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Abstract. An optimised global hybrid block method for second order singular boundary

value problems with two boundary conditions is developed. A special attention is paid to

the problems having solutions with singularities at the left end of the interval considered.

The method is a combination of the optimised hybrid formulas in [43] and a new set of

formulas. The ad hoc procedure is used just to pass the singularity and the main formulas

are applied to obtain approximations at other discrete points. Numerical experiments

show that the method is a good alternative for the problems studied.
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1. Introduction

Two-point boundary value problems occur in various applications, including fluid flow,

shock waves and geophysical models. The problems can be categorised as singular and sin-

gularly perturbed ones and we refer the reader to [4] for more information about BVPs. In

the present work we are concerned with numerical solution of two-point singular boundary

value problems (SBVPs) for ODEs. Such problems frequently occur in practical phenomena

such as reaction-diffusion processes, chemical kinetics, physiological processes, thermal-

explosion theory, electro hydro-dynamics and shallow membrane caps theory [5,9,11,13,

15,16,18,23]. Since it is not always possible to find closed form solutions of SBVPs, these
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problems are usually tackled numerically. Second order two-point SBVPs have a great sci-

entific significance, so that they attracted attention of many researchers. Here we consider

the singular boundary value problem

z′′(x) = f
�

x , z(x), z′(x)
�

, x ∈ [a, b], (1.1)

subject to one of the following types of boundary conditions (BCs):

Dirichlet: z(a) = za, z(b) = zb,

Neumann: z′(a) = z′a, z′(b) = z′
b

or

Mixed: g1

�

z(a), z′(a)
�

= νa, g2

�

z(b), z′(b)
�

= νb.

(1.2)

We also assume that the function f in (1.1) has a singularity at the left end of the integration

interval — i.e. at the point x = a. Different codes have appeared in the literature in

order to numerically deal with special cases of SBVPs. Thus, Russell and Shampine [39]

presented various numerical methods for solving SBVPs, Roul et al. proposed a high-order

numerical scheme based on a quartic B-spline optimal collocation method for nonlinear

SBVPs, Pandey et al. [27,28] considered second and fourth order finite difference methods,

and Abukhaled [1] employed a second order B-spline collocation scheme for special SBVPs.

Other approaches to solving SBVPs are discussed in [5,9,11–23,25–28,35–40,44].

The present work deals with the development and analysis of a method combining two

approaches — viz. hybrid and block methods specifically used in numerical integrators of

the initial value problems for ODEs [10,24]. For more details on hybrid and block methods

for solving different types of differential equations one can consult [6, 14, 30–34, 42] and

references therein. The paper at hand, is an extension of our earlier work. More precisely,

we combine an optimised hybrid block method for second order ODEs studied in [43]

with an ad hoc set of formulas used to treat singularities at the left end of the integration

intervals.

The subsequent sections are as follows. In Section 2, the main and an ad hoc formulas

are presented. Section 3 deals with the convergence of the method. In Section 4, we discuss

the implementation of the method. Numerical experiments are carried out in Section 5, and

concluding remarks are given in Section 6.

2. Main and Ad Hoc Formulas

Here we present the main formulas and an ad hoc strategy for the SBVP (1.1).

2.1. Main formulas

In order to derive the main formulas, we discretise the interval [a, b] as

a = x0 < x1 < x2 < · · ·< xN = b,

where xn = x0 + nh, n = 0,1, . . . , N and h = xn+1 − xn is the stepsize. Let zn be an ap-

proximation of the true solution z(x) at xn, i.e. zn ≈ z(xn). On the two-step block interval
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[xn, xn+2] with n > 0 we approximate the true solution of (1.1) by the following interpo-

lating polynomial:

z(x) ≈ψ(x) =
8
∑

j=0

η jψ j(x), (2.1)

where ψ j(x) = (x − xn)
j and η j are unknown coefficients. In order to find η j , we impose

interpolating and collocation conditions — viz.

(i) zn =ψ(xn),

(ii) z′n =ψ
′(xn),

(iii) fn+i =ψ
′′(xn+i), i = 0, p, 1,q, 2,

(iv) gn+i =ψ
′′′(xn+i), i = 0,2.

Note that zn and z′n are approximations of z(xn) and z′(xn), respectively,

fn+i ≈ f
�

xn+i, z(xn+i), z
′(xn+i)
�

,

gn+i ≈ g
�

xn+i, z(xn+i), z
′(xn+i)
�

with

g(x , z, z′) =
∂ f

∂ x
+
∂ f

∂ z
z′ +

∂ f

∂ z′
f (x , z, z′).

The above interpolation and collocation conditions lead to a system of nine equations with

nine unknowns. In the resulting system, the points xn+p and xn+q are referred to as intra-

step points in the block [xn, xn+2] with the restriction 0 < p < 1 < q < 2. Hence, we

have a system of nine equations with nine unknowns and two parameters corresponding

to two intra-step points in the block [xn, xn+2]. The system obtained can be solved by any

Computer Algebra System — e.g. by MATLAB or MATHEMATICA. We used MATHEMATICA

thus obtaining the unknown coefficients η j , j = 0,1,2, . . . , 8. Substituting η j in (2.1), we

obtain the following approximation formula:

z(x) ≈ψ(x) = α0(x)zn +α1(x)hz′n + h2
∑

i

βi(x) fn+i

+ h3
∑

j

γ j(x)gn+ j, i = 0, p, 1,q, 2, j = 0,2. (2.2)

The coefficients α0(x),α1(x),βi(x),γ j(x) depend on continuous variable x . In order to get

the main formulas at the end point of [xn, xn+2], we evaluate the approximation z(x) ≈
ψ(x) and its first derivative at xn+2. These approximations, zn+2 = ψ(xn+2) and z′n+2 =

ψ′(xn+2) are expressed in terms of unknown parameters p and q corresponding respectively

to the points xn+p and xn+q in the block [xn, xn+2]. Now we have to find appropriate values

for these parameters. For this, one can use the following optimisation strategy:
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Step 1. Expand zn+2 and z′n+2 into Taylor series about x = xn and get the truncation errors

L [z(xn+2); h] =
(2− 3pq)z(9)(xn)h

(9)

99225
+ O �h10
�

, (2.3)

L [z′(xn+2); h] =
(2− p− q)z(9)(xn)h

8

33075
+ O �h9
�

. (2.4)

Step 2. Equating the principal terms in (2.3) and (2.4) to zero yields

2− 3pq = 0,

2− p− q = 0.

