same (1)∼(3) conditions as in the above

KE Header Integrity notion hold and the following holds:

4. In a key exchange phase before π i
C set its session key, π i

C (resp. π
j
S) accepted a

packet with a payload that was not output by π
j
S (resp. π i

C).

The above captures the attacks in which the adversary modifies the payload of a key
exchange packet of the communicating parties without affecting the client setting its
session key. Note that the above notion can be trivially achieved if the session identifier
includes the entire key exchange transcript (excluding some headers), which is the case
for TLS 1.3. However, some other protocols like QUIC only have partial transcripts as
their session identifiers.
SC Header Integrity. We define Advint-h� (A) as the probability that A outputs (P, i)
such that the same (1)∼(3) conditions as in the Channel Security notion hold and the
following holds:

4. In a secure channel phase, a partner of π i
P accepted a non-reset packet with a

header that was not output by π i
P (via Pack queries), or a partner of π i

P accepted
a non-reset header-only packet.

The above captures the attacks in which the adversary creates a valid non-reset secure
channel packet by forging the protocol header without breaking any Channel Security
conditions. Note that in the above security notion an invalid header forgery is detected
immediately after the malicious packet is received and processed, while the detection
of invalid packet forgeries in a key exchange phase (e.g., for plaintext packets) can be
delayed to the point when the client sets its session key, according to the definitions of
KE Header and Payload Integrity.

We define Advrst-auth� (A) as the probability that A outputs (P, i) such that the same
(1)∼(3) conditions as in the Channel Security notion hold and the following holds:

4. In a secure channel phase, a partner of π i
P accepted a reset packet and 1) if

P ∈ S then P was not corrupted before π i
P accepted that reset packet and 2)

the Pack(π i
P , ·,m) queries made by A were only for m ∈ MSC ∪ {prst} (i.e.,

m
∈ MpRST ∪ {rst}).
The above captures the attacks in which the adversary forges a valid reset packet

without breaking any Channel Security conditions or corrupting the secret static state
used to generate the reset packet. Note that such attacks are undetectable by the accepting
party that resets the session, as opposed to a network attacker that simply drops packets
which may eventually lead to a session reset.

26 Page 24 of 41 S. Chen et al.

Table 3. Security comparison .

TLS 1.3 QUIC QUIC[TLS]
+TFO +UDP +UDP

0-RTT Key Forward Secrecy [27,49] × × ×
0-RTT Data Anti-Replay [27,49] × × ×
Server Authentication ✓ ✓ ✓
Channel Security ✓ ✓ ✓
IP-Spoofing Prevention ✓ ✓ ✓
KE Header Integrity × × ×
KE Payload Integrity ✓ × ×
SC Header Integrity × ✓ ✓
Reset Authentication × × ✓

Remark about msACCE security model completeness and low-layer integrity Note that
the payload integrity in secure channels is captured by Channel Security. Our msACCE-
std and msACCE-pauth models completely capture the authentication (or integrity) of
all packet fields in the transport and application layers. Furthermore, msACCE-pauth
captures (network-layer) IP-Spoofing Prevention against weaker off-path attackers (i.e.,
those can only inject packets without observing the communication), but leaves other
integrity attacks on low layers (e.g., network, link, and physical layers) uncovered.
Such attacks may affect packet forwarding, node-to-node data transfer, or raw data
transmission, which are outside the scope of our work.

5. Provable Security Analysis

Equipped with msACCE security models, we now analyze and compare the security of
TFO+TLS 1.3, UDP+QUIC, and UDP+QUIC[TLS]. The security results are summa-
rized in Table 2 (recalled as Table 3). As mentioned in Introduction, by [27,49] results,
none of the above protocols achieves forward secrecy for 0-RTT keys or protects against
0-RTT data replays (which contribute to the first two rows in the table). We now move
to the detailed analyses and start with TFO+TLS 1.3.

5.1. TLS 1.3 over TFO

(1) Protocol Description
Referring to msACCE protocol syntax, the TFO+TLS 1.3 2-RTT full handshake (see

Fig. 2a) is a 2-stage msACCE protocol in the full mode and the TFO+TLS 1.3 0-RTT
resumption handshake (see Fig. 2b) is a 3-stage msACCE protocol in the resumption
mode. Note that we focus only on the main components of the handshakes and omit
more advanced features such as 0.5-RTT data, client authentication, and post-handshake
messages (except NewSessionTicket). In a full handshake, the initial keys are
set after sending or receiving ServerHello and the final keys (i.e., session keys)
are set after sending or receiving ClientFinished (but only handshake messages
up to ServerFinished are used for final key generation). In a 0-RTT resumption

Secure Communication Channel Establishment Page 25 of 41 26

(a)

Client C Server S
sqnC

ackS, sq
nS, ck

ackC

sqnC
$← {0, 1}32

ackC ← sqnS + 1

sqnS
$← {0, 1}32

ck ← Fkck(IPC 0)
ackS ← sqnC + 1

(b)

Client C Server S
sqnC , ck,mC

ackS, sq
nS,mS

ackC

sqnC
$← {0, 1}32

ackC ← sqnS + 1
+|mS |

sqnS
$← {0, 1}32

ck ← Fkck(IPC 0)
If ck = ck :

ackS ← sqnC + 1
+|mC |Otherwise:

ackS ← sqnC + 1
(fall back to TCP)

Fig. 6. TFO initial connection (a) and 0-RTT resumption connection (b). .

handshake, the parties set 0-RTT keys to encrypt or decrypt 0-RTT data, after sending
or receiving ClientHello.

According to the TFO and TLS 1.3 specifications [17,60], the TFO+TLS 1.3 header
contains the TCP header (see Fig. 1). We ignore some uninteresting header fields such
as port numbers and the checksum because modifying them only leads to redirected or
dropped packets. Such adversarial capabilities are already considered in the msACCE
security models. We thus define the header space H as containing the following TCP
header fields: a 32-bit sequence number sqn, a 32-bit acknowledgment number ack,
a 4-bit data offset off, a 6-bit reserved field resvd, a 6-bit control bits field ctrl,
a 16-bit window window, a 16-bit urgent pointer urgp, a variable-length (≤ 320-bit)
padded options opt. For encrypted packets, H additionally contains TLS 1.3 record
header fields: an 8-bit type type, a 16-bit version ver, and a 16-bit length len. We
further define reset packets as those with the RST bit (i.e., the 4-th bit of ctrl) set to 1.

In “Appendix A,” we formalize TLS 1.3’s stateful AEAD scheme sAEADTLS based
on its underlying nonce-based AEAD scheme (instantiated with AES-GCM or other
schemes as documented in [60]). The associated data space AD contains the TLS 1.3
record header. TLS 1.3 enforces different content types for encrypted key exchange and
secure channel messages. For simplicity, we define MKE and MSC as consisting of bit
strings differing in their first bits. Note that MpRST = ∅.

For TFO+TLS 1.3, scfg_gen erases the server’s resumption states (if any) and

refreshes the (static) key kck
$← {0, 1}128 used by the TFO cookie generation func-

tion F . If the TLS 1.3 session ticket is implemented as a self-encrypted and self-
authenticated value, scfg_gen also refreshes the server’s (static) session ticket encryp-

tion key stek
$← {0, 1}128 used by an authenticated encryption scheme (e.g., AES-GCM

[50]).
We refer to Fig. 6 for the remaining details of TFO, where F is instantiated with an

AES-128 block cipher with output truncated to 64 bits as suggested in [17,59]. Note
that Fkck takes as input a 128-bit string, so a 4-byte IPv4 address is padded with trailing
0s while a 16-byte IPv6 address is used without padding. We then refer to [26] for the
detailed descriptions of TLS 1.3 handshake messages and key generations as well as
[25,60] for details about TLS 1.3’s handling of session tickets.
(2) Security Results

TFO+TLS 1.3’s session identifier sidTLS is defined as all key exchange messages
(that could be encrypted) from ClientHello to ServerFinished, excluding TCP
headers and IP addresses. The msACCE-std security of TFO+TLS 1.3 is by definition

26 Page 26 of 41 S. Chen et al.

independent of TCP headers and is hence provided by the TLS 1.3 component. Previous
works [26,47] only proved TLS 1.3’s authenticated key exchange security, i.e., the
stage keys are authenticated and indistinguishable from random ones under reasonable
computational assumptions. In “Appendix B,” we outline how their security results can
be adapted to prove TLS 1.3’s Server Authentication and level-4 Channel Security in our
msACCE-std model, by additionally relying on the level-4 AEAD security of sAEADTLS
(which can be reduced to security of the underlying nonce-based AEAD as shown in
[21]).

