
mathematics

Article

Efficient k-Step Linear Block Methods to Solve
Second Order Initial Value Problems Directly

Higinio Ramos 1,*,† , Samuel N. Jator 2,† and Mark I. Modebei 3,†

1 Department of Applied Mathematics, University of Salamanca, 37008 Salamanca, Spain
2 Department of Mathematics and Statistics, Austin Peay State University Clarksville,

Clarksville, TN 37044, USA; jators@apsu.edu
3 Department of Mathematics Programme, National Mathematical Centre, Abuja 900211, Nigeria;

gmarc.ify@gmail.com
* Correspondence: higra@usal.es
† These authors contributed equally to this work.

Received: 14 September 2020; Accepted: 30 September 2020; Published: 12 October 2020 ����������
�������

Abstract: There are dozens of block methods in literature intended for solving second order
initial-value problems. This article aimed at the analysis of the efficiency of k-step block methods
for directly solving general second-order initial-value problems. Each of these methods consists of a
set of 2k multi-step formulas (although we will see that this number can be reduced to k + 1 in case
of a special equation) that provides approximate solutions at k grid points at once. The usual way
to obtain these formulas is by using collocation and interpolation at different points, which are not
all necessarily in the mesh (it may also be considered intra-step or off-step points). An important
issue is that for each k, all of them are essentially the same method, although they can adopt different
formulations. Nevertheless, the performance of those formulations is not the same. The analysis
of the methods presented give some clues as how to select the most appropriate ones in terms of
computational efficiency. The numerical experiments show that using the proposed formulations,
the computing time can be reduced to less than half.

Keywords: ordinary differential equations; second-order initial value problems; multistep block
methods; computational efficiency
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1. Introduction

Let us consider a second-order initial value problem (IVP) of the form

y ′′(x) = f (x, y(x), y′(x)), y(x0) = y0, y′(x0) = y′0 , (1)

on an interval [x0, b] ⊂ R, for which we assume that there exist a unique solution.
There are many methods in the literature for directly approximating the solution of the problem

in (1) such as the Runge-Kutta-Nyström methods, Störmer–Cowell methods, or Falkner methods,
and also the so-called block methods (see [1–4] and references therein).

To the best of our knowledge, the first appearance of block methods was presented by Milne [5]
for solving first order problems. They have some advantages concerning the cost of implementation,
and the accuracy. These methods were designed with the aim of addressing some of the drawbacks
of the methods in predictor–corrector modes [6–9]. Since the time of Milne, many of these types of
methods have been published in the mathematical literature; an interesting monograph on the subject
is that by Brugnano and Trigiante [10].
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In this work, our goal was to analyze and classify block methods used for solving second order
problems directly. Our analysis reveals that for each k ≥ 2, k ∈ N, there are some specific formulations
which are the most efficient ones in terms of computational time if standard routines based on the
classical Newton’s method are used for solving the discrete problem. This work is an extension of
the one developed in [11], where it was shown that, from the class of k-step linear block methods for
solving first-order IVPs, there is only one formulation for each k which is the most efficient.

We present below a brief description of the different sections. In Section 2, we will analyze in detail
the 2-step block methods. This analysis shows that many methods that have appeared in the literature
actually correspond to the same method, although they present different formulations. We will show
how to obtain the most efficient formulations in terms of computational time. In Section 3, the analysis
of k-step block methods is considered. Section 4 deals with the study of the main characteristics of the
methods. In Section 5, we will present some examples of the performance of the different formulations.
Section 6 is devoted to presenting some conclusions. Finally, in Appendix A, we have included an
algorithm to generate the methods. The formulas of the different k-step block methods can be easily
obtained using a computer algebra system with the given algorithm.

2. Detailed Analysis of 2-Step Block Methods

We will consider here only methods that use information on the grid points; that is, we will not
consider methods that use backward values or intra-step or future off-step points. This section is
divided into two parts, accordingly with the type of differential equation considered, either of the
general form y′′ = f (x, y, y′), or of the special type y′′ = f (x, y), where the first derivative is absent.
From now on, h will denote a fixed step size.