Step 3. Now, solving this system, we find optimised values of p and q, viz.

p = 1−
p

3

3
≃ 0.42265, q = 1+

p
3

3
≃ 1.57735.

Note that the system in Step 2 corresponds to two curves symmetric with respect to the

diagonal p = q. Hence, it has a unique solution if 0< p < 1< q < 2.

In order to show the influence of these values of p and q, we substitute them in (2.3)

and (2.4), thus obtaining

L [z(xn+2); h] =
−z(11)(xn)h

11

58939650
+ O �h12
�

,

L [z′(xn+2); h] =
z(12)(xn)h

11

589396500
+ O �h12
�

.

The above expressions confirm the suitability of p and q found. We note that such choice

of p and q adds two accuracy orders in the approximation of z(xn+2) and three accuracy

orders in the approximation of z′(xn+2). Now, using (2.2), we get the following formulas

at the end point of the block [xn, xn+2]

zn+2 = zn + 2hz′n +
h2

105

�

37 fn + (54+ 18
p

3) fn+p + 64 fn+1

+ (54− 18
p

3) fn+q + fn+2 + 2hgn

�

,

z′n+2 = z′n +
h

105

�

19 fn + 54 fn+p + 64 fn+1 + 54 fn+q + 19 fn+2 + h(gn − gn+2)
�

.

(2.5)

Additional formulas. Up to now, we established only two approximations of the true

solution and its derivative at the point xn+2. However, one needs more equations because

of the presence of ten unknowns zn, zn+p, zn+1, zn+q, zn+2, z′n, z′n+p, z′n+1, z′n+q, z′n+2 in (2.5).

Therefore, we evaluate (2.2) and its first derivative at the points xn+p, xn+1, xn+q, so that

zn+p = zn +
(3+
p

3)hz′n
3(2+

p
3)
+

h2

11340(2+
p

3)

�

(1801+ 559
p

3) fn + (630+ 315) fn+p
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+ (400− 376
p

3) fn+1 + (990− 477
p

3) fn+q − (41+ 21
p

3) fn+2

+ h
�

(107+ 36
p

3)gn + (7+ 4
p

3)gn+2

��

,

zn+1 = zn + hz′
n
+

h2

6720

�

1171 fn+ (945+ 576
p

3) fn+p + 280 fn+1

+ (945− 576
p

3) fn+q + 19 fn+2 + h(67gn − 3gn+2)
�

,

zn+q = zn +
(−3+

p
3)hz′

n

3(−2+
p

3)
+

h2

11340(−2+
p

3)

�

(−1801+ 559
p

3) fn

− (990+ 477
p

3) fn+p − (400+ 376
p

3) fn+1 + (−630+ 315
p

3) fn+q

+ (41− 21
p

3) fn+2 + h
�

(−107+ 36
p

3)gn + (−7+ 4
p

3)gn+2

��

,

z′n+p = z′n +
h

3780(2+
p

3)

�

(1726+ 885
p

3) fn + (1656+ 780
p

3) fn+p

+ (96− 320
p

3) fn+1 + (396− 60
p

3) fn+q − (94+ 25
p

3) fn+2

+ h
�

(124+ 65
p

3)gn + (16+ 5
p

3)gn+2

�
�

,

z′n+1 = z′n +
h

1680

�

257 fn+ (432+ 315
p

3) fn+p + 512 fn+1+ (432− 315
p

3) fn+q

+ 47 fn+2 + 8h(gn − gn+2)
�

,

z′n+q = z′n +
h

3780(−2+
p

3)

�

(885
p

3− 1726) fn − (396+ 60
p

3) fn+p

− (96+ 320
p

3) fn+1 + (780
p

3− 1656) fn+q + (94− 25
p

3) fn+2

+ h
�

(65
p

3− 124)gn+ (5
p

3− 16)gn+2

��

. (2.6)

Remark 2.1. Formulas (2.5)-(2.6) form a two-step hybrid block-type method with two

optimised intra-step points that will be considered for n= 1(2)N−2, where N ≥ 3 is an odd

integer. All these formulas can be used starting from the second sub-interval, whereas for

the first subinterval they are not applicable because of the singularity. For the sub-interval

[x0, x1], we develop an ad hoc set of formulas.

2.2. Ad hoc formulas in the first step

In order to establish ad hoc formulas for the sub-interval [x0, x1] to bypass the singu-

larity, one has to use a procedure similar to the one used for formulas (2.5)-(2.6) but with

appropriately changed interpolation and collocation conditions. Consider the following

approximation:

z(x) ≈ φ(x) =
5
∑

j=0

κ jφ j(x) (2.7)

of the true solution of (1.1) by an interpolating polynomial on the subinterval [xn, xn+1]

with φ j(x) = (x − xn)
j and unknown coefficients κ j. In order to determine coefficients κ j ,
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we impose the following interpolating and collocation conditions:

(i) zn = φ(xn),

(ii) z′n = φ
′(xn),

(iii) fn+i = φ
′′(xn+i), i = r, s, t, 1

for intermediate points corresponding to the parameters 0< r < s < t < 1.

