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Abstract. An optimized two-step hybrid block method is presented for integrating gen-

eral second order initial value problems numerically. The method considers two intra-

step points which are selected adequately in order to optimize the local truncation er-

rors of the main formulas for the solution and the first derivative at the final point of the

block. The new proposed method is consistent, zero-stable and has seventh algebraic

order of convergence. To illustrate the performance of the method, some numerical ex-

periments are presented for solving this kind of problems, in comparison with methods

of similar characteristics in the literature.
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1. Introduction

It is well-known that the formulation of many physical phenomena in mathematical

language results in second order differential equations. For instance, the mass movement

under the action of a force, problems of orbital dynamics, circuit theory, control theory,

chemical kinetics, or in general, any problem involving second Newton’s law.

The present article is concerned with approximating on a given interval the solution of

a general second order initial value problem (I.V.P) of the form

y ′′(x) = f
�

x , y(x), y ′(x)
�

, y(x0) = y0, y ′(x0) = y ′0. (1.1)

An equation of the form (1.1) can be integrated by reformulating it as a system of two

first order ODEs and then applying one the methods available for solving such systems.
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It seems less costly to develop numerical methods in order to integrate (1.1) directly. In

this regard, many authors have proposed different methods for integrating the problem

(1.1) directly (see for references, Hairer and Wanner [6], Chawla and Sharma [3], and

Vigo-Aguiar and Ramos [1] among others). Among those procedures, block methods have

been developed in order to obtain the numerical solution at more than one point at a time.

One can see one of the pioneering works on block methods in [25]. Some advantages of

block methods include (i) overcoming the overlapping of pieces of solutions and (ii) that

they are self starting, thus avoiding the use of other methods to get starting values. Some

useful references are [1-29].

In this article, we develop a two-step hybrid block method with two intra-step points

using interpolation and collocation procedures with a constant step-size. Further, we will

formulate the new proposed method in a variable step-size mode in order to make it more

efficient from a practical point of view.

The article is organized as follows: Section 2 is concerned with development of the

block method. Main characteristics of the block method are presented in Section 3. A

formulation in variable step-size mode of the block method is considered in Section 4

using an embedded-type approach. To illustrate the performance of the proposed method,

some numerical experiments are presented in Section 5 which show the efficiency of the

new method when it is compared with other methods proposed in the scientific literature.

Finally, some conclusions are presented in Section 6.

2. Development of the method

We present here the derivation of the block method with a constant step-size, and

then a variable step-size formulation will be considered. To derive the block method,

consider a polynomial approximation of the true solution y(x) of (1.1) at the grid points

a = x0 < x1 < · · · < xN = b of the integration interval, with constant step-size h =

x j+1 − x j, j = 0,1, · · · , N − 1. Let

y(x)≃ p(x) =

8
∑

n=0

an xn (2.1)

from which we get

y ′(x)≃ p′(x) =
8
∑

n=1

annxn−1, (2.2a)

y ′′(x)≃ p′′(x) =
8
∑

n=2

ann(n− 1)xn−2, (2.2b)

y ′′′(x)≃ p′′′(x) =
8
∑

n=3

ann(n− 1)(n− 2)xn−3, (2.2c)
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where an ∈ R are real unknown coefficients to be determined. Consider two intra-step

points xr = xn+ rh, xs = xn+ sh with 0< r < 1< s < 2 for approximating the solution of

(1.1) on [xn, xn+2] at the points xn, xn+1, xn+2. To do that, consider the approximation in

(2.1) and its first derivative (2.2a) applied to the point xn, its second derivative in (2.2b)

applied to the points xn, xn+r , xn+1, xn+s, xn+2, and its third derivative (2.2c) applied

to the points xn, xn+2. In this way, we have a system of nine equations with nine real

unknowns an, n= 0,1, · · · , 8, given by

p(xn) = yn , p′(xn) = y ′n,

p′′(xn) = fn, p′′(xr) = fn+r , p′′(xn+1) = fn+1 , p′′(xs) = fn+s , p′′(xn+2) = fn+2,

p′′′(xn) = f ′n , p′′′(xn+2) = f ′n+2 ,

where the notations yn+ j , fn+ j and f ′
n+ j

stand for approximations of y(xn+ j), y ′′(xn+ j)

and y ′′′(xn+ j) respectively. This system of nine equations may be written in a matrix form

as





































1 xn x2
n x3

n x4
n x5

n x6
n x7

n x8
n

0 1 2xn 3x2
n 4x3

n 5x4
n 6x5

n 7x6
n 8x7

n

0 0 2 6xn 12x2
n 20x3

n 30x4
n 42x5

n 56x6
n

0 0 2 6xn+r 12x2
n+r 20x3

n+r 30x4
n+r 42x5

n+r 56x6
n+r

0 0 2 6xn+1 12x2
n+1 20x3

n+1 30x4
n+1

42x5
n+1 56x6

n+1

0 0 2 6xn+s 12x2
n+s 20x3

n+s 30x4
n+s 42x5

n+s 56x6
n+s

0 0 2 6xn+2 12x2
n+2 20x3

n+2 30x4
n+2 42x5

n+2 56x6
n+2

0 0 0 6 24xn 60x2
n 120x3

n 210x4
n 336x5

n

0 0 0 6 24xn+2 60x2
n+2 120x3

n+2 210x4
n+2 336x5

n+2
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y ′n
fn

fn+r

fn+1

fn+s

fn+2

f ′n
f ′n+2





































.