The msACCE-pauth security analyses are shown as follows.
IP-Spoofing Prevention This security of TFO+TLS 1.3 is provided by the TFO compo-
nent through TCP sequence number randomization and TFO cookies. By modeling the
cookie generation function F as a PRF, we have the following theorem:

Theorem 1. For any efficient adversaryAmaking at most qT, qS queries, respectively,
to NextTP,Send, there exists an efficient adversary B such that:

AdvipspTFO+TLS1.3(A) ≤ (|cs| + qT)AdvprfF (B) + qS(|S| + qT)

2|sqn| ,

where |S| is the number of servers and |sqn| is the bit length of a TCP sequence number.

Proof. Consider a sequence of games (i.e., experiments) and let Pri , i ≥ 0 denote the
winning probability of A in Game i .

Game 0: This is the original IP-Spoofing Prevention experiment, so
Pr0 = AdvipspTFO+TLS 1.3(A).

Game 1: This game is identical to Game 0 except the challenger first guesses the target
server S (and the associated time period) that accepts a spurious connection request
and aborts if the guess is wrong. Since the probability of a correct guess is at least
1/(|S| + qT), we have Pr0 ≤ (|S| + qT) Pr1.

Game 2: This game replaces the PRF F used by S for TFO cookie generation with a
truly random function f . By the PRF definition, it is straightforward to construct an
efficient adversary B such that | Pr1 − Pr2 | ≤ AdvprfF (B).

Now, in Game 2, the TFO cookies generated by S are independent from each other for
each client. We can bound Pr2 by considering two cases. 1) A wins by sending a valid
ACK packet in a full session. In this case,Amust have generated a validackC by correctly
guessing the target server’s TCP sequence number sqnS . The winning probability of
each guess is exactly 1/2|sqn|. 2) A wins by sending a valid SYN packet in a resumption
session. In this case, A must have forged a valid TFO cookie ck ∈ {0, 1}64. The winning
probability of each forgery is exactly 1/2|ck| because the TFO cookie generation function
is now a truly random function. By applying a union bound on the qS queries and noting
that |sqn| = 32 < 64 = |ck|, we have Pr2 ≤ qS/ min{2|sqn|, 2|ck|} = qS/2|sqn|. �

Remark. Note that the above second probability term is not very small since |sqn| =
32. Actually, an attacker can indeed successfully establish a TCP connection using a
spoofed client IP address with roughly 232 random guesses. However, our security bound

Secure Communication Channel Establishment Page 27 of 41 26

is still acceptable because each guess made by the attacker corresponds to an “online”
Send query. Here, “online” means that the attacker has to interact with the server every
time it makes a guess, no matter how many resources it may consume offline. Such
online attacks are easy to detect and suppress.

KE Header Integrity. TFO+TLS 1.3 does not achieve this security notion because TCP
headers are never authenticated. We find a new practical attack below, where an efficient
adversary A can always get Advint-kehTFO+TLS 1.3(A) = 1:

TFO Cookie Removal. A can first make π i ′
C complete a full handshake with π

j ′
S (via

Connect,Send queries), then query Resume(π i
C , S, i ′) (i ′ < i) to get the output

packet (IPC , IPS, H, pd), which is a SYN packet with a TFO cookie. A then modifies
the opt field of H to get a new H ′
= H that contains no cookie. The resulting SYN
packet will be accepted by a new server oracle π

j
S , which will then respond with a SYN-

ACK packet that does not contain a TFO cookie, indicating a fallback to the standard
3-way TCP. As a result, a 1-RTT handshake is needed to complete the connection and any
0-RTT data sent with SYN would be retransmitted. This eliminates the entire benefit of
TFO without being detected, resulting in reduced performance and increased handshake
latency. A similar attack is possible by removing the TFO cookie in a server’s SYN-ACK
packet.

Interestingly, clients are supposed to cache negative TFO responses and avoid sending
TFO connections again for a lengthy period of time. This is because the most likely
explanation for this behavior is that the server does not support TFO, but only standard
TCP [17]. As a result, performing this attack for a single connection prevents TFO from
being used with this server for a lengthy time period (i.e., days or weeks).
KE Payload Integrity TFO+TLS 1.3 is secure in this regard simply because sidTLS con-
sists of the payloads of all key exchange packets exchanged between the communicating
parties before the client sets its session key. That is, for any client oracle that has a peer
server oracle, by definition they observe the same sidTLS and hence no key exchange
packet payload can be modified, i.e., Advint-kepTFO+TLS 1.3(A) = 0 for any efficient adversary
A.
SC Header Integrity TFO+TLS 1.3 does not achieve this security notion again because
of the unauthenticated TCP headers.

A efficient adversary A can get Advint-hTFO+TLS 1.3(A) = 1 by either modifying the TCP
header of an encrypted packet (e.g., reducing the window value) or by forging a header-
only packet (e.g., removing the payload of an encrypted packet and changing its ack
value). Such packets are valid and will be accepted by the receiving session oracle.

The above fact exposes the adversary’s ability to arbitrarily modify or even entirely
forge the information in the TCP header, which is being relied on to provide reliable
delivery, in-order delivery, flow control, and congestion control for the targeted flow.
This leads to a whole host of availability attacks that the networking community has
been slowly uncovering via manual investigation over the last 30 years [3,16,31,32,38–
40,44,45,52,57,58,63,70]. Some of the practical attacks are describedas follows:
TCP Flow Control Manipulation. An adversary with access to the communication chan-
nel can impact TCP’s flow control mechanism to decrease the sending rate or stall the
connection by modifying TCP’s window header field. This field controls the amount of

26 Page 28 of 41 S. Chen et al.

received data the sender of this packet is prepared to buffer. By reducing this quantity,
the throughput of the connection can be reduced and if it is set to zero the connection
will completely stall.

One example of this attack would be to modify the window field to zero in a TCP packet
containing a TLS-encrypted HTTP request. Since TCP headers are not authenticated,
this modification will not be detected. As a result, when the server receives this request
and attempts to send the response, it will believe that the client cannot currently accept
any data and will delay sending the response. After some timeout, TCP will probe the
client with a single packet of data to determine whether the window is still zero. If the
adversary also modifies the responses to these probes, the connection will remain stalled
indefinitely; otherwise, the connection will eventually recover after a lengthy delay.
TCP Acknowledgment Injection. An adversary who can observe a target connection
and forge packets can inject new acknowledgment packets into the TCP connection.
Acknowledgment packets have no data making them undetectable by either TLS or the
application. However, they are used by congestion control to determine the allowed
sending rate of a connection.

Injecting duplicate or very slowly increasing acknowledgments can be used to slow
a target connection down drastically. [39] demonstrated a 12x reduction in throughput
using this approach with the attacker required to expend only 40Kbps. This, of course,
represents a significant performance degradation for a TFO+TLS 1.3 connection.