Proceeding in a similar way as in the previous section, we obtain the ad hoc formulas

for [x0, x1], viz.

zr = z0 + 0.0885 hz′0 + h2 (+0.0053 fr − 0.0024 fs + 0.0015 ft − 0.0006 f1) ,

zs = z0 + 0.4094hz′0+ h2 (0.0695 fr + 0.0161 fs − 0.0024 ft + 0.0006 f1) ,

zt = z0 + 0.7876hz′0+ h2 (0.1545 fr + 0.1448 fs + 0.0111 ft − 0.0003 f1) ,

z1 = z0 + hz′0 + h2 (0.2009 fr + 0.2292 fs + 0.0698 ft) ,

z′r = z′0 + h (0.1129 fr − 0.0403 fs + 0.0258 ft − 0.0099 f1) ,

z′
s
= z′

0
+ h (0.2343 fr + 0.2068 fs − 0.0478 ft + 0.0160 f1) ,

z′
t
= z′

0
+ h (0.2166 fr + 0.4061 fs + 0.1890 ft − 0.0241 f1) ,

z′1 = z′0 + h (0.2204 fr + 0.3881 fs + 0.3288 ft + 0.0625 f1) ,

(2.8)

where

r = 0.08858795951270394739554614376945,

s = 0.40946686444073471086492625206882,

t = 0.78765946176084705602524188987599.

2.3. Complete optimised global hybrid block method

Combining the main formulas (2.5)-(2.6) for n = 1(2)N − 2 and the ad hoc formu-

las (2.8), we arrive at a complete optimised global hybrid block method. Applying this

complete global method to the SBVP (1.1) yields 4N + 6 discrete approximations

�

z0, zr , zs, zt , z1, z1+p, z2, z1+q, z3, z3+p, z4, z3+q, . . . , zN

	

,
¦

z′0, z′r , z′s , z
′
t , z
′
1, z′1+p, z′2, z′1+q, z′3, z′3+p, z′4, z′3+q, . . . , z′N

©

.

On the other hand, the Eqs. (2.5)-(2.6) for n= 1(2)N −2 and the formulas (2.8) comprise

4N +4 equations. Adding two given boundary conditions (1.2) leads to a system of 4N +6

equations with 4N + 6 unknowns. The details of this method are presented below.

3. Theoretical Analysis

Here we will discuss the accuracy and convergence of the complete method for solving

SBVPs (1.1), starting with the accuracy of the main formulas (2.5)-(2.6).
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3.1. Order of accuracy

The two-step block formulas (2.5)-(2.6) may be written in the matrix form

Λ1 Zn = h Λ2 Z′
n
+ h2

Λ3 Fn + h3
Λ4 Gn, (3.1)

where Λ1,Λ2,Λ3 and Λ4 are 8× 5 matrices with constant coefficients. One can readily get

these coefficients from (2.5)-(2.6). Here, Zn,Z′n,Fn and Gn are

Zn = (zn, zn+p, zn+1, zn+q, zn+2)
T ,

Z′n = (z
′
n, z′n+p, z′n+1, z′n+q, z′n+2)

T ,

Fn = ( fn, fn+p, fn+1, fn+q, fn+2)
T ,

Gn = (gn, gn+p, gn+1, gn+q, gn+2)
T .

Assume that Y (x) is an analytical function. Consider the following difference operator

associated with the formulas (2.5)-(2.6):

L̄ [Y (xn); h] =
∑

j

ᾱ jY (xn + jh)− hβ̄ jY
′(xn + jh)− h2γ̄ jY

′′(xn + jh)

− h3δ̄ jY
′′′(xn + jh), j = 0, p, 1,q, 2, (3.2)

where ᾱ j , β̄ j , γ̄ j , δ̄ j are the j-th columns of Λ1,Λ2,Λ3 and Λ4, respectively. The main

method (2.5)-(2.6) and the difference operator (3.2) are said to be of order k if using

the Taylor series expansion of Y (xn+ jh), Y ′(xn+ jh), Y ′′(xn+ jh) and Y ′′′(xn+ jh) about

the point xn, we obtain

L̄ [Y (xn); h] = ν̄0Y (xn) + ν̄1hY ′(xn) + ν̄2h2Y ′′(xn) + · · ·+ ν̄mhmY (m)(xn) + . . .

with ν̄0 = ν̄1 = ν̄2 = · · · = ν̄k+1 = 0 and ν̄k+2 6= 0. Here, ν̄i are vectors and ν̄k+2 is

named as the vector of error constants. For the hybrid block formulas (2.5) -(2.6), we

have, ν̄0 = ν̄1 = · · · = ν̄8 = 0, and

ν̄9 =

� −1

1837080
p

3
,0,

1

1837080
p

3
,0,

−1

612360
,

1

362880
,
−1

612360
,0

�T

.

This implies at least seventh-order of accuracy of formulas (2.5)-(2.6).

Remark 3.1. Similar considerations lead to the accuracy estimates of the ad hoc formulas.

The local truncation errors of these formulas give

L [z(xr ); h] = 2.8055562× 10−6z(6)(x0)h
6 + O �h7
�

,

L [z(xs); h] = 9.1616770× 10−7z(6)(x0)h
6 + O �h7
�

,

L [z(x t ); h] = −2.9624031× 10−6z(6)(x0)h
6 + O �h7
�

,

L [z(x1); h] = 1.4172335× 10−7z(8)(x0)h
8 + O �h9
�

,
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L [z′(xr); h] = 0.0000458z(6)(x0)h
5 + O �h6
�

,

L [z′(xs); h] = −0.0000481z(6)(x0)h
5 + O �h6
�

,

L [z′(x t); h] = 0.0000260z(6)(x0)h
5 + O �h6
�

,

L [z′(x1); h] = −2.0246× 10−8z(9)(x0)h
8 + O �h9
�

.

3.2. Convergence analysis

We want to have the approximations obtained by our method to tend to the true solu-

tions when step-size tends to zero. Now we establish a convergence result for the complete

hybrid block method.

Definition 3.1. Let z(x) be the true solution of the Eq. (1.1) supplemented by any bound-

ary condition (1.2), and {z j}Nj=0 be the approximations of z(x) derived by the global hybrid

block method. The numerical method has k-th order of convergence if there exists a con-

stant C such that for all sufficiently small h one has

max
0≤ j≤N

‖z(x j)− z j‖ ≤ Chk.

The definition implies that

max
0≤ j≤N

‖z(x j)− z j‖ → 0 as h→ 0.