2.1. Two-Step Block Methods for y′′ = f (x, y, y′):

The derivation of the following 2-step block method by Adesanya et al. for solving this kind of
problem, appeared in [12]

yn+1 = yn + hy′n +
h2

24 (7 fn + 6 fn+1 − fn+2) ,

yn+2 = yn + 2hy′n +
h2

3 (2 fn + 4 fn+1) ,

y′n+1 = y′n +
h

12 (5 fn + 8 fn+1 − fn+2) ,

y′n+2 = y′n +
h
3 ( fn + 4 fn+1 + fn+2) ,

(2)

although in this reference there were some misprints that have been corrected here. Later, Adebile et al.
in [13] presented the following 2-step block method

yn+2 − 2yn+1 + yn = h2

12 ( fn + 10 fn+1 + fn+2) ,

hy′n − yn+1 + yn = h2

24 (−7 fn − 6 fn+1 + fn+2) ,

hy′n+1 − yn+1 + yn = h2

24 (3 fn + 10 fn+1 − fn+2) ,

hy′n+2 − yn+1 + yn = h2

24 ( fn + 26 fn+1 + 9 fn+2) ,

(3)

which may readily be rewritten as

yn+2 = 2yn+1 − yn +
h2

12 ( fn + 10 fn+1 + fn+2) ,

hy′n = yn+1 − yn +
h2

24 (−7 fn − 6 fn+1 + fn+2) ,

hy′n+1 = yn+1 − yn +
h2

24 (3 fn + 10 fn+1 − fn+2) ,

hy′n+2 = yn+1 − yn +
h2

24 ( fn + 26 fn+1 + 9 fn+2) .

(4)
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On the other hand, Majid et al. presented in [14] the 2-step block method given by
yn+1 = yn + hy′n +

h2

24 (7 fn + 6 fn+1 − fn+2) ,

y′n+1 = y′n +
h

12 (5 fn + 8 fn+1 − fn+2) ,

yn+2 = yn+1 + hy′n+1 +
h2

24 (− fn + 10 fn+1 + 3 fn+2) ,

y′n+2 = y′n+1 +
h

12 (− fn + 8 fn+1 + 5 fn+2) .

(5)

These are three of the different 2-step block methods that have appeared in literature. What do the
above methods have in common? It is obvious that the unknowns are the values yn+1, yn+2, y′n+1, y′n+2,
and that the terms fn+1, fn+2 appear on the right hand side of all the equations. There is more to
say, we are going to show that these methods are different formulations of the same underlying
method. Now, let us see how to get the previous 2-step block methods and how among the different
formulations there are some of them which are the most efficient.

Consider the grid points xn, xn+1 = xn + h, xn+2 = xn + 2h. Now, in order to get approximate
values of the solution of the problem in (1) on the interval [xn, xn+2], we approximate the true solution
y(x) by a polynomial p(x)

y(x) ' p(x) =
4

∑
j=0

aj xj , (6)

where the coefficients aj ∈ R will be determined after considering appropriate collocation conditions.
These conditions are imposed to p(x) and its derivatives up to the second order, at the grid points
xn, xn+1, xn+2. The notations yn+i, y′n+i and fn+i correspond to approximations of the solution and
the derivatives at the grid points, that is, yn+i ' y(xn + ih), y′n+i ' y′(xn + ih) , fn+i ' y′′(xn + ih) =
f (xn + ih, y(xn + ih), y′(xn + ih)). Taking five equations of the set

E2 =
{

p(xn + ih) = yn+i , p′(xn + ih) = y′n+i , p′′(xn + ih) = fn+i
}

, i = 0, 1, 2

we obtain a system where the unknowns are the coefficients aj , j = 0, 1, 2, 3, 4. We solve this system
and substitute the values of the coefficients aj in p(x). The four remaining equations of the above set,
once we have replaced the obtained a′js, result in a block method. The 2-step block methods in (2)
and (4) may be obtained in this way.

The set E2 may be expressed in matrix-vector notation as

B2 y2 = 0 , (7)

where

B2 =



1 xn x2
n x3

n x4
n

1 xn+1 x2
n+1 x3

n+1 x4
n+1

1 xn+2 x2
n+2 x3

n+2 x4
n+2

0 1 2xn 3x2
n 4x3

n

0 1 2xn+1 3x2
n+1 4x3

n+1 −I9

0 1 2xn+2 3x2
n+2 4x3

n+2

0 0 2 6xn 12x2
n

0 0 2 6xn+1 12x2
n+1

0 0 2 6xn+2 12x2
n+2



,

I9 is the identity matrix of order nine, and

y2 =
(
a0, a1, a2, a3, a4, yn, yn+1, yn+2, y′n, y′n+1, y′n+2, fn, fn+1, fn+2

)T .
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Matrix B2 has rank nine, and thus the above system of nine equations has a unique solution
which would be expressed in terms of some parameters. If we take any nine terms in y2 as principal
variables, the solution will be expressed in terms of these variables. Among these variables five of
them must be fixed as the five parameters aj , j = 0, 1, 2, 3, 4, which are the coefficients of p(x), and the
other remaining principal variables give rise to four formulas, which are the different 2-step block
methods. Doing this we obtain a number of possibilities of (9

4) = 126, which corresponds to different
formulations of the 2-step block method, all of which are equivalent to each other.