Injecting acknowledgments can also be used to dramatically increase the sending rate
of a connection, turning it into a firehose that an attacker can point at their desired target.
This is done by sending acknowledgments for data that has not been received yet, an
attack known as Optimistic Ack [63]. This attack renders TCP insensitive to congestion
and can completely starve competing flows. It could be used with great effect to cause
denial of service against a server or the Internet infrastructure as a whole [66].
Reset Authentication TFO+TLS 1.3 is insecure in this sense because its reset packet,
TCP Reset, is an unauthenticated header-only packet. This leads to a practical attack
below, where an efficient adversary A always gets Advrst-authTFO+TLS 1.3(A) = 1:
TCP Reset Attack. A can first make two session oracles complete a handshake using
Connect,Send queries, then use Pack,Deliver queries to let them exchange secure
channel packets. By observing these packet headers, A can easily forge a valid reset
packet by setting its RST bit to 1 and the remaining header fields to reasonable values.
This attack will cause TCP to tear down the connection immediately without waiting
for all data to be delivered.

Note that even an off-path adversary who can only inject packets into the commu-
nication channel may be able to accomplish this attack. The injected TCP reset packet
needs to be within the receive window for the client or server, but [70] demonstrated
that a surprisingly small number of packets is needed to achieve this, thanks to the large
receive windows typically used by implementations.

5.2. QUIC over UDP

(1) Protocol Description
Referring to msACCE protocol syntax, the UDP+QUIC 1-RTT full handshake (see

Fig. 4a) is a 2-stage msACCE protocol in the full mode and the UDP+QUIC 0-RTT

Secure Communication Channel Establishment Page 29 of 41 26

resumption handshake (see Fig. 4b) is a 2-stage msACCE protocol in the resumption
mode. The initial keys are set after sending or receiving ClientHello, and the final
keys (i.e., session keys) are set after sending or receiving ServerHello.

According to the UDP and QUIC specifications [20,46,55], the UDP+QUIC header
contains the UDP header (see Fig. 3) and the QUIC header (described below). As
with the TCP header, we ignore the port numbers and checksum in the UDP header.
Similarly, we also ignore the UDP length field because it affects only the length of the
QUIC header and payload, while the adversary is already allowed to directly modify the
packet length. We thus can completely omit the UDP header and define the header space
H as containing the following QUIC header fields: an 8-bit public flag flag, a 64-bit
connection ID cid, a 64-bit packet number pn, and other optional fields. Note that in
reality QUIC header contains only, say 32, lower bits of pn, but this is enough to deduce
the correct 64-bit value since the QUIC packet numbers are consecutive and start from
1. For simplicity, we consider a full 64-bit pn in the header as with the previous work
[49]. We further define reset packets as those with the PUBLIC_FLAG_RESET bit (i.e.,
the 7-th bit of flag) set to 1. The header of a reset packet contains only flag and cid.

In “Appendix A,” we formalize QUIC’s stateful AEAD scheme sAEADQUIC based
on its underlying nonce-based AEAD scheme (instantiated with AES-GCM [50]). The
associated data space AD contains the entire QUIC header. As with TLS 1.3, for
UDP+QUIC we define MKE and MSC as consisting of bit strings differing in their
first bits. MpRST = ∅.

We refer to [49] for the detailed descriptions of scfg_gen and QUIC handshake
messages and key generations.
(2) Security Results

UDP+QUIC’s session identifier sidQUIC is defined as the ClientHello payload
and ServerHello, excluding IP addresses. The msACCE-std security of UDP+QUIC
follows from prior works . It has been proven in [49] that QUIC is QACCE-secure in the
random oracle model based on the unforgeability of the signature scheme, computational
Diffie–Hellman assumption [2], and nonce-based AEAD security. Note that msACCE-
std with sAEADQUIC is semantically equivalent to QACCE with nonce-based AEAD
and get_iv (defined in [49]), except that our model formalizes the advancement of time
periods that was assumed by QACCE. More precisely, our model captures server-side
local time periods (without time synchronization) while QACCE assumed a global time
notion, but this difference does not affect the security results because QACCE essentially
does not rely on time synchronization either. In other words, the same proofs in [49] can
also show that QUIC is secure in the modified QACCE model that instead uses local time
counters. As a result, their proofs can be easily adapted to show that UDP+QUIC achieves
Server Authentication and level-1 Channel Security in our msACCE-std model. Note
that one can also prove UDP+QUIC’s msACCE-std security by relying on the level-1
AEAD security of sAEADQUIC instead of the underlying nonce-based AEAD security,
where the former can be reduced to the latter as shown in “Appendix A.” Note also
that UDP+QUIC only achieves level-1 Channel Security (based on the level-1 AEAD
security of sAEADQUIC), nevertheless, as discussed in [49], QUIC implicitly prevents
packet dropping and reordering by authenticatingpn in the packet header. It also prevents
replays with frame sequence numbers encrypted in the payload. Therefore, UDP+QUIC
essentially achieves level-4 authentication as TLS 1.3 does.

26 Page 30 of 41 S. Chen et al.

The msACCE-pauth security analyses are shown as follows.
IP-Spoofing Prevention In [49], QUIC has been proven secure against IP spoofing based
on the AEAD security. Their IP-spoofing security notion is the same as our IP-Spoofing
Prevention notion for UDP+QUIC except that ours additionally captures attacks in full
sessions. However, since source-address tokens are validated in both full and resumption
sessions, their results can be trivially adapted to show that UDP+QUIC achieves IP-
Spoofing Prevention.
KE Header and Payload Integrity UDP+QUIC does not achieve these security notions
because its first-round key exchange messages, i.e., InchoateClientHello and
ServerReject, and any invalid ClientHello are not fully authenticated. Inter-
estingly, a variety of existing attacks on QUIC’s availability discovered in [49] are all
examples of key exchange packet manipulations (e.g., the server config replay attack,
connection ID manipulation attack, etc.), but these attacks cause connection failure and
hence are easy to detect. However, successful attacks breaking KE Header or Payload
Integrity will be harder (if not impossible) to detect.

For KE Header Integrity, we do not find any harmful attacks but theoretical attacks
exist. For instance, an efficient adversary A can get Advint-kehUDP+QUIC(A) = 1 as follows. A
can first query Connect(π i

C , S) to get the output packet (IPC , IPS, H, pd), then modify
the flag and pn fields of H to get a new header H ′
= H that only changes pn’s length
but not its underlying value. The resulting packet will be accepted by a new server oracle
π

j
S .
This attack has no practical impact on UDP+QUIC but it successfully modifies the

protocol header without being detected.
For KE Payload Integrity, we find a new practical attack described below where an

efficient adversary A can get Advint-kepUDP+QUIC(A) ≈ 1:

ServerReject Triggering. A can first let π i ′
C complete a full handshake with π

j ′
S with

Connect,Send queries and then query Resume(π i
C , S, i ′) (i ′ < i) to get the output

ClientHello packet. A then modifies its payload by replacing the source-address
token stk with a random value, which with high probability is invalid. Sending this
modified packet to a new server oracle π

j
S will trigger a ServerReject packet con-

taining a new valid stk. This as a result downgrades the original 0-RTT resumption
connection to a full 1-RTT connection, which causes increased latency and results in
the retransmission of any 0-RTT data. Note that this attack is hard to detect because π i

C
may think its original stk′ has expired (although this does not happen frequently).
SC Header Integrity UDP+QUIC is secure in this regard because it does not allow
header-only packets to be sent in the secure channel phases and the entire protocol
header is taken as the associated data authenticated by the underlying encryption scheme.
Therefore, UDP+QUIC’s SC Header Integrity can be reduced to its level-1 Channel
Security. Formally, for any efficient adversary A there exists an efficient adversary B
such that Advint-hUDP+QUIC(A) ≤ Advcs-1

UDP+QUIC(B). This is because B can simulate A’s
security experiment perfectly by answering the Pack queries using Encrypt with same
inputs and forwarding the Deliver queries to Decrypt, and if A outputs (P, i) and wins
then B will also win by getting the secret bit biP from Decrypt.

