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a b s t r a c t

In this study we present a method for approximating the solution of a Singularly
Perturbed Boundary Value Problem (SPBVP) containing two parameters (ε1, ε2), which
multiply the diffusion coefficient and the convection term, respectively. Moreover, we
consider that the convection coefficient and the source term present a discontinuity at an
intermediate point. Theoretical bounds for the solution and its derivatives are derived for
two complementary cases. A parameter uniform numerical scheme is constructed, which
involves an upwind finite difference method with an appropriate piecewise uniform
mesh. The error estimation and convergence analysis are presented, which show that the
scheme provides a parameter uniform convergence of almost first order. Some numerical
examples are discussed to illustrate the performance of the present method.

© 2019 Published by Elsevier B.V.

1. Introduction

The theory of Singularly Perturbed Problems (SPPs) has been developed for over a century. Consistently, such problems
are expressed as differential equations which contain at least one small parameter multiplying the highest derivative
term. These kind of SPPs arise in various fields such as fluid dynamics, mechanics, transport phenomena in biology and
chemistry, semi-conductor devices, chemical reactor theory and convection–diffusion processes.

The solutions to SPPs depend on the presence of a small, positive parameter that varies very rapidly in some parts of
the region of integration subject to the presence of boundary or interior layer(s), and varies slowly in other parts. The
primary signet of a singular perturbation problem is that a simple and straightforward approximation does not give an
accurate solution throughout the domain of that solution. The numerical treatment of SPPs is accompanied by significant
computational difficulties due to the presence of sharp layers in the solution. Therefore, more efficient and underlying
computational methods are required to overcome the issues. Despite a tremendous amount of work being done in this
research field of SPPs, there is still a platform for more relevant research to explore. A great number of special purpose
methods were developed by the researchers to provide rigorous numerical solutions, which focus second order differential
equations with single parameter for continuous data [1–5] and also for discontinuous data [6–9].
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All the works mentioned above are concerned to SPPs in which a small parameter perturbs the highest derivative term.
But we might encounter problems involving more than one parameter. Two-parameter problems have not been studied
so extensively like single parameter problems. For the first time, a two-parameter SPP was analyzed by O’Malley [10].
He discussed the asymptotic behavior of the solution when the two parameters ε1 and ε2 tend to zero. The solution is
influenced by the order of ε1/ε22 and ε22/ε1. Vigo et al. in [11] considered a non-overlapping domain decomposition method
in order to approximate the solution of a two-parameter SPP.

A few researchers have considered the convection–reaction–diffusion problem with continuous data. For instance, Roos
and Uzelac [12] developed a second order parameter uniform method for the two-parameter problem using streamline
diffusion finite element method. A non-standard finite difference method for two-parameter SPPs was developed in [13].
Shishkin [14] considered an exponentially fitted difference scheme on an equidistant mesh with order of convergence
CN−2/5. O’Riordan et al. discussed a first order parameter uniform numerical algorithm based on upwind finite difference
operator [15]. Two-parameter SPPs with non-smooth data is an open research area to explore. Shanthi et al. [16]
considered a convection–reaction–diffusion problem with discontinuity in the source term. A similar type of problem
was considered in [17]. Falco and Riordan [18] constructed and analyzed the SPP with non-smooth data that is similar
to the two-parameter problem. Also, the authors have discussed with an example that these type of problems arise in
the modeling of phase transitions. The articles [15,16] motivated the present study concerning a two-parameter SPP in
one-dimension with discontinuous source and convection coefficient of the form:

Ly(x) ≡ ε1y′′(x) + ε2a(x)y′(x) − b(x)y(x) = f (x), ∀ x ∈ (Ω−
∪Ω+), (1.1)

y(0) = y0, y(1) = y1, (1.2)
a(x) ≤ −α1 < 0 for x ∈ Ω− and a(x) ≥ α2 > 0, for x ∈ Ω+, (1.3)

| [a](d) |≤ C, | [f ](d) |≤ C . (1.4)

It is conducive to introduce the representation Ω = [0, 1], Ω−
= (0, d) and Ω+

= (d, 1). We assume that b(x) ≥ γ > 0 is
a sufficiently smooth function in Ω , and a(x), f (x) are sufficiently smooth functions in (Ω−

∪Ω+) ∪ {0, 1}. Also a(x), f (x)
and their derivatives have a jump discontinuity at d ∈ Ω = (0, 1), denoted by [w](d) = w(d+)−w(d−) and 0 < ε1 ≪ 1,
0 ≤ ε2 < 1.

With the above assumptions, the SPP (1.1)–(1.4) has a solution y(x) ∈ C0(Ω) ∩ C1(Ω) ∩ C2(Ω−
∪Ω+). So far, the SPP

(1.1)–(1.4) has not been considered by any author, due to the complexity of the solution. Hence it is interesting to study
the behavior of this type of problem and moreover, when ε2 = 1, the above problem behaves like the convection–diffusion
problem in [9], and when ε2 = 0 it behaves like the well known reaction–diffusion problem in [6]. In what follows two
separate cases are considered :

Case (i):
√
αε2 ≤

√
ρε1 and Case (ii):

√
αε2 >

√
ρε1 where ρ = min

x∈Ω\{d}

{⏐⏐⏐⏐b(x)a(x)

⏐⏐⏐⏐} and α = |min {α1, α2}|.

All through this paper C > 0 represents a constant independent of the mesh length (N) and the perturbation
parameters (ε1, ε2). The norm considered is the supremum norm, denoted by

∥z∥Ω = sup
x∈Ω

|z(x)|.

The rest of the paper is organized as follows. In Section 2 some a priori results are described for the continuous
problem. Discretization of the continuous problem and the methods to be applied with the discrete bounds are described
in Section 3. Decomposition and bounds for the discrete solution are presented in Section 4. In Section 5 the convergence
of the numerical method is analyzed, resulting that an almost first order accuracy, consistent with the parameters (ε1−ε2)
is obtained. Some numerical illustrations are presented in Section 6 to show the performance of the proposed method.
The paper ends with a conclusion.

Note. If the discontinuity assumed in the convection coefficient is reversed (to that defined in this manuscript) like
a(x) ≥ α1 > 0, x ∈ Ω−, and a(x) ≤ −α2 < 0, x ∈ Ω+, the change noticed is remarked in the error estimates.

2. A priori bounds on the solution and its decomposition

In this section, analytical properties, the existence of the solution, minimum principle, uniform stability and bounds
for the derivatives of the solution of the problem in (1.1)–(1.4) and how to decompose the solution are discussed.

Theorem 2.1. The SPP (1.1)–(1.4) has a solution y(x) ∈ C0(Ω) ∩ C1(Ω) ∩ C2(Ω−
∪Ω+).

Proof. Following the methods presented in [15,19] a solution of the SPP (1.1)–(1.4) can be easily obtained. □

For the continuous problem in (1.1)–(1.4) the operator L satisfies the following minimum principle on Ω .