Theorem 3.1 (Convergence theorem). The global hybrid block method of the approximate

solution of the SBVP (1.1) supplemented by any boundary condition (1.2) has 7-th order of

convergence.

Proof. For definiteness, let us consider the Eq. (1.1) along with boundary conditions of

the Dirichlet-type. Other situations can be studied analogously. Assume that the true known

values are given by the boundary conditions — i.e. z0 = z(x0) = za and zN = z(xN ) = zb.

The other unknowns in the global hybrid block method are
�

zr , zs, zt , z1, z1+p, z2, z1+q, z3, z3+p, z4, z3+q, . . . , zN−1, zN−2+q

	

,
¦

z′
0
, z′

r
, z′

s
, z′

t
, z′

1
, z′

1+p
, z′

2
, z′

1+q
, z′

3
, z′

3+p
, z′

4
, z′

3+q
, . . . , z′

N−2+q
, z′

N

©

.

First, we describe the matrices arising in the method. Let D be the (4N + 4) × (4N + 4)

matrix defined as

D =

�

D11 D12

D21 D22

�

,

where D11 and D21 are (2N + 2)× (2N + 1) sub-matrices,

D11 =













D̄11

D̄21 D̄22

. . .

D̄k−1 k−1

D̄k k−1 D̄k k















High-Order Optimised Global Hybrid Method for Singular BVP 523

with k = (N + 1)/2, D̄ii = Id4, i = 1, . . . , k − 1,

D̄kk =







1 0 0

0 1 0

0 0 1

0 0 0





 , D̄i i−1 =







0 0 0 −1

0 0 0 −1

0 0 0 −1

0 0 0 −1





 , i = 2, . . . , k,

and D21 is a null matrix.

The (2N + 2)× (2N + 3) sub-matrices D12 and D22 have the form

D12 = h













D̃11

D̃22

. . .

D̃k−1 k−1

D̃k k













, k =
N + 1

2
,

D̃11 =







−0.0885 0 0 0

−0.4894 0 0 0

−0.7876 0 0 0

−1 0 0 0





 , D̃i i =







α1 0 0 0

α2 0 0 0

α3 0 0 0

α4 0 0 0





 , i = 2, . . . , k − 1,

D̃k k =







α1 0 0 0 0

α2 0 0 0 0

α3 0 0 0 0

α4 0 0 0 0





 ,

α1 = −
(3+
p

3)

3(2+
p

3)
, α2 = −1, α3 = −

(−3+
p

3)

3(−2+
p

3)
, α4 = −2,

D22 =













D̂11 D̂12

D̂22

. . .

D̂k−1 k−1 D̂k−1 k

D̂k k













, k =
N + 1

2
,

D̂i i =







−1 1 0 0

−1 0 1 0

−1 0 0 1

−1 0 0 0





 , i = 1, . . . , k − 1, D̂k k =







−1 1 0 0 0

−1 0 1 0 0

−1 0 0 1 0

−1 0 0 0 1





 ,

D̂i i+1 =







0 0 0 0

0 0 0 0

0 0 0 0

1 0 0 0





 , i = 1, . . . , k − 2, D̂k−1 k =







0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

1 0 0 0 0





 .
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Further, let

X =

�

X11 X12

X21 X22

�

be the (4N + 4)× (4N + 6) matrix with (2N + 2)× (2N + 3) sub-matrices X i j defined by

X11 = h













X̄11

X̄21 X̄22

0
...

X̄k−1 k−1

X̄k k−1 X̄k k













, k =
N + 1

2
,

X̄11 =







−0.0053 0.0024 −0.0015 0.0006

−0.0695 −0.0161 0.0024 −0.0006

−0.1545 −0.1448 −0.0111 0.0003

−0.2009 −0.2292 −0.0698 0





 ,

X̄ i i =







a2 a3 a4 a5

b2 b3 b4 b5

c2 c3 c4 c5

d2 d3 d4 d5





 , X̄ i i−1 =







0 0 0 a1

0 0 0 b1

0 0 0 c1

0 0 0 d1





 , i = 2, . . . , k

with

a1 = −
(1801+ 559

p
3)

11340(2+
p

3)
, b1 = −

1171

6720
,

c1 = −
(−1801+ 559

p
3)

11340(−2+
p

3)
, d1 = −

37

105
,

a2 = −
(630+ 315)

11340(2+
p

3)
, b2 = −

(945+ 576
p

3)

6720
,

c2 =
(990+ 477

p
3)

11340(−2+
p

3)
, d2 = −

(54+ 18
p

3)

105
,

a3 = −
(400− 376

p
3)

11340(2+
p

3)
, b3 = −

280

6720
,

c3 =
(400+ 376

p
3)

11340(−2+
p

3)
, d3 = −

64

105
,

a4 = −
(990− 477

p
3)

11340(2+
p

3)
, b4 = −

(945− 576
p

3)

6720
,

c4 = −
(−630+ 315

p
3)

11340(−2+
p

3)
, d4 = −

(54− 18
p

3)

105
,

a5 =
(41+ 21

p
3)

11340(2+
p

3)
, b5 = −

19

6720
,
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c5 = −
(41− 21

p
3)

11340(−2+
p

3)
, d5 = −

1

105
,

X12 = h2













X̃11

X̃21 X̃22

0
.. .

X̃k−1 k−1

X̃k k−1 X̃k k













, k =
N + 1

2
,

X̃11 is a zero square matrix of order 4,

X̃ i i =







0 0 0 m1

0 0 0 m2

0 0 0 m3

0 0 0 0





 , X̃ i i−1 =







0 0 0 l1
0 0 0 l2
0 0 0 l3
0 0 0 l4





 , i = 2, . . . , k,

l1 = −
(107+ 36

p
3)

11340(2+
p

3)
, l2 =

−67

6720
, l3 = −

(−107+ 36
p

3)

11340(−2+
p

3)
, l4 = −

2

105
,

m1 = −
(7+ 4

p
3)

11340(2+
p

3)
, m2 =

3

6720
, m3 = −

(−7+ 4
p

3)

11340(−2+
p

3)
,

X21 =













X̂11

X̂21 X̂22

0
.. .