Secure Communication Channel Establishment Page 31 of 41 26

Reset Authentication UDP+QUIC does not achieve this security notion because, similar
to TCP Reset, its reset packetPublicReset is not authenticated either. In the following
availability attack, an efficient adversary A can always get Advrst-authUDP+QUIC(A) = 1:
PublicReset Attack. A can first make two session oracles complete a handshake using
Connect,Send queries, then use Pack,Deliver queries to let them exchange secure
channel packets. By observing these packet headers,A can easily forge a valid (plaintext)
reset packet by setting its PUBLIC_FLAG_RESET bit to 1 and the remaining packet
fields to reasonable values (which is easy because it simply contains the connection ID
cid, the sequence number of the rejected packet, and a nonce to prevent replay). This
attack will cause similar effects as described in the TCP Reset attack. Note that this
vulnerability is fixed in QUIC[TLS] shown below.

5.3. QUIC[TLS] over UDP

(1) Protocol Description
As mentioned in the Background, QUIC[TLS] replaces QUIC’s key exchange with

the TLS 1.3 key exchange, i.e., the stage keys are set in the same way as TLS 1.3.
Therefore, the UDP+QUIC[TLS] 2-RTT full handshake is a 2-stage msACCE protocol
in the full mode and the UDP+QUIC[TLS] 0-RTT resumption handshake is a 3-stage
msACCE protocol in the resumption mode.

The UDP+QUIC[TLS] header is similar to the UDP+QUIC header and we can
likewise omit the entire UDP header for our analysis. The detailed description of
the QUIC[TLS] header is omitted here and referred to [36]. A reset packet in
UDP+QUIC[TLS] looks indistinguishable from a non-reset secure channel packet, but
accepting it leads to a session reset.

The stateful AEAD scheme sAEADQUIC[TLS] used by QUIC[TLS] to encrypt packets
is very similar to sAEADQUIC, except that the nonce of the underlying nonce-based
AEAD is computed as the exclusive OR of the secret iv (part of the key generated
in sAEADQUIC[TLS]) and the packet number. As with sAEADQUIC, the level-1 AEAD
security of sAEADQUIC[TLS] is reduced to the security of its underlying nonce-based
AEAD, following a proof very similar to that of Theorem 3 in “Appendix A.” The
associated data space AD contains the entire QUIC[TLS] header.

Note that QUIC[TLS] applies a header protection mechanism on the encrypted packet
to further hide some header fields (e.g., those related to the packet number), which
provides stronger nonce-hiding security (a notion proposed by [8]). For simplicity, we
do not consider this new feature and assume header protection will not weaken the
security of the encrypted packet, as our analysis focuses on the packet header’s integrity
rather than its confidentiality. We refer to [22] for a mechanized analysis of QUIC[TLS]’s
record layer security that covers header protection.

QUIC[TLS] enforces different frame types for encrypted key exchange, secure chan-
nel, and pre-reset messages. For simplicity, we define MKE,MSC,MpRST as consist-
ing of bit strings differing in their first two bits. For UDP+QUIC[TLS], scfg_gen is
undefined.

QUIC[TLS] also provides address validation with a secure token generated by the
server, similar to the case in Google’s QUIC. We discuss QUIC[TLS]’s stateless reset

26 Page 32 of 41 S. Chen et al.

mechanism later in the security analysis of Reset Authentication and refer to [36,68] for
the detailed UDP+QUIC[TLS] handshake messages and key generations.
(2) Security Results

UDP+QUIC[TLS]’s session identifier sidQUIC[TLS] is defined as all key exchange
messages (that could be encrypted) from ClientHello to ServerFinished,
excluding the header fields. By construction, UDP+QUIC[TLS] inherits the msACCE-
std security from TLS 1.3, but uses sAEADQUIC[TLS] for encryption. That is, it achieves
level-1 Channel Security and implicitly achieves level-4 authentication in the same way
as UDP+QUIC. The IP-Spoofing Prevention of UDP+QUIC[TLS] follows a address
validation scheme very similar to UDP+QUIC. In particular, if the token is generated
with an authenticated encryption scheme, then the IP-Spoofing Prevention security is
reduced to the encryption scheme’s authenticity security, as with UDP+QUIC. How-
ever, such an address validation scheme suffers from the same kind of availability attack
against KE Payload Integrity as ServerReject Triggering for UDP+QUIC, where the
adversary replaces the address-validation token with a random value to downgrade a
0-RTT resumption connection. As noted in [68], an adversary can also modify the unau-
thenticated ACK frames in the Initial packets without being detected. Furthermore,
UDP+QUIC[TLS] achieves SC Header Integrity in the same way as UDP+QUIC. We
are only left to show its security of KE Header Integrity and Reset Authentication.
KE Header Integrity UDP+QUIC[TLS] does not achieve these security notions because
its first-round Initial packets (see [36]) are not authenticated. For instance, an effi-
cient adversary A can get Advint-kehUDP+QUIC[TLS](A) = 1 as follows. A first queries

Connect(π i
C , S) to get π i

C ’s Initial packet (IPC , IPS, H, pd). Then, as described in
[68], A can decrypt this packet with its destination connection ID cid in H , change it
to another value cid ′, and re-encrypt the whole packet with this new cid ′. The resulting
packet (IPC , IPS, H ′, pd ′), where H
= H ′, is valid and will be accepted by a new server
oracle π

j
S without being detected by the client. However, this is only a theoretical attack

with no practical impact.
Reset Authentication In UDP+QUIC[TLS], the stateless reset works as follows. One
party generates a 128-bit reset token using its static key and a random 64-bit QUIC
connection ID as input. Then, this token (carried within the pre-reset message) is sent to
the other party in a secure channel phase. Later, the same party that generated this token
can perform a stateless reset by regenerating the token and sending it to the other party
in clear (via a reset packet).

The Reset Authentication security of UDP+QUIC[TLS] can be reduced to its level-1
Channel Security and the PRF security of the reset token generation function F (which
can be instantiated with an HMAC [6] for instance), as shown in the following theorem:

Theorem 2. For any efficient adversary A making at most qD Deliver queries, there
exist efficient adversaries B and C such that:

Secure Communication Channel Establishment Page 33 of 41 26

Advrst-authUDP+QUIC[TLS](A) ≤ |P|AdvprfF (B) + |P|Advcs-1UDP+QUIC[TLS](C) + |P|qD
2|rtk|

+ |P|N 2

2|cid| ,

where |P| is the number of parties, N is the maximum number of sessions for each
party, |rtk| is the bit length of a reset token, and |cid| is the bit length of a connection
ID.

Proof. Consider a sequence of games (i.e., experiments) and let Pri , i ≥ 0 denote the
winning probability of A in Game i .

Game 0: This is the original Reset Authentication experiment, so
Pr0 = Advrst-authUDP+QUIC[TLS](A).

Game 1: This game is the same as Game 0 except it aborts if the connection IDs repeat
for a party. Since the probability of such a collision for each party is at most N 2/2|cid|,
by a union bound we have | Pr0 − Pr1 | ≤ |P|N 2/2|cid|.
Game 2: The challenger proceeds as before except it first guesses the target party P
(recall that A outputs (P, i) in the end) and aborts if the guess is wrong. Since the
probability of a correct guess is at least 1/|P|, we have Pr1 ≤ |P| Pr2.

Game 3: This game replaces the PRF F used by P for reset token generation with a
truly random function f . By the PRF definition, it is straightforward to construct an
efficient adversary B such that | Pr2 − Pr3 | ≤ AdvprfF (B).