Solving the above system of equations, we obtain the values of the unknowns an, n =

0,1, · · · , 8, which we do not include here because they are very cumbersome expressions.

After obtaining the values of these unknowns and doing the change of variables x = xn+th,

the polynomial in (2.1) may be written as

p(xn + th) = α0 yn + hα1 y ′n+ h2
�

β0 fn + βr fn+r + β1 fn+1

+ βs fn+s + β2 fn+2

�

+ h3
�

γ0 f ′n + γ2 f ′n+2

�

, (2.3)

where

α0 = 1, α1 = t,

β0 =−
t2

3360r2s2

�

st2
�

−4s
�

−70+ 84t − 35t2 + 5t3
�

+ t
�

−168+ 224t −100t2 + 15t3
�

+ 2r2
�

2t2
�

70− 84t + 35t2 − 5t3
�

− 4st2
�

−70+ 84t − 35t2 + 5t3
�

+7s2
�

−120+ 55t2 − 27t3 + 4t4
��

+ r t2
�

−8s2
�

−70+ 84t − 35t2 + 5t3
�

+t
�

−168+ 224t− 100t2+ 15t3
�

+ s
�

280− 672t+ 588t2− 220t3+ 30t4
���

,
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βr =
t4
�

−4s
�

−70+ 84t − 35t2 + 5t3
�

+ t
�

−168+ 224t − 100t2 + 15t3
��

840(−2+ r)2(−1+ r)r2(r − s)
,

β1 =
t4

840(−1+ r)(−1+ s)

�

4r
�

t
�

−42+ 28t − 5t2
�

+ 7s
�

10− 6t + t2
��

+t
�

−4s
�

42− 28t + 5t2
�

+ t
�

112− 80t + 15t2
���

,

βs =
t4
�

t
�

168− 224t + 100t2 − 15t3
�

+ 4r
�

−70+ 84t − 35t2 + 5t3
��

840(r − s)(−2+ s)2(−1+ s)s2
,

β2 =−
1

3360(−2+ r)2(−2+ s)2
t4
�

t
�

4s2
�

126− 119t + 25t2
�

+ 4t
�

196− 200t + 45t2
�

+s
�

−1176+ 784t + 100t2 − 75t3
��

+ 2r2
�

7s2
�

25− 21t + 4t2
�

+2t
�

126− 119t + 25t2
�

− 4s
�

105− 63t − 7t2 + 5t3
��

+ r
�

t
�

−1176+ 784t + 100t2 − 75t3
�

− 8s2
�

105− 63t − 7t2+ 5t3
�

+2s
�

980− 336t − 238t2 + 30t3 + 15t4
���

,

γ0 =
−1

3360rs

�

t3
�

2r
�

2t
�

70− 84t + 35t2 − 5t3
�

+ 7s
�

−40+ 40t − 15t2 + 2t3
��

+t
�

−4s
�

−70+ 84t − 35t2 + 5t3
��

+ t
�

−168+ 224t − 100t2 + 15t3
����

,

γ2 =
1

3360(−2+ r)(−2+ s)

�

t4
�

2r
�

7s
�

10− 9t + 2t2
�

− 2t
�

21− 21t + 5t2
��

+t
�

−4s
�

21− 21t + 5t2
�

+ t
�

56− 60t + 15t2
����

.

Now, taking t = 2 in the above formula we evaluate p(x) at the point xn+2, and thus we

obtain the first of the formulas that approximates the solution y(xn+2) :

yn+2 =

¨

− 16 fn+sh
2(−2+ r)2(−1+ r)r3+ fnh2(−2+ r)2(−1+ r)(−2+ s)2 · · ·

(−1+ s)
�

4 s3 + 8 r s3 − 91 r2 s3 + r3
�

−4− 8 s+ 91 s2
��

+ s

�

2 f ′nh3(−2+ r)2(−1+ r)r(−2+ s)2(−1+ s)
�

2s2 − 7rs2+ r2(−2+ 7s)
�

+ s

�

16 fn+1 h2 (−2+ r)2 r2 (−2+ s)2
�

6 (−1+ s) s+ r2 (−6+ 7 s)

+r
�

6− 7s2
��

− (−1+ s)

�

�

− fn+2h2(−1+ r)r2
�

−48(−2+ s)2s

+ r3
�

48− 36s+ 7s2
�

+ r2
�

−192+ 116s− 7s3
�

+ 4r
�

48− 29s2+ 9s3
��

+ (−2+ s)
�

− 4 f ′n+2 h3 r2
�

2− 3 r + r2
��

−2 r + r2 − (−2+ s) s
�

− (−2+ s)
�

16 fn+r h2 s+ 105 (−2+ r)2 (−1+ r) r2 (r − s) · · ·

(yn+2hy ′n)
�

�

��
�«Â

�

105(−2+r)2(−1+r)r2(r−s)(−2+s)2(−1+s)s2
�

. (2.4)
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Then, taking t = 2 in the derivative of the above formula we evaluate p′(x) at the point

xn+2, thus obtaining an approximation for the first derivative of the solution y(x) at the

point xn+2 :