Among the 126 different formulations of the 2-step block method, we will consider those that have
the lowest number of occurrences of f . There are (7

2) = 21 of such formulations which are obtained by
taking as principal variables in the algebraic system the aj , j = 0, 1, 2, 3, 4, and fn+1, fn+2. The remaining
two principal variables can be chosen arbitrarily. We choose these variables as yn+1, yn+2; thus, one of
the simplest formulations of the 2-step block methods is

yn+1 = yn +
h

48
(
29y′n + 20y′n+1 − y′n+2

)
+ h2

8 fn,

yn+2 = yn +
h
3
(
y′n + 4y′n+1 + y′n+2

)
,

4h fn+1 = −2h fn − 5y′n + 4y′n+1 + y′n+2,

h fn+2 = h fn + 2y′n − 4y′n+1 + 2y′n+2 .

(8)

If we solve the system in (8), we get approximate values on the interval [xn, xn+2]. The above
system, which discretizes the problem on [xn, xn+2], is usually solved by Newton’s method (or any of
its variants). The yn, y′n and fn in (8) are constants while the unknowns are yn+1, y′n+1 and yn+2, y′n+2.
We see that the non-linearity of f is reflected only twice in the system, through fn+1 and fn+2.
Nevertheless, for any of the methods in (2), (4), or (5), the number of occurrences of f is higher,
which usually results in a more complicated system. In the numerical examples of Section 5, one can
see clearly the importance of choosing one formulation or another. This importance becomes more
marked the more complicated and nonlinear the function f is..

Remark 1. We note that we can also develop formulations of the 2-step block method combining different
formulas obtained with the above procedure. For example, the two first formulas in the method in (5) are obtained
taking as principal variables the aj , j = 0, . . . , 4, and yn+1, yn+2, y′n+1, y′n+2, while the two second formulas
in (5) are obtained taking as principal variables the aj , j = 0, . . . , 4, and yn, yn+2, y′n, y′n+2. It is a simple
routine to see that after substituting the values of yn+1, y′n+1 given by the two first formulas, in the second ones,
we obtain the method in (2).

2.2. Two-Step Block Methods for y′′ = f (x, y):

For the special second order problem the procedure is similar as before. In this case, we get even
a simpler system than in the previous case. Now, if we are not interested in the values of the first
derivatives we can remove these values in the system (7). We must be careful, because we cannot
remove all of them. Firstly, the y′n is one of the initial-values of the second order problem on the
block [xn, xn+1], which is necessary to guarantee a unique solution. On the other hand, after solving
the equations for the first block we need the values yn+2 and y′n+2, which will be taken as the initial
values in the sequential iterative procedure to obtain the approximations on the next block. Therefore,
the value y′n+2 cannot be removed either, and the 2-step block methods are given in this case by three
formulas where the unknowns are yn+1, yn+2 and y′n+2. Now the set of equations is the previous E2

after removing the equation corresponding to y′n+1, that is, p′(xn + h) = y′n+1.
Proceeding similarly as before, fixing the principal variables aj , j = 0, . . . , 4, there is a total of

(8
3) = 56 possibilities to get the solutions, that is, this is a number of different formulations of the 2-step

block method. To obtain the simplest, we also establish as principal variables the fn+1 and fn+2, which
results in 6 possibilities. Taking as the remaining principal variable yn+2, we get one of the simplest
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formulations of the two-step block method for numerically solving the special second-order problem,
which is given by 

h2 fn+1 = − 4
5 h2 fn +

3
10 h

(
y′n+2 + 9y′n

)
− 3

10 (8yn − 8yn+1) ,

h2 fn+2 = 11
5 h2 fn +

3
5 h
(
13y′n + 3y′n+2

)
+ 48

5 (yn − yn+1) ,

yn+2 = 1
5 (−11yn + 16yn+1)− 2

5 h
(
4y′n − y′n+2

)
− 2

5 h2 fn .