Lemma 2.2. Suppose that a function z(x) ∈ C0(Ω)∩C2(Ω−
∪Ω+) satisfies z(0) ≥ 0, z(1) ≥ 0, and Lz(x) ≤ 0, x ∈ (Ω−

∪Ω+)
and [z ′

](d) ≤ 0. Then z(x) ≥ 0, ∀ x ∈ Ω .
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Proof. Let x̃ be any point at which z(x) reaches its minimum value in Ω . If z(x̃) ≥ 0, then the result is evident. Suppose
that z(x̃) < 0, with the boundary values assumed, either x̃ ∈ (Ω−

∪ Ω+) or x̃ = d. Consider x̃ ∈ (Ω−
∪ Ω+). Now

z ′(x̃) = 0, z ′′(x̃) ≥ 0. Hence

Lz(x̃) = ε1z ′′(x̃) + ε2a(x̃)z ′(x̃) − b(x̃) z(x̃) > 0,

which is a contradiction. Here a(x) is defined as (1.3). The only possibility is to choose x̃ = d. The argument depends on the
differentiability of z(x) at d. Though z ′′(x) has a discontinuity at d, it is a smooth function on the interval Nh = (d, d + δ].
If z ′(x̃) does not exist then z ′(x) ≥ 0 in the neighborhood (d, d+ δ), δ ≥ 0. Applying the fundamental theorem of calculus
we have z ′(x) =

∫ x
d+0 z

′′(s)ds with z ′′(x) ≥ 0, x ∈ Nh. Hence for x ∈ Nh it is Lz(x) > 0, which is a contradiction to our
assumption. Therefore z(x) ≥ 0 for all x ∈ Ω . □

An immediate consequence of the minimum principle is the next lemma. Lemmas 2.3 and 2.4 can be proved using the
principles adopted in [15].

Lemma 2.3. Let y(x) be a solution of (1.1)–(1.2), then

∥y∥Ω ≤ max {|y(0)|, |y(1)| } +
1
γ

∥f ∥(Ω−∪Ω+).

Lemma 2.4. Let y(x) be the solution of the problem (1.1)–(1.2) where |y(0)| ≤ C, |y(1)| ≤ C. Then, for k = 1, 2, 3, it holds
that

∥y(k)∥Ω ≤
C(√
ε1
)k
(
1 +

(
ε2

√
ε1

)k
)
max
x∈Ω

{∥y∥, ∥f ∥} , k = 1, 2,

∥y(3)∥Ω ≤
C(√
ε1
)3
(
1 +

(
ε2

√
ε1

)3
)
max
x∈Ω

{
∥y∥, ∥f ∥, ∥f ′

∥
}
.

2.5. Decomposition of the solution

Consider the following perceptions before decomposing y(x). Let G(x) be any smooth function in (Ω−
∪ Ω+) with a

jump discontinuity at d ∈ D. Suppose our goal is to find a function u(x) ∈ C1(Ω) ∩ C2(Ω−
∪Ω+) such that{

Lu = G(x), x ∈ Ω−
∪Ω+,

u(0) = q1, u(1) = q2.
(2.1)

The problem in (2.1) has a unique solution (see [19]). Let

G(k)∗
l (x) =

{
G(k)(x), x ∈ (0, d)
G(k)(d−) at x = d

and

G(k)∗
r (x) =

{
G(k)(d+) at x = d
G(k)(x), x ∈ (d, 1)

where G(k) stands for the kth derivative of G. Now, define{
Lu∗

l = G∗

l (x), x ∈ (0, d),
u∗

l (0) = q1, u∗

l (d) = y(d),
(2.2)

and {
Lu∗

r = G∗
r (x), x ∈ (d, 1),

u∗
r (d) = y(d), u∗

r (1) = q2.
(2.3)

It can be easily established that

u(x) =

⎧⎨⎩
u∗

l (x), x ∈ [0, d),
u∗

l (d) = u∗
r (d), x = d,

u∗
r (x), x ∈ (d, 1].

To obtain sharper bounds in the error analysis the solution y(x) is decomposed into regular v∗(x) and singular w∗(x)
components. The solution y(x) is decomposed as y(x) = v∗(x) + w∗

l (x) + w∗
r (x) for the two cases. The regular component

v∗(x) is the solution of

Lv∗(x) = f (x), x ∈ (Ω−
∪Ω+), (2.4)

v∗(0) = y(0), v∗(1) = y(1), v∗(d−) and v∗(d+) are chosen, (2.5)
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where

v∗(x) =

{
v∗−(x), x ∈ Ω−,

v∗+(x), x ∈ Ω+.

The singular components w∗

l (x) and w
∗
r (x) are the solutions of

Lw∗

l (x) = 0, Lw∗

r (x) = 0, x ∈ (Ω−
∪Ω+), (2.6)

w∗

l (0) = y(0) − v∗(0) − w∗

r (0), w∗

r (1) = y(1) − v∗(1) − w∗

l (1),

w∗

l (1) and w∗

r (0), are chosen suitably, (2.7)

[w∗

r ](d) = −[v∗
](d) − [w∗

l ](d) and [w∗
′

r ](d) = −[v∗
′

](d) − [w∗
′

l ](d), (2.8)

where

w∗

l (x) =

{
w∗−

l (x), x ∈ Ω−,

w∗+

l (x), x ∈ Ω+,
w∗

r (x) =

{
w∗−

r (x), x ∈ Ω−,

w∗+
r (x), x ∈ Ω+.

Note that v∗(x), w∗

l (x) and w
∗
r (x) are discontinuous at x = d, but by (2.8) their sum is in C1(Ω).

Consider the Case (i):
√
αε2 ≤

√
ρε1.

Let v∗(x) = v∗

0 (x) +
√
ε1v

∗

1 (x) + ε1v
∗

2 (x), where v∗

0 (x), v
∗

1 (x) and v∗

2 (x) are the solutions of the following problems
respectively:

− b(x)v∗

0 (x) = f (x), x ∈ (Ω−
∪Ω+),

− b(x)v∗

1 (x) =
−ε2
√
ε1

a(x)v∗
′

0 (x) −
√
ε1v

∗
′′

0 (x), x ∈ (Ω−
∪Ω+),

Lv∗

2 (x) =
−ε2
√
ε1

a(x)v∗
′

1 (x) −
√
ε1v

∗
′′

1 (x), x ∈ (Ω−
∪Ω+),

v∗

2 (0) = v∗

2 (1) = 0, v∗

2 (d−), v∗

2 (d+) are chosen,

where v∗

2 ∈ C0(Ω) ∩ C1(Ω) ∩ C2(Ω−
∪ Ω+). Lemmas 2.6 and 2.7 can be proved following the principles and methods

adopted in [2,15].

Lemma 2.6. The regular component v∗(x) satisfies the following bound

∥v∗(k)
∥Ω\{d} ≤ C

(
1 +

1
(
√
ε1)k−2

)
, for k = 0, 1, 2, 3.

Lemma 2.7. The singular components w∗

l (x) and w
∗
r (x) satisfy the following bounds

∥w
∗(k)
l ∥Ω\{d} ≤

C
(
√
ε1)k

{
Ce−θ2x, x ∈ Ω−,

Ce−θ1(x−d), x ∈ Ω+,
k = 0, 1, 2 and 3,

∥w∗(k)
r ∥Ω\{d} ≤

C
(
√
ε1)k

{
Ce−θ1(d−x), x ∈ Ω−,

Ce−θ2(1−x), x ∈ Ω+,
k = 0, 1, 2 and 3,

where

θ1 =

⎧⎪⎪⎨⎪⎪⎩
√
ρα

√
ε1
, if

√
αε2 ≤

√
ρε1,

αε2

2ε1
, if

√
αε2 >

√
ρε1 ,

and θ2 =

⎧⎪⎪⎨⎪⎪⎩
√
ρα

√
ε1
, if

√
αε2 ≤

√
ρε1,

ρ

2ε2
, if

√
αε2 >

√
ρε1.

(2.9)

Consider the Case (ii):
√
αε2 >

√
ρε1.