X̂k−1 k−1

X̂k k−1 X̂k k













, k =
N + 1

2
,

X̂11 =







−0.1129 0.0403 −0.0258 0.0099

−0.2343 −0.2068 0.0478 −0.0161

−0.2166 −0.4061 −0.1890 0.0241

−0.2204 −0.3881 −0.3288 −0.0625





 ,

X̂ i i =







n2 n3 n4 n5

o2 o3 o4 o5

p2 p3 p4 p5

q2 q3 q4 q5





 , X̂ i i−1 =







0 0 0 n1

0 0 0 o1

0 0 0 p1

0 0 0 q1





 , i = 2, . . . , k,

with

n1 = −
(1726+ 885

p
3)

3780(2+
p

3)
, o1 = −

257

1680
, p1 = −

(−1726+ 885
p

3)

3780(−2+
p

3)
, q1 = −

19

105
,

n2 = −
(1656+ 780

p
3)

3780(2+
p

3)
, o2 = −

(432+ 315
p

3)

1680
, p2 =

(396+ 60
p

3)

3780(
p

3− 2)
, q2 = −

54

105
,
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n3 = −
(96− 320

p
3)

3780(2+
p

3)
, o3 = −

512

1680
, p3 =

(96+ 320
p

3)

3780(−2+
p

3)
, q3 = −

64

105
,

n4 = −
(396− 60

p
3)

3780(2+
p

3)
, o4 = −

(432− 315
p

3)

1680
, p4 =

(1656− 780
p

3)

3780(
p

3− 2)
, q4 = −

54

105
,

n5 =
(94+ 25

p
3)

3780(2+
p

3)
, o5 = −

47

1680
, p5 = −

(94− 25
p

3)

3780(−2+
p

3)
, q5 = −

19

105
,

X22 = h













X̆11

X̆21 X̆22

0
...

X̆k−1 k−1

X̆k k−1 X̆k k













, k =
N + 1

2
,

X̆11 is a zero square matrix of order 4,

X̆ i i =







0 0 0 v1

0 0 0 v2

0 0 0 v3

0 0 0 v4





 , X̆ i i−1 =







0 0 0 t1

0 0 0 t2

0 0 0 t3

0 0 0 t4





 , i = 2, . . . , k,

with

t1 = −
(124+ 65

p
3)

3780(2+
p

3)
, t2 = −

8

1680
, t3 = −

(−124+ 65
p

3)

3780(−2+
p

3)
, t4 =

−1

105
,

v1 = −
(16+ 5

p
3)

3780(2+
p

3)
, v2 =

8

1680
, v3 = −

(−16+ 5
p

3)

3780(−2+
p

3)
, v4 =

1

105
.

Now, let z(x) be the true solution of the SBVP. We define the (4N + 4)-vector Z and

(4N + 6)-vector F by

Z :=
�

z(xr ), z(xs), z(x t ), z(x1), z(x1+p), z(x2), . . . ,

z(xN−1), z(xN−2+q), z
′(x0), z

′(xr), . . . , z′(xN )
�T

,

F :=
�

f
�

x0, z(x0), z
′(x0)
�

, f
�

xr , z(xr ), z
′(xr)
�

, . . . ,

f
�

xN , z(xN ), z
′(xN )
�

, g
�

x0, z(x0), z
′(x0)
�

,

g
�

xr , z(xr ), z
′(xr)
�

, . . . , g
�

xN , z(xN ), z
′(xN )
��T

.

The representation of the global system corresponding to the optimised global method,

whose solutions are the exact values, can be written as

D(4N+4)×(4N+4)Z4N+4 + hX(4N+4)×(4N+6)F4N+6 + C4N+4 =L (h)4N+4. (3.3)
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In the above expression the subscripts denote the dimensions of the corresponding matrices.

The vector C4N+4 contains the known values — i.e.

C4N+4 = (−za,−za,−za,−za, 0, . . . , 0, zb, 0, . . . , 0)T ,

and the vector L (h)4N+4 contains the local truncation errors from

L (h) =

































































































2.8055562× 10−6z(6)(x0)h
6 + O �h7
�

· · ·
1.4172335× 10−7z(8)(x0)h

8 + O �h9
�

1

1837080
p

3
z(9)(x1)h

9 + O �h10
�

−1

14515200
z(10)(x1)h

10 + O �h11
�

−1

1837080
p

3
z(9)(x1)h

9 + O �h10
�

· · ·
· · ·

−1

58939650
z(11)(xN−2)h

11 + O �h12
�

0.000045852z(6)(x0)h
5 + O �h6
�

· · ·
−2.0246× 10−8z(9)(x0)h

8 + O �h9
�

1

612360
z(9)(x1)h

8 + O �h9
�

−1

362880
z(9)(x1)h

8 + O �h9
�

1

612310
z(9)(x1)h

8 + O �h9
�

· · ·
· · ·

1

589396500
z(12)(xN−2)h

11 + O �h12
�

































































































.

Now, consider the system of approximate values of the problem — viz.

D(4N+4)×(4N+4)Z̄4N+4 + hX(4N+4)×(4N+6)F̄4N+6 + C4N+4 = 0, (3.4)

where

Z̄4N+4 =
�

zr , zs, zt , z1, z1+p, z2, z1+q, z3, z3+p, z4, . . . , zN−2+q, z′0, z′r , . . . , z′N
�T

,

is the vector of approximate values of Z4N+4 and F̄4N+6 is given by

F̄4N+4 =
�

f0, fr , fs, ft , f1, f1+p, f2, . . . , fN , g0, gr , gs, gt , g1, g1+p, g2, . . . , gN

�T
.
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Subtracting (3.4) from (3.3) yields

DE + hX (F − F̄ ) =L (h), (3.5)

where the vector E = Z − Z̄ = (Er , Es, Et , E1, E1+p, E2, . . . , EN−2+q, E′0, E′r , . . . , E′N )
T contains

the errors at intra-step and nodal points.