Game 4: This game replaces the pre-reset packet (if any) output by the target session
oracle π i

P (i.e., output byPack(π i
P , ·,prst)) with encryption of an arbitrarily fixed pre-

reset message m∗
prst ∈ MpRST. As illustrated below, there exists an efficient adversary

C against the level-1 Channel Security of UDP+QUIC[TLS] such that | Pr3 − Pr4 | ≤
Advcs-1

UDP+QUIC[TLS](C).
C samples the static reset token generation keys for all parties and simulate Pack

and Deliver queries with its Encrypt and Decrypt queries. In particular, for a
Pack(·, ·,prst) query made to a session oracle of some party other than the target
party P , C generates the reset token with Fk(cid) = r tk (where k is the token gen-
eration key of the specified party and cid is the connection ID used by the specified
session oracle) and forms the pre-reset message mprst that carries that token Fk(cid),
then queries Encrypt with (mprst,mprst) as the challenge message pair and uses the
output ciphertext to form a pre-reset packet sent to A. For a Pack(·, ·,prst) query
made to a session oracle of the target party P but not the target session i , the token

is instead generated with f (cid)
$← {0, 1}|rtk| via lazy sampling and the rest is the

same. For a Pack(π i
P , ·,prst) query (i.e., to the target session oracle), C generates a

random reset token f (cid) (if f (cid) is not yet set) and forms a pre-reset message mprst
that carries that token f (cid), then queries Encrypt with (mprst,m∗

prst) as the challenge
message pair and uses the output ciphertext to form a pre-reset packet sent to A. The
Pack(·, ·,rst) queries can be simulated in a similar way, except that no Encrypt query
is needed and the reset token is used to form a reset packet sent to A. When receiving a
reset packet via aDeliver query, C checks if the reset token carried in this packet matches

26 Page 34 of 41 S. Chen et al.

the previously received reset token carried in the pre-reset packet and then accepts it if
and only if the check passes. It is not hard to see that C can perfectly simulate Game 3
in the left world (biP = 0) or Game 4 in the right world (biP = 1). C outputs 1 if and
only if A wins.

Now, in Game 4, the random pre-reset message of the target π i
P is independent from

A’s view and each guess is correct with probability 1/2|rtk|. By a union bound, we have
Pr4 ≤ qD/2|rtk|. �

Remark. Recall that |rtk| = 128 and |cid| = 64. Similar to the remark following
Theorem 1, regarding the last probability term, any attacker has to observe roughly 232

online sessions in order to find a connection ID collision. To forge (basically replay) a
valid reset packet, the attacker has to make roughly 232 online Pack(·, ·,rst) queries to
the target party to keep record of the reset packets for those observed sessions since each
session is typically alive for a short time; this is an online attack that is easy to detect
and suppress. Note that in theory if the target party can open 232 concurrent sessions,
then the attacker only needs to make a single online query; however, in practice this is
very unlikely since there are only 216 − 1 TCP sockets per IP address. Note also that the
attacker does not get to choose which session to be maliciously reset since a collision
can occur at any time.

6. Conclusion

Our work is the first to provide a thorough, formal, and fine-grained security compar-
ison of the most efficient secure channel establishment protocols on the market today.
By including packet-level attacks in our analysis, our results shed light on how the
reliability, flow control, and congestion control of TFO+TLS 1.3, UDP+QUIC, and
UDP+QUIC[TLS] compare besides their basic security, in adversarial settings.

We show that availability functionalities provided by transport-layer protocols like
TCP can be compromised due to lack of packet-level authentication, which may under-
mine the performance of their supporting application-layer protocols. To protect against
availability attacks, secure channel establishment protocols should better implement
and authenticate their own transport functionalities like QUIC does. Besides, the key
exchange packet integrity should also be scrutinized to avoid serious undetectable avail-
ability attacks.

We hope that our models will help protocol designers in their future protocol anal-
yses and that our results will help practitioners better understand the advantages and
limitations of secure channel establishment protocols.

Secure Communication Channel Establishment Page 35 of 41 26

Acknowledgements

We thank the anonymous reviewers for their useful comments. This paper is based upon
work supported by the National Science Foundation under Grant No. 1422794.

Funding Open Access funding enabled and organized by Projekt DEAL.

OpenAccess This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included in the
article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is
not included in the article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

A QUIC and TLS 1.3’s AEAD Schemes and Their Security

A.1 QUIC’s Stateful AEAD Scheme and Its Security

First, we show QUIC’s stateful encryption scheme sAEADQUIC constructed from a
nonce-based AEAD scheme AEAD = (G,E,D) as follows.

sG():

ke
$← G(), iv

$←
{0, 1}32

return (ke, iv)

sI():

return (ste, std) ←
(∅,⊥)

sE(k, ad,m, ste):

(ke, iv) ← k,
(cid, pn) ← ad
if pn ∈ ste: return
(⊥, ste)
c ← E(ke, iv‖pn, ad,m)

ste ← ste ∪ {pn}
return (c, ste)

sD(k, ad, ct, std):

(ke, iv) ← k,
(cid, pn) ← ad
m←D(ke, iv‖pn, ad, ct)
return (m,⊥)

Note that sAEADQUIC uses its encryption state to keep track of used nonces
to avoid repeating and its decryption state is not used. To reduce its level-1 AEAD
security to the underlying AEAD’s nonce-based AEAD security, we first recall that the
nonce-based AEAD security is defined as two separate parts, privacy and authenticity.
For privacy, the adversary guesses the secret bit of a left-or-right encryption oracle but
cannot make queries with a repeated nonce. The associated advantage is denoted by
Advind-cpa

AEAD (A). For authenticity, the adversary tries to forge a valid ciphertext (together
with a nonce and an associated data), given an encryption oracle (without the secret bit).
The associated advantage is denoted by Advint-ctxtAEAD (A). Now, we are ready to prove the
following theorem.

Theorem 3. For any efficient adversary A, there exist efficient adversaries B and C

http://creativecommons.org/licenses/by/4.0/

26 Page 36 of 41 S. Chen et al.

such that:

Advaead-1sAEADQUIC
(A) ≤ Advint-ctxtAEAD (B) + Advind-cpaAEAD (C).

Proof. Consider two games (i.e., experiments)G0 andG1 and let Pri denote the winning
probability of A in Gi . G0 is the level-1 AEAD experiment and G1 is the same as G0
except that it always returns ⊥ for Dec queries. Following the game-hopping technique
as illustrated in [65], | Pr0 − Pr1 | is bounded by the probability that A forges a new
valid ciphertext given b = 1, which is by definition bounded by Advint-ctxtAEAD (B) for some
efficient adversary B. Then, note that according to the sAEADQUIC construction nonces
in AEAD encryption queries never repeat and G1 can be simulated by an efficient
adversary C against the nonce-based AEAD privacy security, which implies Pr1 ≤
Advind-cpa

AEAD (C).
Therefore, by a union bound, we have Advaead-1

sAEADQUIC
(A) ≤ Advint-ctxtAEAD (B) +

Advind-cpa
AEAD (C). �

Remark. It is not hard to see that level-1 AEAD security is the best sAEADQUIC can
achieve. Consider an adversary A against the level-al (al > 1) AEAD security of
sAEADQUIC. A can easily set outofsync ← 1 by querying Dec twice with the same
ciphertext output by a previous Enc query, since sAEADQUIC does not prevent replays.