hy ′n+2=

¨

h

�

− 16 fn+sh(−2+ r)2(−1+ r)r2 + fnh(−2+ r)2(−1+ r)(−2+ s)2(−1+ s) · · ·

·
�

4s2+8rs2+49r3s2−r2
�

4+8 s+49s3
��

+s

�

f ′n h2(−2+r)2(−1+r)r(−2+s)2 · · ·

· (−1+s)
�

4s+7r2s−r
�

4+7s2
��

+ s

�

16 fn+rh(−2+s)2(−1+s)+r2(r−s) · · ·
·
�

16 fn+1h(−2+r)2
�

(8+ 7r(−1+ s)− 7s)(−2+ s)2 + (−1+ r)(−1+ s) · · ·
·
�

fn+2h
�

736+ 49r2(−2+ s)2 − 764s+ 196s2− 4r
�

191− 194s+ 49s2
��

− (−2+ r)(−2+ s)
�

f ′n+2h2(24+ 7r(−2+ s)− 14s)− 105(−2+ r) · · ·

· (−2+s)y ′n
�

�

��
�«Â

�

105(−2+r)2(−1+r)r2(r−s)(−2+s)2(−1+s)s2
�

. (2.5)

The above approximations depend on the parameters r, s, which are related to the inter-

mediate points xr , xs. In order to obtain appropriate values of r and s, we consider to

optimize the local truncation errors in the formulas (2.4) and (2.5). The reason to con-

sider the local truncation errors in yn+2 and y ′n+2 to obtain the optimized values of r and

s is that at the end of the block [xn, xn+2], the values of yn+2 and y ′n+2 are the only ones

needed for advancing the integration on the next block. It is clear that optimizing in this

way, we will gain at least an order in each of the above formulas, as it is shown below.

To get the local truncation errors we expand in Taylor series about xn the above for-

mulas. The local truncation error in the formula in (2.4) is given by

L (y(xn+2,h) =
(2− 3rs)y(9)(xn)h

(9)

99225
+ O (h10). (2.6)

Similarly, for the formula in (2.5) the local truncation error is given by

L (hy ′(xn+2),h) =
(2− r − s)y(9)(xn)h

9

33075
+ O (h10). (2.7)

Equating to zero the principal terms of the local truncation errors given in (2.6) and (2.7)

respectively, that is, the coefficients of h9, we obtain the following system of equations

2− 3rs = 0, 2− r − s = 0.

It is easy to verify that the above implicit system of equations corresponds to rs-plane

curves which are symmetric with respect to the diagonal r = s, thus there is a unique so-

lution with the constraints 0 < r < 1< s < 2. After solving the above system of equations,

we obtain the optimized values of r and s as follow

r = 1−
p

3

3
≃ 0.42265, s = 1+

p
3

3
≃ 1.57735.
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We note that these values are the zeros of the second order Legendre polynomial shifted

to the interval [0,2]. Substituting these values of r and s in the local truncation errors of

the formulas (2.4) and (2.5), we obtain

L (y(xn+2),h) =
y(11)(xn)h

11

58939650
+ O (h12),

L (hy ′(xn+2),h) =
−y(12)(xn)h

12

589396500
+ O (h13).

Until now, we have two formulas, one for approximating the solution and one for approx-

imating the first derivative at the final point of the block [xn, xn+2]. Note that we have

eight unknowns, that is,
n

yn+ j , y ′
n+ j

o

, j = r, 1, s, 2. Therefore, to obtain a two-step hybrid

block method we need to consider other six formulas. For this, we consider the evaluation

of p′(x) at the points xn+r , xn+1, xn+s, and the evaluation of p(x) at the points xn+r , xn+1

and xn+s. In this way, we obtain the complete block method consisting of the following

eight equations

yn+r =yn+
(3+
p

3)hy ′n
3(2+

p
3)
+

h2

11340(2+
p

3)

�

(1801+ 559
p

3) fn+ (630+ 315) fn+r

+ (400− 376
p

3) fn+1 + (990− 477
p

3) fn+s − (41+ 21
p

3) fn+2

+h((107+ 36
p

3) f ′n + (7+ 4
p

3) f ′n+2)
�

, (2.8a)

yn+1 =yn+ hy ′n +
h2

6720

�

1171 fn+(945+ 576
p

3) fn+r+280 fn+1+(945− 576
p

3) fn+s

+19 fn+2+ h(67 f ′n − 3 f ′n+2)
�

, (2.8b)

yn+s =yn+
(−3+

p
3)hy ′n

3(−2+
p

3)
+

h2

11340(−2+
p

3)

�

(−1801+559
p

3) fn−(990+ 477
p

3) fn+r

−(400+ 376
p

3) fn+1 + (−630+ 315
p

3) fn+s + (41− 21
p

3) fn+2

+h((−107+ 36
p

3) f ′n + (−7+ 4
p

3) f ′n+2)
�

, (2.8c)

yn+2 =yn+ 2hy ′n +
h2

105

�

37 fn+ (54+ 18
p

3) fn+r + 64 fn+1 + (54− 18
p

3) fn+s

+ fn+2 + 2hf ′n
�

, (2.8d)

hy ′n+r=hy ′n+
h2

3780(2+
p

3)