Let v∗(x) = v∗

0 (x) + ε1v
∗

1 (x) + ε21v
∗

2 (x), where v∗

0 (x), v
∗

1 (x) and v∗

2 (x) are the solutions of the following problems,
respectively:

ε2a(x)v∗
′

0 (x) − b(x)v∗

0 (x) = f (x), x ∈ (Ω−
∪Ω+), v∗

0 (0) = y(0), v∗

0 (1) = y(1),

ε2a(x)v∗
′

1 (x) − b(x)v∗

1 (x) = −v∗
′′

0 (x), x ∈ (Ω−
∪Ω+), v∗

1 (0) = 0 = v∗

1 (1) = 0,

Lv∗

2 (x) = −v∗
′′

1 (x), x ∈ (Ω−
∪Ω+),

v∗

2 (0) = v∗

2 (1) = 0, v∗

2 (d−), v∗

2 (d+) are chosen,

where v∗

2 (x) ∈ C0(Ω) ∩ C1(Ω) ∩ C2(Ω−
∪Ω+).

Lemmas 2.8 and 2.9 can be proved using the principles and methods adopted in [2,15].
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Lemma 2.8. The regular component v∗(x) satisfies the following bounds

∥v∗(k)(x)∥Ω\{d} ≤ C

(
1 +

(
ε1

ε2

)2−k
)
, k = 0, 1, 2 and 3. (2.10)

Lemma 2.9. The singular components w∗

l (x) and w
∗
r (x) satisfy the following bounds

∥w
∗(k)
l (x)∥Ω\{d} ≤ C

⎧⎪⎪⎨⎪⎪⎩
(

1
ε2

)k

Ce−θ2x, x ∈ Ω−,(
ε2

ε1

)k

Ce−θ1(x−d), x ∈ Ω+,

k = 0, 1, 2 and 3,

∥w∗(k)
r (x)∥Ω\{d} ≤ C

⎧⎪⎪⎨⎪⎪⎩
(
ε2

ε1

)k

Ce−θ1(d−x), x ∈ Ω−,(
1
ε2

)k

Ce−θ2(1−x), x ∈ Ω+,

k = 0, 1, 2 and 3,

with θ1 and θ2 as in (2.9).

The unique solution y(x) of the problem (1.1)–(1.4) is now given by

y(x) =

⎧⎨⎩
v∗−(x) + w∗−

l (x) + w∗−
r (x), x ∈ Ω−,

v∗−(d−) + w∗−

l (d−) + w∗−
r (d−) = v∗+(d+) + w∗+

l (d+) + w∗+
r (d+), x = d,

v∗+(x) + w∗+

l (x) + w∗+
r (x), x ∈ Ω+.

Remark. The following properties of θ1 and θ2 are significant. The values of θ1 and θ2 used in the previous lemmas are
required in order to estimate the error in the numerical approximations. Let θ1, θ2 be defined as in (2.9), then they are
respectively the positive roots of the equations ε1θ21 − ε2α1θ1 − γ = 0 and ε1θ22 + ε2α2θ2 − γ = 0.

3. Discrete problem

The continuous problem is discretized using finite difference methods with a suitable Shishkin mesh. OnΩ a piecewise
uniform mesh size N (let N be even and N ≥ 8) is determined as follows. The domainΩ is subdivided into six subintervals
as Ω = [0, σ1] ∪ [σ1, d − σ2] ∪ [d − σ2, d] ∪ [d, d + σ3] ∪ [d + σ3, 1 − σ4] ∪ [1 − σ4, 1]. The subintervals
[0, σ1], [d − σ2, d], [d, d + σ3] and [1 − σ4, 1] are scaled with a uniform mesh of N/8 mesh intervals, while [σ1, d − σ2]

and [d + σ3, 1 − σ4] have a uniform mesh with N/4 mesh intervals. The step sizes in each subinterval are defined by
h1 = 8σ1/N, h2 = 4(d − σ1 − σ2)/N, h3 = 8σ2/N, h4 = 8σ3/N, h5 = 4(1 − d − σ3 − σ4)/N and h6 = 8σ4/N . Let
hi = xi − xi−1, i = 1, 2, . . . ,N are the mesh steps.

The interior points of the mesh are denoted by

ΩN
= {xi : 1 ≤ i ≤ N/2 − 1} ∪ {xi : N/2 + 1 ≤ i ≤ N − 1} .

If the discontinuity is assumed at the point xN/2 then the mesh points are denoted by Ω
N

= {xi}N0 . The transition values
in Ω are chosen as⎧⎪⎪⎨⎪⎪⎩

σ1 = min
{
d
4
,
2
θ2

lnN
}
, σ2 = min

{
d
4
,
2
θ1

lnN
}
,

σ3 = min
{
1 − d
4

,
2
θ1

lnN
}
, σ4 = min

{
1 − d
4

,
2
θ2

lnN
}
,

(3.1)

where θ1, θ2, had been defined in (2.9).
On the piecewise uniform mesh Ω

N
the BVP (1.1)–(1.4) is discretized using standard upwind finite difference scheme

as follows:
Consider a mesh function Y (xi), ∀ xi ∈ ΩN such that

LNY (xi) ≡ ε1δ
2Y (xi) + ε2a(xi)D∗Y (xi) − b(xi)Y (xi) = f (xi), (3.2)

Y (0) = y(0), Y (1) = y(1), (3.3)
D−Y (xN/2) = D+Y (xN/2), (3.4)
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where

D+Y (xi) =
Y (xi+1) − Y (xi)

xi+1 − xi
, D−Y (xi) =

Y (xi) − Y (xi−1)
xi − xi−1

,

D∗Y (xi) =

{
D−Y (xi), i < N/2,
D+Y (xi), i > N/2,

δ2Y (xi) =
2(D+Y (xi) − D−Y (xi))

xi+1 − xi−1
.

The next lemma reveals that the finite difference operator LN has properties equivalent to those of the continuous
differential operator L defined in Section 2.

Lemma 3.1. Suppose that a mesh function Y (xi) satisfies

Y (0) ≥ 0, Y (1) ≥ 0, LNY (xi) ≤ 0, ∀ xi ∈ ΩN ,

D+Y (xN/2) − D−Y (xN/2) ≤ 0 .

Then we have that Y (xi) ≥ 0, ∀ xi ∈ Ω
N
.

Proof. Let xk be any point at which Y (xk) attains its minimum value on Ω
N
. If Y (xk) > 0 then the proof is trivial. Suppose

that Y (xk) < 0, then the proof is concluded by the method of contradiction. Here xk ∈ ΩN or xk = xN/2. If xk ∈ ΩN it is
clear that xk ̸= xN/2 and

D−Y (xk) ≤ 0 ≤ D+Y (xk).

Now

LNY (xk) =

{
ε1δ

2Y (xk) + ε2a(xk)D−Y (xk) − b(xk)Y (xk) > 0, if xk < xN/2,
ε1δ

2Y (xk) + ε2a(xk)D+Y (xk) − b(xk)Y (xk) > 0, if xk > xN/2,

which is a contradiction. Due to the boundary values considered, the only other possibility to consider is xk = xN/2 which
gives

D−Y (xN/2) ≤ 0 ≤ D+Y (xN/2) ≤ D−Y (xN/2).

This shows that

Y (xN/2−1) = Y (xN/2) = Y (xN/2+1) < 0,

and then

LNY (xN/2−1) > 0.

This contradicts our result. Hence Y (xi) ≥ 0 for all xi ∈ ΩN . □

Lemma 3.2. If Y (xi) is any mesh function with xi ∈ Ω
N
, verifying (3.2)–(3.4), then ∥Y∥

Ω
N ≤ C.