(9)

If we had taken as principal variables yn+1, yn+2 and y′n+2, or had solved the above equations in
them, the method would be written as

yn+1 = yn + hy′n +
1

24 h2(7 fn + 6 fn+1 − fn+2),

yn+2 = yn + 2hy′n +
2
3 h2( fn + 2 fn+1),

y′n+2 = y′n +
1
3 h( fn + 4 fn+1 + fn+2) .

(10)

although it is not recommended, due to the higher number of occurrences of f .

3. Analysis of k-Step Block Methods

For values of k > 2, there is a similar situation as before. The k-step block methods may be
formulated in many different ways, but a few of them are the most efficient ones. We again consider
two sections, one for the general second-order differential equation and another for the special
second-order differential equation.

3.1. k-Step Block Methods for y′′ = f (x, y, y′):

For k = 3, the most common formulation of the block method for solving (1) is given by (see for
example [15–17], although in the last one there is a misprint in the formula for y′n+3):

yn+1 = yn + hy′n +
h2

360 (97 fn + 114 fn+1 − 39 fn+2 + 8 fn+3) ,

yn+2 = yn + 2hy′n +
h2

45 (28 fn + 66 fn+1 − 6 fn+2 + 2 fn+3) ,

yn+3 = yn + 3hy′n +
h2

40 (39 fn + 108 fn+1 + 27 fn+2 + 6 fn+3) ,

y′n+1 = y′n +
h

24 (9 fn + 19 fn+1 − 5 fn+2 + 3 fn+3) ,

y′n+2 = y′n +
h
3 ( fn + 4 fn+1 + fn+2) ,

y′n+3 = y′n +
h
8 (3 fn + 9 fn+1 + 9 fn+2 + 3 fn+3) .

(11)

Other formulations for three-step block methods may be found in [18], [19], or [20]. Nevertheless,
one of the simplest formulations of the above three-step method is

yn+1 = yn +
h

1080
(
614y′n + 513y′n+1 − 54y′n+2 + 7y′n+3

)
+ 19h2

180 fn,

yn+2 = yn +
h

135
(
56y′n + 162y′n+1 + 54y′n+2 − 2y′n+3

)
+ 2h2

45 fn,

yn+3 = yn +
h

40
(
26y′n + 27y′n+1 + 54y′n+2 + 13y′n+3

)
+ 3h2

20 fn,

h fn+1 = − h
3 fn − 1

18
(
17y′n − 9y′n+1 − 9y′n+2 + y′n+3

)
,

h fn+2 = h
3 fn +

1
9
(
7y′n − 18y′n+1 + 9y′n+2 + 2y′n+3

)
,

h fn+3 = −h fn − 1
6
(
13y′n − 27y′n+1 + 27y′n+2 − 13y′n+3

)
.

(12)

Concerning the 4-step block method, different formulations may be found in [21–23]. In [24–27]
different formulations for the 5-step block method have appeared. For the 6-step block method one
can see the references [28–31]. For k > 6 we have found only two references, both by the same author,
one of them concerning the 7-step block method [32] and the other one on the 8-step block method [33].
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Other k-step block methods can be found in [34–43], just to mention but a few. In all these articles, the
methods are expressed in the usual form, of the same type as in (11).

In what follows, we will analyze the development and the best formulations of the block methods
with k steps, with k ∈ N. For this, we use a similar strategy as in the previous case for k = 2. Now we
take the grid points xn, xn+1 = xn + h, . . . , xn+k = xn + kh. To get an approximate solution of the
problem in (1) on the grid points on the interval [xn, xn+k], we consider that the true solution y(x) is
approximated by the polynomial p(x)

y(x) ' p(x) =
k+2

∑
j=0

aj xj . (13)

The aj ∈ R are unknown coefficients that will be determined after imposing collocation conditions
to p(x), p′(x), and p′′(x) at the grid points xn, xn+1, . . . , xn+k. If we take k + 3 equations from the set

Ek =
{

p(xn + ih) = yn+i , p′(xn + ih) = y′n+i , p′′(xn + ih) = fn+i
}

, i = 0, 1, . . . , k

we obtain a system of k+ 3 equations in k+ 3 unknowns (these are the coefficients aj , j = 0, 1, . . . , k+ 2).
After solving the system, the obtained values are substituted in p(x). There are 2k remaining equations
of the total of 3(k + 1) equations, which result in a k-step block method.

The equations in Ek may be reformulated in matrix-vector form as

Bk yk = 0 , (14)

where

Bk =



1 xn x2
n · · · xk+2

n

1 xn+1 x2
n+1 · · · xk+2

n+1
...