A.2 TLS 1.3’s Stateful AEAD Scheme and Its Security

Next, we show TLS 1.3’s stateful encryption scheme sAEADTLS constructed from a
nonce-based AEAD scheme AEAD = (G,E,D) as follows (where n denotes the nonce
length):

sG():

ke
$← G(), iv

$←
{0, 1}n
return (ke, iv)

sI():

return (ste, std) ←
(064, 064)

sE(k, ad,m, ste):

if ste = ⊥: return
(⊥,⊥)

(ke, iv) ← k
c ← E(ke, iv ⊕ ste, ad,m)

ste ← ste + 1
return (c, ste)

sD(k, ad, ct, std):

if std = ⊥: return
(⊥,⊥)

(ke, iv) ← k
m ← D(ke, iv ⊕ std , ad, ct)

ifm = ⊥: return (⊥,⊥)

std ← std + 1
return (m, std)

Note that in the above TLS 1.3’s stateful encryption scheme, nonce repeating is
prevented by the 64-bit increasing counter kept by the encryption state ste. Following
an argument very similar to the above proof of Theorem 3, one can show that the level-4
AEAD security of sAEADTLS is also reduced to the nonce-based AEAD security of
AEAD. This result has been proved by previous work (Theorem 3 in [21]), but their
stateful AEAD security definition is slightly different from ours. For instance, in their

Secure Communication Channel Establishment Page 37 of 41 26

game the adversary needs to distinguish ciphertexts from random, while in our game the
adversary distinguishes ciphertexts of two messages.

B TFO+TLS 1.3’s msACCE-std Security

Due to the high similarity among the abundant TLS 1.3 proofs in the MSKE model (and
its extensions) and a security proof in our msACCE-std model, we only provide a proof
sketch below.

A recent work [26] proved that the TLS 1.3 (EC)DHE 2-RTT full handshake and
PSK-(EC)DHE 0-RTT resumption handshake are secure in the MSKE model based on
the collision resistance of the hash function, unforgeability of the signature and MAC
schemes, PRF security of the key derivation functions, and pseudorandom function ora-
cle Diffie–Hellman (PRF-ODH) assumption [15,37,42]. Their MSKE security, which
captures only the key exchange phases, ensures the Bellare–Rogaway-style key secrecy
[9] (i.e., the stage keys are indistinguishable from random ones) with various authen-
tication properties (for which our msACCE-std model focuses on the unilateral server
authentication). In order to derive the overall TLS 1.3 security, the stage keys established
by the handshake should be composable, i.e., safely used in any symmetric key protocol
(e.g., the TLS 1.3 record protocol). However, as stated in [26], this generic composition
result only works for stage keys that are external and non-replayable. In particular, it
does not apply to the final session keys of the TLS 1.3 full handshakes or the interim
handshake keys, which are used internally within the handshakes; it does not apply to
the 0-RTT keys either, which are replayable. In order to adjust their security results to
prove TLS 1.3’s Server Authentication and level-4 Channel Security in our model, we
need to address the model differences as follows.

First, based on the above TLS 1.3 MSKE security, one can adapt the security
results in [47] to derive the Multi-Level&Stage security of the combination of the TLS
1.3 full handshake and 0-RTT resumption handshake. Referring to their notions, our
msACCE-std model focuses only on two modes (i.e., the TLS 1.3 (EC)DHE full hand-
shake and PSK-(EC)DHE 0-RTT resumption handshake) and two levels (i.e., one level
of full handshakes followed by one level of 0-RTT resumption handshakes). Note that
[47] essentially treated a session ticket (carried within NewSessionTicket) as an
opaque PSK identifier that leaks no information about the PSK used for session resump-
tion. However, TLS 1.3 session tickets can also be implemented as a self-encrypted and
self-authenticated value; in this case, its Multi-Level&Stage security further relies on the
authenticated encryption security of the underlying ticket generation scheme. Further-
more, [47] did not differentiate between PSK and the resumption master secret (RMS)
used to derive it, where RMS was established in a full handshake; but this is easy to fix
by resorting to the PRF security of the key derivation function.

Then, we outline how the above TLS 1.3’s Multi-Level&Stage security can be
augmented to prove TFO+TLS 1.3’s Server Authentication and level-4 Channel Security
in our msACCE-std model.

26 Page 38 of 41 S. Chen et al.

(1) The above Multi-Level&Stage security guarantees server authentication, i.e., a
client oracle that has set its final session key must share the same session identifier
with a unique partner server oracle.

However, their session identifier is defined as unencrypted key exchange messages in
order to capture key independence (i.e., revealing independent stage keys in the same
session does not break the unrevealed stage key’s secrecy). We instead use a “real”
encrypted session identifier to simplify our model and facilitate the reduction from KE
Payload Integrity to Server Authentication. (Note that an unencrypted session identifier
may correspond to many valid encrypted session identifiers, but KE Payload Integrity
requires no modification in the encrypted payload.) To prove Server Authentication, we
need to follow the proof of TLS 1.3’s Multi-Level&Stage server authentication to replace
stage keys with independent random values and then use sAEADTLS’s AEAD oracles to
simulate encrypted key exchange messages insidTLS and the decryption of them. In this
way, TFO+TLS 1.3’s Server Authentication can be reduced to its Multi-Level&Stage
security and the AEAD security of sAEADTLS.

(2) To prove TFO+TLS 1.3’s level-4 Channel Security, we follow the proof of TLS
1.3’s Multi-Level&Stage security to replace all stage keys with independent ran-
dom values and then use sAEADTLS’s AEAD oracles to simulate encrypted key
exchange messages and Encrypt,Decrypt queries.

The simulation is perfect except that time periods are not captured by the MSKE-type
models. However, by the definition of Channel Security, advancement of time periods
affects only non-forward-secret 0-RTT keys. In particular, Encrypt queries related to
0-RTT keys can be allowed even if the server is corrupted, but the corruption must
occur after the server gets reconfigured (via a NextTP query); this is fine because the
server reconfiguration of TFO+TLS 1.3 erases or refreshes the static state (resumption
states or the session ticket encryption key) used to recover RMS that derives the 0-RTT
key. Therefore, TFO+TLS 1.3’s level-4 Channel Security can be reduced to TLS 1.3’s
Multi-Level&Stage security and the level-4 AEAD security of sAEADTLS. Note that
the AEAD oracles are also used to simulate (encrypted) post-handshake messages like
NewSessionTicket. This bypasses the composition issue [25] faced by the MSKE
model (and its extensions), where the application keys (which we call final session keys)
in full handshakes cannot be composed with secure symmetric key protocols because
those keys are used internally in the handshake to encrypt NewSessionTicket mes-
sages.

References

[1] J. Aas, Let’s Encrypt: Looking forward to 2019. https://letsencrypt.org/2018/12/31/looking-forward-
to-2019.html, (2018)

[2] M. Abdalla, M. Bellare, P. Rogaway, The oracle Diffie-Hellman assumptions and an analysis of DHIES,
in Cryptographers’ Track at the RSA Conference (Springer, 2001), pp. 143–158

[3] R. Abramov, A. Herzberg, TCP Ack storm DoS attacks, in IFIP International Information Security
Conference (2011), pp. 29–40

[4] N. Aviram, K. Gellert, T. Jager, Session resumption protocols and efficient forward security for TLS 1.3
0-RTT, in EUROCRYPT 2019 (Springer, 2019), pp. 117–150

https://letsencrypt.org/2018/12/31/looking-forward-to-2019.html
https://letsencrypt.org/2018/12/31/looking-forward-to-2019.html

Secure Communication Channel Establishment Page 39 of 41 26

[5] M. Barbosa, P. Farshim, Security analysis of standard authentication and key agreement protocols util-
ising timestamps, in International Conference on Cryptology in Africa (Springer, 2009), pp. 235–253

[6] M. Bellare, R. Canetti, H. Krawczyk, Keying hash functions for message authentication, in CRYPTO
1996 (Springer, 1996), pp. 1–15

[7] M. Bellare, T. Kohno, C. Namprempre. Breaking and provably repairing the SSH authenticated encryp-
tion scheme: A case study of the encode-then-encrypt-and-mac paradigm. ACM Transactions on Infor-
mation and System Security (TISSEC), 7(2):206–241, (2004).