�

(1726+ 885
p

3) fn + (1656+ 780
p

3) fn+r

+ (96− 320
p

3) fn+1 + (396− 60
p

3) fn+s − (94+ 25
p

3) fn+2

+h((124+ 65
p

3) f ′n + (16+ 5
p

3) f ′n+2)
�

, (2.8e)

hy ′n+1=hy ′n+
h2

1680

�

257 fn+ (432+ 315) fn+r + 512 fn+1 + (432− 315) fn+s

+47 fn+2+ 8h( f ′n − f ′n+2)
�

, (2.8f)
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hy ′n+s=hy ′n +
h2

3780(−2+
p

3)

�

(−1726+ 885
p

3) fn − (396+ 60
p

3) fn+r

− (96+ 320
p

3) fn+1 + (−1656+ 780
p

3) fn+s + (94− 25
p

3) fn+2

+h((−124+ 65
p

3) f ′n + (−16+ 5
p

3) f ′n+2)
�

, (2.8g)

hy ′n+2=hy ′n+
h2

105

�

19 fn+ 54 fn+r+ 64 fn+1+ 54 fn+s+ 19 fn+2+ h( f ′n− f ′n+2)
�

. (2.8h)

Note that if we are not particularly interested in approximations of derivatives (except

the last one y ′n+2), as in the case of solving special second order equations y ′′ = f (x , y),

then the number of equations may be reduced. In this case, the system is reduced in

five equations in five unknowns, that is, we will only consider the five equations related

with unknowns yn+r , yn+1, yn+s , yn+2, y ′n+2. As mentioned above, to find the approxima-

tion of the solution at the next block, only the values of the solution and its first derivative

are required at the final point of the previous block, which are provided after solving the

new reduced system. For solving the differential equations where the right hand side of E-

q. (1.1) does not contain the first derivative this strategy is less costly from a computational

point of view.

3. Main characteristics of the method

This section is concerned with main characteristics, for instance, accuracy, consistency,

zero-stability and linear stability analysis of the block method. The proposed block method

(2.8) may be written in the following convenient matrix form

A Yn = h B Y′n+ h2 C Fn+ h3 D Gn, (3.1)

where A, B, C and D are the corresponding matrices of coefficients of dimensions 8×5, and

Yn = (yn, yn+r , yn+1, yn+s, yn+2)
T ,

Y′n = (y
′
n, y ′n+r , y ′n+1, y ′n+s, y ′n+2)

T ,

Fn = ( fn, fn+r , fn+1, fn+s , fn+2)
T ,

Gn = ( f
′
n, f ′n+r , f ′n+1, f ′n+s, f ′n+2)

T .

3.1. Accuracy

Let z(x) be a sufficiently differentiable function. Consider the following difference

operator associated with the block hybrid method given in (3.1)

L̄ [z(x); h] =
∑

j

ᾱ jz(xn + jh)− hβ̄ jz
′(xn+ jh)− h2γ̄ jz

′′(xn+ jh)

− h3δ̄ jz
′′′(xn+ jh), j = 0, r, 1, s, 2,

where ᾱ j , β̄ j, γ̄ j , δ̄ j are respectively the vector columns of matrices A,B,C and D. The block

method (2.8) for solving (1.1) and the associated difference operator are said to have order
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p if after expanding z(xn + jh), z′(xn + jh), z′′(xn + jh) and z′′′(xn + jh) in Taylor series

about xn, we obtain

L̄ [z(x); h] = C̄0z(xn) + C̄1hz′(xn) + C̄2h2z′′(xn) + · · ·+ C̄qhqz(q)(xn) + · · ·
with C̄0 = C̄1 = · · · = C̄p+1 = 0 and C̄p+2 6= 0. The C̄i are vectors and C̄p+2 is called the

error constant. For the block method (2.8), we have C̄0 = C̄1 = · · ·= C̄8 = 0 and

C̄9 =

� −1

1837080
p

3
,0,

1

1837080
p

3
,0,

−1

612360
,

1

362880
,
−1

612360
,0

�T

.

Hence, the proposed block method has seventh algebraic order of convergence. As the

order of the method is no less than 1, therefore the method is also consistent with Eq. (1.1).

3.2. Zero-stability

Zero-stability is concerned with the stability of the difference schemes (3.1) as the step-

size approaches to zero, that is, h→ 0. Consider h→ 0 in (3.1), then the difference scheme

may be written in a more convenient form as

A(0)Ȳµ− A(1)Ȳµ−1 = 0,

where A(0) and A(1) are constant matrices given by

A(0) =











1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1











, A(1) =











1 0 0 0

1 0 0 0

1 0 0 0

1 0 0 0











,

Ȳµ = (yn+2, yn+s, yn+1, yn+r )
T , Ȳµ−1 = (yn, yn+s−2, yn−1, yn+r−2)

T .

The block method is zero stable if roots R j of the first characteristic polynomial ρ(R) given

by ρR= det[A(0)R−A(1)] satisfy |R j| ≤ 1 and for those roots with |R j|= 1, the multiplicity

does not exceed 2 (see [4]). For the proposed block method (3.1), the first characteristic

polynomial is ρ(R) = R3(R−1). Hence, the proposed block method (3.1) is zero-stable. As

we have seen that the block method (3.1) is consistent and zero-stable then it implies the

convergence of the method.