...
...

...
1 xn+k x2

n+k · · · xk+2
n+k

0 1 2xn · · · (k + 2)xk+1
n

0 1 2xn+1 · · · (k + 2)xk+1
n+1

...
...

...
... −I3(k+1)

0 1 2xn+k · · · (k + 2)xk+1
n+k

0 0 2 · · · (k + 2)(k + 1)xk
n

0 0 2 · · · (k + 2)(k + 1)xk
n+1

...
...

...
...

0 1 2 · · · (k + 2)(k + 1)xk
n+k



,

I3(k+1) is the identity matrix of dimension 3(k + 1), and

yk =
(
a0, a1, · · · , ak+2, yn, yn+1, · · · , yn+k, y′n, y′n+1, · · · , y′n+k, fn, fn+1, · · · , fn+k

)T .

It is clear that the above matrix has rank 3(k + 1), and thus the system of 3(k + 1) equations has a
unique solution given in terms of some parameters. If we choose any 3(k + 1) values of yk as principal
variables, the solutions will be expressed in terms of these variables. Among those variables, k + 3 are
taken as the parameters aj , j = 0, 1, . . . , k + 2, in order to get the polynomial p(x). The other principal
variables that have not been considered up to now, give the 2k formulas that form the different k-step
block methods. Doing this, the number of possibilities is (3k+3

2k ), which corresponds to a number of
different formulations of the k-step block method. The important thing is that all these formulations
are equivalent, and thus we can say that there is only one k-step block method, that present different
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formulations. It should be noted here that applying the different formulations of a selected method
will not produce the same numerical results, but this is due to the different errors involved in the
calculations. If the calculations were exact, without rounding errors, all methods would produce the
same approximations.

Among the possible equivalent formulations of the k-step block methods, we will consider those
in which the number of occurrences of f is the lowest. Taking the aj , j = 0, 1, . . . , k + 2, and fn+i, i =
1, . . . , k, as principal variables, there are (2k+3

k ) of such simplest methods. Among these, if we also take
the yn+i, i = 1, . . . , k, as principal variables, then there is only one such method (as is the method in (12)
for k = 3). For this choice, the possible non-linearity of f is reflected only k times in the equations of
the block method.

3.2. k-Step Block Methods for y′′ = f (x, y):

Now, for the special second order equation the procedure is similar as we did for k = 2. If we
are not interested in the values of the first derivatives, we can remove almost all the equations
corresponding to these values in the system (14) being careful not to remove the one corresponding
to the initial value value y′n and the one for y′n+k (this value will be needed in the iterative procedure
to approximate the solution in the next block). The k-step block methods will consist of a set of k + 1
formulas where the k + 1 unknowns are yn+1, . . . , yn+k and y′n+k. In the system in (14) we have to
remove the equations

{
p′(xn + ih) = y′n+i

}
, i = 1, . . . , k− 1.

The resulting system can be also arranged in matrix form and the corresponding matrix, similar
to the Bk in the previous case, now has a rank 2(k + 1) + 2. Proceeding as before, fixing as principal
variables the aj , j = 0, . . . , k + 2, there is a total of (2k+4

k+1 ) possibilities to get the solutions, that is,
a number of different formulations of the k-step block method. To obtain the simplest, we also set
as principal variables the fn+1, fn+2, . . . , fn+k, resulting in (k+4

1 ) = k + 4 possibilities. Among these
k + 4 possibilities, if we take as the remaining principal variable yn+k, we get one of the simplest
formulations of the k-step block method. This formulation is unique, as is the method in (9) for k = 2.
Again, for these formulations, the non-linearity of f is reflected only k times in the formulas of the
block method.

We note that in the simplified formulation of the method for the special equation y′′ = f (x, y),
the variables y′n+1, . . . , y′n+(k−1) are not involved. Therefore, it is not possible to use this simplified
method when the equation is of the form y′′ = f (x, y, y ′).

