Artículo de Revisión Riesgo de Mortalidad Asociado al Deterioro Cognitivo, Alteración de la Funcionalidad y otros Factores Clínicos en Personas Mayores de 65 años

Natanael Duarte¹, Mª Victoria Perea², Sara Mora-Simón², Valentina Ladera²

¹Departamento de Medicina, Facultad Ciencias de la Salud, Universidad Católica
Nordestana (UCNE), San Francisco de Macorís, República Dominicana. Contacto:
natanaelduarte09@gmail.com

²Área de Psicobiología. Departamento de Psicología Básica, Psicobiología y Metodología, Facultad de Psicología, Universidad de Salamanca (USAL), España

RESUMEN

Objetivo: Analizar el riesgo de mortalidad en personas mayores de 65 años asociado al deterioro cognitivo, alteración de la funcionalidad y otros factores clínicos.

Métodos: Para la realización de esta revisión se siguió los pasos de la Declaración PRISMA. Se utilizaron 32 artículos científicos consultados en las bases de datos PubMed, PsycINFO y Scopus. Se utilizó la combinación de las palabras claves: "Mortality" AND "Cognitive impairment", "Mortality risk" AND "Cognitive impairment", "Mortality risk" AND "Cognitive functioning", "Cognitive performance" AND "Risk of mortality"; así como las palabras "Functionality", "Impairment" AND "Mortality", "Functionality impairment", "Dependency" AND "Risk of mortality".

Resultados: El riesgo de mortalidad en personas mayores de 65 años de edad con deterioro cognitivo y alteración de la funcionalidad es mayor sin importar edad, género, nivel educacional y estilo de vida. Los casos de deterioro cognitivo severo tienen mayor riesgo de mortalidad, aunque se resalta que el riesgo de mortalidad es 2,415 veces mayor en personas con demencia. La asociación entre deterioro cognitivo y dependencia mostró mayor riesgo de mortalidad en los casos que no existen alteraciones sensoriales.

Conclusión: La heterogeneidad metodológica proporciona una amplia variedad de elementos a tomar en cuenta en la valoración del funcionamiento cognitivo y la autonomía de las personas mayores de 65 años. Sin embargo, es evidente que esta población con deterioro cognitivo y alteración de la funcionalidad presentan un riesgo significativo de mortalidad.

Palabras claves: Alteración de la funcionalidad, dependencia, deterioro cognitivo, mortalidad, riesgo de mortalidad.

82

ABSTRACT

Objective: To analyze the risk of mortality in people over 65 years associated with cognitive impairment, functional impairment and other clinical factors.

Methods: To carry out this review, we followed the steps of the PRISMA Declaration. 32 scientific articles were consulted in PubMed, PsycINFO and Scopus databases. The combination of keywords was used: "Mortality" AND "Cognitive impairment", "Mortality risk" AND "Cognitive impairment "," Mortality risk "AND" Cognitive functioning "," Cognitive performance "AND" Risk of mortality "; as well as the words "Functionality", "Impairment" AND "Mortality", "Functionality impairment", "Dependency" AND "Risk of mortality". Results: The risk of mortality in people over 65 years of age with cognitive impairment and functional impairment is greater regardless of age, gender, educational level and lifestyle. Cases of severe cognitive impairment have a higher risk of mortality, although it is noted that the risk of mortality is 2,415 times higher in people with dementia. The association between cognitive impairment and dependence showed a higher risk of mortality in cases where there are no sensory alterations.

Conclusion: Methodological heterogeneity provides a wide variety of elements to take into account in the assessment of cognitive functioning and autonomy in people over 65 years. However, it is clear that this population with cognitive impairment and functional impairment present a significant risk of mortality.

Keywords: Functional impairment, dependence, cognitive impairment, mortality, mortality risk.

INTRODUCCIÓN

El número de personas que alcanzan la vejez es cada vez mayor, especialmente en los países de bajos y medianos ingresos, debido a la transición demográfica que continúan experimentando, acompañado esto con un aumento en la prevalencia de enfermedades crónicas no transmisibles relacionadas con la edad [1].

Para el año 2050 se estima que la población de personas mayores alcance cifras de hasta 2 millones; resaltando que el 22% de la población total tendrá más de 60

años y el 4,4% más de 80 años de edad. Acontecido todo esto con la llamada "epidemia gris" que conllevará a una mayor carga de enfermedades crónicas, deterioro funcional y discapacidad, lo que constituirá un desafio para los programas de salud y seguridad social [2].

La calidad de vida de las personas mayores depende de múltiples factores sanitarios, especialmente el estado cognitivo y la capacidad funcional. Estos, debido a los cambios fisiológicos típicos del proceso de envejecimiento, son más susceptibles a presentar enfermedades crónicas y disminución funcional, asociado con un aumento en el riesgo de mortalidad [3-5].

El deterioro cognitivo (DC) es un síndrome clínico caracterizado por evidencias de un rendimiento más bajo en uno o más dominios cognitivos que sea mayor de lo que se esperaría para la edad y los educativos antecedentes paciente. Esta entidad clínica puede afectar una variedad de dominios cognitivos como memoria, función atención, ejecutiva, lenguaje habilidades visoespaciales [7] Representa una importante amenaza para salud pública debido a sus consecuencias psicosociales económicas adversas, caracterizado por un mayor riesgo de cuidados domiciliarios intensivos, uso servicios sanitarios, institucionalización y mortalidad [6]. Dentro del DC existe una entidad conocida como deterioro cognitivo leve (DCL), la cual se caracteriza por alteraciones en el funcionamiento cognitivo (en una o más funciones cognitivas), con poca o ninguna repercusión sobre la autonomía funcional de las actividades instrumentales de la vida diaria (AIVD) en ausencia de signos clínicos de demencia [7, 8].

Por otro lado, se destaca la dependencia como la necesidad frecuente de ayuda o cuidado por parte de otra persona, más allá de lo que habitualmente es requerido por un adulto sano, producto en muchas ocasiones de una discapacidad [9]. Ahora bien, muchos autores han sugerido que la limitación funcional en adultos mayores se asocia con un riesgo elevado para desarrollar DC

El DC es considerado una de las principales causas de morbilidad en personas mayores [10], mientras que la dependencia física es un factor determinante asociado a mortalidad a corto plazo e institucionalización, debido a la mayor necesidad de atención y a la complejidad de la misma [11].

En Europa, entre el 21-27% de las personas mayores de 65 años de edad presentan DC; y entre el 32-54% de los mismos presentan dificultades en la realización de las actividades de la vida diaria (AVD). Demostrando esto que las personas mayores con DC son estadísticamente más propensas a ser funcionalmente dependientes [4].

En República Dominicana, el 13,2% de las personas mayores de 65 años de edad presentan DC [35]; mientras que la prevalencia de dependencia es mayor en hombres mayores de 65 años de edad (2,8%), aunque se resalta que es más significativa en mujeres mayores de 80 años de edad (29,6%) [9].

Además, la disminución rápida en el funcionamiento físico se correlaciona de manera positiva con

un mayor riesgo de mortalidad, mientras que la presencia limitaciones en la realización de las AVD y AIVD se asocia de manera significativa con la calidad de vida personas mayores [11]. asociación dependencia, entre enfermedades crónicas y deterioro en la percepción de la salud física y consideradas mental son como independientes predictores mortalidad en personas de edad avanzada [12].

Por lo antes expuesto, el objetivo de la presente revisión es analizar el riesgo de mortalidad en personas mayores de 65 años de edad asociado al DC y alteración de la funcionalidad, teniendo en cuenta los factores demográficos, socioculturales y de salud cardiovascular de la población en estudio.

METODOS

Materiales

Para la realización de la presente revisión se han utilizado para su análisis un total de 32 artículos, todos ellos de investigación empírica, consultados en las bases de datos PubMed, PsycINFO y Scopus. En la Tabla 1 se muestran las características más relevantes de los artículos utilizados para esta revisión.

Procedimiento

La estrategia de búsqueda que se ha realizado en la presente revisión sigue los pasos de la Declaración PRISMA [37].