Proof. Define the mesh function

φ±(xi) = ψ(xi) ± Y (xi),

where

ψ(xi) =

⎧⎪⎪⎨⎪⎪⎩
max{|Y (0)|, |Y (1)|} +

xi∥f ∥
(ξxN/2)

± Y (xi), for 1 ≤ i ≤ N/2 − 1,

max{|Y (0)|, |Y (1)|} +
(1 − xi)∥f ∥
ξ (1 − xN/2)

± Y (xi), for N/2 + 1 ≤ i ≤ N − 1,

with ξ = min
{
α1

xN/2
,

α2

1 − xN/2

}
.

We have that φ±(0), φ±(1) are non-negative, and for each xi ∈ ΩN it is

LNφ±(xi) = −b(xi)ψ(xi) ± LNY (xi) ≤ 0, if xi < xN/2,

LNφ±(xi) = −b(xi)ψ(xi) ± LNY (xi) ≤ 0, if xi > xN/2.

Furthermore, since Y (xi) ∈ C1(Ω),[
φ±
]
(xN/2) = ± [Y ] (xN/2) = 0 and

[
φ±′

]
(xN/2) =

∥f ∥
ε1(1 − xN/2)

+
∥f ∥

ε1(xN/2)
≤ 0.
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Applying the discrete minimum principle, it follows that φ±(xi) ≥ 0 for all xi ∈ Ω
N
. This leads to the required result

∥Y∥
Ω

N ≤ C . □

4. Decomposition and bounds for the discrete solution

The error |e(xi)| = |Y (xi) − y(xi)| at each mesh point xi ∈ Ω
N
is constructed. In order to bound the nodal error |e(xi)|,

we decompose the solution of the discrete problem (3.2)–(3.4) as Y (xi) = V ∗(xi) + W ∗

l (xi) + W ∗
r (xi) in a way similar to

the decomposition of continuous solutions. To obtain sharper bounds the discrete regular component V ∗(xi) and singular
components W ∗

l (xi), W ∗
r (xi) are further decomposed as V ∗−(xi) and V ∗+(xi), which approximate V ∗(xi) respectively to the

left and right sides of the point of discontinuity xN/2 = dwhile the mesh functionsW ∗−

l (xi), W ∗+

l (xi) andW ∗−
r (xi), W ∗+

r (xi)
approximate W ∗

l (xi) and W ∗
r (xi) respectively on either side of the point of discontinuity d = xN/2. These mesh functions

help in deriving the convergence of the nodal error |e(xi)| in the boundary and interior layers.
The regular discrete component V ∗(xi) is defined as

V ∗(xi) =

{
V ∗−(xi), for 1 ≤ i ≤ N/2 − 1,
V ∗+(xi), for N/2 + 1 ≤ i ≤ N − 1,

where, V ∗−(xi) and V ∗+(xi) are respectively, the solutions of the following discrete problems:

LNV ∗−(xi) = f (xi), for 1 ≤ i ≤ N/2 − 1, V ∗−(0) = v∗(0), V ∗−(xN/2) = v∗(d−),

and

LNV ∗+(xi) = f (xi), for N/2 + 1 ≤ i ≤ N − 1, V ∗+(xN/2) = v∗(d+), V ∗+(1) = v∗(1).

Further the discrete singular components W ∗−

l (xi), W ∗+

l (xi), W ∗−
r (xi) and W ∗+

r (xi) are defined as

W ∗(xi) = W ∗

l (xi) + W ∗

r (xi) =

{
(W ∗−

l + W ∗−
r )(xi), for 1 ≤ i ≤ N/2 − 1,

(W ∗+

l + W ∗+
r )(xi), for N/2 + 1 ≤ i ≤ N − 1,

where, W ∗−

l (xi), W ∗+

l (xi), W ∗−
r (xi) and W ∗+

r (xi) are the solutions of the following discrete problems:

LNW ∗−

l (xi) = 0, for 1 ≤ i ≤ N/2 − 1, W ∗−

l (0) = w∗−

l (0), W ∗−

l (xN/2) = w∗−

l (xN/2),
LNW ∗+

l (xi) = 0, for N/2 + 1 ≤ i ≤ N − 1, W ∗+

l (xN/2) = w∗+

l (xN/2), W ∗+

l (1) = w∗+

l (1),
LNW ∗−

r (xi) = 0, for 1 ≤ i ≤ N/2 − 1, W ∗−

r (0) = 0, W ∗−

r (xN/2) = w∗−

r (xN/2),
LNW ∗+

r (xi) = 0, for N/2 + 1 ≤ i ≤ N − 1, W ∗+

r (xN/2) = 0, W ∗+

r (1) = w∗+

r (1).

The solution Y (xi) of the discrete problem (3.2)–(3.4) could now be defined as

Y (xi) =

⎧⎨⎩
(
V ∗−

+ W ∗−

l + W ∗−
r

)
(xi), for 1 ≤ i ≤ N/2 − 1,(

V ∗−
+ W ∗−

l + W ∗−
r

)
(xi) =

(
V ∗+

+ W ∗+

l + W ∗+
r

)
(xi), for i = N/2,(

V ∗+
+ W ∗+

l + W ∗+
r

)
(xi), for N/2 + 1 ≤ i ≤ N − 1.

Lemma 4.1. There are some bounds on W ∗−

l (xi),W ∗+

l (xi),W ∗−
r (xi) and W ∗+

r (xi) given by

| W ∗−

l (xi) | ≤ ψ−

li = C
i∏

k=1

(1 + θ2hk)−1, ψ−

l0 = C1,

| W ∗+

l (xi) | ≤ ψ+

li = C
i∏

k=N/2+1

(1 + θ1hk)−1, ψ+

lN/2 = C1,

| W ∗−

r (xi) | ≤ ψ−

ri = C
N/2∏

k=i+1

(1 + θ1hk)−1, ψ−

rN/2 = C1,

| W ∗+

r (xi) | ≤ ψ+

ri = C
N∏

k=i+1

(1 + θ2hk)−1, ψ+

rN = C1,

where hi = xi − xi−1.
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Proof. Define the barrier functions

ξ−

li = ψ−

li ± W ∗−

l (xi) and ξ−

ri = ψ−

ri ± W ∗−

r (xi),

where

ψ−

li =

⎧⎪⎨⎪⎩
i∏

j=1

(
1 + θ2hj

)−1
, 1 ≤ i ≤ N/2,

1, i = 0,

ψ−

ri =

⎧⎪⎨⎪⎩
d∏

j=i+1

(
1 + θ1hj

)−1
, 0 ≤ i < N/2,

1, i = N/2,

with θ1, θ2 as were defined in (2.9) of Section 2.
Now ξl0 > 0 and ξld > 0. To prove that LNξ−

li ≤ 0 we apply the discrete operator (3.2) on ξ−

li . With LNW ∗−

l = 0 and
LNW ∗−

r = 0, we have

LNξ−

li = ψ−

li+1

[
ε1θ

2
2

(
hi+1

ĥi
− 2

)
+
(
2ε1θ22 + ε2aiθ2 − γ

)
− γ θ2hi+1

]
≤ 0,

where ĥi =
hi + hi+1

2
.

Hence

LNξ−

li ≤ ψ−

li+1

(
2ε1θ22 + ε2aiθ2 − γ

)
≤ 0.

Considering the θ values from (2.9), for
√
αε2 ≤

√
ρε1 we obtain

LNξ−

li ≤ ψ−

li+1

(ρα
2

+
ρai
2

− bi
)

≤ ψ−

li+1 (ρai − bi) ≤ ψ−

li+1ai

(
ρ −

γ

ai
− 2γ

)
≤ 0.