4. Characteristics of the Methods

Order and Local Truncation Error: The k-step block methods constructed in Section 3 for solving (1)
can be expressed as

A1Yτ+1 = A0Yτ + h2(B0Fτ + B1Fτ+1) (15)

where
Yτ+1 = (yn+1, . . . , yn+k, hy′n+1, . . . , hy′n+k)

>,

Yτ = (yn−k+1, . . . , yn−1, yn, hy′n−k+1, . . . , hy′n−1, hy′n)
>,

Fτ+1 = ( fn+1, . . . , fn+k, h f ′n+1, . . . , h f ′n+k)
>,

Fτ = ( fn−k+1, . . . , fn−1, fn, h f ′n−k+1, . . . , h f ′n−1, h f ′n)
>,

τ = 0, . . . , λ, n = 0, k, 2k, . . . , N = λk, being λ the number of blocks in the interval [x0, b],
and A0, A1, B0, and B1 square matrices of dimension 2k whose elements are the corresponding
coefficients of the k-step block method considered. These matrices have a special structure, in particular
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if we adopt to normalize B1, then A1 and B1 are formed by square submatrices of dimensions k as
follows (I, identity matrix; O, null matrix)

A1 =

(
Ik A1,2

Ok×k A2,2

)
, B1 =

(
Ok×k Ok×k
−Ik Ok×k

)
.

The local truncation error (LTE) of (15) is defined as

L[Zτ+1; h] = A1Zτ+1 − (A0Zτ + h2(B0Fτ + B1Fτ+1)), (16)

where

Zτ+1 = (z(xn+1), . . . , z(xn+k), hz′(xn+1), . . . , hz′(xn+k))
>,

Zτ = (z(xn−k+1), . . . , z(xn), hz′(xn−k+1), . . . , hz′(xn))
>,

Fτ+1 = ( f (xn+1, z(xn+1), z′(xn+1)), . . . , f (xn+k, z(xn+k), z′(xn+k)),

h f ′(xn+1, z(xn+1), z′(xn+1)), . . . , h f ′(xn+k, z(xn+k), z′(xn+k))
>,

Fτ = ( f (xn−k+1, z(xn−k+1), z′(xn−k+1)), . . . , f (xn, z(xn), z′(xn)),

h f ′(xn−k+1, z(xn−k+1), z′(xn−k+1)), . . . , h f ′(xn, z(xn), z′(xn)))
>.

Assuming that z(x) is a sufficiently differentiable function, the terms in (16) can be expanded by
Taylor series about the point xn to obtain the expression of the LTE as

L[Zτ+1; h] = C0z(xn) + C1hz′(xn) + . . . + Cqhqz(q)(xn) + . . . (17)

where the constant coefficients Cq, q = 0, 1, . . . are column vectors of size 2k (see [44]), since the entries
of the matrices A0, A1, B0, and B1 are given by the coefficients of the methods in Section 3. For instance,
for k = 3 the specific matrices for the method in (12) are given by

A1 =



1 0 0 −19
40

1
20

−7
1080

0 1 0 −6
5

−2
5

2
135

0 0 1 −27
40

−27
20

−13
40

0 0 0 −1
2

−1
2

1
18

0 0 0 2 −1 −2
9

0 0 0 −9
2

9
2

−13
6


, A0 =



0 0 1 0 0 307
540

0 0 1 0 0 56
135

0 0 1 0 0 13
20

0 0 0 0 0 −17
18

0 0 0 0 0 7
9

0 0 0 0 0 −13
6


,

B1 =



0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
−1 0 0 0 0 0
0 −1 0 0 0 0
0 0 −1 0 0 0


, B0 =



0 0 19
180 0 0 0

0 0 2
45 0 0 0

0 0 3
20 0 0 0

0 0 −1
3 0 0 0

0 0 1
3 0 0 0

0 0 −1 0 0 0


.

Definition 1. We say that the method in (15) has order p ≥ 1 if C0 = C1 = . . . = Cp = Cp+1 = 0 and
Cp+2 6= 0. In this case, the LTE satisfies

L[Zτ+1; h] = Cp+2hp+2 + O(hp+3) .

Definition 2. If the block method in (15) has order p ≥ 1, it is said to be consistent.
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Zero-stability: Zero-stability is concerned with the stability of the first characteristic polynomial
ρ(R) in the limit as h tends to zero. Thus, as h → 0, the block method (15) tends to the difference
system A1Yτ+1 − A0Yτ = 0. It can be shown that ρ(R) for the methods given in Section 3 can be
expressed as

ρ(R) = det(RA1 − A0) = ℵR2(k−1)(R− 1)2,

ℵ is a constant and k is the number of steps in the block. For instance, for k = 2, ℵ = 3
2 ,

A1 =


1 0 −5/12 1/48
0 1 −4/3 −1/3
0 0 −1 −1/4
0 0 4 −2

 , A0 =


0 1 0 29/48
0 1 0 1/3
0 0 0 −5/4
0 0 0 2

 ,

ρ(R) = det(RA1 − A0) =
3
2

R2(R− 1)2.