La búsqueda se realizó durante los meses de enero y febrero de 2018, utilizando la combinación de las palabras claves: "Mortality" AND "Cognitive impairment", "Mortality risk" AND "Cognitive impairment", "Mortality risk" AND "Cognitive "Cognitive functioning", performance" **AND** "Risk mortality"; así como las palabras "Impairment" "Functionality", AND "Mortality", "Functionality impairment", "Dependency" AND "Risk of mortality". Estas palabras claves debían aparecer bien en el título, en el resumen y/o bien en las palabras claves.

En primer lugar, se realizó una búsqueda general en PubMed con palabras "Mortality" "Cognitive impairment", "Mortality risk" AND "Cognitive impairment", utilizando el intervalo de tiempo 2013-2018. Seguidamente incluyeron palabras más específicas para filtrar la búsqueda: "Mortality risk" AND "Cognitive functioning", "Cognitive performance" "Risk of mortality", "Functionality", "Impairment" AND "Mortality", "Functionality impairment", "Dependency" "Risk AND mortality". En esta base de datos se encontraron un total de artículos, para posteriormente realizar una selección de aquellos artículos que cumplieran con los criterios de inclusión y exclusión planteados.

En segundo lugar, se realizó una búsqueda en PsycINFO y Scopus, durante el mismo período de tiempo señalado, con las mismas palabras claves utilizadas en la primera base de datos. En esta segunda búsqueda se encontró un total de 3.514 artículos; PsycINFO (n=890) y Scopus (n=2.624).

Todos estos datos fueron registrados en una base de datos creada con el procesador de datos Excel 2013, para planificación posterior de las fases de filtrado y selección de los artículos finales para la revisión; considerando los criterios de inclusión y exclusión planteados en esta investigación.

Criterios de inclusión: a) año de publicación comprendido entre el 2013-2018; b) los estudios deben trabajar con población adulta mayor (≥65 años de edad); c) los estudios deben trabajar población con deterioro diagnosticada con cognitivo de y/o alteración funcionalidad riesgo y el mortalidad asociado; d) artículos redactados en inglés o español; e) disponibles estudios a completo; f) artículos que posean las características de estudio empírico, revisión sistemática o meta-análisis.

Criterios de exclusión: a) los trabajaban estudios con otra población (niños, adolescentes o adultos jóvenes); b) los estudios tenían como objetivo el deterioro cognitivo sin tener en cuenta el riesgo de mortalidad y/o alteración de la funcionalidad: investigaciones cuyo objetivo sea el riesgo de mortalidad asociado a otras patologías neurodegenerativas; d) artículos duplicados; e) estudios que valoraron el riesgo de mortalidad en declive cognitivo.

La primera fase del filtrado consistió en la eliminación de aquellos artículos duplicados (n=2.688), con un consecuente cribado (n=4.185), donde se tuvieron en cuenta los criterios de inclusión "a, d y e"; dejando como resultado preliminar un total de 1.308 artículos disponibles a texto completo.

En la segunda fase de filtrado, se tuvieron en cuenta los criterios de inclusión "b, c y f"; arrojando como resultado final un total de 32 artículos.

El procedimiento seguido en la selección de artículos se puede observar en el diagrama de flujo presentado en la Figura 1.

Análisis de la información

Después de la recopilación, etiquetado y organización de los artículos científicos se procedió a su lectura completa para su posterior análisis teniendo en cuenta el orden alfabético del primer autor de cada artículo. Los datos fueron categorizados la 1: en presentando el autor/es (año), objetivo investigación, la de muestra, tipo de diseño metodológico e instrumentos utilizados.

La información fue presentada teniendo en cuenta: a) riesgo de mortalidad asociada al deterioro cognitivo; b) riesgo de mortalidad la severidiad asociado a deterioro cognitivo; c) riesgo de mortalidad asociado a alteración de funcionalidad; d) factores demográficos, socioculturales y de salud cardiovascular asociados al riesgo de mortalidad en personas mayores de 65 años con deterior cognitivo V alteración de la funcionalidad.

RESULTADOS

Riesgo de mortalidad asociado a deterioro cognitivo

El DC es una entidad clínica donde se puede ver comprometidas uno o más dominios cognitivos, contribuyendo de manera significativa con el riesgo de mortalidad.

De los 32 articulos seleccionados 7 señalan que las personas mayores de 65 años de edad con DC presentan un riesgo de mortalidad significativo.

Al realizar el análisis del modelo de regresión de Cox, el DC se muestra como un predictor de mortalidad sin importar edad, género y estilo de vida [13], aumentando el riesgo en un 42% con una tasa de letalidad anual de 74,2 por cada 1.000 personas y una reducción en el tiempo de supervivencia (7,8 años) [14]. De forma global, el DC se asoció con un aumento significativo en el riesgo de

mortalidad (cociente de riesgos instantáneos [HR]=2,06; *p*<0,001) [15].

En relación al riesgo de mortalidad intrahospitalaria en personas con DC, el riesgo fue significativo [16], siendo mucho mayor en los casos de DC en asociación con delirium (23,0 muertes/100 pacientes mensuales) [17], con elevadas probabilidades de mortalidad intrahospitalaria a los 6 meses (HR=1,53; p=0,02) [18]. No obstante a los hallazgos presentados, otras investigaciones sustentan que el DC no ejerció ninguna influencia sobre el riesgo de mortalidad a los 12 meses de seguimiento en sus participantes [19].

Riesgo de mortalidad asociado a la severidad del deterioro cognitivo

16 de los 32 artículos consultados para esta revisión exponen sobre el riesgo de mortalidad en personas mayores de 65 años de edad asociado a la severidad del DC.

De acuerdo a la severidad del DC, las personas con DCL presentaron un riesgo relativo de mortalidad (HR=2,50; *p*>0,05) [20]; destacando que las personas con esta entidad tenían mayores probabilidades progresar de demencia mayor riesgo de V mortalidad a los años 6 de seguimiento (HR=5,88; p<0,001) [21].

En los casos de DC moderadosevero, el riesgo de mortalidad fue significativamente mayor [22], representando el 47,5% de todos los casos [23], con elevadas tasas de mortalidad intrahospitalaria [24], así como con altas probabilidades de readmisión hospitalaria mortalidad los 6 en meses (HR posteriores ajustado=1,60; p=0,04) [18]. Al realizar el análisis del modelo de regresión de Cox, el riesgo de mortalidad fue significativamente mayor en los casos de DC severo (HR ajustado=1,47; p < 0.001) en comparación con los casos de DC moderado (HR ajustado=1,38; [25]. *p*<0,001) Algunos autores estiman que el riesgo de mortalidad en personas con DC severo puede ser de hasta 80% (HR=1,77; *p*=0,0038) [26]. Mientras que otros sustentan que el riesgo de mortalidad es mayor en personas con DC moderadoo $(HR=2.81; p<0.001)^{[27]}$.

En el análisis de las curvas de supervivencia de Kaplan-Meier, las personas con DC severo presentaron menos probabilidades supervivencia (HR=2,68; p<0,001) [15], probabilidades más significativas en los hombres (HR=1,90; p=0,009) [26] y aquellas personas que presentaron discapacidad física asociada (HR=2,084; *p*=0,010) [29]. El tiempo de superviviencia promedio personas con DC moderado fue de 77,5 meses (p=0.003) [30], mientras que en otras investigaciones, la para supervivencia media moderado fue de 640 días y para DC severo de 521 días [25].

La probabilidad de mortalidad fue 2,415 veces mayor en personas con demencia [31], aunque se considera

triple riesgo que el es en comparación con pacientes con DC demencial [32]. Tomando cuenta las variantes clínicas de la demencia, el riesgo de mortalidad a los 4 años de seguimiento fue mayor en personas con demencia vascular en comparación con aquellos con enfermedad de Alzheimer [33]. Los pacientes con demencia severa presentaron la menor tasa supervivencia (252,6 días) y mayor riesgo de mortalidad (HR = 1,64; p=0.041) [34].

Riesgo de mortalidad asociado a alteración de la funcionalidad

De los 32 artículos seleccionados 11 valoraron el riesgo de mortalidad en personas mayores de 65 años de edad con alteración de la funcionalidad.