Using the Mean Value Theorem, for i = 0, r, s, t, 1,1 + p, 2,1 + q, 3,3 + p, 4, . . . , N , we

have

f
�

x i, z(x i), z
′(x i)
�− f (x i, zi , z

′
i ) =
�

z(x i)− zi

�∂ f

∂ z
(ξi) +
�

z′(x i)− z′i
� ∂ f

∂ z′
(ξi),

g
�

x i, z(x i), z
′(x i)
�− g(x i, zi , z

′
i ) =
�

z(x i)− zi

�∂ g

∂ z
(ηi) +
�

z′(x i)− z′i
� ∂ g

∂ z′
(ηi). (3.6)

Here, ξi and ηi refer to the intermediate points on the segment joining (x i, z(x i), z
′(x i))

and (x i , zi , z
′
i
). The representations (3.6) give

F − F̄ = J(4N+6)×(4N+4)E4N+4, (3.7)

where J is a matrix of partial derivatives of f , g with respect to z, z′, evaluated at the

intermediate points. Note that we used known boundary conditions, so that E0 = z(x0)−
z0 = 0 and EN = z(xN )− zN = 0. It follows from the Eqs. (3.5) and (3.7) that

D(4N+4)×(4N+4)E4N+4 + hX(4N+4)×(4N+6)J(4N+6)×(4N+4)E4N+4 =L (h)4N+4. (3.8)

The matrix M(4N+4)×(4N+4) = D(4N+4)×(4N+4) + hX(4N+4)×(4N+6)J(4N+6)×(4N+4) is invertible

for all sufficiently small h. Moreover, it is singular only for a few h. Indeed, taking into

account the sparsity of D, one can use the cofactor expansion along a row or a column to

show that det(D(4N+4)×(4N+4)) = −Nh, so that D is invertible as soon as h > 0. Writing

matrixM in the form

M = D + hX J = (Id − B)D

with the identity matrix Id of order 4N + 4 and B = −hX J D−1, we have

detM = det(Id − B) det D.

Let λ̄i denote an eigenvalue of X J D−1. Considering the characteristic polynomial

det(λId − B) =

4N+4
∏

i=1

(λ−λi)

of B, we note that for λ = 1, the determinant of Id − B does not vanish if 1 + hλ̄i 6= 0,

i = 1, . . . , N + 4. Therefore, we can write

E4N+4 =M−1
(4N+4)×(4N+4)

L (h)4N+4. (3.9)

Consider the maximum norm ‖E‖ = maxi |Ei| in R4N+4 and the induced matrix norm in

R
(4N+4)×(4N+4). Expanding each term ofM−1

(4N+4)×(4N+4)
in a series in powers of h one can
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show that ‖M−1
(4N+4)×(4N+4)

‖ = O (h−1). The proof relies on the special structure of matrix

M . More exactly, if N = 2 j + 1, j ≥ 1, j ∈ N, the matrixM can written as

M =

�M11 M12

M21 M22

�

,

where the (2N + 2) × (2N + 1) submatrices Mi1, i = 1,2 and the (2N + 2) × (2N + 3)

submatricesMi2, i = 1,2 have the form

M11 =

















M̄11 M̄12

M̄22 M̄23

M̄33

. . .

M̄k−1 k−1 M̄k−1 k

M̄k k

















, k =
N + 1

2
,

M̄11 =



P(h2)





4×3

, M̄ii =







p(h3)

p(h3)
P(h2)

p(h3)

p(h3)







4×4

, i = 2, . . . , k,

M̄12 =







p(h2)

p(h2)
0

p(h2)

1







4×4

, M̄i i+1 =







p(h3)

p(h3)
0

p(h3)

p(h2)







4×4

, i = 2, . . . , k − 1,

M12 =

















M̂11 M̂12

M̂22 M̂23

M̂33

. . .

M̂k−1 k−1 M̂k−1 k

M̂k k

















, k =
N + 1

2
,

M̂11 =







p(h)

p(h)
P(h2)

p(h)

p(h)







4×4

, M̂ii =







p(h3)

p(h3)
P(h2)

p(h3)

p(h3)







4×4

, i = 2, . . . , k − 1,

M̂12 =







p(h2)

p(h2)
0

p(h2)

0







4×4

, M̂i i+1 =







p(h3)

p(h3)
0

p(h3)

p(h2)







4×4

, i = 2, . . . , k − 2,

M̂k−1 k =







p(h3)

p(h3)
0

p(h3)

p(h2)







4×5

, M̂k k =







p(h3) p(h3)

p(h3)
P(h2)

p(h3)

p(h3) p(h3)

p(h3) p(h3)







4×5

,
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M21 =

















M̃11 M̃12

M̃22 M̃23

M̃33

. . .

M̃k−1 k−1 M̃k−1 k

M̃k k

















, k =
N + 1

2
,

M̃11 =





P(h)







4×3

, M̃ii =







p(h2)

p(h2)
P(h)

p(h2)

p(h2)







4×4

, i = 2, . . . , k,

M̃12 =







p(h)

p(h)
0

p(h)

p(h)







4×4

, M̃i i+1 =







p(h2)

p(h2)
0

p(h2)

p(h2)







4×4

, i = 2, . . . , k − 1,

M22 =

















M̆11 M̆12

M̆22 M̆23

M̆33

. . .

M̆k−1 k−1 M̆k−1 k

M̆k k

















, k =
N + 1

2
,

M̆11 =







−1

−1
P(h)−1

−1







4×4

, M̆ii =







p(h2)

p(h2)
P(h)

p(h2)

p(h2)







4×4

, i = 2, . . . , k − 1,

M̆12 =







p(h)

p(h)
0

p(h)

p(h)







4×4

, M̆i i+1 =







p(h2)

p(h2)
0

p(h2)

p(h2)







4×4

, i = 2, . . . , k − 2,

M̆k−1 k =







p(h2)

p(h2)
0

p(h2)

p(h2)







4×5

, M̆k k =







p(h2) p(h2)

p(h2)
P(h)

p(h2)

p(h2) p(h2)

p(h2) p(h2)







4×5

.