When
√
αε2 >

√
ρε1 we get

LNξ−

li ≤ ψ−

li+1

(
ai +

ρai
2

− γ

)
≤ ψ−

li+1

(
ai
bi
2

)
≤ 0.

The discrete minimum principle defined in [15] for the continuous case proves that ξ−

l (xi) ≥ 0, and hence W ∗−

l (xi) ≤

C
∏i

k=1(1 + θ2hk)−1.
Applying the upwind difference scheme to the right layer barrier function ξ−

ri , we get

LNξ−

ri =
ψ−

ri

1 + θ1hi

[
2ε1θ21

(
hi

ĥi
− 1

)
+
(
2ε1θ21 − ε2aiθ1 − γ

)
(1 + θ1hi) − γ (1 + θ1hi)

]
≤

ψ−

ri

1 + θ1hi

(
2ε1θ21 − ε2aiθ1 − γ

)
≤ 0.

Considering the value of θ1 in (2.9), for
√
αε2 ≤

√
ρε1 we obtain

LNξ−

ri ≤
ψ−

ri

1 + θ1hi

(ρα
2

− γ

)
≤ 0.

When
√
αε2 >

√
ρε1 we get

LNξ−

ri ≤
ψ−

ri

1 + θ1hi

(
α2ε22

2ε1
[α − ai] − γ

)
≤ 0.

Now ξ−

r0 > 0 and ξ−

rd > 0 and LNξ−

ri ≤ 0. Applying the discrete minimum principle defined in [15], we prove that
ξ−

ri (xi) ≥ 0 and hence W−
r (xi) ≤ C

∏N/2
k=i+1(1 + θ1hk)−1. Similarly, by defining the corresponding barrier functions ξ+

li and
ξ+

ri we could prove the results for W+

l (xi) and W+
r (xi) for N/2 + 1 ≤ i ≤ N − 1. □
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5. Truncation error analysis

Lemma 5.1. The error of the regular component satisfies the following estimate for each mesh point xi ∈ ΩN

∥V ∗
− v∗

∥ ≤ CN−1, (5.1)

where V ∗ and v∗ are the solutions of the discrete and continuous decompositions defined in Sections 2 and 4 respectively.

Proof. Applying the regular arguments on the truncation error and the bounds on v∗(x) for both the cases
√
αε2 ≤

√
ρε1 and

√
αε2 >

√
ρε1 we get

|LN (V ∗−
− v∗−)(xi)| = |LNv∗−(xi) − f (xi)|

≤

⏐⏐⏐⏐ε1 (δ2 −
d2

dx2

)⏐⏐⏐⏐+ ⏐⏐⏐⏐ε2a(xi)(D+
−

d
dx

)⏐⏐⏐⏐
≤ Cε1 (xi+1 − xi)2 |v−(3)

| + ε2a(xi) (xi+1 − xi) |v−(2)
|

≤ CN−1.

Similarly, we could prove that

|LN (V ∗+
− v∗+)(xi)| ≤ CN−1, for N/2 + 1 ≤ i ≤ N − 1.

Define the barrier function

ψ±

i = CN−1
± (V ∗−

− v∗−)(xi), ∀ xi ∈ Ω
N
.

It is clear that ψ±(0) ≥ 0 and ψ±(1) ≥ 0. For greater values of C , LNψ±

i ≤ 0. Applying Lemma 3.1 on ψ±

i we get
ψ±

i ≥ 0 for 0 ≤ i ≤ N . Combining the above results, we obtain

∥(V ∗
− v∗)∥ ≤ CN−1, ∀ xi ∈ ΩN . □

Remark. The above lemma holds relevant irrespective of the nature of the relation between ε1 and ε2. This is followed
by the derivation of estimates for the singular component. It has to be noted that there is a unique formation of boundary
layers in the considered problem due to the discontinuity assumed in the convection coefficient. If a(x) behaves as in
(1.3) there is a shift in the occurrence of boundary layer from ε2 to (ε1/ε2) on the left side of the point of discontinuity
and (ε1/ε2) on the right side of the point of discontinuity, unlike the case when a(x) is continuous and f (x) has a jump
discontinuity [16]. These shifts in the interior layers and the boundary layers make the computation difficult and the error
analysis section has to be dealt very carefully to prove the required results.

Lemma 5.2. At each mesh point xi ∈ ΩN the right singular component of the truncation error satisfies the following estimate

∥W ∗

r − w∗

r ∥ ≤

{
CN−1(lnN), if

√
αε2 ≤

√
ρε1 ,

CN−1(lnN)2, if
√
αε2 >

√
ρε1 .

Proof. Using the classical argument for the truncation error and Lemma 2.4, we obtain

|LN (W ∗−

r − w∗−

r )(xi)| = |(LN
− L)w∗−

r (xi)|

≤ C(hi+1 + hi)ε1∥(w∗−

r )3∥ + ε2∥(w∗−

r )2∥

≤ C(hi+1 + hi)

{
1

√
ε1

(
1 +

(
ε2

√
ε1

)3
)

+
ε2

ε1

(
1 +

(
ε2

√
ε1

)2
)}

≤ C(hi+1 + hi)
1

√
ε1

(
1 +

(
ε2

√
ε1

)3
)
. (5.2)

If σ2 = d/4, the mesh is uniform and θ1 ≤ 16(lnN). Hence (5.2) reduces to

|LN (W ∗−

r − w∗−

r )(xi)| ≤

⎧⎪⎪⎨⎪⎪⎩
CN−1

(
1

√
ε1

)
, if

√
αε2 ≤

√
ρε1 ,

CN−1

(
ε32

ε21

)
, if

√
αε2 >

√
ρε1 .

(5.3)

The error in the fine mesh region (d−σ2, d) and the coarse mesh region (0, d−σ2] are analyzed using the bounds defined
in Lemmas 2.7 and 2.9. On simplifying (5.2) we obtain

|LN (W ∗−

r − w∗−

r )(xi)| ≤ C1N−1 lnN + C2N−1
(
ε2

ε1

)
lnN. (5.4)
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Using the values of θ1 and σ2 ≤
2
θ1

lnN , we get

|LN (W ∗−

r − w∗−

r )(xi)| ≤

{
CN−1 lnN, if

√
αε2 ≤

√
ρε1 ,

CN−1ε2(lnN)2, if
√
αε2 >

√
ρε1 .

Using the barrier function technique and discrete minimum principle we derive

∥(W ∗−

r − w∗−

r )∥ ≤

{
CN−1 lnN, if

√
αε2 ≤

√
ρε1 ,

CN−1(lnN)2, if
√
αε2 >

√
ρε1 .

(5.5)

Following similar arguments in the domain (d, 1 − σ4] and (1 − σ4, 1) we obtain

∥(W ∗+

r − w∗+

r )∥ ≤

{
CN−1 lnN, if

√
αε2 ≤

√
ρε1 ,

CN−1(lnN)2, if
√
αε2 >

√
ρε1 ,

(5.6)

Combining the results (5.5) and (5.6) the desired result is obtained. □

Lemma 5.3. At each mesh point xi ∈ ΩN the left singular component of the truncation error satisfies the following estimate

∥(W ∗−

l − w∗−

l )∥ ≤

{
CN−1 lnN, if

√
αε2 ≤

√
ρε1 ,

CN−1(lnN)2, if
√
αε2 >

√
ρε1 .