La dependencia (HR=3,14) y el estado de fragilidad (HR=4,22) son factores de riesgo para mortalidad, independientemente de la edad, sexo y nivel educacional [37]. El número de limitaciones en las AVD se asocia con un aumento monótono en el riesgo de mortalidad [25], mientras que la fragilidad física y multidimensional se asoció con el inicio de la dependencia y el riesgo de mortalidad anual [38]. El declive en la función física (Odd ratios [OR]=2,190;p=0.022), puntuación del Cumulative Illness Rating Scale for Geriatrics (CIRS-G) considerados fueron factores asociados a mortalidad a los 6 meses de seguimiento (OR=4,076; p=0,006) [39]

Las personas de igual o mayor de 80 años de edad con discapacidad y con la existencia de multimorbilidad se asoció con un aumento del riesgo de mortalidad en un 72% (HR=4,76; p<0,001) en comparación con los adultos jóvenes con discapacidad y con cuatro o más morbilidades crónicas (HR=1,54; p<0,001) [40].

La presencia de catéter urinario (OR=3,2; p=0,0036), encontrarse en alimentación enteral (OR=2,0;p=0,008), padecer de enfermedad pulmonar obstructiva crónica (OR=3,4; p=0.011) presentar \mathbf{v} por úlceras decúbito activas p=0.0037) (OR=2,7;fueron considerados factores de riesgo para mortalidad al año [41]. El riesgo de mortalidad fue significativamente mayor en personas con DC sin alteraciones sensoriales (HR=1,496; p=0,00). Ahora bien, el riesgo fue mayor en personas con defectos auditivos y DC (HR=1,614; *p*=0,00) y personas con defectos sensoriales duales (HR=1,980; p=0,00) [42]. En el caso de pacientes en polifarmacia, el mortalidad fue riesgo de (HR significativamente mayor ajustado = 2,19; p=0,04) [43].

La presencia de deterioro en las AVD en combinación con impedimentos en el Time Up and Go Test (TUG) se asociaron significativamente con el riesgo de mortalidad al año. Además, la asociación descrita en asociación con bajas puntuaciones en el Mini Mental State Examination (MMSE)

fueron predictores de mortalidad al año (OR=0,64; *p*=0,0048) [44].

El riesgo de mortalidad fue mayor personas presentaban que fragilidad en combinación dependencia y morbilidad múltiple [45]. Las personas con discapacidad física presentaron un riesgo de mortalidad significativo (HR= 2,314; p<0,001); y sin tener en cuenta la presencia de DCL o DC moderadosevero, el riesgo se mantuvo igual (HR no ajustada 2,179; p=0,016 para DCL; HR no ajustado 3,355; p<0,001 para DC moderado-severo) [29].

Factores demográficos, socioculturales de salud \mathbf{y} cardiovascular asociados al riesgo de mortalidad en personas mayores de 65 años con deterioro cognitivo y alteración de la funcionalidad 28 artículos de los 32 consultados valoraron los factores sociodemográficos riesgo y de cardiovascular en su población objeto de estudio.

El género masculino [13, 23, 27, 28, 30], la edad avanzada [13, 14, 16, 18-21, 23, 24, 27-29, 32, ^{33]}, la presencia de antecedentes de tabaquismo y alcoholismo [23, 25, 28, 46], ser usuario de un hogar de vida asistida para personas mayores [13, 24, ^{31, 34]}, el índice de masa corporal (IMC) por debajo de lo normal, bajos niveles de colesterol de alta densidad (HDL), glucosa en sangre y albúmina plasmática [13, 15, 17, 21, 23, 46], los estados depresivos [13, 14, 16, 27, 29], la presencia así como de enfermedades crónicas como

hipertensión arterial, enfermedad coronaria, enfermedad cerebrovascular, diabetes mellitus y cáncer [14, 18, 21-23, 25, 27, 28, 32, 34, 46], fueron los factores de riesgo más significativos asociados al riesgo de mortalidad en personas mayores de 65 años con DC.

Por otro parte, tener ≥ 10 años de educación se consideró un factor protector que redujo el riesgo de mortalidad (HR ajustado =0,82; p<0,01) [25].

Un dato importante a destacar es que, el hábito de fumar y la hipertensión arterial ejercen efectos protectores en contra de la transición de un estado cognitivo normal a DCL clínico, y en contra de la transición de DCL a demencia. Pero un efecto que protege contra la demencia promueve la mortalidad [46]. En los casos de personas con hipercolesterolemia se registró una reducción significativa en el riesgo de mortalidad [14].

El deterioro en el comportamiento social, disminución de la espontaneidad, la mala higiene, excesiva emocionalidad y la irritabilidad fueron otros facotres tomados en cuenta para asociarse con un mayor riesgo de mortalidad [32]

El género masculino [39, 42], la edad avanzada [37, 45], la institucionalización [39], la polifarmacia [43], el deterioro sensorial [42], la presencia de úlceras

por decúbito activas [41], y enfermedades crónicas [45], fueron las características más destacadas asociadas al riesgo de mortalidad en personas con alteración de la funcionaldad.

DISCUSIÓN

Con el aumento de la esperanza de vida, parece ser que la prevalencia enfermedades crónicas adquirido gran auge, siendo este el caso del DC y la alteración de la funcionalidad. Los resultados obtenidos sugieren que las personas mayores de 65 años de edad con DC mayor riesgo presentan mortalidad [13-18]; aunque algunos autores sustentan que el DC no tiene ningún efecto sobre el riesgo de mortalidad en esta población [19]. No obstante a la discrepancia obtenidos, resultados muchas investigaciones han demostrado que riesgo de mortalidad significativamente mayor en personas con DC [47]; exhibiendo hasta un 30% de veces probabilidades de fallecer [48].

Al analizar el riesgo de mortalidad asociado a la severidad del DC, nuestros resultados indican que las personas con DCL presentan mayores probabilidades de progresar a demencia y por ende mayor riesgo de mortalidad [20, 21]; siendo el riesgo de mortalidad mayor si se encuentra asociado con otras patologías crónicas [49-53].

En los casos del DC moderadosevero, los resultados sugieren que las personas mayores de 65 años con esta entidad clínica presentan una menor tasa de supervivencia y un riesgo de mortalidad significativamente mayor [14, 15, 18, 22-30]. En el caso de la demencia, muchos autores explican que las personas demencia, especialmente demencia vascular, presentan mayor riesgo de mortalidad [31-34, 46]. Aunque se ha sugerido que las personas con DC severo presentan un riesgo de mortalidad alto, el riesgo es tres veces mayor en personas demencia [50, 51, 54, 55].

Los datos indican que el deterioro funcional y el estado de fragilidad considerados factores predicen el riesgo de dependencia, los cuales son utilizados estimadores del riesgo mortalidad en personas mayores de 65 años; siendo el riesgo más significativo en asociación con el número de limitaciones funcionales, la multimorbilidad, los defectos sensoriales y la polifarmacia [16, 25, 29, ^{37-45]}. En la literatura científica se expone que, la dependencia con requerimiento de asistencia en más de 7 AVD, así como el deterioro del estado general de salud y la velocidad en la marcha, se asociaron con mayor riesgo de mortalidad [56, 57]

Los factores sociodemográficos, socioculturales y de salud cardiovascular en personas mayores de 65 años con DC parecen influir en el riesgo de mortalidad, particularmente el género

masculino, la edad avanzada, vivir en una institución para personas mayores, tener IMC por debajo de lo normal, el hábito de fumar, el consumo de alcohol, el sedentarismo, la presencia de enfermedades crónicas y las bajas puntuaciones en el MMSE [13-16, 20, 21, 23, ^{25, 26, 30-32, 34, 46}]. Muchos estudios han demostrado la existencia de una clara tendencia en el aumento del riesgo de mortalidad asociado a los factores sociodemográficos y de cardiovascular, salud haciendo hincapiés en el género masculino, la edad avanzada y comorbilidad asociada [55, 58].