We note that the roots Rj of ρ(R) = 0, satisfy |Rj| ≤ 1, j = 1, 2, and for those roots with |Rj| = 1,
the multiplicity does not exceed 2.

Definition 3. The block method (15) is zero stable provided the roots Rj, j = 1, . . . , 2k, of its first characteristic
polynomial satisfy |Rj| ≤ 1, j = 1, . . . , 2k, and for those roots with |Rj| = 1, the multiplicity does not exceed 2.

Definition 4. The block method (15) is said to be convergent if it is consistent and zero-stable.

Linear stability: In order to study the linear stability of (15) we apply the method to the test
equation y′′ = −λ2y− δy′, where λ is the frequency and δ is the damping (see [45]). Letting θ = λh
and σ = δh, it can be easily shown that the application of (15) to the test equation yields

Yτ+1 = M(θ, σ)Yτ := (A1 − B1(θ, σ))−1((A0 + B0(θ, σ))Yτ , (18)

where the eigenvalues of the amplification matrix M(θ, σ) determine the stability of the method.

Definition 5. The region of stability of the method in (15) is the region in the θ, σ-plane in which the spectral
radius verifies ρ(M(θ, σ)) < 1 (see [45]).

Remark 2. We note that when δ = 0 (σ = 0) the stability interval associated with test linear model y′′ = −λy
is obtained. Specifically, for ρ(M(θ2)) = 1, we obtain the so-called interval of periodicity which is an interval
throughout which the spectral radius is less or equal to unity (see [46]).

For example, in Figures 1 and 2 the stability regions and periodicity intervals for the 2-step and
3-step methods are shown.
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Figure 1. (a) The stability region for the simplest 2-step block method plotted in the (θ, σ)-plane and
(b) the periodicity interval for the simplest 2-step block method plotted in the (θ2, ρ(M(θ2)))-plane
when δ = 0 (σ = 0).
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Figure 2. (a) The stability region for the simplest 3-step block method plotted in the (θ, σ)-plane and
(b) the periodicity interval for the simplest 3-step block method plotted in the (θ2, ρ(M(θ2)))-plane
when δ = 0 (σ = 0).

5. Numerical Experiments

The performances of the different formulations of the block methods derived in this work are
presented in this section considering some numerical experiments. Our goal was to compare the
performance of the usual formulations with the simplest formulations proposed in this paper. We will
consider the usual k-step block methods named as Bk, which are obtained taking as principal variables
in the system in Section 3 the aj, j = 0, 1, . . . , k, the yn+1, . . . , yn+k, and the y′n+1, . . . , y′n+k, and one of
the simplest k-step block methods, named as BkS (which are obtained taking as principal variables in
the system in Section 3 the aj, j = 0, 1, . . . , k the fn+1, . . . , fn+k) and the yn+1, . . . , yn+k. For problems
of the form y′′ = f (x, y) the proposed methods in Section 3.2 will be named ¯BkS. We have chosen
values of k = 4, 6, 8, 10 and have expressed the results considering the efficiency curves where we have
plotted the logarithms of the maximum absolute errors, log10 Err, over the integration interval versus
the CPU times. We can see clearly in the plots that the BkS (or ¯BkS) formulations outperform greatly
those of the Bk.
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Example 1. Consider the IVP given by

y′′ = −y′ − y− y3 + cos3(x)− sin(x) , x ∈ [0, 20]
y(0) = 1, y′(0) = 0 ,

(19)

whose exact solution is given by y(x) = cos(x). We have taken fixed stepsizes h = 20
10k , 20

20k , 20
40k , 20

80k ,
with k = 4, 6, 8, and 10. The efficiency curves are shown in Figure 3.
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Figure 3. Efficiency curves for Example 1 comparing performances of usual formulations
(B4, B6, B8, B10) and proposed ones (B4S, B6S, B8S, B10S).

Example 2 (source: [45]). Consider the IVP given by
y′′(x) +

(
13 −12
−12 13

)
y(x) = 12ε

5

(
3 2
−2 −3

)
y′(x) + ε2

(
f1(x)
f2(x)

)
, x ∈ [0, 20],

y(0) =

(
ε

ε

)
, y′(0) =

(
−4
6

)
;

(20)

with y = (y1(x), y2(x))T , f1(x) = 36
5 sin(x) + 24 sin(5x), f2(x) = − 24

5 sin(x) − 36 sin(5x), whose

exact solution is given by y(x) =

(
sin(x)− sin(5x) + ε cos(x)

sin(x) + sin(5x) + ε cos(5x)

)
. Again, we have taken fixed stepsizes

h = 20
10k , 20

20k , 20
40k , 20

80k , with k = 4, 6, 8, and 10. The efficiency curves are shown in Figure 4 for ε = 10−3.
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Figure 4. Efficiency curves for Example 2 comparing performances of usual formulations
(B4, B6, B8, B10) and proposed ones (B4S, B6S, B8S, B10S).