The notation p(hm) means a polynomial in h of the degree at most m, while P(hm) and

0 are submatrices all entries of which are polynomials in h of the degree m and zeros,

respectively. The not explicitly written entries are zeros.

To construct the inverse we use cofactors and determinant. The determinant of M
has cumbersome representation det(M ) = hQr(h), where Qr(h) = a0 + a1h+ · · ·+ arh

r is

a polynomial of degree r. The cofactors are also polynomials Rs(h) = b0 + b1h+ · · ·+ bsh
s

with r ≤ s. Thus the entries ofM−1 with the lower order approximation have the form
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b0 + b1h+ · · ·+ bsh
s

h(a0 + a1h+ · · ·+ arh
r)
= O �h−1
�

.

Finally, using the Eq. (3.9) and assuming that z(x) has bounded derivatives up to order

nine, we get

‖E4N+4‖ ≤




M−1
(4N+4)×(4N+4)











L (h)4N+4





.

We are interested in the components E j, j = 1,2, . . . , N − 1, of E corresponding to the grid

points, not the intermediate ones, and thus we have





(E1, E2, . . . , EN−1)
T




≤
�

�O �h−1
��

�

�

�O �h8
��

� ≤ Kh7.

This completes the proof.

4. Implementation Details

In this section, we discuss how to implement the block global method for solving the

SBVP (1.1) with the boundary conditions (1.2). The algorithm could be written as follows.

Step 1. Consider the ad hoc formulas (2.8).

Step 2. Consider the main formulas (2.5)-(2.6) for n= 1(2)N − 2.

Step 3. Combining all equations in Steps 1 and 2 with two BCs (1.2) leads to the system

of 4N + 6 equations in 4N + 6 unknowns

�

z0, zr , zs , zt , z1, z1+p, z2, z1+q , z3, z3+p, z4, . . . , zN

	

,
¦

z′0, z′r , z′s , z
′
t , z
′
1, z′1+p, z′2, z′1+q , z′3, z′3+p, z′4, . . . , z′N

©

.

For the system of equations obtained in Step 3, we shall consider the following possibilities:

(i) If the resulting system is linear, one can use the existing linear system solvers.

(ii) If the system is nonlinear, one can use Newton-Raphson’s-type or other nonlinear

system solvers. For details on Newton-Raphson method and other methods the reader

is referred to [3,29].

Remark 4.1. Applying an iterative method to nonlinear systems, one needs a good starting

point. To solve a given SBVP (1.1) with any two BCs in (2.1) by the global hybrid block

method, we have to solve a system of 4N+6 equations with 4N+6 unknowns. It is reduced

to a system of 4N +4 equations with 4N +4 unknowns for Dirichlet or Neumann boundary

conditions. The resulting system can be solved by any corresponding system solver. For

nonlinear systems, a Newton-Raphson’s-type iterative algorithm can be used. In order to

implement Newton-Raphson’s-type iterative algorithms, a good starting approximation is

required. For this, we consider the following criteria.
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(i) For Dirichlet-type BC z0 = za, zN = zb, the resulting system of equations is further

reduced to 4N + 4 equations in 4N + 4 unknowns. The following criterion could be

used for appropriate initial starting values

z
(0)

i
= z0 +

zN − z0

b− a
ih, i = r, s, t, 1,1+ p, 2,1+ q, . . . , N − 2+ q,

z
′(0)
i
=

zN − z0

b− a
, i = 0, r, s, t, 1,1+ p, 2,1+ q, . . . , N − 2+ q, N .

(ii) For Neumann BC, we can follow the strategy presented in [32], viz. consider a class

of nonlinear BVPs called Θ j, j = 0(1)c such that for j = 0, initially we have a problem

Θ0, which has only trivial solution z(x) = 0. If we take j = c we recover the original

problem. Thus, one has a set of BVPs given by

Θ j =















z′′ = f (x , z, z′)− f (x , 0,0) +
j

c
f (x , 0,0),

g1

�

z(a), z′(a)
�

=
j

c
va,

g2

�

z(b), z′(b)
�

=
j

c
vb

for j=0(1)c.

Each of the above problems Θ j, j = 1(1)c can be solved by the proposed method with

starting values derived from the problem Θ j−1. Setting j = c, we have that the resulting

nonlinear system corresponds to the original SBVP (1.1).

Other criteria for finding appropriate initial approximations can be also used. In some

cases, the zero initial approximations can be used (that may be accomplished with c = 1).

For more details the reader can consult [32] and references therein.

5. Numerical Experiments

In this section, some numerical experiments are carried out for different problems.

Some notations used in the following tables are: N is the number of sub-intervals of the

interval of interest [a, b] with N ≥ 3 must be odd; we have taken M = N −1, and thus the

first step is to apply the ad hoc formulas while the rest of subintervals are an even number,

as it must be for a two-step block scheme. MAEh is the designation of maximum absolute

errors along the grid points on the interval of interest, considering a step size h. We have

included the estimation of the numerical order of convergence with the proposed method

in the tables presented. This estimation has been obtained with the usual formula

ROC ≃ log2

�

MAE2h

MAEh

�

and the execution time in seconds is denoted by C PU .

All the experiments have been carried out by using Mathematica 11.3 on a personal

computer with configuration i7-7500U, 1.80 GHz, using double precision arithmetic in the

numerical computations.
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5.1. Equilibrium of isothermal gas sphere problem

Consider the following nonlinear SBVP related with the equilibrium of the isothermal

gas sphere

�

x2 z′(x)
�′
= −x2 z(x)5,

z′(0) = 0, z(1) =

p
3

2
.

The true solution of this problem is z(x) =
p

3/(3+ x2). The problem has been solved

by various methods, which are referred here to as Scheme-1, Scheme-2, Scheme-3 and

Scheme-4, cf. [17, 20, 22, 38] and New Scheme. Numerical results presented in Tables 1

and 2, show a good performance of the method.