En el caso de las personas con alteración de la funcionalidad, ser que el riesgo parece mortalidad es mayor en personas del género masculino, con edad avanzada, deterioro sensorial, comorbilidades asociadas, encontrarse polifarmacia, en presentar mayor dependencia en las AVD y bajas puntuaciones en el índice de Barthel [37-45]. Algunos investigadores sustentan que las variables que se relacionaron de forma independiente con el riesgo de mortalidad asociadas dependencia fueron el género masculino, el número de comorbilidades, número el ingresos hospitalarios durante años anteriores y la existencia y grado de severidad de las úlceras por presión

CONCLUSIÓN

El DC y la dependencia son condiciones de importante relevancia en personas mayores de 65 años de edad, especialmente por su relación con el riesgo de mortalidad de los mismos. Las personas con DC presentan un riesgo de mortalidad relativamente significativo; resaltando que el mismo es mayor en los casos de DC moderado-severo.

En cambio, la dependencia en asociación con el número de limitaciones en la realización de las AVD y AIVD y el grado de deterioro funcional se asocian significativamente con el riesgo de mortalidad.

La edad avanzada, el género presencia masculino, la tabaquismo, antecendetes de deterioro funcional, alcoholismo, nutricionales alteraciones y enfermedades crónicas fueron las características más significativas asociadas al riesgo de mortalidad en personas mayores de 65 años con deterioro cognitivo y alteración de la funcionalidad.

En vista de los resultados obtenidos, sería recomendable llevar a cabo investigaciones en las que se valore el estudio del riesgo de mortalidad en personas con deterioro cognitivo y alteración de la funcionalidad, asociado al tratamiento médico paliativo de conidicones crónicas que afectan el estado general de salud.

REFERENCIAS BIBLIOGRAFICAS

- 1. Dotchin CL, Paddick S-M, Gray WK, Kisoli A, Orega G, Longdon AR, et al. The association between disability and cognitive impairment in an elderly Tanzanian population. **Epidemiol** Glob Health. 2015;5(1):57-64.
- 2. Turusheva Frolova E, Α, Korystina Zelenukha D, Tadjibaev P, Gurina N, et al. Association between anemia, physical performance, dependency and mortality in older adults in the North-West region Russia. JARCP. 2015;4:34.
- 3. Avelino-Silva TJ, Farfel JM, Curiati JA, Amaral JR, Campora F, Jacob-Filho W. Comprehensive geriatric assessment predicts mortality and adverse outcomes in hospitalized older adults. BMC Geriatr. 2014;14:129.
- Millán-Calenti JC, Tubío J, Pita-Fernández S, Rochette S, Lorenzo T, Maseda A. Cognitive impairment as predictor of functional dependence in an elderly sample. Arch Gerontol Geriatr. 2012;54(1):197-201.
- 5. Ren L, Zheng Y, Wu L, Gu Y, He Y, Jiang B, et al. Investigation of the prevalence of Cognitive Impairment and its risk factors within the elderly population in Shanghai, China. Sci Rep. 2018;8(1):3575.
- 6. Zheng J, Liu J, An R. Functional limitation and cognitive impairment among 80+ year old Chinese. Australas J Ageing. 2016;35(4):266-72.

- Albert MS, DeKosky ST, Dickson D, Dubois B, Feldman HH, Fox NC, et al. The diagnosis of mild cognitive impairment due to Alzheimer's disease: Recommendations from the National Institute on Aging-Alzheimer's Association workgroups diagnostic on guidelines for Alzheimer's disease. Alzheimers Dement. 2011;7(3):270-9.
- 8. Stephan BCM, Hunter S, Harris D, Llewellyn DJ, Siervo M, Matthews FE, et al. The neuropathological profile of mild cognitive impairment (MCI): a systematic review. Mol Psychiatry. 2012;17(11):1056.
- 9. Sousa RM, Ferri CP, Acosta D, Guerra M, Huang Y, Jacob K, et al. The contribution of chronic diseases to the prevalence of dependence among older people in Latin America, China and India: a 10/66 Dementia Research Group population-based survey. BMC Geriatr. 2010;10(1):53.
- 10. Todd S, Barr S, Roberts M, Passmore AP. Survival in dementia and predictors of mortality: a review. Int J Geriatr Psychiatry. 2013;28(11):1109-24.
- 11. Yeh K-P, Lin M-H, Liu L-K, Chen L-Y, Peng L-N, Chen L-K. Functional decline and mortality in long-term care settings: Static and dynamic approach. J Clin Gerontol and Geriatr. 2014;5(1):13-7.
- 12. Gené Badia J, Borràs Santos A, Contel Segura JC, Terén CA, González LC, Ramírez EL, et al. Predictors of mortality among

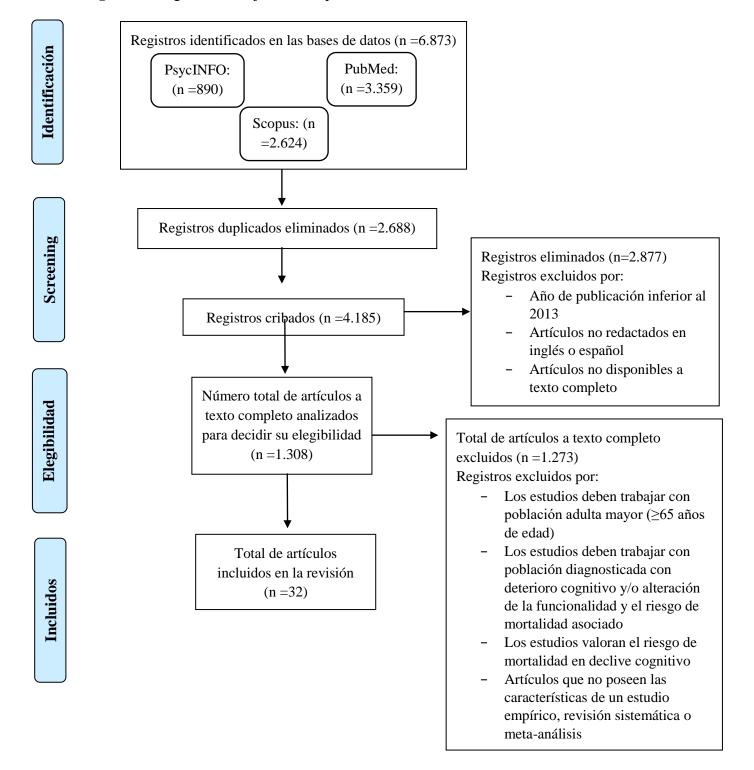
- elderly dependent home care patients. BMC Health Serv Res. 2013;13:316.
- 13. Farid K, Zhang Y, Bachelier D, Gilson P, Teixeira A, Safar ME, et al. Cognitive impairment and malnutrition, predictors of all-cause mortality in hospitalized elderly subjects with cardiovascular disease. Arch Cardiovasc Dis. 2013;106(4):188-95.
- 14. Luck T, Riedel-Heller SG, Roehr S, Wiese B, van der Leeden C, Heser K, et al. Mortality in Incident Cognitive Impairment: Results of the Prospective AgeCoDe Study. J Am Geriatr Soc. 2017;65(4):738-46.
- 15. Wu C-Y, Chou Y-C, Huang N, Chou Y-J, Hu H-Y, Li C-P. Cognitive impairment assessed at annual geriatric health examinations predicts mortality among the elderly. Prev Med. 2014;67:28-34.
- 16. Marengoni A, Nobili A, Romano V, Tettamanti M, Pasina L, Djade S, et al. Adverse clinical events and mortality during hospitalization and 3 months after discharge in cognitively impaired elderly patients. J Gerontol A Biol Sci Med Sci. 2013;68(4):419-25.
- 17. Fogg C, Meredith P, Bridges J, Gould GP, Griffiths P. The relationship between cognitive impairment, mortality and discharge characteristics in a large cohort of older adults with unscheduled admissions to an acute hospital: A retrospective observational study. Age Ageing. 2017;46(5):794-801.