3.3. Linear stability analysis

As pointed out above, zero-stability of a numerical method is concerned with the be-

havior of the numerical method when h → 0. In practice, we deal with some h > 0. In

order to determine whether a numerical scheme will produce acceptable results for a giv-

en value of h > 0, we need a notion of stability that is different from zero-stability. The

stability properties of a numerical scheme for a special second order equation are usually

analyzed by considering the linear test equation introduced by Lambert and Watson [10]

y ′′(x) = −µ2 y(x) with µ > 0. (3.2)
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As our method is concerned with general second order differential equations and Lam-

bert and Watson’s equation does not contain the first order derivative, for linear stability

analysis, we will consider the following linear test equation (see [12])

y ′′(x) = −2µy ′(x)−µ2 y(x) . (3.3)

This test equation has bounded solutions for µ ≥ 0 that tend to zero as x → ∞. We will

determine the region in which the numerical method reproduces the behavior of the true

solutions.

Let us describe the procedure to obtain such region. Our method has eight equations in

which there are five different terms of derivatives: y ′n, y ′n+r , y ′n+1, y ′n+s , y ′n+2, and two inter-

mediate values yn+r , yn+s . Using the Mathematica system we have eliminated these terms

from the system of equations, and get a recurrence equation in the terms yn, yn+1, yn+2.

This recurrence equation reads

P(H) yn+2 −Q(H) yn+1 + P(−H) yn = 0 , (3.4)

where H = µh, and

P(H) = H11 + 21H10 + 155H9+ 225H8− 2415H7− 4515H6+ 61740H5+ 220500H4

−793800H3− 7144200H2− 19051200H− 19051200,

Q(H) = 48
�

H10 − 30H8+ 455H6− 7350H4+ 99225H2− 793800
�

.

We study the magnitude boundedness of their solutions through its characteristic equation

to determine the stability region. The roots of the characteristic equation must be less than

1, for the method to be stable. The roots of the characteristic equation

P(H) r2−Q(H) r + P(−H) = 0 (3.5)

are

r1,2 =
1

D
(24H10− 720H8+ 10920H6− 176400H4+ 2381400H2− 19051200± R)

with

R= H5
�

H12+445H10−24815H8+556395H6−8037225H4+85631175H2−450084600
�

1

2 ,

D = H11 + 21H10+ 155H9+ 225H8− 2415H7− 4515H6+ 61740H5

+ 220500H4− 793800H3− 7144200H2− 19051200H− 19051200 .

Fig. 1 shows a plot of the absolute values of the roots r1,2 versus H. We see that one of

them limits the interval and thus the region of absolute stability, shown in Fig. 2.

If µ ∈ C then the stability region is a region in the complex µh-plane, but if µ ∈ R then

the region of stability consists in a subset of the real line where the interval of the form
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Figure 1: Absolute values of the roots of the characteristic equation in (3.5) versus H.
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Figure 2: Stability region in the complex µh-
plane for the method in (2.8) using the equa-
tion test in (3.3).
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Figure 3: Detailed of the gap of the stability region
in the complex µh-plane.

(0, b) is known as the primary interval of stability. In Fig. 2 it is shown the stability region

for the method considered in this article, being the real stability region given by

(0,4.470686490605611)∪ (4.561384194246628,17.296288514195407).

This region is that in the complex H-plane where the roots of the characteristic equation

associated to the recurrence equation in (3.4) are bounded in modulus by unity. Or in

other words, it is the set of H-values in the complex plane such that the solution of (3.1)

is decaying for the test equation in (3.3) [5]. We note that there is a gap in the stability

region, whose detailed plot is shown in Fig. 3.

4. Formulation in variable step-size mode

The proposed block method (3.1) may be formulated in variable step-size mode by

considering a lower order method to estimate the local error at the final point in each

block of the form [xn, xn+2]. The procedure will be less costly if the second method uses

function evaluations that have been already calculated. To get a reliable estimate of the

local error we follow a similar approach to that adopted by L. F. Shampine et al. [23].

Let us consider another method of order q to get another approximation at the final

point of the current block, y∗n+2, and let the local error len+2 in using it given by

len+2 = y(xn+ 2h)− y∗n+2, (4.1)
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where y(x) is the true solution.

Now, if we apply our proposed method of order p > q to compute the approximation

yn+2 on the current step then we have that y(xn+ 2h)− yn+2 = O (hp+2), and thus,

est = yn+2 − y∗n+2

= [y(xn + 2h)− y∗n+2]− [y(xn + 2h)− yn+2]

= len+2 + O (hp+2). (4.2)

This is a computable estimate of the local error of the lower order method because len+2

is O (hq+2) and so it dominates in (4.2) for small enough values of h. We can estimate the

error in y∗n+2 by comparing it to the more accurate solution yn+2. The approach adopted

here is similar to that used in embedded pairs, where to make the local error estimation

practical one has to look for a pair of methods that share as many function evaluations as

possible. In implementation of embedded pairs, the lower order method is used to estimate

the local error and the higher order method is used to advance the integration. Advancing

the integration with the more accurate result yn+2 is called local ex trapolation. In this

way of proceeding, we do not know precisely how small the local error is at each step of

integration, but we may assume that it is rather smaller than the estimated local error [23].

For the proposed block method in (3.1), the multi-step method given by

yn+2 = (2+ 3
p

3)yn − 3(3+
p

3)yn+r + 8yn+1 +
h2

30

�

(−1−p3) fn

+ (−12− 13
p

3) fn+r + 4(7− 3
p

3) fn+1 + (15− 4
p

3) fn+s

�

with local truncation error LT E = (1+
p

3)y(7)(xn)h
7
�

56700+ O
�

h8
�

has been used to

estimate the local error at the final point in each block. This error estimate, est, provides

the basis for determining the step-size for the next step. In the implementation, for a given

tolerance, tol, the algorithm will change the step-size, from old to new as

hnew = ν h

�

tol

‖est‖
�1/(q+2)

, (4.3)

where q is order of the lower order method and 0< ν < 1 is a safety factor whose purpose

is to avoid failed steps.