Proof. Using the derivative estimate, we have

|LN (W ∗−

l − w∗−

l )(xi)| ≤ C(hi+1 + hi)

{
1

√
ε1

(
1 +

(
ε2

√
ε1

)3
)}

. (5.7)

We begin with the case
√
αε2 ≤

√
ρε1. If σ1 =

d
4
, with

√
αε2/

√
ε1 ≤ θ2 ≤ 16 lnN we obtain the following bounds on

the left singular component given by

|LN (W ∗−

l − w∗−

l )(xi)| ≤
C

√
ε1

(hi+1 + hi) ≤ CN−1 lnN.

When σ1 <
d
4
, we have to analyze the error in the fine and coarse mesh regions separately. Following the methods applied

in [15] we could prove the bound for the coarse mesh region [σ1, d) given by

|LN (W ∗−

l − w∗−

l )(xi)| ≤ CN−1
√
ρα

√
ε1

≤ CN−1 lnN.

In the fine mesh region (0, σ1) the inequality (5.7) still holds and we have hi = hi+1 =
16(N−1 lnN)

θ2
. Using the value of

θ2 we have
√
ρα(hi+1 − hi)

√
ε1

≤ CN−1 lnN . Hence

|LN (W ∗−

l − w∗−

l )(xi)| ≤ CN−1
√
ρα

√
ε1

≤ CN−1 lnN.

Consider the case
√
αε2 >

√
ρε1.

Following the methods constructed for the error bounds in [15] when the transition point σ2 = d/4, and
ρ

ε2
≤ θ2 ≤

16(lnN) we obtain

|LN (W ∗−

l − w∗−

l )(xi)| ≤ CN−1
(
ρ

ε22

)
≤ CN−1(lnN)2.

For the coarse mesh region [σ1, d), if the transition point σ1 <
d
4

the error bound in (5.7) still holds. In the fine mesh
region (0, σ1) the inequality (5.7) reduces to

|LN (W ∗−

l − w∗−

l )(xi)| ≤ C
hi+1 + hi

ε2

2

.

Since hi+1 = hi =

(
16
θ2

)
lnN and using the value of θ2 the following error bound is obtained for the left singular

component

|LN (W ∗−

l − w∗−

l )(xi)| ≤ CN−1(lnN)2.
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Using the mesh function technique and discrete minimum principle we can prove that

∥(W ∗−

l − w∗−

l )∥ ≤

{
CN−1 lnN, if

√
αε2 ≤

√
ρε1 ,

CN−1(lnN)2, if
√
αε2 >

√
ρε1.

Similarly, we can prove the result for N/2 + 1 ≤ i < N by taking appropriate transition parameter σ3 to obtain

∥LN (W ∗+

l − w∗+

l )∥ ≤

{
CN−1 lnN, if

√
αε2 ≤

√
ρε1 ,

CN−1(lnN)2, if
√
αε2 >

√
ρε1.

In particular d = 1/2 could be seen as a special case here since, σ1 = σ2 = σ3 = σ4 = 1/8. If σ1 < d/4 and , σ2 < d/4,
then the mesh is piecewise uniform.

Combining all the results analyzed above we can say that

∥W ∗
− w∗

∥ ≤

{
CN−1 lnN, if

√
αε2 ≤

√
ρε1 ,

CN−1(lnN)2, if
√
αε2 >

√
ρε1.

□

Lemma 5.4. The error e(xN/2) estimated at the point of discontinuity xN/2 = d satisfies the following estimate

|(D+
− D−)(Y (xN/2) − y(xN/2))| ≤

⎧⎪⎨⎪⎩
ρασ

Nε1
, if

√
αε2 ≤

√
ρε1 ,

ασε22

Nε21
, if

√
αε2 >

√
ρε1 ,

where σ = min{σ2, σ3}.

Proof. Consider

|(D+
− D−)(Y (xN/2) − y(xN/2))| = |(D−

− D+)(y(xi) + [y′
](xi))|

≤ |y′(xN/2) − D+y(xN/2)| + |y′(xN/2) − D−y(xN/2)|.

We know that, (D+
−D−)Y (xN/2) = 0. Let h3 = 8σ2/N and h4 = 8σ3/N be the mesh sizes on either side of xN/2. Then, we

obtain

|(D+
− D−)(Y (xN/2) − y(xN/2))| = |(D−

− D+)y(xN/2)|

≤

⏐⏐⏐⏐( d
dx

− D−

)
y(xN/2)

⏐⏐⏐⏐+ ⏐⏐⏐⏐( d
dx

− D+

)
y(xN/2)

⏐⏐⏐⏐
≤

⎧⎪⎪⎨⎪⎪⎩
Ch̄
ε1
, if

√
αε2 ≤

√
ρε1,

Ch̄ε22
ε21

, if
√
αε2 >

√
ρε1,

where h̄ = min{h3, h4}. □

Remark. When the sign of the discontinuous convection coefficient a(x) is reversed, the result at the point of discontinuity
xN/2 takes the form

|(D+
− D−)e(xN/2)| ≤

⎧⎪⎨⎪⎩
ρασ

Nε1
, if

√
αε2 ≤

√
ρε1 ,

ασ

Nε22
, if

√
αε2 >

√
ρε1 .

The next theorem presents the main contribution of the article, which establishes the ε1–ε2 uniform convergence error
estimate.

Theorem 5.5. Let y(x) and Y (xi) be respectively the solutions of the problems (1.1)–(1.4), and (3.2)–(3.3). Then, for sufficiently
large N, we have

∥Y − y∥ ≤

{
CN−1 lnN, if

√
αε2 ≤

√
ρε1 ,

CN−1(lnN)2, if
√
αε2 >

√
ρε1.

Proof. From the results of Lemmas 2.3, 5.1–5.3 and using the methods adopted in [15], it ensues that

e(xi) ≤

{
CN−1 lnN,

√
αε2 ≤

√
ρε1 ,

CN−1(lnN)2,
√
αε2 >

√
ρε1 ,

∀ xi ∈ ΩN . (5.8)
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To prove the error at the point of discontinuity xi = xN/2:
Consider the case

√
αε2 ≤

√
ρε1. Define the discrete barrier function φ∗(xi) to be the solution of

ε1δ
2φ∗(xi) + ε2α

∗D∗φ∗(xi) − γφ∗(xi) = 0,

φ∗(x0) = 0, φ∗(xN/2) = 1 and φ∗(xN ) = 0.

We can prove that

D−φ∗(xi) ≥ 0, for 1 ≤ i ≤ N/2 − 1 and D+φ∗(xi) ≤ 0, for 1 ≤ i ≤ N/2 + 1.

Note that LNφ∗(xi) ≤ 0 for all xi ∈ ΩN . Define the ancillary continuous functions z1(x), z2(x) by

ε1z ′′

1 (x) − α∗ε2z ′

1(x) − γ z1(x) = 0, z1(0) = 0, z1(xN/2) = 1,

ε1z ′′

2 (x) + α∗ε2z ′

2(x) − γ z2(x) = 0, z2(xN/2) = 1, z2(1) = 0.

On solving the above equations we get

z1(x) = eη(d−x)
(
sinh (µx)
sinh(µd)

)
, z2(x) = eη(d−x)

(
sinh(µ(1 − x))
sinh(µ(1 − d))

)
,

where, η =
α∗ε2

2ε1
and µ =

√
(α∗ε2)2 + 4ε1γ

2ε1
. Thus, we have

|D−z1(xN/2)| =
sinh(µd) − eηh sinh(µ(d − h))

h3 sinh(µd)

=

(
1 − e−(µ−η)h3

h3

)(
1 − e−2µ(d−h−3)

1 − e−2µd

)

≥ C

(
1 − e−(µ−η)h3

h3

)
and also

|D+z2(xN/2)| ≥ C

(
1 − e−(µ−η)h4

h4

)
.