- 18. Dodson JA, Truong T-TN, Towle VR, Kerins G, Chaudhry SI. Cognitive Impairment in Older Adults with Heart Failure: Prevalence, Documentation, and Impact on Outcomes. Am J Med. 2013;126(2):120-6.
- 19. Power C, Duffy R, Bates H, Healy M, Gleeson P, Lawlor BA, et al. The detection, diagnosis, and impact of cognitive impairment among inpatients aged 65 years and over in an Irish general hospital—A prospective observational study. Int Psychogeriatr. 2017;29(11):1879-88.
- 20. Connors MH, Ames D, Boundy K, Clarnette R, Kurrle S, Mander A, et al. Mortality in Mild Cognitive Impairment: A Longitudinal Study in Memory Clinics. J Alzheimers Dis. 27 de 2016;54(1):149-55.
- 21. Lipnicki DM, Crawford J, Kochan NA, Trollor JN, Draper B, Reppermund S, et al. Risk Factors for Mild Cognitive Impairment, Dementia and Mortality: The Sydney Memory and Ageing Study. J Am Med Dir Assoc. 2017;18(5):388-95.
- 22. Weidung B, Littbrand H, Nordström P, Carlberg B, Gustafson Y. The association between SBP and mortality risk differs with level of cognitive function in very old individuals. J Hypertens. 2016;34(4):745-52.
- 23. Gao S, Jin Y, Unverzagt FW, Cheng Y, Su L, Wang C, et al. Cognitive function, body mass index and mortality in a rural elderly Chinese cohort. Arch Public Health. 2014;72(1):9.

- 24. Bliemel C, Lechler P, Oberkircher L, Colcuc C, Balzer-Geldsetzer M, Dodel R, et al. Effect of preexisting cognitive impairment on in-patient treatment and discharge management among elderly patients with hip fractures. Dement Geriatr Cogn Disord. 2015;40(1-2):33-43.
- 25. An R, Liu GG. Cognitive impairment and mortality among the oldest-old Chinese. Int J Geriatr Psychiatry. 2016;31(12):1345-53.
- 26. Perna L, Wahl H-W, Mons U, Saum K-U, Holleczek B, Brenner H. Cognitive impairment, all-cause and cause-specific mortality among non-demented older adults. Age Ageing. 2015;44(3):445-51.
- 27. Iwasa H, Kai I, Yoshida Y, Suzuki T, Kim H, Yoshida H. Global cognition and 8-year survival among Japanese community-dwelling older adults. Int J Geriatr Psychiatry. 2013;28(8):841-9.
- 28. Katsoulis M, **Kyrozis** A, Trichopoulou A, Bamia C, Trichopoulos Lagiou D, Р. Cognitive impairment and cancer mortality: A biological or health care explanation? Cancer Causes Control. 2014;25(11):1565-70.
- 29. Yu W-C, Chou M-Y, Peng L-N, Lin Y-T, Liang C-K, Chen L-K. Synergistic effects of cognitive impairment on physical disability in all-cause mortality among men aged 80 years and over: Results from longitudinal older veterans study. PLoS ONE. 2017;12(7):e0181741.

- 30. Takata Y, Ansai T, Soh I, Awano S, Nakamichi I, Akifusa S, et al. Cognitive function and 10 year mortality in an 85 year-old community-dwelling population. Clin Interv Aging. 2014;9:1691-9.
- 31. Meng X, D'Arcy C. Mortality and morbidity hazards associated with cognitive status in seniors: A Canadian population prospective cohort study. Asia Pac Psychiatry. 2013;5(3):175-82.
- 32. Park JE, Lee J-Y, Suh G-H, Kim B-S, Cho MJ. Mortality rates and predictors in community-dwelling elderly individuals with cognitive impairment: an eight-year follow-up after initial assessment. Int Psychogeriatr. 2014;26(8):1295-304.
- 33. Paddick S-M, Kisoli A, Dotchin CL, Gray WK, Chaote P, Longdon A, et al. Mortality rates in community-dwelling Tanzanians with dementia and mild cognitive impairment: a 4-year follow-up study. Age Ageing. 2015;44(4):636-41.
- 34. Tarazona-Santabalbina FJ, Belenguer-Varea Á, Rovira Daudi E, Salcedo Mahiques E, Cuesta Peredó D, Doménech-Pascual JR, et al. Severity of cognitive impairment as a prognostic factor for mortality and functional recovery of geriatric patients with hip fracture. Geriatr Gerontol Int. 2015;15(3):289-95.
- 35. Sosa AL, Albanese E, Stephan BCM, Dewey M, Acosta D, Ferri CP, et al. Prevalence, Distribution, and Impact of Mild Cognitive Impairment in Latin America, China, and India: A

- 10/66 Population-Based Study. PLoS Med. 2012;9(2): e1001170.
- 36. Urrútia G, Bonfill X. Declaración PRISMA: una propuesta para mejorar la publicación de revisiones sistemáticas y metaanálisis. Med Clin. 2010;135(11):507-11.
- 37. Llibre J de J, López AM, Valhuerdi A, Guerra M, Llibre-Guerra JJ, Sánchez YY, et al. Frailty, dependency and mortality predictors in a cohort of Cuban older adults, 2003-2011. MEDICC Rev. 2014;16(1):24-30.
- 38. At J, Bryce R, Prina M, Acosta D, Ferri CP, Guerra M, et al. Frailty and the prediction of dependence and mortality in low- and middle-income countries: a 10/66 population-based cohort study. BMC Med. 2015;13:138.
- 39. Hung C, Tang T, Wang C, Liu L, Peng L, Chen L. Impact of living arrangements on clinical outcomes among older patients dementia or cognitive impairment admitted to the geriatric evaluation and management unit in Taiwan. Geriatr Gerontol Int. 2017;17(Suppl 1):44-9.
- 40. Lu F-P, Chang W-C, Wu S-C. Geriatric conditions, rather than multimorbidity, as predictors of disability and mortality among octogenarians: A population-based cohort study. Geriatr Gerontol Int. 2016;16(3):345-51.
- 41. Luk JKH, Chan WK, Ng WC, Chiu PKC, Ho C, Chan TC, et al. Mortality and health services utilisation among older people with advanced cognitive impairment living in residential


- care homes. Hong Kong Med J. 2013;19(6):518-24.
- 42. Mitoku K, Masaki N, Ogata Y, Okamoto K. Vision and hearing impairments, cognitive impairment and mortality among long-term care recipients: a population-based cohort study. BMC Geriatr. 2016;16:112.
- 43. Onder G, Liperoti R, Foebel A, Fialova D, Topinkova E, van der Roest HG, et al. Polypharmacy and mortality among nursing home residents with advanced cognitive impairment: results from the SHELTER study. J Am Med Dir Assoc. 2013;14(6):450.e7-12.
- 44. Schmidt M, **Eckardt** R, Altmeppen S, Wernecke K-D, Spies C. Functional impairment prior to major non-cardiac surgery is associated mortality within one year in elderly patients with gastrointestinal, gynaecological urogenital and cancer: prospective observational cohort study. Geriatr Oncol. J 2018;9(1):53-9.
- 45. Woo J, Leung J. Multi-morbidity, dependency, and frailty singly or in combination have different impact on health outcomes. Age (Dordr). 2014;36(2):923-31.
- 46. Kryscio RJ, Abner EL, Lin Y, Cooper GE, Fardo DW, Jicha GA, et al. Adjusting for mortality when identifying risk factors for transitions to mild cognitive impairment and dementia. J Alzheimers Dis. 2013;35(4):823-32.
- 47. Cano C, Samper-Ternent R, Al S, Markides K, Ottenbacher KJ. Frailty and cognitive impairment

- as predictors of mortality in older Mexican Americans. J Nutr Health Aging. 2012;16(2):142-7.
- 48. Lee Y, Kim J, Chon D, Lee K-E, Kim J-H, Myeong S, et al. The effects of frailty and cognitive impairment on 3-year mortality in older adults. Maturitas. 2018;107:50-5.
- 49. Benedetti MG, Ginex V, Mariani E, Zati A, Cotti A, Pignotti E, et al. Cognitive impairment is a negative short-term and long-term prognostic factor in elderly patients with hip fracture. Eur J Phys Rehabil Med. 2015;51(6):9.
- 50. Ensrud KE, Lui L-Y, Paudel ML, Schousboe JT, Kats AM, Cauley JA, et al. Effects of Mobility and Cognition on Risk of Mortality in Women in Late Life: A Prospective Study. J Gerontol A Biol Sci Med Sci. 2016;71(6):759-65.
- 51. Wilson RS, Aggarwal NT, Barnes LL, Bienias JL, Leon CFM de, Evans DA. Biracial Population Study of Mortality in Mild Cognitive Impairment and Alzheimer Disease. Arch Neurol. 2009;66(6):767-72.
- 52. Schaller F, Sidelnikov E, Theiler R, Egli A, Staehelin HB, Dick W, et al. Mild to moderate cognitive impairment is a major risk factor for mortality and nursing home admission in the first year after hip fracture. Bone. 2012;51(3):347-52.
- 53. Xue H, Sun Q, Liu L, Zhou L, Liang R, He R, et al. Risk factors of transition from mild cognitive