Normally some restrictions must be considered in order to avoid large fluctuations in

step-size: step-size is not allowed to decrease by more than hmini (minimum step-size al-

lowed) or increase by more than hmaxi (maximum step-size allowed). This may be included

in the implementation using an If statement:

If hmini ≤ hnew ≤ hmaxi, then hold = hnew.

This strategy is applied successively to predict the step-size for the next step after a suc-

cessful step, i.e. when ‖est‖ < tol. There are different strategies for selecting the size of

the initial step hini (see Shampine et. al. [23] and Watts [27]), but one can simply take a

very small starting step-size as in Sedgwick [22], and then the algorithm will correct this

value if necessary, according to the strategy for changing the step-size.
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4.1. Implementation details

In order to implement the proposed block method (3.1), we consider the method and

calculate at the beginning of the process with the help of a computer algebra system like

Mathematica the function f ′ using that y ′′(x) = f (x , y(x), y ′(x)). In this way, we do not

have to evaluate the higher derivatives appearing in the method on each step. This results

in seven function evaluations per step, those of fn, fn+r , fn+1, fn+s , fn+2, f ′n, f ′n+2.

The presence of f ′n+ j , j = 0,2, in the formulas of the block method, which approximates

the third derivative at xn+ j , that is, f ′n+ j ≃ y ′′′(xn+ j)), requires the calculation of

f ′(x) =
d f (x , y, y ′)

d x
=
∂ f

∂ x
+
∂ f

∂ y
y ′ +

∂ f

∂ y ′
f ,

which can be easily obtained by hand, or in more difficult cases, with the use of a computer

algebra system like Mathematica.

We note that the above method may also be used for solving systems of second-order

differential equations, by considering a component-wise implementation. For a system of

m equations, given in vector form as

y′′ = f(x ,yT ,y′ T ) , y(a) = y0 , y′(a) = ẏ0 , a = x0 ≤ x ≤ b = xN ,

where y= (y1, · · · , ym)
T ,y′ = (y ′1, · · · , y ′m)

T ,

f(x ,yT ,y′ T ) =
�

f1
�

x ,yT ,y′ T
�

, · · · , fm

�

x ,yT ,y′ T
�
�T

,

and y0 = (y1,0, · · · , ym,0)
T , y′0 = ( ẏ1,0, · · · , ẏm,0)

T , we apply the method to each of the

scalar equations in the differential system. In the general case this would result in an

algebraic system of 8m equations, that may be solved using the Newton’s method. To

get the approximate values of the third derivative of each component at xn+ j, denoted by

f ′i,n+ j = f ′i (xn+ j)≃ y ′′′i (xn+ j), i = 1, · · · , m, we use the formula

f ′i (x) =
d fi

d x
(x , y1, · · · , ym, y ′1, · · · , y ′m) =

∂ fi

∂ x
+

m
∑

j=1

∂ fi

∂ y j

y ′j +
m
∑

j=1

∂ fi

∂ y ′
j

f j .

5. Numerical experiments

To test performance of the proposed optimized hybrid block method, some numerical

experiments have been presented. The following notations have been used in the tables:

• FEval: Number of function evaluations (including derivatives);

• EMAX: Maximum norm of the absolute errors on the grid points along the integration

interval;

• N: Total number of steps taken when solving a particular problem;
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Table 1: Data for problem 5.1.

Method FEval EMAX

SCOWE(6) 9038 4.29× 10−9

I3P1B 16755 4.10× 10−9

OPTBM 2100 1.13× 10−12

• hini: Initial step-size taken.

We note that in the examples presented we have considered both the fixed step-size method,

denoted by OPTBM, and the variable step-size formulation presented above, which is de-

noted by VOPTBM.

5.1. Orbital problem of Stiefel and Bettis

As a first problem, we consider the well-known orbital problem which was firstly stud-

ied by Stiefel and Bettis [26] and later discussed by many other researchers [16–18]

y ′′(x)+ y(x) = 0.001 exp(i x); y(0) = 1, y ′(0) =
9995i

10000
, x ∈ [0,40π].

The true solution of this problem is

y(x) =
x sin(x)

2000
+ cos(x)+ i

�

sin(x)− x cos(x)

2000

�

.

The true solution represents the motion of a perturbation of a circular orbit in the complex

plane. For comparison purposes, we have considered the new optimized block method

named as OPTBM, the seventh order six variable-step Störmer-Cowell method named as

SCOWE(6) in [18], and the implicit 3-point block method in [7], named as I3P1B. The

data given in Table 1 demonstrate that the proposed method has very good performance

compared to the methods used for comparison.

5.2. Bessel type IVP

Consider the following Bessel type problem appeared many times in the literature [1,

9,19]

x2 y ′′(x)+ x y ′(x)+ (x2− 0.25)y(x) = 0, x ∈ [1,8],

y(1) =

r

2

π
sin(1), y ′(1) =

2 cos(1)− sin(1)p
2π

.