Hence

(D+z2 − D−z1)(xN/2) = −(|D+z2(xN/2)| + D−z1(xN/2)) ≤ −
C(1 − e−β )

√
ε1β

≤ −
C

√
ε1

where β =
α∗h
2
√
ε1
, h = max{h3, h4}. Since

1 − e−β

β
is a decreasing function of β . Following the methods from [2] on each

of the intervals [0, d] and [d, 1], we have

|φ∗(xi) − z1(xi)| ≤ C(N−1 lnN)2, for i ≤ d,

|φ∗(xi) − z2(xi)| ≤ C(N−1 lnN)2, for i ≥ d.

At the point xN/2 = d,

(
D+φ∗ − D−φ∗

)
(xN/2) =

φ∗(xN/2 + h4) − 1

h4
−
φ∗(xN/2 + h3) − 1

h3

≤
(
D+z2(xN/2) − D−z1(xN/2)

)
±

C(N−1 lnN)2

min{h3, h4}(
D+φ∗ − D−φ∗

)
(xN/2) ≤ −C/

√
ε1.

Consider the barrier

ψ±

1 (xi) = C3N−1 lnN + C4
h

√
ε1
φ∗(xi) ± e(xi), ∀ xi ∈ Ω

N
.
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Now, ψ±

1 (x0) ≥ 0, ψ±

1 (xN ) ≥ 0 and

LNψ±

1 (xi) ≤ 0, xi ∈ ΩN , (D+
− D−)ψ±

1 (xN/2) ≤ 0, i = N/2.

Hence applying the discrete minimum principle, we get ψ±

1 (xi) ≥ 0 ∀ xi ∈ Ω
N
. For sufficiently large N we derive

|(Y − y)(xi)| ≤ CN−1(lnN), if
√
αε2 ≤

√
ρε1. (5.9)

In the second case when
√
αε2 >

√
ρε1 consider the discrete barrier function ψ2(xi) = ψ(xi) ± e(xi) defined in the

interval (d − σ2, d + σ3) where

ψ(xi) = CN−1(lnN)2 +
CN−1ε22σ

ε21

{
(xi − d − σ2), xi ∈ (d − σ2, d],
(d + σ3 − xi), xi ∈ [d, d + σ3).

It could be seen that ψ2(d − σ3) > 0, ψ2(d + σ3) > 0 and LNψ2(xi) < 0, D+ψ2(xi) − D−ψ2(xi) < 0. Applying the discrete
minimum principle to ψ2(xi), we find that ψ2(xi) ≥ 0. Hence

|(Y − y)(xi)| ≤
CN−1σ 2ε22

ε21
≤ CN−1(lnN)2, for xi ∈ (d − σ2, d + σ3). (5.10)

Therefore, by combining (5.9) and (5.10) we obtain the desired result. □

6. Examples

In order to show the applicability of the present method we have considered some problems of singularly perturbed
two parameter BVP with discontinuous convection coefficient and source term.

Example 6.1.

ε1y′′(x) + ε2a(x)y′(x) − y(x) = f (x), x ∈ (Ω−
∪Ω+),

y(0) = 2, y(1) = 1,

with

a(x) =

{
−2, 0 ≤ x ≤ 0.5
2, 0.5 < x ≤ 1, and f (x) =

{
−1, 0 ≤ x ≤ 0.5
1, 0.5 < x ≤ 1.

Example 6.2.

ε1y′′(x) + ε2a(x)y′(x) − 2y(x) = f (x), x ∈ (Ω−
∪Ω+),

y(0) = 0, y(1) = −1,

with

a(x) =

{
−(1 + x), 0 ≤ x ≤ 0.5,
(2 + x2), 0.5 < x ≤ 1, and f (x) =

{
−(14x + 1), 0 ≤ x ≤ 0.5
2 − 2x, 0.5 < x ≤ 1.

The nodal errors are estimated using the double mesh principle stated by Doolan (see [1], page 199). Define the
maximum point-wise error in the double mesh differences to be

EN
(ε1,ε2) = max

xi ∈Ω
N
|YN (xi) − Y 2N (xi)|, and EN

= max
ε1,ε2

EN
(ε1,ε2),

where YN (xi) and Y 2N (xi) represent the numerical solutions determined using N and 2N mesh intervals. The order of
convergence is approximated using the ratio

RN
= log2

(
EN

E2N

)
.

Tables 1 and 2 display the maximum point-wise errors for Example 6.1, varying ε1 on the set Gε1 = {10−0, 10−2, . . . ,

10−12
}, with ε2 = 10−3 and ε2 = 10−4, respectively. The maximum of the point-wise errors EN are represented and

the approximate orders of convergence RN are presented in the last row of each table, showing almost order one which
coincides with the theoretical results in 5.5.

Fig. 1a shows the numerical solution plots and Fig. 1b represents the numerical error plots for Example 6.1 for the
displayed values. These two graphs correspond to the case when

√
αε2 <

√
ρε1.

Fig. 2a shows the numerical solution plots and Fig. 2b represents the numerical error plots for Example 6.1 for the
displayed values. These two graphs correspond to the case when

√
αε2 >

√
ρε1.
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Table 1
Maximum point-wise errors EN and approximate orders of convergence RN for Example 6.1 when
ε2 = 10−3 .

Number of mesh points N

ε1 32 64 128 256 512

100 1.72000E−06 5.50370E−07 1.97780E−07 7.94860E−08 3.48920E−08
10−2 2.03520E−03 6.56460E−04 2.36860E−04 9.54490E−05 4.19620E−05
10−4 4.64330E−02 2.81190E−02 1.42360E−02 7.48330E−03 3.93490E−03
10−6 1.34110E−01 1.00460E−01 6.51100E−02 4.02480E−02 2.36900E−02
10−8 1.77540E−01 1.34610E−01 8.94960E−02 5.57030E−02 3.29910E−02
10−10 1.78310E−01 1.35210E−01 8.99240E−02 5.59720E−02 3.31510E−02
10−12 1.78310E−01 1.35220E−01 8.99290E−02 5.59740E−02 3.31530E−02

EN 1.78310E−01 1.35220E−01 8.99290E−02 5.59740E−02 3.31530E−02

RN 0.39916 0.58841 0.68402 0.75563 0.79931

Table 2
Maximum point-wise errors EN and approximate orders of convergence RN for Example 6.1 when
ε2 = 10−4 .

Number of mesh points N

ε1 32 64 128 256 512

100 1.28800E−06 3.34170E−07 8.95750E−08 2.53770E−08 7.83640E−09
10−2 1.53240E−03 3.99980E−04 1.07500E−04 3.04710E−05 9.41350E−06
10−4 3.32830E−02 1.64650E−02 6.26380E−03 2.39580E−03 9.19960E−04
10−6 4.63970E−02 2.81180E−02 1.42360E−02 7.48330E−03 3.93490E−03
10−8 1.33790E−01 1.00400E−01 6.50950E−02 4.02450E−02 2.36890E−02
10−10 1.76880E−01 1.34420E−01 8.94320E−02 5.56880E−02 3.29870E−02
10−12 1.77630E−01 1.35020E−01 8.98590E−02 5.59550E−02 3.31470E−02

EN 1.77630E−01 1.35020E−01 8.98590E−02 5.59550E−02 3.31470E−02

RN 0.39573 0.58742 0.68339 0.7554 0.79921

Fig. 1. 1a & 1b: plots of numerical solution and errors for ε1 = 10−6 , ε2 = 10−2 when N = 256 for Example 6.1.