- impairment to Alzheimer's disease and death: A cohort study. Compr Psychiatry. 2017;78:91-7.
- 54. Matusik P, Tomaszewski K, Chmielowska K, Nowak J, Nowak W, Parnicka A, et al. Severe frailty and cognitive impairment are related to higher mortality in 12-month follow-up of nursing home residents. Arch Gerontol Geriatr. 2012;55(1):22-4.
- 55. Villarejo A, Benito-León J, Trincado R, Posada IJ, Puertas-Martín V, Boix R, et al. Dementia-associated mortality at thirteen years in the NEDICES Cohort Study. J Alzheimers Dis. 2011;26(3):543-51.
- 56. Ramos LR, Simoes EJ, Albert MS. Dependence in Activities of Daily Living and Cognitive Impairment Strongly Predicted Mortality in Older Urban Residents in Brazil: A 2-Year Follow-Up. J Am Geriatr Soc. 49(9):1168-75.
- 57. Murad K, Goff DC, Morgan TM, Burke GL, Bartz TM, Kizer JR, et al. Burden of Comorbidities and Functional and Cognitive Impairments in Elderly Patients at the Initial Diagnosis of Heart Failure and Their Impact on Total Mortality: The Cardiovascular Health Study. JACC Heart Fail. 2015;3(7):542-50.
- 58. Guehne U, Luck T, Busse A, Angermeyer MC, Riedel-Heller SG. Mortality in Individuals with Mild Cognitive Impairment. NED. 2007;29(3-4):226-34.

FIGURAS Y TABLAS

Figura 1. Diagrama de flujo sobre el proceso de selección de los artículos científicos

Tabla 1. Características de los artículos científicos utilizados para la revisión

Autor	Objetivo	N		Diseño	Instrumentos de medida	Análisis estadístico
(es)/año		Vivos	Fallecidos	metodológico		
An y Liu	Examinar la relación entre DC y	7.474	NE	Estudio de	AVD, Versión china del	Modelo de riesgos
(2016)	mortalidad por todas las causas en	3.042♂		cohorte	MMSE	proporcionales de Cox
	personas mayores chinas	4.432♀				Estimador de supervivencia de
		EM: 91,97 ±				Kaplan-Meier
		1.13 años				
AT et al.	Probar la validez predictiva física y	13.924	2.306	Estudio de	GMS, MNA, CSI-D, Criterios	Distribución de Poisson
(2015)	multidimensional de diferentes	6.221♂	NE	cohorte,	de Fried, CIE-10	Modelo de riesgos
	fenotipos de fragilidad en entornos de	7.703♀		poblacional		proporcionales de Cox
	América Latina, India y China	EM: 74,1 ±				
		7,0 años				
Bliemel et al.	Examinar la influencia del DC en los	402	25	Estudio de	IB, CCI, MMSE, TUG,	Pruebas t de Student de
(2015)	resultados funcionales y las tasas de	109♂	NE	cohorte,	Puntaje ASA, Clasificación	muestras independientes
	complicaciones en pacientes con	293♀		prospectivo,	Clavien-Dindo	Test exacto de Fisher
	fractura de cadera durante el	EM: 81 ± 8		observacional		Modelo de regresión linear
	tratamiento hospitalario	años				multivariable
Connors et al.	Identificar los predictores de	185	55	Estudio no	MMSE, SMAF, NPI-Q	Prueba U de Mann-Whitney
(2016)	mortalidad en pacientes con DCL	100♂	34♂	prescriptivo,		Modelo de riesgos
		85♀	21♀	observacional		proporcionales de Cox

		EM: 75,77 ±	EM: 78,55			
		6,90 años	± 7,08 años			
Dodson,	Evaluar la documentación médica	282	NE	Estudio de	CAM, MMSE, Criterios de	Prueba t de Student
Truong,	(como una medida de reconocimiento)	132♂		cohorte,	Framingham	Modelo de riesgos
Towle,	del DC en adultos mayores	150♀		prospectivo		proporcionales de Cox
Kerins y	hospitalizados por insuficiencia	EM: 80,0 ±				Prueba de suma de rangos de
Chaudhry	cardíaca y su asociación con los	8,0 años				Wilcoxon
(2013)	resultados					
Farid et al.	Determinar si el DC se correlaciona	331	110	Estudio de	MMSE	Prueba t de Student
(2013)	con un mal pronóstico en una	86♂	NE	cohorte		Prueba Chi cuadrado
	población adulta mayor hospitalizada	245♀				Modelo de regresión logística
	por enfermedades cardiovasculares	EM: 87 ± 7				Modelo de riesgos
		años				proporcionales de Cox
Fogg,	Estimar la prevalencia de DC en	19.269	NE	Estudio	CIE-10, AMT, MUST, NEWS	Prueba de Chi cuadrado
Meredith,	pacientes mayores de 75 años sin	8.245 🖔		retrospectivo,		Pruebas de Kruskal-Wallis
Bridges,	diagnóstico de demencia en admisiones	11.024♀		observacional		Modelo de análisis de la
Gould y	hospitalarias agudas, no electivas;	EM: 85,1 ±				varianza
Griffiths	describiendo las características	5,7 años				Prueba de Dunn
(2017)	clínicas, vía de atención médica,					
	mortalidad y duración de la estadía					
Gao et al.	Examinar las asociaciones entre la	2.000	473	Estudio de	CSI-D, CERAD, IU Token	Modelo de análisis de la

(2014)	función cognitiva, el IMC y la	921 <i>ð</i>	NE	cohorte	Test, IU Story Recall Task,	varianza
	mortalidad a 7 años en un cohorte	1.079♀		poblacional	Test de Fluencia Categorial	Prueba de Chi cuadrado
	chino rural de edad avanzada	EM: 71,94 ±				Modelo de riesgos
		5,16 años				proporcionales de Cox
						Estimador de supervivencia de
						Kaplan-Meier
Hung et al.	Evaluar el impacto de los arreglos de	395	63	Estudio de	IB, AIVD, CFS, GDS-5,	Prueba t de Student
(2017)	vivienda en la mortalidad y el deterioro	301♂	NE	cohorte,	MMSE, CIRS-G, MNA-SF,	Prueba U de Mann-Whitney
	funcional en pacientes mayores con	94 ♀		retrospectivo	Escala de Braden, STRATIFY	Test exacto de Fisher
	demencia o DC después del alta de una	EM: 86,8 ±				Modelo de regresión logística
	unidad de evaluación y manejo	6,07 años				multivariable
	geriátrico (GEMU) en Taiwán					
Iwasa et al.	Examinar la relación longitudinal entre	840	191	Estudio de	MMSE, TMIG-IC	Modelos de riesgos
(2013)	la función cognitiva y la mortalidad	454♂	139♂	cohorte		proporcionales de Cox
	por todas las causas entre adultos	386♀	52♀	prospectivo,		Estimador de supervivencia de
	mayores japoneses que viven en una	EM: 75,6 ±	EM: 77,6 ±	longitudinal		Kaplan-Meier
	comunidad	3,4 años	3,8 años			
Katsoulis et	Examinar si la asociación documentada	733	86	Estudio	MMSE	Modelo de riesgos
al. (2014)	entre el funcionamiento cognitivo	265♂	NE	longitudinal,		proporcionales de Cox
	subóptimo y la mortalidad por causas	468♀		prospectivo		
	cardiovasculares también se aplica a la	EM: 75,45 ±				