The true solution of this problem is y(x) = J1/2 =
Æ

2

πx
sin(x). For comparison purpose,

we have considered the seventh order hybrid block method in [9] and the variable-step
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Table 2: Maximum absolute error (EMAX =max j |y(x j)− y j |) for problem 5.2.

N OPTBM Vigo-Ramos [1] Jator [9]

67 5.5178× 10−14 7.1122× 10−7 6.5286× 10−11

82 7.5495× 10−15 9.2632× 10−8 1.3679× 10−11

112 4.4408× 10−16 1.2108× 10−10 1.1897× 10−12

Falkner method of eighth order implemented in predictor-corrector mode in [1]. In Table

2, maximum absolute errors along the integration interval for different number of steps

have been considered. The data given in Table 2 show that the proposed method has

better performance.

5.3. Damped wave equation

Consider the damped wave equation with periodic boundary conditions [11]







∂ 2u

∂ t2
+ δ
∂ u

∂ t
− ∂

2u

∂ x2
= f (u), −1< x < 1, t > 0,

u(−1, t) = u(1, t).

According to [11] the semi-discretization in the spatial variable by second order symmetric

differences leads to the following system of second order ODEs in time

Ü + KU = F(U , U̇), 0< t ≤ tend ,

where U(t) = (u1(t),u2(t), · · · ,uN (t))
T with ui(t) ≈ u(x i, t), i = 1, · · · , N .

K =
1

∆x2



















2 −1 −1

−1 2 −1

. . .

. . .

−1 2 −1

−1 −1 2



















,

where ∆x= 2

N
, x i =−1+ i∆x and F(U , U̇) = ( f (u1)− δu̇1, · · · , f (uN )− δu̇N )

T . In this

experiment, we take f (u) = sin u,δ = 0.08 and the initial conditions as

U(0) = (π)Ni=1, Ut(0) =
p

N

�

0.01+ sin

�

2πi

N

��N

i=1

.

We have solved this problem in order to compare the proposed method with those in the

article [11]. We have taken N = 40 and solved on the interval [0,100] the problem

with the proposed method for h = 1/10,1/20,1/30. For this problem, we have presented

the efficiency curves indicating the good performance of the proposed method compared
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Figure 4: For Problem 5.3.

with the methods considered for comparison in terms of accuracy and number of function

evaluations.

Note. In the following examples, we have considered the variable step-size implementation

of the proposed block method, named as VOPTBM using the strategy given in Section 4.

A similar strategy has also been considered for the variable step-size implementation of

the seventh order method in [9], named as VJATOR. The following problems have also

been solved by variable step-size ODE solvers ode45 and ode113 in MATLAB. The solver

ode45 is the well-known Dormand-Prince 5(4) pair [24], or Dopri 5(4), which is formed

by Runge-Kutta methods with orders 5 and 4. It can also be found as the algorithm ode45

in MATLAB. The code ode113 is a variable step variable order method which uses Adams-

Bashforth-Moulton predictor-correctors of order 1 to 13. For more details about these

solvers, see [24]. In the Tables, the maximum absolute error of the computed solution,

EMAX=max j |y(x j)− y j |, the number of steps taken, N, and the total number of function

evaluations (including derivatives) have been included.

5.4. A linear problem

Consider the following linear problem which was discussed many times in the scientific

literature [1,9,19]

y ′′(x) = −100y(x)+ 99 sin(x), y(0) = 1, y ′(0) = 11, x ∈ [0,2].

The true solution of the problem is y(x) = cos(10x) + sin(10x) + sin(x). The numerical

results have been obtained by considering hini = 10− j, j = 2,3. The data given in Table 3

is a numerical evidence for the good performance of the optimized block method.
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Table 3: Data for problem 5.4.

hini Method EMAX N FEval

10−2

VOPTBM 9.7699× 10−15 136 476

VJATOR 4.3126× 10−13 249 581

ode45 7.4607× 10−14 3731 22387

ode113 1.5610× 10−13 349 695

10−3

VOPTBM 5.4400× 10−15 138 483

VJATOR 4.3498× 10−13 252 588

ode45 7.2164× 10−14 3730 22381

ode113 5.9286× 10−14 398 793

Table 4: Data for problem 5.5.

hini Method EMAX N FEval

10−2

VOPTBM 4.8319× 10−13 78 273

VJATOR 6.8742× 10−12 204 476

ode45 2.2993× 10−12 807 4849

ode113 3.3940× 10−11 260 525

10−4

VOPTBM 8.7833× 10−13 116 406

VJATOR 8.6447× 10−12 216 504

ode45 3.6483× 10−12 809 4855

ode113 9.1131× 10−12 255 515

5.5. A nonlinear problem

Consider the following nonlinear problem taken from [21]

y ′′(x) = 6y(x)2, y(0) = 1, y ′(0) = −2, x ∈ [0,10].

The true solution of the problem is y(x) = (1+ x)−2. The numerical results have been

obtained by considering hini = 10− j, j = 2,4. The data given in Table 4 is a numerical

evidence for the good performance of the optimized block method.

5.6. A second order nonlinear system

Consider the following second order system [15] given by















y ′′1 (x) =
−y1(x)

r
, y1(0) = 1, y ′1(0) = 0,

y ′′2 (x) =
−y2(x)

r
, y2(0) = 0, y ′2(0) = 1,

r =
p

y1(x)
2+ y2(x)

2, x ∈ [0,15π].