Table 1: MAEs for Example 5.1.

M New Scheme Scheme-1 Scheme-2

8 3.032× 10−11 5.336× 10−8 −
ROC:–

CPU: 0.06

16 6.959× 10−14 1.594× 10−9 2.439× 10−7

ROC: 8.76

CPU: 0.86

32 2.053× 10−16 2.673× 10−11 2.598× 10−8

ROC: 8.40

CPU: 1.07

64 6.948× 10−19 4.320× 10−13 1.803× 10−9

ROC: 8.20

CPU: 2.29

128 2.524× 10−21 6.804× 10−15 1.154× 10−10

ROC: 8.10

CPU: 16.29

Table 2: MAEs for Example 5.1.

M New Scheme Scheme-1 Scheme-3 Scheme-4

50 3.7820× 10−18 1.8688× 10−12 2.2341× 10−6 7.6178× 10−10

ROC: –

CPU: 1.28

100 1.5817× 10−20 2.9696× 10−14 5.5832× 10−7 4.7553× 10−11

ROC: 7.90

CPU: 7.46
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5.2. Thermal explosion problem

Consider a nonlinear singular boundary value problem that arises in the theory of ther-

mal explosion [12,38], viz.

�

x z′(x)
�′
= x ez(x),

z′(0) = 0, z(1) = 0.

The true solution of this problem is z(x) = 2 log((d + 1)/(d x2 + 1)), where d = −5 +

2
p

6. The numerical results obtained by New Scheme, Scheme-1 [38] and Scheme-2 [12]

demonstrate a good performance of the new method — cf. Table 3.

Table 3: MAEs for Example 5.2.

M New Scheme Scheme-1 Scheme-2

8 3.378× 10−11 3.592× 10−9 -

ROC: -

CPU: 0.06

16 3.459× 10−13 5.465× 10−11 2.520× 10−3

ROC: 6.60

CPU: 0.10

32 4.429× 10−15 7.175× 10−13 1.833× 10−4

ROC: 6.28

CPU:0.34

64 6.283× 10−17 1.134× 10−14 1.280× 10−5

ROC: 6.13

CPU: 1.64

5.3. Lane-Emden type problem

Consider the nonlinear Lane-Emden type problem studied in [19,40], i.e.

z′′(x) +
�

1+
r

x

�

z′(x) =
5x3(5x5ez(x) − x − r − 4)

4+ x5
, (5.1)

z′(0) = 0, z(1) + 5z′(1) = log

�

1

5

�

− 5. (5.2)

The true solution of this problem is z(x) = − log(4+ x5). Here the problem is solved for

r = 0.25 and r = 1 as in [19]. Numerical results obtained by the new method and by

Scheme-1 and Scheme-2 [19,40] and presented in Tables 4 and 5 show a good behaviour

of the proposed method.
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Table 4: MAEs for Example 5.3 when r = 0.25.

M New Scheme Scheme-1 Scheme-2

16 9.626× 10−13 1.231× 10−9 5.010× 10−9

ROC: –

CPU: 0.23

32 7.940× 10−16 1.906× 10−11 7.32× 10−9

ROC: 10.24

CPU: 0.56

64 6.772× 10−19 2.967× 10−13 4.77× 10−10

ROC: 10.19

CPU: 2.42

128 6.000× 10−22 2.665× 10−15 5.21× 10−11

ROC: 10.14

CPU: 16.32

Table 5: MAEs for Example 5.3 when r = 1.

M New Scheme Scheme-1 Scheme-2

16 1.134× 10−12 1.761× 10−9 3.15× 10−8

ROC: -

CPU: 0.17

32 9.122× 10−16 2.682× 10−11 4.22× 10−10

ROC: 10.27

CPU: 0.57

64 7.762× 10−19 4.183× 10−13 2.09× 10−10

ROC: 10.19

CPU: 2.45

128 7.016× 10−22 9.769× 10−15 4.17× 10−11

ROC: 10.11

CPU: 15.89

256 6.578× 10−25 1.332× 10−15 1.76× 10−13

ROC: 10.05

CPU: 134.01

5.4. SBVP with Dirichlet type BC

Consider the following two-point BVP [2] given by

z′′(x) +
2

x
z′(x)− 2

(x − 2)2
z(x) = − 3

(x − 2)2(x + 1)2
,

z(0) = −0.5, z(1.5) =
−4

3
log(2.5).

The true solution of the problem is z(x) = log(1+ x)/x(x − 2). We compare our method

with a highly accurate scheme in [2]. The numerical results presented in Table 6 show

a good performance of the proposed method.
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Table 6: MAEs for Example 5.4.

M New Scheme Scheme in [44]

20 3.133× 10−8 7.079× 10−6

ROC: –

CPU: 0.09

40 1.081× 10−10 1.269× 10−7

ROC: 8.17

CPU: 0.29

80 2.758× 10−13 1.427× 10−9

ROC: 8.61

CPU: 1.25

5.5. SBVP with Dirichlet type BC

Finally, consider the nonlinear two-point SBVP with Dirichlet type BC [44]

z′′(x) +
0.5

x
z′(x) = 0.5ez(x) − e2z(x),

z(0) = log(2), z(1) = 0.

The true solution of the problem is z(x) = log(2/(x2 + 1)). For this problem, we have

plotted CPU time versus maximum absolute errors (MAEs) along the integration interval

for different number of steps. Fig. 1 indicates that the method proposed very accurately

solves the problem with a low CPU time.

●

●

●

●
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Figure 1: CPU times versus MAEs.
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6. Conclusion

We developed an optimised global hybrid block method for second order SBVPs with two

boundary conditions. It is a combination of main and an ad hoc formulas with optimised

intra-step points. The ad hoc procedure is used just to pass the singularity and the main

formulas are applied for other discrete points of interest. A theoretical analysis shows the

method convergence order. Numerical experiments demonstrate that the method presents

a good alternative for the problems considered.
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