Anales de Medicina PUCMM

	mortalidad por cáncer	5,01 años				
Kryscio et al.	Explorar el uso de un modelo semi-	531	209	Estudio de	CDR, NART, RAVLT,	Modelo Semi-Markov
(2013)	Markov para ajustar los efectos de	196♂	NE	cohorte	WAIS-R, WRAT-4, Test de	Modelo de riesgos
	eventos competitivos y la censura de	335♀		longitudinal	Stroop, Iowa Dementia	proporcionales de Cox
	intervalos cuando examinamos los	EM: 73,2 ±			Screening Battery,	Estimador de supervivencia de
	factores de riesgo potenciales para las	7,4 años			Washington University	Kaplan-Meier
	transiciones a DCL clínico y/o				Battery, Alzheimer Disease	
	demencia				Assessment Scale, Criterios	
					del DSM-IV, NINCDS-ARDA	
Lipnicki et al.	Investigar los factores de riesgo	873	114	Estudio de	MMSE, GDS, BSIT, NART,	Modelo de regresión logística
(2017)	demográficos, de estilo de vida, de	383♂	67♂	cohorte,	TMT-A y B, Digit Symbol-	multinomial
	salud, médicos y de otro tipo para la	490♀	47 ♀	longitudinal,	Coding, Logical Memory	
	demencia, DCL y la mortalidad, y	EM: 78,7 ±	EM: 81,3 ±	poblacional	Story A delayed recall,	
	determinar en qué medida estos son	4,8 años	5,0 años		RAVLT, TRVB, TDB,	
	compartidos o únicos				COWAT, Fluencia semántica,	
					Block Design, Grooved	
					Pegboard Test	
Llibre et al.	Estimar la prevalencia de la fragilidad	2.813	608	Estudio	AGECAT, CERAD, CSI-D,	Prueba de Chi cuadrado
(2014)	y sus factores de riesgo; la incidencia	977 8	243♂	longitudinal	CIE-10, Criterios del DSM-IV,	Prueba t de Student
	de dependencia, y el riesgo de	1.836♀	365♀	prospectivo	Criterios de Fried, Gilleard's	Distribución de Poisson
	mortalidad y los predictores asociados	EM: 74 años	NE		Scale of Caregiver time,	Modelo de riesgos

					5	
					Davis's caregiver activity	proporcionales de Cox
					questionnaire	
Lu, Chang y	Examinar el impacto de las	2.441	350	Estudio de	AVD, SPMSQ, Versión china	Modelo de regresión logística
Wu (2016)	condiciones geriátricas y la	1.319♂	228♂	cohorte	del Short form of the CES-D	multivariable
	multimorbilidad en el riesgo de	1.122♀	122♀	poblacional		Modelo de riesgos
	discapacidad incidente y la mortalidad	EM: 77,5	NE			proporcionales de Cox
	entre los adultos jóvenes y viejos	años				Estimador de supervivencia de
						Kaplan-Meier
Luck et al.	Investigar el riesgo de mortalidad y el	2.089	859	Estudio de	SIDAM, GDS, Escala de	Prueba U de Mann-Whitney
(2017)	tiempo de supervivencia en casos	744 3	NE	cohorte	Lawton y Brody, Escala de	Prueba t de Student
	nuevos de DC en la vejez	1.345♀		prospectivo	Deterioro Global, Escala de	Modelo de riesgos
		EM: 81,2 ±			Demencia de Blessed,	proporcionales de Cox
		3,4 años			Criterios de CASMIN	Estimador de supervivencia de
						Kaplan-Meier
Luk et al.	Examinar la demografía, las	312	107	Estudio de	AMT, IB, NR	Pruebas t de Student de
(2013)	comorbilidades y las características	71♂	31♂	cohorte		muestras emparejadas e
	clínicas de los residentes más antiguos	241♀	76 ♀	longitudinal		independientes
	de la residencia para personas mayores	EM: 88 ± 8	EM: 89 ± 8			
	con DC avanzado	años	años			
Marengoni et	Explorar el riesgo de mortalidad de	1.201	119	Estudio	IB, SBT, CIRS-G, CIE-9	Análisis univariado
al. (2013)	acuerdo al estado cognitivo durante y	580♂	NE	longitudinal		Modelos de regresión logística

	después de tres meses de	621♀		prospectivo		
	hospitalización en personas mayores	EM: 79,1				
		años				
Meng y	Investigar el riesgo de morbilidad	2.914	1.472	Estudio	3MSE, CAMDEX, Criterios	Modelo de riesgos
D'Arcy	asociado con diferentes niveles de DC	1.038♂	NE	longitudinal,	del DSM-III-R	proporcionales de Cox
(2013)	y el riesgo de mortalidad asociado con	1.876♀		poblacional		Estimador de supervivencia de
	demencia en comparación con	RE: 65-85				Kaplan-Meier
	personas mayores cognitivamente	años				
	intactas					
Mitoku,	Evaluar la asociación entre problemas	1.754	NE	Estudio de	CIE-10, National Assessment	Prueba de Chi cuadrado
Masaki,	auditivos, visuales y mortalidad en	605♂		cohorte	Tool for determining	Prueba U de Mann-Whitney
Ogata y	personas mayores con DC	1.149♀		poblacional	eligibility for long term care	Prueba t de Studen
Okamoto		EM: 80,89 ±			insurance, Functional	Test exacto de Fisher
(2016)		7,39 años♂			Assessment measures for	Modelo de regresión logística
		EM: 82,42 ±			cognitively impaired elders	Modelo de riesgos
		6,95 años♀				proporcionales de Cox
Onder et al.	Evaluar si el efecto de la polifarmacia	822	114	Estudio	CPS, ADEPT, InterRAI	Prueba U de Mann-Whitney
(2013)	en la mortalidad difiere según la	192♂	NE	longitudinal,	LTCF, 7-point Activities of	Prueba de Chi cuadrado
	esperanza de vida estimada en una	630♀		prospectivo	Daily Living Hierarchy Scale	Modelo de riesgos
	muestra de usuarios de hogares de	EM: 84,6 ±				proporcionales de Cox
	personas mayores con DC avanzado	8,0 años				Estimador de supervivencia de

Kaplan-Meier

Paddick et al.	Informar la tasa de mortalidad para las	211	78	Estudio de	CSI-D, Criterios del DSM-IV,	Modelo de riesgos
(2015)	personas con demencia, DCL y sin	68♂	23♂	prevalencia,	NINDS-AIREN, NINCDS-	proporcionales de Cox
	deterioro a lo largo de 4 años de	143♀	55♀	poblacional	ADRDA	
	seguimiento	RE: 70-85	RE: 85 años			
		años o más	o más			
Park, Lee,	Evaluar las tasas de mortalidad y	1.035	392	Estudio	MMSE, PAS-K, Escala Katz,	Modelo de análisis de la
Suh, Kim y	predictores en personas mayores con	435♂	NE	longitudinal,	Criterios del DSM-III-R,	varianza
Cho (2014)	demencia no tratada en una comunidad	600♀		prospectivo y	NINCDS-ADRDA, NINDS-	Modelo de riesgos
	rural	EM: 77,2 ±		poblacional	AIREN	proporcionales de Cox
		6,4 años				
Perna et al.	Evaluar la asociación entre DC no	1.622	231	Estudio de	COGTEL, versión A, CIE-10	Modelo de riesgos
(2015)	progresivo hasta la demencia y la	656♂	132♂	cohorte,		proporcionales de Cox
	mortalidad por todas las causas y	966♀	99♀	observacional		Estimador de supervivencia de
	causas específicas, y la naturaleza de la	EM: 73,9 ±	NE			Kaplan-Meier
	asociación entre estas	2,8 años				
Power et al.	Examinar la prevalencia de demencia,	143	39	Estudio	CCI, GDS-4, GAI-SF, CAM,	Pruebas U de Mann-Whitney
(2017)	DCL y cognición normal en adultos	63♂	NE	prospectivo,	MMSE, MoCA, FAST, 6-CIT,	Pruebas de Kruskal-Wallis
	mayores de 65 años admitidos en un	80♀		observacional	Criterios de Petersen, Criterios	Modelos de regresión logística
	hospital general de referencia terciara a	EM: 78,2 ±			del DSM-IV	Análisis de Bootstrap
	través de cualquier ruta y bajo	7,4 años				