[8] M. Bellare, R. Ng, B. Tackmann, Nonces are noticed: Aead revisited, inCRYPTO 2019 (Springer, 2019),
pp. 235–265

[9] M. Bellare, P. Rogaway, Entity authentication and key distribution, in CRYPTO 1993 (Springer, 1993),
pp. 232–249

[10] K. Bhargavan, B. Blanchet, N. Kobeissi, Verified models and reference implementations for the TLS 1.3
standard candidate, in 2017 IEEE Symposium on Security and Privacy (IEEE, 2017), pp. 483–502

[11] K. Bhargavan, C. Fournet, M. Kohlweiss, A. Pironti, P.-Y. Strub, S. Zanella-Béguelin, Proving the TLS
handshake secure (as it is), in CRYPTO 2014 (Springer, 2014), pp. 235–255

[12] C. Boyd, B. Hale, Secure channels and termination: The last word on TLS, in International Conference
on Cryptology and Information Security in Latin America (Springer, 2017), pp. 44–65

[13] C. Boyd, B. Hale, S.F. Mjølsnes, D. Stebila, From stateless to stateful: Generic authentication and
authenticated encryption constructions with application to TLS, in Cryptographers’ Track at the RSA
Conference (Springer, 2016), pp. 55–71

[14] J. Brendel, M. Fischlin, F. Günther, Breakdown resilience of key exchange protocols: NewHope, TLS
1.3, and Hybrids, in European Symposium on Research in Computer Security (Springer, 2019), pp.
521–541

[15] J. Brendel, M. Fischlin, F. Günther, C. Janson, PRF-ODH: Relations, instantiations, and impossibility
results, in CRYPTO 2017 (Springer, 2017), pp. 651–681

[16] Y. Cao, Z. Qian, Z. Wang, T. Dao, S.V. Krishnamurthy, L.M. Marvel, Off-path TCP exploits: Global rate
limit considered dangerous, in USENIX Security Symposium (2016), pp. 209–225

[17] Y. Cheng, J. Chu, S. Radhakrishnan, A. Jain, TCP Fast Open. RFC 7413, December (2014)
[18] C. Cremers, M. Horvat, S. ScottT, V. Merwe, Automated analysis and verification of TLS 1.3: 0-RTT,

resumption and delayed authentication, in 2016 IEEE Symposium on Security and Privacy (2016), pp.
470–485

[19] C. Cremers, M. Horvat, J. Hoyland, S. Scott, T. van der Merwe, A comprehensive symbolic analysis of
TLS 1.3, in 2017 ACM SIGSAC Conference on Computer and Communications Security (ACM, 2017),
pp. 1773–1788

[20] B. Cyr, J. Dorfman, R. Hamilton, J. Iyengar, F. Kouranov, C. Krasic, J. Kulik, A. Langley, J.
Roskind, R. Shade, et al, QUIC wire layout specification. https://docs.google.com/document/d/
1WJvyZflAO2pq77yOLbp9NsGjC1CHetAXV8I0fQe-B_U/edit, (2016)

[21] A. Delignat-Lavaud, C. Fournet, M. Kohlweiss, J. Protzenko, A. Rastogi, N. Swamy, S.Z. Béguelin,
K. Bhargavan, J. Pan, J.K. Zinzindohoue, Implementing and proving the TLS 1.3 record layer, in 2017
IEEE Symposium on Security and Privacy (IEEE Computer Society, 2017), pp. 463–482

[22] A. Delignat-Lavaud, C. Fournet, B. Parno, J. Protzenko, T. Ramananandro, J. Bosamiya, J. Lallemand,
I. Rakotonirina, Y. Zhou, A security model and fully verified implementation for the IETF QUIC record
layer. Cryptology ePrint Archive, Report 2020/114, (2020). https://eprint.iacr.org/2020/114

[23] D. Derler, T. Jager, D. Slamanig, C. Striecks, Bloom filter encryption and applications to efficient
forward-secret 0-RTT key exchange, in EUROCRYPT 2018 (Springer, 2018), pp. 425–455

[24] B. Dowling, M. Fischlin, F. Günther, D. Stebila, A cryptographic analysis of the TLS 1.3 handshake
protocol candidates, in 2015 ACM SIGSAC Conference on Computer and Communications Security
(ACM, 2015), pp. 1197–1210

[25] B. Dowling, M. Fischlin, F. Günther, D. Stebila, A cryptographic analysis of the TLS 1.3 draft-10 full
and pre-shared key handshake protocol. Cryptology ePrint Archive, Report 2016/081, (2016). https://
eprint.iacr.org/2016/081

[26] B. Dowling, M. Fischlin, F. Günther, D. Stebila, A cryptographic analysis of the tls 1.3 handshake
protocol. Cryptology ePrint Archive, Report 2020/1044, (2020). https://eprint.iacr.org/2020/1044

[27] M. Fischlin F. Günther, Replay attacks on zero round-trip time: The case of the TLS 1.3 handshake
candidates, in 2017 IEEE European Symposium on Security and Privacy (IEEE, 2017), pp. 60–75

https://docs.google.com/document/d/1WJvyZflAO2pq77yOLbp9NsGjC1CHetAXV8I0fQe-B_U/edit
https://docs.google.com/document/d/1WJvyZflAO2pq77yOLbp9NsGjC1CHetAXV8I0fQe-B_U/edit
https://eprint.iacr.org/2020/114
https://eprint.iacr.org/2016/081
https://eprint.iacr.org/2016/081
https://eprint.iacr.org/2020/1044

26 Page 40 of 41 S. Chen et al.

[28] M. Fischlin, F. Günther, G. Azzurra Marson, K.G Paterson, Data is a stream: Security of stream-based
channels, in CRYPTO 2015 (Springer, 2015), pp. 545–564

[29] M. Fischlin, F. Günther, Multi-stage key exchange and the case of Google’s QUIC protocol, in 2014
ACM SIGSAC Conference on Computer and Communications Security (ACM, 2014), pp. 1193–1204

[30] G. Gebhart, Tipping the scales on HTTPS: 2017 in review. https://www.eff.org/deeplinks/2017/12/
tipping-scales-https, (2017)

[31] Y. Gilad, A. Herzberg, Off-path attacking the web, in WOOT 2012 (2012), pp. 41–52
[32] F. Gont, Security assessment of the Transmission Control Protocol. Technical Report CPNI Technical

Note 3/2009, Centre for the Protection of National Infrastructure, (2009)
[33] F. Günther, B. Hale, T. Jager, S. Lauer. 0-RTT key exchange with full forward secrecy, in EUROCRYPT

2017 (Springer, 2017), pp. 519–548
[34] F. Günther, S. Mazaheri, A formal treatment of multi-key channels, in CRYPTO 2017 (Springer, 2017),

pp. 587–618
[35] HTTPS encryption on the web: Google transparency report. https://transparencyreport.google.com/

https/overview. Accessed: 2020-10-22
[36] J. Iyengar, M. Thomson, QUIC: A UDP-based multiplexed and secure transport. https://quicwg.org/

base-drafts/draft-ietf-quic-transport.html. Accessed: (2020)-10-22
[37] T. Jager, F. Kohlar, S. Schäge, J. Schwenk, On the security of TLS-DHE in the standard model, in

CRYPTO 2012 (Springer, 2012), pp. 273–293
[38] S. Jero, H. Lee, C. Nita-Rotaru, Leveraging state information for automated attack discovery in transport

protocol implementations, in IEEE/IFIP International Conference onDependable Systems andNetworks
(2015), pp. 1–12

[39] S. Jero, E. Hoque, D. Choffnes, A. Mislove, C. Nita-Rotaru, Automated attack discovery in TCP conges-
tion control using a model-guided approach, in Network and Distributed Systems Security Symposium
(NDSS), (2018)

[40] L. Joncheray, A simple active attack against TCP, in USENIX Security Symposium (1995)
[41] T. Kohno, A. Palacio, J. Black, Building secure cryptographic transforms, or how to encrypt and mac.