Fig. 2. 2a & 2b: plots of numerical solution and errors for ε1 = 10−6 , ε2 = 10−4 when N = 256 for Example 6.1.
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Table 3
Maximum point-wise errors EN and approximate orders of convergence RN for Example 6.1 when
ε1 = 10−5 .

Number of mesh points N

ε2 64 128 256 512 1024

100 1.107e−03 5.533e−04 2.765e−04 1.383e−05 6.912e−05
10−2 1.977e−03 9.750e−04 4.841e−04 2.412e−05 1.204e−05
10−4 2.706e−03 7.783e−04 2.439e−04 9.645e−05 4.439e−05
10−6 1.162e−02 5.514e−02 3.057e−02 1.726e−03 9.681e−04
10−8 2.712e−02 1.922e−02 1.229e−02 7.355e−03 4.219e−03
10−10 4.523e−02 2.922e−02 1.831e−02 1.115e−02 6.488e−03
10−12 5.729e−02 3.720e−02 2.284e−02 1.339e−02 7.602e−03
10−14 5.814e−02 3.777e−02 2.325e−02 1.364e−02 7.746e−03
10−16 5.818e−02 3.779e−02 2.327e−02 1.365e−02 7.753e−03
10−18 5.820e−02 3.780e−02 2.327e−02 1.366e−02 7.755e−03
10−20 5.820e−02 3.780e−02 2.327e−02 1.366e−02 7.756e−03

EN 5.820e−02 3.780e−02 2.327e−02 1.366e−02 7.756e−03

RN 0.62263 0.69992 0.768517 0.81657 0.84729

Table 4
Maximum point-wise errors EN and approximate orders of convergence RN for Example 6.2 when
ε2 = 10−3 .

Number of mesh points N

ε1 32 64 128 256 512

100 2.20620E−03 1.64560E−03 8.34430E−04 4.73040E−04 2.14240E−04
10−2 8.28080E−03 5.62030E−03 3.41650E−03 1.87990E−03 1.06910E−03
10−4 1.86090E−02 1.47120E−02 1.04900E−02 6.67980E−03 3.92890E−03
10−6 1.89710E−02 1.52030E−02 1.08760E−02 7.00130E−03 4.12160E−03
10−8 1.89750E−02 1.52080E−02 1.08800E−02 7.00470E−03 4.12370E−03
10−10 1.89750E−02 1.52080E−02 1.08810E−02 7.00470E−03 4.12370E−03
10−12 1.89750E−02 1.52080E−02 1.08810E−02 7.00470E−03 4.12370E−03

EN 1.89750E−02 1.52080E−02 1.08810E−02 7.00470E−03 4.12370E−03

RN 0.319243789 0.483097342 0.635351041 0.764392856 0.820314554

Table 5
Maximum point-wise errors EN and approximate orders of convergence RN for Example 6.2 when
ε2 = 10−4 .

Number of mesh points N

ε1 32 64 128 256 512

100 2.16490E−03 1.51470E−03 7.48460E−04 3.12630E−04 1.27810E−04
10−2 2.20600E−03 1.64820E−03 8.35460E−04 4.74140E−04 2.14480E−04
10−4 8.32360E−03 5.65050E−03 3.43600E−03 1.89040E−03 1.07530E−03
10−6 1.87170E−02 1.48000E−02 1.05530E−02 6.72070E−03 3.95290E−03
10−8 1.90810E−02 1.52950E−02 1.09420E−02 7.04410E−03 4.14680E−03
10−10 1.90850E−02 1.53000E−02 1.09470E−02 7.04750E−03 4.14880E−03
10−12 1.90850E−02 1.53000E−02 1.09470E−02 7.04750E−03 4.14890E−03

EN 1.90850E−02 1.53000E−02 1.09470E−02 7.04750E−03 4.14890E−03

RN 0.318914630 0.483043762 0.635285690 0.764405660 0.820311523

Table 3 displays the maximum point-wise errors for Example 6.1, varying ε2 on the set Gε2 = {10−0, 10−2, . . . , 10−20
}

with ε1 = 10−5. The maximum pointwise error EN is represented and the approximate orders of convergence RN are
calculated in the last row of each table, showing almost order one, which coincides with the theoretical results in 5.5.

Tables 4 and 5 display the maximum point-wise errors for Example 6.2 with ε2 = 10−3 and ε2 = 10−4 respectively
for different values of ε1 ∈ Gε1 . The orders of convergence (RN ) is included in the last row of the tables, which shows
almost order one.

Table 6 displays the maximum point-wise errors for Example 6.2, varying ε2 on Gε2 with ε1 = 10−7. The maximum
point-wise errors EN are represented and the orders of convergence RN are calculated in the last row of each table, showing
almost order one which coincides with the theoretical results in 5.5.

Fig. 3a represents the numerical solution plots and Fig. 3b represents the numerical error plots for Example 6.2 for the
displayed values. These two graphs correspond to the case when

√
αε2 <

√
ρε1.
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Table 6
Maximum point-wise errors EN and approximate orders of convergence RN for Example 6.2 when
ε1 = 10−7 .

Number of mesh points N

ε2 64 128 256 512 1024

100 2.460e−04 1.218e−04 6.061e−05 3.023e−05 1.510e−05
10−2 4.386e−03 2.172e−03 1.081e−03 5.390e−04 2.692e−04
10−4 7.031e−03 3.164e−03 1.509e−03 7.391e−04 3.662e−04
10−6 3.482e−02 1.183e−02 4.165e−03 1.612e−03 7.060e−04
10−8 1.060e−01 6.447e−02 4.647e−02 2.993e−02 1.814e−02
10−10 2.052e−01 1.878e−01 1.468e−01 1.008e−02 6.308e−02
10−12 2.323e−01 1.568e−01 9.992e−01 5.977e−02 3.444e−02
10−14 2.416e−01 1.631e−01 1.047e−01 6.335e−02 3.657e−02
10−16 2.421e−01 1.635e−01 1.050e−01 6.354e−02 3.668e−02
10−18 2.422e−01 1.636e−01 1.051e−01 6.360e−02 3.672e−02
10−20 2.422e−01 1.636e−01 1.051e−01 6.360e−02 3.672e−02

EN 2.422e−01 1.636e−01 1.051e−01 6.360e−02 3.672e−02

RN 0.5660 0.6384 0.7246 0.7924 0.8346

Fig. 3. 3a & 3b: plots of numerical solution and errors for ε1 = 10−6 , ε2 = 10−2 when N = 256 for Example 6.2.

Fig. 4. 4a & 4b: plots of numerical solution and errors for ε1 = 10−6 , ε2 = 10−4 when N = 256 for Example 6.2.

Fig. 4a represents the numerical solution plots and Fig. 4b represents the numerical error plots for Example 6.2 for the
displayed values. These two graphs correspond to the case when

√
αε2 >

√
ρε1.

7. Conclusion

A numerical method is discussed to solve reaction–convection–diffusion singularly perturbed second order ordinary
differential equation having two small parameters with discontinuity at the convection coefficient and source term. This
technique is based on upwind finite difference scheme with piecewise uniform Shishkin mesh. The method is shown to
be uniformly convergent and independent of the mesh parameters and perturbation parameters with almost first order
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convergence. Error bounds for the numerical scheme are derived. Some numerical examples are presented to illustrate
the parameter-uniform convergence of the numerical approximations.
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