The true solution of this system is y1(x) = cos(x), y2(x) = sin(x). The numerical results

have been obtained by considering different initial step-sizes, hini = 10− j, j = 2,3 for all
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Table 5: Data for problem 5.6.

hini Method EMAX(y1(x)) EMAX(y2(x)) N FEval

10−2

VOPTBM 4.9445× 10−12 5.4417× 10−12 168 588

VJATOR 1.3323× 10−10 1.3328× 10−10 309 721

ode45 4.9056× 10−8 5.2537× 10−8 877 5263

ode113 1.7028× 10−8 1.9331× 10−8 433 871

10−3

VOPTBM 4.9453× 10−12 5.4391× 10−12 170 595

VJATOR 1.3139× 10−10 1.3182× 10−10 309 721

ode45 4.9040× 10−8 5.2533× 10−8 878 5269

ode113 1.7028× 10−8 1.9331× 10−8 433 871

Table 6: Data for problem 5.7.

hini Method EMAX(y1(x)) EMAX(y2(x)) N FEval

10−2

VOPTBM 2.6557× 10−10 2.6193× 10−10 114 399

VJATOR 4.1251× 10−8 4.1240× 10−8 207 483

ode45 4.4402× 10−8 4.4460× 10−8 646 3877

ode113 1.9523× 10−6 1.9507× 10−6 207 419

10−3

VOPTBM 1.3096× 10−10 1.3096× 10−10 116 406

VJATOR 2.3328× 10−8 2.3304× 10−8 213 497

ode45 4.4638× 10−8 4.4696× 10−8 647 3883

ode113 2.0514× 10−6 2.0505× 10−6 212 429

the methods. Results in Table 5 clearly show that the proposed method performs better

than the other methods in terms of accuracy, number of steps taken for solving the problem

and number of function evaluations.

5.7. A second order system

Consider the following second order system [14] given by

(

y ′′1 (x) = −y2(x)+ sin(πx), y1(0) = 0, y ′1(0) = −1,

y ′′2 (x) = −y1(x)+ 1−π2 sin(πx), y2(0) = 1, y ′2(0) = 1+π,

where x ∈ [0,10]. The true solution of this system is

y1(x) = 1− ex , y2(x) = ex + sin(πx).

The numerical results have been obtained by considering different initial step-sizes, hini =

10− j, j = 2,3 for all the methods. Results in Table 6 clearly show that the proposed method

performs better than the other methods in terms of accuracy, number of steps taken for

solving the problem and number of function evaluations.
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Table 7: Data for problem 5.8.

hini Method EMAX(y1(x)) EMAX(y2(x)) N FEval

10−2

VOPTBM 9.0785× 10−13 8.8062× 10−13 3220 11270

VJATOR 1.2903× 10−11 1.2897× 10−11 5904 13776

ode45 7.4385× 10−12 7.1543× 10−12 91654 549925

ode113 4.5137× 10−11 4.6031× 10−11 8290 16577

10−3

VOPTBM 9.4679× 10−13 9.0910× 10−13 3224 11284

VJATOR 1.2968× 10−11 1.3037× 10−11 5907 13783

ode45 3.9891× 10−12 3.5701× 10−12 91653 549919

ode113 4.5754× 10−11 4.5812× 10−11 8844 17685

5.8. An Oscillatory problem

As our last example, consider the following oscillatory problem studied in [18]

¨

y ′′1 (x) = −13y1(x)+ 12y2(x)+ 9 cos(2x)− 12 sin(2x),

y ′′2 (x) = 12y1(x)− 13y2(x)− 12 cos(2x)+ 9 sin(2x)

with initial conditions y1(0) = 1, y2(0) = 0 and y ′1(0) = −4, y ′2(0) = 8. The true solution

of this system is

y1(x) = sin(x)− sin(5x)+ cos(2x), y2(x) = sin(x)+ sin(5x)+ sin(2x).

The system has been integrated in the interval x ∈ [0,100]. The numerical results have

been obtained by considering hini = 10− j, j = 2,3. The data given in Table 7 is a numerical

evidence to show the good performance of the new proposed method in terms of accuracy,

number of steps taken for solving the problem and used function evaluations.

5.9. Efficiency curves

In this section, we present efficiency curves comparing the new proposed variable step-

size optimized block method (VOPTBM) and the variable step-size Jator’s block method

(VJATOR) showing maximum absolute errors (EMAX) versus total number of function eval-

uations (including derivatives), (FEvals). The corresponding plots are given for problems

5.4 up to 5.8 in Fig. 5. These efficiency curves clearly show that the new proposed method

is the most efficient one for solving the type of problems considered for comparisons.

6. Conclusions

In this article, we have developed an optimized two-step hybrid block method for in-

tegrating general second order initial value problems numerically. The obtained method

is self-starting and has good characteristics that make it suitable for solving second order

differential systems. The method is derived by considering a polynomial approximation of
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Figure 5: Efficiency curves for Problems 5.4–5.8.

the true solution and two intra-step points xn+r and xn+s. We have further obtained the

appropriate values of these intra-step points after optimizing the local truncation errors

concerning the two main formulas for approximating yn+2 and y ′n+2. We have also devel-

oped a variable step-size formulation, which is more effective from a computational point

of view. Some numerical experiments have been presented to illustrate the good perfor-

mance of the proposed method in comparison with some methods existing in the scientific

literature.
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