Example 3 (source: [44]). Consider the autonomous system of second order IVP

y′′1 = − y1√
y2

1+y2
2
; y1(0) = 1− e, y′2(0) = 0,

y′′2 = − y2√
y2

1+y2
2
; y2(0) = 0, y′2(0) =

√
1+e
1−e , x ∈ [0, 15π],

(21)

whose exact solution is y1 = cos(x), y2 = sin(x). We have taken stepsizes h = 15π
10k , 15π

20k , 15π
40k , 15π

80k with
k = 4, 6, 8, and 10. The good performance of the simplified formulations may be seen in the efficiency plots in
Figure 5.
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Figure 5. Efficiency curves for Example 3 comparing performances of usual formulations
(B4, B6, B8, B10) and proposed ones (B4S, B6S, B8S, B10S).

Example 4 (source: [47]). Finally, we consider the system of second order equations given by

y′′ =− y +
1√

y2 + z2
− 1√

u2 + w2

y(0) = 1, y′(0) = 0

z′′ =− z +
1√

y2 + z2
− 1√

u2 + w2

z(0) = 0, z′(0) = 1

u′′ =− 4u +
1√

y2 + z2
− 1√

u2 + w2

u(0) = 1, u′(0) = 0

w′′ =− 4w +
1√

y2 + z2
− 1√

u2 + w2

w(0) = 0, w′(0) = 2



(22)

on the interval [0, 2], whose exact solution is given by

y = cos(x), z = sin(x), u = cos(2x), w = sin(2x).

We have taken step sizes h = 2
10k , 2

20k , 2
40k , 2

80k with k = 4, 6, 8, and 10. The efficiency curves are shown in
Figure 6.
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Figure 6. Efficiency curves for Example 4 comparing performances of usual formulations
(B4, B6, B8, B10) and proposed ones (B4S, B6S, B8S, B10S).

6. Conclusions

This paper aimed at analyzing the linear k-step block methods for directly solving second-order
IVPs. We have presented an extensive bibliography that includes the state of the art up to this moment.
For a fixed number of steps, the different methods that appear in the literature are actually different
formulations of the same method. Not only this, but among the many formulations of a method
there are a few of them that are the most efficient from the point of view of computational cost.
Some examples have been presented to show the performance of the methods considered. We claim
that among the different formulations of the methods considered, the simplest ones in terms of
number of occurrences of the function f are the most efficient ones if standard routines based on
the classical Newton’s method are used for solving the discrete problem. This claim is supported
by the numerical experiments, where the proposed formulations use half the time or less than the
formulations that usually appear in the literature. Nevertheless, different conclusions might be possible
if more efficient ad-hoc procedures based on a suitable diagonalization of the coefficient matrices or on
suitable nonlinear splittings are employed.
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Appendix A

Algorithm A1: Algorithm to get the Formulas of the Proposed k-Step Block Methods.
Data: Number of steps in the block method: k;

Type of problem: P1 [y′′ = f (x, y, y′)] or P2 [y′′ = f (x, y)];
Result: Formulas of the k-step block method (2k for problem P1 or k + 1 for problem P2)

1 Let p(x) =
k+2
∑

j=0
ajxj;

33 if type=P1 then

4 Solve the system
{

p(j)(xn) = y(j)
n

}
j=0,1,2

⋃{
p′(xn+j) = y(1)n+j

}
j=1,...,k

in the unknowns{
aj
}

j=0,...,k+2

66 return
{

yn+j = p(xn+j), fn+j = p′′(xn+j)
}

j=1,...,k

88 go to 14
9 end

10 if type= P2 then
11 Solve the system{

p(j)(xn) = y(j)
n

}
j=0,1,2

⋃ {
p(xn+j) = yn+j

}
j=1,...,k−1

⋃{
p′(xn+k) = y(1)n+k

}
in the

unknowns
{

aj
}

j=0,...,k+2

1313 return {yn+k = p(xn+k)}
⋃ {

fn+j = p′′(xn+j)
}

j=1,...,k

14 end
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