Cryptology ePrint Archive, Report 2003/177, (2003). https://eprint.iacr.org/2003/177
[42] H. Krawczyk, K.G. Paterson, H. Wee, On the security of the TLS protocol: A systematic analysis, in

CRYPTO 2013 (Springer, 2013), pp. 429–448
[43] H. Krawczyk, H. Wee, The OPTLS protocol and TLS 1.3, in 2016 IEEE European Symposium on

Security and Privacy (IEEE, 2016), pp. 81–96
[44] V.A. Kumar, P.S. Jayalekshmy, G.K. Patra, R.P, Thangavelu, On remote exploitation of TCP sender for

low-rate flooding denial-of-service attack. IEEE Communications Letters, 13(1):46–48, (2009)
[45] A. Kuzmanovic, E. Knightly. Low-rate TCP-targeted denial of service attacks and counter strategies.

IEEE/ACM Transactions on Networking, 14(4):683–696, (2006)
[46] A. Langley, W.-T. Chang, QUIC crypto. https://docs.google.com/document/d/1g5nIXAIkN_Y-

7XJW5K45IblHd_L2f5LTaDUDwvZ5L6g/edit, (2016)
[47] X. Li, J. Xu, Z. Zhang, D. Feng, H. Hu, Multiple handshakes security of TLS 1.3 candidates, in 2016

IEEE Symposium on Security and Privacy (IEEE, 2016), pp. 486–505
[48] G. Linden, Make data useful. https://sites.google.com/site/glinden/Home/StanfordDataMining.2006-

11-29.ppt (2006)
[49] R. Lychev, S. Jero, A. Boldyreva, C. Nita-Rotaru, How secure and quick is QUIC? provable security and

performance analyses, in 2015 IEEE Symposium on Security and Privacy (2015), pp. 214–231
[50] D.A. McGrew, J. Viega. The security and performance of the Galois/Counter Mode (GCM) of operation,

in International Conference on Cryptology in India (Springer, 2004), pp. 343–355
[51] A. Menezes, B. Ustaoglu. Comparing the pre-and post-specified peer models for key agreement, in

Australasian Conference on Information Security and Privacy (Springer, 2008), pp. 53–68
[52] R. Morris, A weakness in the 4.2 BSD Unix TCP/IP software. Technical report, AT&T Bell Leboratories

(1985)
[53] K.G. Paterson, T. Ristenpart, T. Shrimpton,Tag size does matter: Attacks and proofs for the TLS record

protocol, in EUROCRYPT 2011 (Springer, 2011), pp. 372–389
[54] C. Patton, T. Shrimpton, Partially specified channels: The TLS 1.3 record layer without elision, in 2018

ACM SIGSAC Conference on Computer and Communications Security (ACM, 2018), pp. 1415–1428
[55] J. Postel, User Datagram Protocol. RFC 768, August (1980)

https://www.eff.org/deeplinks/2017/12/tipping-scales-https
https://www.eff.org/deeplinks/2017/12/tipping-scales-https
https://transparencyreport.google.com/https/overview
https://transparencyreport.google.com/https/overview
https://quicwg.org/base-drafts/draft-ietf-quic-transport.html
https://quicwg.org/base-drafts/draft-ietf-quic-transport.html
https://eprint.iacr.org/2003/177
https://docs.google.com/document/d/1g5nIXAIkN_Y-7XJW5K45IblHd_L2f5LTaDUDwvZ5L6g/edit
https://docs.google.com/document/d/1g5nIXAIkN_Y-7XJW5K45IblHd_L2f5LTaDUDwvZ5L6g/edit
https://sites.google.com/site/glinden/Home/StanfordDataMining.2006-11-29.ppt
https://sites.google.com/site/glinden/Home/StanfordDataMining.2006-11-29.ppt

Secure Communication Channel Establishment Page 41 of 41 26

[56] J. Postel, Transmission Control Protocol. RFC 793, September (1981)
[57] Z. Qian, Z. Morley Mao. Off-path TCP sequence number inference attack: how firewall middleboxes

reduce security, in 2012 IEEE Symposium on Security and Privacy (2012), pp. 347–361
[58] Z. Qian, Z. Morley Mao, Y. Xie, Collaborative TCP sequence number inference attack: how to crack

sequence number under a second, in 2012 ACM SIGSAC Conference on Computer and Communications
Security (ACM, 2012), pp. 593–604

[59] S. Radhakrishnan, Y. Cheng, J. Chu, A. Jain, B. Raghavan, TCP Fast Open, in COnference on emerging
Networking EXperiments and Technologies (ACM, 2011), p. 21

[60] E. Rescorla, The Transport Layer Security (TLS) Protocol Version 1.3. RFC 8446, August (2018)
[61] E. Rescorla, T. Dierks, The Transport Layer Security (TLS) Protocol Version 1.2. RFC 5246, August

(2008)
[62] J. Roskind, QUIC: Design document and specification rationale. https://docs.google.com/document/d/

1RNHkx_VvKWyWg6Lr8SZ-saqsQx7rFV-ev2jRFUoVD34/edit, (2013)
[63] S. Savage, N. Cardwell, D. Wetherall, T. Anderson, TCP congestion control with a misbehaving receiver.

ACM SIGCOMM Computer Communication Review, 29(5), 1999
[64] J. Schwenk, Modelling time for authenticated key exchange protocols, in European Symposium on

Research in Computer Security (Springer, 2014), pp. 277–294
[65] V. Shoup, Sequences of games: a tool for taming complexity in security proofs. Cryptology ePrint

Archive, Report 2004/332, (2004). https://eprint.iacr.org/2004/332
[66] A. Studer, A. Perrig, The Coremelt attack, in European Symposium on Research in Computer Security

(2009), pp. 37–52
[67] I. Swett, QUIC deployment experience @Google. https://www.ietf.org/proceedings/96/slides/slides-

96-quic-3.pdf, (2016)
[68] M. Thomson, S. Turner. Using Transport Layer Security (TLS) to secure QUIC. https://quicwg.org/

base-drafts/draft-ietf-quic-tls.html. Accessed: (2020)-10-22
[69] Verizon Enterprise Solutions, Monthly IP latency data | Verizon Enterprise Solutions. http://www.

verizonenterprise.com/about/network/latency/. Accessed: (2020)-10-22
[70] P. Watson, Slipping in the window: TCP reset attacks. Technical report (2004)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

https://docs.google.com/document/d/1RNHkx_VvKWyWg6Lr8SZ-saqsQx7rFV-ev2jRFUoVD34/edit
https://docs.google.com/document/d/1RNHkx_VvKWyWg6Lr8SZ-saqsQx7rFV-ev2jRFUoVD34/edit
https://eprint.iacr.org/2004/332
https://www.ietf.org/proceedings/96/slides/slides-96-quic-3.pdf
https://www.ietf.org/proceedings/96/slides/slides-96-quic-3.pdf
https://quicwg.org/base-drafts/draft-ietf-quic-tls.html
https://quicwg.org/base-drafts/draft-ietf-quic-tls.html
http://www.verizonenterprise.com/about/network/latency/
http://www.verizonenterprise.com/about/network/latency/

	Secure Communication Channel Establishment: TLS 1.3 (over TCP Fast Open) versus QUIC
	1. Introduction
	2. Background
	2.1. TLS 1.3 over TFO
	2.2. QUIC over UDP
	2.3. QUIC with TLS 1.3 Key Exchange

	3. Preliminaries
	3.1. Pseudorandom Function
	3.2. Stateful Authenticated Encryption with Associated Data

	4. Multi-stage Authenticated and Confidential Channel Establishment
	4.1. Protocol Syntax
	4.2. Security Models

	5. Provable Security Analysis
	5.1. TLS 1.3 over TFO
	5.2. QUIC over UDP
	5.3. QUIC[TLS] over UDP

	6. Conclusion
	Acknowledgements
	References