cualquier especialidad

Schmidt,	Investigar el valor pronóstico de los	131	37	Estudio de	MMSE, IB, Escala de Lawton	Modelo de regresión logística
Eckardt,	elementos de la evaluación geriátrica,	58♂	18♂	cohorte,	y Brody, TUG, MNA, GDS,	Estimador de supervivencia de
Altmeppen,	en particular la prueba TUG y el IB	73♀	19♀	prospectivo	CCI, ASA, POSSUM,	Kaplan-Meier
Wernecke y	para la mortalidad postoperatoria a un	EM: 71 años	EM: 71		Clasificación Clavien-Dindo	Prueba t de Student
Spies (2018)	año en pacientes mayores con cáncer		años			Prueba U de Mann-Whitney
Takata et al.	Determinar si la asociación entre la	207	120	Estudio	Versión japonesa del MMSE,	Modelo de análisis de la
(2014)	función cognitiva y la mortalidad sigue	90♂	88♂	prospectivo,	CIE-10	varianza
	presente en personas muy mayores de	117♀	32♀	transeccional		Prueba t de Student
	una comunidad japonesa	RE: ≥85 años	NE			Modelo de riesgos
						proporcionales de Cox
						Estimador de supervivencia de
						Kaplan-Meier
Tarazona et	Identificar cómo la severidad de la	1.258	710	Estudio	IB, GDS, CCI, CAM, Criterios	Prueba t de Student-Fisher
al. (2015)	demencia influye en la recuperación	311♂	NE			B 1 1 . 1 . 1 . 1 . 1 . 1 . 1
	J 1	3110	NL	retrospectivo,	del DSM-IV, Criterios de	Prueba de tendencial lineal de
	funcional y mortalidad en pacientes	947♀	NE	retrospectivo, observacional	Framingham	Mantel-Haenszel
	,	-	NE	_		
	funcional y mortalidad en pacientes	947♀	NE	_		Mantel-Haenszel
	funcional y mortalidad en pacientes mayores hospitalizados por fractura de	947♀ EM: 83,75 ±	INL	_		Mantel-Haenszel Modelo de riesgos
	funcional y mortalidad en pacientes mayores hospitalizados por fractura de	947♀ EM: 83,75 ±	INE	_		Mantel-Haenszel Modelo de riesgos proporcionales de Cox

Littbrand,	arterial con la mortalidad difería con	373♂	NE	cohorte	Criterios del DSM-IV	Modelo de riesgos
Nordström,	respecto al puntaje en el MMSE en una	742♀				proporcionales de Cox
Carlberg y	muestra representativa de personas	EM: 89,4 ±				
Gustafson	mayores	4,6 años				
(2016)						
Woo y Leung	Examinar los efectos independientes y	4.000	711	Estudio de	GDS, AIVD, Escala PASE,	Prueba de Chi cuadrado
(2014)	combinados de cuatro resultados de	2.000♂	NE	cohorte	Cardiovascular Health Study	Prueba de Wilcoxon
	salud: mortalidad, disminución de la	2.000♀			score	Estadístico C de Harrell
	función física, depresión y	RE: ≥65 años				Modelo de regresión logística
	polifarmacia					Modelo de riesgos
						proporcionales de Cox
Wu et al.	Determinar si el DC evaluado por	77.541	3.842	Estudio de	SPMSQ, BSRS-5, CIE-9	Modelo de riesgos
(2014)	medio de exámenes de salud	39.365♂	NE	cohorte		proporcionales de Cox
	geriátricos anuales se asocia con mayor	38.176♀				Estimador de supervivencia de
	mortalidad en personas mayores	EM: 73,1 ±				Kaplan-Meier
		6,6 años				
Yu et al.	Evaluar los efectos sinérgicos entre DC	305♂	89♂	Estudio de	CGA, IB, CCI, MMSE,	Prueba independiente <i>t</i> de
(2017)	y discapacidad física en hombres de 80	EM: 85,1 ±	EM: 85,1 ±	cohorte	Versión china del GDS-15	Student
	años o más de una comunidad de	4,1 años	4,1 años	prospectivo	ítem	Prueba de Chi cuadrado
	jubilados en Taiwán					Modelo de riesgos
						proporcionales de Cox

Estimador de supervivencia de

Kaplan-Meier

3MSE: Modified Mini Mental State Exam; 6-CIT: 6-item Cognitive Impairment Test; ADEPT: Advanced Dementia Prognostic Tool; AGECAT: Geriatric Mental State and its computerized algorithm; AIVD: Actividades Instrumentales de la Vida Diaria; AMT: Abbreviated Mental Test; ASA: Sociedad Americana de Anestesiología; AVD: Actividades de la Vida Diaria; BSIT: Brief Smell Identification Test; BSRS-5: 5-item Brief Symptom Rating Scale; CAM: Método para la Evaluación de la Confusión; CAMDEX: Cambridge Mental Disorders of the Elderly Examination; CASMIN: Comparative Analysis of Social Mobility in Industrial Nations; CCI: Índice de Comorbolidad de Charlson; CDR: Clinical Dementia Rating Scale; CFS: Clinical Frailty Scale; CERAD: Consortium to Establish a Registry for Alzheimer's Disease; CES-D: Escala de Depresión del Centro de Estudios Epidemiológicos; CGA: Comprehensive Geriatric Assessment; CIE: Clasificación Internacional de Enfermedades; CIRS-G: Cumulative Illness Rating Scale for Geriatrics; COGTEL: Cognitive Telephone Screening Instrument; COWAT: Controlled Oral Word Association Test; CPS: Cognitive Performance Scale; CSI-D: Community Screening Instrument for Dementia; DC: Deterioro Cognitivo; DCL: Deterioro Cognitivo Leve; DSM: Manual Diagnóstico y Estadístico de los Trastornos Mentales; EM: Edad Media; FAST: Functional Assessment Staging Tool; GAI-SF: Short form of the Geriatric Anxiety Inventory; GDS: Escala de Depresión Geriátrica; GMS: Geriatric Mental State Examination; IB: Índice de Barthel; IU: Universidad de Indiana; IMC: Índice de Masa Corporal; InterRAI LTCF: InterRAI Instrument for Long Term Care Facilities; MMSE: Mini-Mental State Examination; MNA-SF: Mini-Nutritional Assessment – Short form; MoCA: Montreal Cognitive Assessment; MUST: Malnutrition Universal Screening Tool; NART: National Adult Reading Test; NE: No Especificado; NEWS: National Early Warning Score; NINCDS-ADRDA: National Institute of Neurological and Communication Disorders and Stroke-Alzheimer's disease and Related Disorders Association; NINDS-AIREN: National Institute of Neurological Disorders and Stroke and Association Internationale pour la Recherché et l'Enseignement en Neurosciences; NPI-Q: Cuestionario de Inventario Neuropsiquiátrico; NR: Norton Score; PAS-K: Korean version of the Psychogeriatric Assessment Scale; PASE: Physical Activity Scale for the Elderly score; POSSUM: Physiological and Operative Severity Scoring system for enUmeration of Mortality and morbidity; RAVLT: Test de Aprendizaje Auditivo Verbal de Rey; RE: Rango de Edad; SBT: Short Blessed Test; SIDAM: Structured Interview for the Diagnosis of Dementia of Alzheimer Type, Multi-infarct Dementia, and Dementia of other Actiology according to DSM-III-R, DSM-IV and ICD-10; SMAF: Functional Autonomy Measurement System; SPMSQ: Short Portable Mental Status Questionnaire; STRATIFY: St. Thomas's Risk Assessment Tool in Falling Elderly Inpatients; TDB: Test de Denominación de Boston; TMIG-IC: Tokyo Metropolitan Institute of Gerontology Index Competence; TMT-A y B: Trail Making Test-A y B; TRVB: Test de Retención Visual de Benton; TUG: Time Up and Go Test; WAIS-R: Escala de Inteligencia para Adultos Revisada de Wechsler; WRAT-4: Wide Range Achievement Test-4 Reading Subtest.